RENESANS APPLICATION NOTE

V850E2/MN4
USB MSC (Mass Storage Class) Driver

RO1ANO0O11EJO102

Rev.1.02
Jan 23, 2012

Summary

This application note describes the sample MSC (Mass Storage Class) driver for the USB function controller that is

incorporated in the V850E2/MN4 microcontroller.
The application note consists primarily of the following parts:

o Sampler driver specifications
o Environment for developing application programs that make use of the sample driver
o Referenceinformation that is useful for using the sample driver

Target Device
RTE-V850E2/MN4-EB-S incorporating the V850E2/MN4 (uPD70F3512)

Contents
IO 1011 7o [0 Tox 1T o T OO OTRPRR
2. OVEBIVIBW ...ttt ettt ekttt et s st e e b et e s a e e e sb st e saneeere e e snre e e nnneen
3. USB OVEIVIEW ...ttt ettt ettt ettt ettt e e et e e e sabb e e e e sbb e e e e sbreeeeaae
4. Sample Driver SPeCIfiCatiONScccuvureiieie e s e e e
5. Development ENVIFONMENT..........ccuiiiiiieee et e st e e e s ssnnre e e e e e e e e e eannes
6. Sample Driver APPICAtIONcooi it
7. Outline of the Starter Kit.........ccoeiiireree e

RO1ANO011EJ0102 Rev.1.02
Jan 23, 2012 RENESAS

Page 1 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

1. Introduction

1.1 Note

The sample program introduced in this application note is provided only for reference purposes. Renesas does not
guarantee normal operation of the sample program under any circumstances.
When using the sample program, make extensive evaluations of the driver on a user’s set.

1.2 Intended Audiences

This application note is intended for the users who have basic understanding of the capabilities of the V850E2/MN4
microcontroller and who are to develop application systems utilizing that microcontroller.

1.3 Objective

The objective of this application note isto help the users acquire an understanding of the specifications for the
sample program for utilizing the USB function controller incorporated in the V850E2/MN4 microcontroller.

1.4 Organization

This application note is divided into the following topics:
e Overview of the USB standards
Specifications for the sample driver
Development environment (CubeSuite, Multi (Notel), or IAR Embedded Workbench (Note2))
Application of the sample driver

(Note 1) Multi is aregistered trademark of Green Hills SoftwareTM, Inc.
(Note 2) IAR Embedded Workbench is aregistered trademark of IAR Systems AB.

1.5 How to Read this Document

The readers of this document are assumed to have general knowledge about electronics, logic circuits, and
microcontrollers.

— If you want to know the hardware capabilities and electrical characteristics of the V850E2/MN4 microcontroller
—Refer to the separately available V850E2/MN4 Microcontroller User’s Manual [Hardware].

— If you want to know the instruction set of the V850E2/M N4 microcontroller
—Refer to the separately available V850E2M User’s Manual [Architecture].

RO1ANO011EJ0102 Rev.1.02 Page 2 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

2. Overview

This application note describes the sample MSC (Mass Storage Class) driver for the USB function controller

incorporated in the V850E2/M N4 microcontroller. It is composed of the following topics:

e Specifications for the sample driver
e Environment for devel oping application programs that are to use the sample driver
e Reference information useful for making use of the sample driver

In this section, an overview of the sample driver and the description of the applicable microcontrollers are
introduced.

2.1 Overview

211

The USB function controller of the V850E2/MN4 microcontroller, which is the control target of this sample

Features of the USB Function Controller

driver, has the features listed below.

Conforms to the USB (Universal Serial Bus Specification) 2.0.

Operates as a full-speed (12 Mbps) device.

Endpoints are configured as summarized in the table below.

Table 2.1 V850E2/MN4 Microcontroller’s Endpoint Configuration
Endpoint Name FIFO Size (Bytes) Transfer Type Remarks
Endpoint0 Read 64 Control transfer (IN) —
Endpoint0 Write 64 Control transfer (OUT) —
Endpointl 64 x 2 Bulk transfer 1 (IN) 2-buffer configuration
Endpoint2 64 x 2 Bulk transfer 1 (OUT) 2-buffer configuration
Endpoint3 64 x 2 Bulk transfer 2 (IN) 2-buffer configuration
Endpoint4 64 x 2 Bulk transfer 2 (OUT) 2-buffer configuration
Endpoint7 64 Interrupt transfer (IN) —
Endpoint8 64 Interrupt transfer (IN) —

e Automatically responds to USB standard requests (except part of requests)
e Bus-powered or self-powered mode selectable
e Internal or external clock selectable (Note 2)
Internal clock: External 9.6 MHz x 20 (internaly) + 4 (48 MHZz)
or External 7.2 MHz x 20 (internally) + 3 (48 MHz)
External clock: Input to the USBCLK pin (fUSB =48 MHZz)

(Note 2) Theinternal clock is selected for the sample driver.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

Page 3 of 151
RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

2.1.2 Features of the Sample Driver

The MSC (Mass Storage Class) sample driver for the V850E2/MN4 microcontroller has the features listed below.
For details about the features and operations of the sample driver, see section 4, Sample Driver Specifications.

e Operates as a self-powered device.

e Recognized as abulk-only device of the mass storage class when connected to the host.

e Can beformatted for arbitrary file systems by the host.

e Allowsfile and folder datato be written into internal RAM.

e Allowsthefile and folder datato be read out of internal RAM.

e Occupies memory areas of the following sizes (excluding that of the vector table):
ROM: Approx. 9.0 Kbytes
RAM: Approx. 25.5 Kbytes (Note 3)

(Note3) 24 Kbytes of the RAM area (approx. 25.5 Kbytes) is used as the data storage area.
For this reason, the data in the storage area isinitialized when device power is turned off or
when the Reset SW is pressed.

