To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
This manual explains the sample program functions of the clock generator for the V850E/IA4 microcontroller. The explanations are based on usage with the V850E/IA4 microcontroller. Refer to this manual when using the V850E/IA3, V850ES/IK1, and V850ES/IE2 microcontrollers.

Caution

This sample program is provided for reference purposes only and operations are therefore not subject to guarantee by NEC Electronics Corporation. When using this sample program, customers are kindly advised to sufficiently evaluate this product based on their system before usage.
NOTES FOR CMOS DEVICES

① VOLTAGE APPLICATION WAVEFORM AT INPUT PIN
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).

② HANDLING OF UNUSED INPUT PINS
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

⑤ POWER ON/OFF SEQUENCE
In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

⑥ INPUT OF SIGNAL DURING POWER OFF STATE
Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.
These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of July, 2006. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer’s equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: “Standard”, “Special” and “Specific”.

The “Specific” quality grade applies only to NEC Electronics products developed based on a customer-designated “quality assurance program” for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is “Standard” unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics’ willingness to support a given application.

(Note)
(1) “NEC Electronics” as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) “NEC Electronics products” means any product developed or manufactured by or for NEC Electronics (as defined above).
INTRODUCTION

Cautions

1. Download the program used in this manual from the NEC Electronics Website (http://www.necel.com/).
2. When using this sample program, reference the following startup file and link directive file and adjust them if as necessary.
 - Startup file: IA4_start.s
 - Link directive file: IA4_link.dir

Conventions

The function lists are structured as follows.

<table>
<thead>
<tr>
<th>Hardware name</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Function] Function description</td>
</tr>
<tr>
<td>[Function name] Name of sample function</td>
</tr>
<tr>
<td>[Argument] Type and overview of argument</td>
</tr>
<tr>
<td>[Processing content] Processing content of sample function</td>
</tr>
<tr>
<td>[Starting method] Conditions for calling a function</td>
</tr>
<tr>
<td>[SFR(s) used] Register name and setting content</td>
</tr>
<tr>
<td>[call function(s)] Name and function of call function(s)</td>
</tr>
<tr>
<td>[Variable(s)] Type, name, and overview of variable(s) used in sample function</td>
</tr>
<tr>
<td>[Interrupt(s)] Name of function</td>
</tr>
<tr>
<td>[Interrupt source(s)] Name</td>
</tr>
<tr>
<td>[File name] Name of corresponding sample program file</td>
</tr>
<tr>
<td>[Caution(s)] Caution(s) upon function usage</td>
</tr>
</tbody>
</table>

Product Differences

The differences between the V850E/IA4 and the V850E/IA3, V850ES/IK1, and V850ES/IE2 related to the clock generator are shown below.

<table>
<thead>
<tr>
<th>Item</th>
<th>V850E/IA4</th>
<th>V850E/IA3</th>
<th>V850ES/IK1</th>
<th>V850ES/IE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonator</td>
<td>4 to 8 MHz resonator connectable (external clock input prohibited)</td>
<td>4 to 8 MHz resonator connectable (external clock input prohibited)</td>
<td>2.5 to 4 MHz resonator connectable (external clock input prohibited)</td>
<td>2.5 MHz resonator connectable (external clock input prohibited)</td>
</tr>
<tr>
<td>Multiplication function by PLL clock synthesizer</td>
<td>Fixed to multiplication by eight, fxx = 32 to 64 MHz</td>
<td>Fixed to multiplication by eight, fxx = 32 to 64 MHz</td>
<td>Fixed to multiplication by eight, fxx = 20 to 32 MHz</td>
<td>Fixed to multiplication by eight, fxx = 20 MHz</td>
</tr>
<tr>
<td>PLL operation specifiable by PLLSIN pin</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Remark

fxx: System clock frequency
Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents related to V850E/IA3, V850E/IA4, V850ES/IK1, and V850ES/IE2

