To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implants, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
This manual explains the sample program functions of the A/D converter 2 for the V850E/IA4 microcontroller. The explanations are based on usage with the V850E/IA4 microcontroller. Refer to this manual when using the V850E/IA3 microcontroller.

Caution

This sample program is provided for reference purposes only and operations are therefore not subject to guarantee by NEC Electronics Corporation. When using this sample program, customers are kindly advised to sufficiently evaluate this product based on their system before usage.
NOTES FOR CMOS DEVICES

1. **VOLTAGE APPLICATION WAVEFORM AT INPUT PIN**
 Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{IL} \text{ (MAX)}$ and $V_{IH} \text{ (MIN)}$ due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{IL} \text{ (MAX)}$ and $V_{IH} \text{ (MIN)}$.

2. **HANDLING OF UNUSED INPUT PINS**
 Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

3. **PRECAUTION AGAINST ESD**
 A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

4. **STATUS BEFORE INITIALIZATION**
 Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5. **POWER ON/OFF SEQUENCE**
 In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.
 The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6. **INPUT OF SIGNAL DURING POWER OFF STATE**
 Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.
These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of July, 2006. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.

- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.

- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

 * "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

 * "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

 * "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics’ willingness to support a given application.

(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).
INTRODUCTION

Cautions 1. Download the program used in this manual from the NEC Electronics Website (http://www.necel.com/).
2. When using this sample program, reference the following startup file and link directive file and adjust them if as necessary.
 • Startup file: IA4_start.s
 • Link directive file: IA4_link.dir

Conventions
The function lists are structured as follows.

Hardware name

<table>
<thead>
<tr>
<th>[Function]</th>
<th>Function description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Function name]</td>
<td>Name of sample function</td>
</tr>
<tr>
<td>[Argument]</td>
<td>Type and overview of argument</td>
</tr>
<tr>
<td>[Processing content]</td>
<td>Processing content of sample function</td>
</tr>
<tr>
<td>[SFR(s) used]</td>
<td>Register name and setting content</td>
</tr>
<tr>
<td>[call function(s)]</td>
<td>Name and function of call function(s)</td>
</tr>
<tr>
<td>[Variable(s)]</td>
<td>Type, name, and overview of variable(s) used in sample function</td>
</tr>
<tr>
<td>[Interrupt(s)]</td>
<td>Name of function</td>
</tr>
<tr>
<td>[Interrupt source(s)]</td>
<td>Name</td>
</tr>
<tr>
<td>[File name]</td>
<td>Name of corresponding sample program file</td>
</tr>
<tr>
<td>[Caution(s)]</td>
<td>Caution(s) upon function usage</td>
</tr>
</tbody>
</table>

Interrupt function(s)

<table>
<thead>
<tr>
<th>[Function name]</th>
<th>Name of interrupt function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Processing content]</td>
<td>Processing content of interrupt function</td>
</tr>
<tr>
<td>[SFR(s) used]</td>
<td>Register name and setting content</td>
</tr>
<tr>
<td>[call function(s)]</td>
<td>None</td>
</tr>
<tr>
<td>[Variable(s)]</td>
<td>Name of variable, function</td>
</tr>
<tr>
<td>[File name]</td>
<td>Name of corresponding sample program file</td>
</tr>
<tr>
<td>[Caution(s)]</td>
<td>None</td>
</tr>
</tbody>
</table>
Product Differences

The differences between the V850E/IA4 and the V850E/IA3 related to the A/D converter are shown below.

<table>
<thead>
<tr>
<th>Item</th>
<th>V850E/IA4</th>
<th>V850E/IA3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog input</td>
<td>8 channels</td>
<td>6 channels</td>
</tr>
</tbody>
</table>

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents related to V850E/IA3 and V850E/IA4

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Document Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Control by V850 Series Vector Control by Hole Sensor Application Note</td>
<td>Inverter Control by V850 Series Vector Control by Encoder Application Note</td>
</tr>
<tr>
<td>Manual for Using Sample Program Functions A/D Converter 2 (V850E/IA3, V850E/IA4) Application Note</td>
<td>This document</td>
</tr>
</tbody>
</table>
CONTENTS

A/D converter 2
 1-buffer serial mode .. 7
A/D converter 2
 4-buffer parallel mode ... 13
A/D converter 2

1-buffer serial mode

<table>
<thead>
<tr>
<th>Function</th>
<th>Converts signals input to the analog input pin (ANI20) to digital values. An A/D conversion end interrupt request signal (INTAD2) occurs upon completion of every A/D conversion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>ad2_main</td>
</tr>
<tr>
<td>Argument</td>
<td>None</td>
</tr>
<tr>
<td>Processing content</td>
<td>Stores the A/D conversion result to buf[] by A/D converting signals input to the ANI20 pin when the ADA2CTL0.ADA2CE bit is set to 1. An A/D2 conversion end interrupt request signal (INTAD2) occurs upon completion of every A/D conversion. Performs A/D conversion for 10 times.</td>
</tr>
<tr>
<td>SFR used</td>
<td>AD2IC: 0x07 (Clears conversion end interrupt request signal (INTAD2), releases mask, sets to priority level 7)</td>
</tr>
<tr>
<td>Call functions</td>
<td>ad2_port_set, ad2_set, ad2_analog_on, ad2_start, ad2_stop, ad2_analog_off</td>
</tr>
<tr>
<td>Variables</td>
<td>unsigned short int buf[]: Conversion data storing buffer volatile unsigned char count: Conversion count variable unsigned char wait: WAIT variable</td>
</tr>
<tr>
<td>Interrupt</td>
<td>ad2_int</td>
</tr>
<tr>
<td>Interrupt source</td>
<td>INTAD2</td>
</tr>
<tr>
<td>File name</td>
<td>ad2.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>

Function name	ad2_port_set
Processing content	Sets the alternate-function pin to the ANI20 input pin.
SFR used	PMC7: 0x01 (Sets P70 pin to ANI20 input pin.)
Call function	None
Variable	None
File name	ad2.c
Caution	None
Function name: ad2_analog_on

Processing content: Turns on the analog power supply

SFR used: ADA2CTL0.ADA2PON: 1 (Turns on analog power supply.)

Call function: None

Variable: unsigned char wait: WAIT variable

File name: ad2.c

Caution: Do not set the analog power supply control bit (ADA2PON) and A/D conversion operation control bit (ADA2CE) of the ADA2CTL0 register to 1 at the same time. Set the ADA2CE bit to 1 at least 5 μs after the ADA2PON bit is set to 1. If the ADA2CE bit is set to 1 before the lapse of 5 μs, A/D conversion is executed but the accuracy of the result of the first conversion cannot be guaranteed.

Function name: ad2_set

Processing content: Sets the A/D conversion control register.

SFRs used: ADA2CTL3: 0x00 (Sets to 1-buffer mode, serial mode.)
ADA2CTL1: 0x03 (Sets to fxx/16 (4 MHz), 10-bit (2048 times) resolution.)
ADA2CTL2: 0x00 (Sets analog input pin to ANI20 pin.)

Call function: None

Variable: None

File name: ad2.c

Caution: None

Function name: ad2_start

Processing content: Starts the A/D conversion operation.

SFR used: ADA2CTL0.ADA2CE: 1 (Starts A/D conversion operation.)

Call function: None

Variable: None

File name: ad2.c

Caution: Do not set the analog power supply control bit (ADA2PON) and A/D conversion operation control bit (ADA2CE) of the ADA2CTL0 register to 1 at the same time. Set the ADA2CE bit to 1 at least 5 μs after the ADA2PON bit is set to 1. If the ADA2CE bit is set to 1 before the lapse of 5 μs, A/D conversion is executed but the accuracy of the result of the first conversion cannot be guaranteed.
Function: ad2_stop

Processing content: Stops the A/D conversion operation.

SFR used: ADA2CTL0.ADA2CE: 0 (Stops A/D conversion operation.)

Call function: None

Variables: None

File name: ad2.c

Caution: None

Function: ad2_analog_off

Processing content: Turns off the analog power supply.

SFR used: ADA2CTL0.ADA2PON: 0 (Turns off analog power supply.)