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Document No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V850E1 Architecture User’s Manual</td>
<td>U14559E</td>
</tr>
<tr>
<td>V850E/IA3, V850E/IA4 Hardware User’s Manual</td>
<td>U16543E</td>
</tr>
<tr>
<td>V850ES Architecture User’s Manual</td>
<td>U15943E</td>
</tr>
<tr>
<td>V850ES/IK1 Hardware User’s Manual</td>
<td>U16910E</td>
</tr>
<tr>
<td>V850ES/IE2 Hardware User’s Manual</td>
<td>U17716E</td>
</tr>
<tr>
<td>Inverter Control by V850 Series Vector Control by Hole Sensor Application Note</td>
<td>U17338E</td>
</tr>
<tr>
<td>Inverter Control by V850 Series Vector Control by Encoder Application Note</td>
<td>U17324E</td>
</tr>
<tr>
<td>Inverter Control by V850 Series 120° Excitation Method Control by Zero-Cross Detection Application Note</td>
<td>U17209E</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions DMA Functions (V850E/IA3, V850E/IA4) Application Note</td>
<td>U18235E</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions Timer ENC (V850E/IA3, V850E/IA4) Application Note</td>
<td>U18240E</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions Clock Generator (V850E/IA3, V850E/IA4, V850ES/IK1, V850ES/IE2) This manual</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

Clock generator

PLL mode ... 7

Clock generator

Clock monitor mode .. 11
Clock generator

PLL mode

[Function] Sets the clock frequency by setting the CPU operation clock (PLL mode) and the PCC register which is a special register.

[Function name] pll_main

[Argument] None

[Processing content] Calls the PLL setting function by stopping all DMAs in use.

[Starting method] None

[SFR used] None

[call functions] clock_pll_mode, clock_pcc_mode

[Variable] None

[Interrupt] None

[Interrupt source] None

[File name] clock_generator1.c

[Caution] Note that if the pll_main function is called the maskable interrupt request will not be enabled (EI).

[Function name] clock_pll_mode

[Processing content] Sets to PLL mode by the PLLCTL register.

[SFR used] PLLCTL: 0x03 (Sets to PLL mode.)

[call function] None

[Variable] None

[File name] clock_generator1.c

[Caution] None
[Function name] clock_pcc_mode
[Processing content] Sets the PCC register by forcibly terminating DMA transfer.
[SFRs used] DCHC0.TC0 DMA0 transfer status bit
 DCHC0.E00: 1 (Enables DMA0 transfer.)
 DCHC0.INIT0: 1 (Forcibly terminates DMA0 transfer.)
 DCHC1.TC1 DMA1 transfer status bit
 DCHC1.E11: 1 (Enables DMA1 transfer.)
 DCHC1.INIT1: 1 (Forcibly terminates DMA1 transfer.)
 DCHC2.TC2 DMA2 transfer status bit
 DCHC2.E22: 1 (Enables DMA2 transfer.)
 DCHC2.INIT2: 1 (Forcibly terminates DMA2 transfer.)
 DCHC3.TC3 DMA3 transfer status bit
 DCHC3.E33: 1 (Enables DMA3 transfer.)
 DCHC3.INIT3: 1 (Forcibly terminates DMA3 transfer.)
 PRCMD: 0x00 (Writes to command register
 (used when writing to a special register).)
 PCC: 0x00 (Selects clock as fXX.)
[call function] None
[Variable] None
[File name] clock_generator1.c
[Caution] • DMA transfer is forcibly terminated in this sample program, because all DMA transfers
 must be terminated before performing data setting to the special register.
 • Set the PCC register after switching to the PLL mode. The PCC register is a special
 register and can therefore only be written in a combination of specific sequences.
Clock generator
PLL mode (1/2)

pll_main

DI

Disables maskable interrupt request

clock_pll_mode

PLL mode setting function

clock_pcc_mode

PCC register setting function

PRERR == 1

No

Checks protection error flag

Yes

ret
Clock generator
PLL mode (2/2)