Call function: None

Variables: None

File name: ad2.c

Caution: None

Interrupt function

Function name: ad2_int

Processing content: Stores the A/D conversion result data to the buffer.

SFR used: ADA2CR0 A/D2 conversion result register 0

Call function: None

Variables:
- unsigned short int buf[]: Conversion data storing buffer
- volatile unsigned char count: Conversion count variable

File name: ad2.c

Caution: None
A/D converter 2
1-buffer serial mode (1/3)

- **ad2_main**: The main entry point.
- **DI**: Disables maskable interrupt request.
- **ad2_port_set**: Alternate-function specify function.
- **ad2_analog_on**: Function for turning on analog power supply.
- **ad2_set**: A/D control register setting function.
- **AD2IC = 0x07**: Clears INTAD2 interrupt request signal, releases mask, sets to priority level 7.
- **EI**: Enables maskable interrupt request.
- **ad2_start**: A/D conversion operation start function.
- **count>=RX_SIZE**: Checks conversion count.
 - **No**: Flow back to **ad2_start**.
 - **Yes**: Proceeds to next steps.
- **ad2_stop**: A/D conversion operation stop function.
- **ad2_analog_off**: Function for turning off analog power supply.
A/D converter 2
1-buffer serial mode (2/3)

Alternate-function pin specify function

\texttt{ad2_port_set} \rightarrow \texttt{PMCM7 := 0x01} \rightarrow \texttt{ret}

Sets alternate-function pin to ANI20

A/D converter 2 control register setting function

\texttt{ad2_set} \rightarrow \texttt{ADA2CTL3 = 0x00} \rightarrow \texttt{ret}

Sets buffer mode to 1 buffer
Sets operation mode to serial mode

\texttt{ADA2CTL1 = 0x03} \rightarrow \texttt{ret}

Sets sampling clock as fxx/16 (4 MHz)
Sets resolution to 10 bits (2048 times)

\texttt{ADA2CTL2 = 0x00} \rightarrow \texttt{ret}

Sets analog input pin to ANI20

Function for turning on analog power supply

\texttt{ad2_analog_on} \rightarrow \texttt{ADA2PON = 1} \rightarrow \texttt{ret}

Turns on analog power supply

\texttt{WAIT (at least 5 \(\mu\)s)} \rightarrow \texttt{ret}

Leaves a lapse of at least 5 \(\mu\)s without setting the A/D conversion operation control bit (ADA2CE) after setting the analog power supply control bit (ADA2PON)

A/D conversion operation start function

\texttt{ad2_start} \rightarrow \texttt{ADA2CE = 1} \rightarrow \texttt{ret}

Enables A/D2 conversion operation
A/D converter 2

1-buffer serial mode (3/3)

A/D conversion operation stop function

ad2_stop

ADA2CE = 0

Stops A/D2 conversion operation

ret

Function for turning off analog power supply

ad2_analog_off

ADA2PON = 0

Turns off analog power supply

ret

INTAD2 interrupt

INTAD2 interrupt function

ad2_int

buf[count] = ADA2CR0

Stores conversion result to buffer

count++

Increments conversion count

ret
A/D converter 2

4-buffer parallel mode

[Function]	Converts signals input to the analog input pin (ANI20) to digital values. An A/D conversion end interrupt request signal (INTAD2) occurs upon completion of every A/D conversion.
[Function name]	ad2_1_main
[Argument]	None
[Processing content]	Stores the A/D conversion result to buf[], buf_1[], buf_2[] and buf_3[], by converting the signal input to the ANI20 pin four times in parallel, each with a time difference of 1/4 of the conversion time, when the ADA2CTL0.ADA2CE bit is set to 1. An A/D2 conversion end interrupt request signal (INTAD2) occurs upon completion of four A/D conversions. Performs A/D conversion for 10 times.
[SFR used]	AD2IC: 0x07 (Clears conversion end interrupt request signal (INTAD2), releases mask, sets to priority level 7)
[call functions]	ad2_port_set, ad2_analog_on, ad2_set, ad2_start, ad2_stop, ad2_analog_off
[Variables]	unsigned short int buf[]: Conversion data storing buffer
unsigned short int buf_1[]: Conversion data storing buffer	
unsigned short int buf_2[]: Conversion data storing buffer	
unsigned short int buf_3[]: Conversion data storing buffer	
volatile unsigned char count: Conversion count variable	
unsigned char wait: WAIT variable	
[Interrupt]	ad2_int
[Interrupt source]	INTAD2
[File name]	ad2_1.c
[Caution]	None

<p>| [Function name] | ad2_port_set |
| [Processing content] | Sets the alternate-function pin to the ANI20 input pin. |
| [SFR used] | PMC7: 0x01 (Sets P70 pin to ANI20 input pin.) |
| [call function] | None |
| [Variable] | None |
| [File name] | ad2_1.c |
| [Caution] | None |</p>
<table>
<thead>
<tr>
<th>Function name</th>
<th>ad2_analog_on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing content</td>
<td>Turns on the analog power supply</td>
</tr>
<tr>
<td>SFR used</td>
<td>ADA2CTL0.ADA2PON: 1 (Turns on analog power supply.)</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>unsigned char wait: WAIT variable</td>
</tr>
<tr>
<td>File name</td>
<td>ad2_1.c</td>
</tr>
<tr>
<td>Caution</td>
<td>Do not set the analog power supply control bit (ADA2PON) and A/D conversion operation control bit (ADA2CE) of the ADA2CTL0 register to 1 at the same time. Set the ADA2CE bit to 1 at least 5 μs after the ADA2PON bit is set to 1. If the ADA2CE bit is set to 1 before the lapse of 5 μs, A/D conversion is executed but the accuracy of the result of the first conversion cannot be guaranteed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function name</th>
<th>ad2_set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing content</td>
<td>Sets the A/D conversion control register.</td>
</tr>
<tr>
<td>SFRs used</td>
<td>ADA2CTL3: 0xC0 (Sets to 4-buffer mode, parallel mode.)</td>
</tr>
<tr>
<td>ADA2CTL1: 0x03 (Sets to fxx/16 (4 MHz), 10-bit (2048 times) resolution.)</td>
<td></td>
</tr>
<tr>
<td>ADA2CTL2: 0x00 (Sets analog input pin to ANI20 pin.)</td>
<td></td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>ad2_1.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function name</th>
<th>ad2_start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing content</td>
<td>Starts the A/D conversion operation.</td>
</tr>
<tr>
<td>SFR used</td>
<td>ADA2CTL0.ADA2CE: 1 (Starts A/D conversion operation.)</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>ad2_1.c</td>
</tr>
<tr>
<td>Caution</td>
<td>Do not set the analog power supply control bit (ADA2PON) and A/D conversion operation control bit (ADA2CE) of the ADA2CTL0 register to 1 at the same time. Set the ADA2CE bit to 1 at least 5 μs after the ADA2PON bit is set to 1. If the ADA2CE bit is set to 1 before the lapse of 5 μs, A/D conversion is executed but the accuracy of the result of the first conversion cannot be guaranteed.</td>
</tr>
<tr>
<td>Function name</td>
<td>ad2_stop</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>Processing content</td>
<td>Stops the A/D conversion operation.</td>
</tr>
<tr>
<td>SFR used</td>
<td>ADA2CTL0.ADA2CE: 0 (Stops A/D conversion operation.)</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>ad2_1.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function name</th>
<th>ad2_analog_off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing content</td>
<td>Turns off the analog power supply.</td>
</tr>
<tr>
<td>SFR used</td>
<td>ADA2CTL0.ADA2PON: 0 (Turns off analog power supply.)</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>variable</td>
<td>None</td>
</tr>
<tr>
<td>File name</td>
<td>ad2_1.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function name</th>
<th>ad2_int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing content</td>
<td>Stores the A/D conversion result data to the buffer upon completion of each conversion.</td>
</tr>
<tr>
<td>SFR used</td>
<td>ADA2CR0 A/D2 conversion result register 0</td>
</tr>
<tr>
<td>call function</td>
<td>None</td>
</tr>
<tr>
<td>variables</td>
<td>unsigned short int buf[]: Conversion data storing buffer</td>
</tr>
<tr>
<td></td>
<td>unsigned short int buf1[]: Conversion data storing buffer</td>
</tr>
<tr>
<td></td>
<td>unsigned short int buf2[]: Conversion data storing buffer</td>
</tr>
<tr>
<td></td>
<td>unsigned short int buf3[]: Conversion data storing buffer</td>
</tr>
<tr>
<td></td>
<td>unsigned char count: Conversion count variable</td>
</tr>
<tr>
<td>File name</td>
<td>ad2_1.c</td>
</tr>
<tr>
<td>Caution</td>
<td>None</td>
</tr>
</tbody>
</table>
A/D converter 2
4-buffer parallel mode (1/3)