PLL mode setting function

clock_pll_mode

PLLCTL = 0x03

Sets CPU operation clock to PLL mode

ret

PCC register setting function

clock_pcc_mode

TC0 == 0 && E00 == 1

Yes

INIT0 = 1

No

Checks DMA0 transfer

Forcibly terminates DMA0

TC1 == 0 && E11 == 1

Yes

INIT1 = 1

No

Checks DMA1 transfer

Forcibly terminates DMA1

TC2 == 0 && E22 == 1

Yes

INIT2 = 1

No

Checks DMA2 transfer

Forcibly terminates DMA2

TC3 == 0 && E33 == 1

Yes

INIT3 = 1

No

Checks DMA3 transfer

Forcibly terminates DMA3

PRCMD = 0x00

Writes to command register

PCC = 0x00

Selects clock as fXX

NOP instruction × 5

Inserts five NOP instructions

ret

Clock_pcc_mode

PRCMD = 0x00

Sets CPU operation clock to PLL mode

ret
Clock generator

Clock monitor mode

<table>
<thead>
<tr>
<th>Function</th>
<th>Performs clock monitor operation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>clock_monitor_main</td>
</tr>
<tr>
<td>Argument</td>
<td>None</td>
</tr>
<tr>
<td>Processing content</td>
<td>Enables operation of the clock monitor mode by calling the clock monitor mode function.</td>
</tr>
<tr>
<td>Starting method</td>
<td>None</td>
</tr>
<tr>
<td>SFR used</td>
<td>None</td>
</tr>
<tr>
<td>call function</td>
<td>clock_monitor_mode</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>Interrupt</td>
<td>None</td>
</tr>
<tr>
<td>Interrupt source</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>clock_generator2.c</td>
</tr>
<tr>
<td>Caution</td>
<td>Note that if the clock_monitor_main function is called the maskable interrupt request will not be enabled (EI).</td>
</tr>
</tbody>
</table>
[Function name] clock_monitor_mode

[Processing content] Sets the operation mode of the clock monitor via the CLM register, by forcibly terminating DMA transfer.

[SFRs used]
- DCHC0.TC0 DMA0 transfer status bit
- DCHC0.E00: 1 (Enables DMA0 transfer.)
- DCHC0.INIT0: 1 (Forcibly terminates DMA0 transfer.)
- DCHC1.TC1 DMA1 transfer status bit
- DCHC1.E11: 1 (Enables DMA1 transfer.)
- DCHC1.INIT1: 1 (Forcibly terminates DMA1 transfer.)
- DCHC2.TC2 DMA2 transfer status bit
- DCHC2.E22: 1 (Enables DMA2 transfer.)
- DCHC2.INIT2: 1 (Forcibly terminates DMA2 transfer.)
- DCHC3.TC3 DMA3 transfer status bit
- DCHC3.E33: 1 (Enables DMA3 transfer.)
- DCHC3.INIT3: 1 (Forcibly terminates DMA3 transfer.)
- PRCMD: 0x01 (Writes to command register (used when writing to a special register.).)
- CLM: 0x01 (Sets to operation enable.)

[call function] None

[Variable] None

[File name] clock_generator2.c

[Cautions]
- DMA transfer is forcibly terminated in this sample program, because all DMA transfers must be terminated before performing data setting to the special register.
- The CLM register is a special register and can therefore only be written in a combination of specific sequences.
Clock generator
Clock monitor mode (1/2)

1. DI
 - Disables maskable interrupt request

2. clock_monitor_mode
 - Clock monitor mode setting
3. PRERR \equiv 1
 - Checks protection error flag
 - Yes
 - No
4. ret
Clock monitor mode setting

clock_monitor_mode

TC0 == 0 && E00 == 1

No

Checks DMA0 transfer

Yes

INIT0 = 1

Forcibly terminates DMA0

TC1 == 0 && E11 == 1

No

Checks DMA1 transfer

Yes

INIT1 = 1

Forcibly terminates DMA1

TC2 == 0 && E22 == 1

No

Checks DMA2 transfer

Yes

INIT2 = 1

Forcibly terminates DMA2

TC3 == 0 && E33 == 1

No

Checks DMA3 transfer

Yes

INIT3 = 1

Forcibly terminates DMA3

PRCMD = 0x01

Writes to command register

CLM = 0x01

Enables clock monitor operation

NOP instruction \times 5

Inserts five NOP instructions

ret
For further information, please contact:

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]
NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
800-368-9782
http://www.am.necel.com/

[Europe]
NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistraße 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnum House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 8NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Suursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 919-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steigerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

[Asia & Oceania]
NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
12/F, Cityplaza 4,
12 Taicool Wan Road, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F, Samik Laved’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/