ad2_1_main

DI
- Disables maskable interrupt request

ad2_port_set
- Alternate-function specify function

ad2_analog_on
- Function for turning on analog power supply

ad2_set
- A/D control register setting function

AD2IC = 0x07
- Clears INTAD2 interrupt request signal, releases mask, sets to priority level 7

EI
- Enables maskable interrupt request

ad2_start
- A/D conversion operation start function

count>=RX_SIZE
- Checks conversion count

No

ad2_stop
- A/D conversion operation stop function

Yes

ad2_analog_off
- Function for turning off analog power supply
Alternate-function pin specify function

ad2_port_set

Sets alternate-function pin to ANI20

PMC7 |= 0x01

ret

A/D control register setting function

ad2_set

Sets buffer mode to 4 buffers
Sets operation mode to parallel mode

ADA2CTL3 = 0xC0

ret

Sets sampling clock as fx/16 (4 MHz)
Sets resolution to 10 bits (2048 times)

ADA2CTL1 = 0x03

ADA2CTL2 = 0x00

Sets analog input pin to ANI20

Function for turning on analog power supply

ad2_analog_on

ADA2PON = 1

Turns on analog power supply

WAIT (at least 5 μs)

Leaves a lapse of at least 5 μs without setting the A/D conversion operation control bit (ADA2CE) after setting the analog power supply control bit (ADA2PON)

ret

A/D conversion operation start function

ad2_start

ADA2CE = 1

Enables A/D conversion operation

ret
A/D converter 2

4-buffer parallel mode (3/3)

A/D conversion operation stop function

ad2_stop

ADA2CE = 0

ret

Function for turning off analog power supply

ad2_analog_off

ADA2PON = 0

ret

INTAD2 interrupt

INTAD2 interrupt function

ad2_int

buf[count] = ADA2CR0

Stores conversion result to buffer

buf_1[count] = ADA2CR1

Stores conversion result to buffer

buf_2[count] = ADA2CR2

Stores conversion result to buffer

buf_3[count] = ADA2CR3

Stores conversion result to buffer

count++

Increments conversion count

reti

Function for turning off analog power supply

ad2_analog_off

ADA2PON = 0

ret

INTAD2 interrupt

ad2_int

buf[count] = ADA2CR0

Stores conversion result to buffer

buf_1[count] = ADA2CR1

Stores conversion result to buffer

buf_2[count] = ADA2CR2

Stores conversion result to buffer

buf_3[count] = ADA2CR3

Stores conversion result to buffer

count++

Increments conversion count

reti

Function for turning off analog power supply

ad2_analog_off

ADA2PON = 0

ret

INTAD2 interrupt

ad2_int

buf[count] = ADA2CR0

Stores conversion result to buffer

buf_1[count] = ADA2CR1

Stores conversion result to buffer

buf_2[count] = ADA2CR2

Stores conversion result to buffer

buf_3[count] = ADA2CR3

Stores conversion result to buffer

count++

Increments conversion count

reti

Function for turning off analog power supply

ad2_analog_off

ADA2PON = 0

ret
For further information, please contact:

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
800-368-9782
http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH
Arcadiaistraße 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistraße 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestraße 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnaus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Sucursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 991-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steigeweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhichunLu Haidian District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
12/F., Cityplaza 4, 12 Tai Kok Wan Road, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/