RO1ANO011EJ0102 Rev.1.02 Page 4 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

2.1.3 Sample Driver Configuration

The sample driver is available in three versions, i.e., the CubeSuite version, the Multi version, and the IAR

Embedded Workbench version. Use the correct version of the sample driver according to your development
environment.
Each version of the sample driver is made up of the files that are described below.

(1) CubeSuite Version
The CubeSuite version of the sample driver comprises files that are summarized below.

Table 2.2 CubeSuite Version Sample Driver File Configuration
Folder File Outline

src main.c Main routine
scsi_cmd.c SCSI command processing
ushf850.c USB initialization, endpoint control, bulk transfer, and control transfer
usbf850_storage.c MSC-specific processing
cstart.asm Bootstrap

include main.h main.c function prototype declaration
scsi.h SCSiI related macro definitions
usbf850.h usbf850.c function prototype declarations
usbf850_desc.h Descriptor definitions
usbf850_errno.h Error code definitions
ushf850_storage.h usbf850_storage.c function prototype declarations
usbf850_types.h User type declarations
reg_v850e2mn4.h USB function register definitions

Remarks. The sample driver package comes also with a set of project-related files for the CubeSuite (Renesas

Electronics' integrated development tool suit). For further information, see section 5.2.1, Setting up
the Host Environment.

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

RENESAS

Page 5 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(2) Multi Version
The Multi version of the sample driver comprises files that are summarized below.

Table 2.3 Multi Version Sample Driver File Configuration
Folder File Outline

src main.c Main routine
scsi_cmd.c SCSI command processing
usbf850.c USB initialization, endpoint control, bulk transfer, and control transfer
ushf850_storage.c MSC-specific processing
initial.s Bootstrap
vector.s Interrupt vector table declarations

include main.h main.c function prototype declarations
scsi.h SCSl-related macro definitions
ushf850.h usbf850.c function prototype declarations
usbf850_desc.h Descriptor definitions
usbf850_errno.h Error code definitions
ushf850_storage.h usbf850_storage.c function prototype declarations
usbf850_types.h User type declarations
reg_v850e2mn4.h USB function register definitions
df3512_800.h V850E2/MN4 register definitions

Remarks: The sample driver package comes also with a set of project-related files for the Multi (Green Hills

SoftwareTM, Inc. integrated development tool suit). For further information, see section 5.4.1,
Setting up the Host Environment.

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

Page 6 of 151
RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(3) AR Embedded Workbench Version
The IAR Embedded Workbench version of the sample driver comprises files that are summarized below.

Table 2.4 IAR Embedded Workbench Version Sample Driver File Configuration
Folder File Outline
src main.c Main routine
scsi_cmd.c SCSI command processing
usbf850.c USB initialization, endpoint control, bulk transfer, and control transfer

usbf850_storage.c

MSC-specific processing

include main.h main.c function prototype declarations
scsi.h SCSil-related macro definitions
usbf850.h usbf850.c function prototype declarations
ushf850_desc.h Descriptor definitions
usbf850_errno.h Error code definitions
usbf850_storage.h usbf850_storage.c function prototype declarations
usbf850_types.h User type declarations
reg_v850e2mn4.h USB function register definitions

Remarks: The sample driver package comes also with a set of project-related files for the IAR Embedded

Workbench. For further information, see section 5.6.1, Setting up the Host Environment.

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

Page 7 of 151

RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

2.2 VB50E2/MN4 Microcontroller
For details on the V850E2/M N4 microcontroller that is to be controlled by the sample driver, refer to the user’s
manual [hardware] of the individual products.

2.2.1 Applicable Products
The sample driver is applicable to the products that are listed below.

Table 2.5 List of Supported V850E2/MN4 Microcontroller Products

Model Name Part Number Internal Memory Internal Interrupt uMm
Flash RAM usB Internal External
Memory Function Note4 Note 4
VB850E2/MN4 4 PD70F3510 1 Mbytes 64 Kbytes Host and 180 29 VB850E2/MN4
+ 64 Kbytes Function User's Manual
1 PD70F3512 1 Mbytes 64 Kbytes Host and 190 29 [Hardware]
+ 64 Kbytes Function (RO1UHO0011EJ)
1 PD70F3514 1 Mbytes 64 Kbytes x 2 Host and 196 29
+ 64 Kbytes Function
1 PD70F3515 2 Mbytes 64 Kbytes x 2 Host and 196 29
+ 64 Kbytes Function

(Note 4) Includes nonmaskabl e interrupts

RO1ANOO11EJ0102 Rev.1.02 Page 8 of 151

Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

2.2.2 Features
The magjor features of the V850E2/MN4 are listed below.

e |Internal memory
RAM: Single core, 64 Kbytes; Dual core, 64 Kbytes x 2
Flash memory: 1 Mbyte

e Flash cache memory
Single core: 16 Kbytes (4-way associative)
Dual core: 16 Kbytes (4-way associative) x 2

e External businterface
Equipped with 2 systems of memory controllers.
Primary memory controller (SRAM/SDRAM connectable)
Secondary memory controller (SRAM/SDRAM connectable)

e Serid interfaces
Asynchronous serial interface UART: 6 channels
Clock synchronous serial interface CSl: 6 channels
Asynchronous serial interface UART (FIFO): 4 channels
Clock synchronous serial interface CSl (FIFO): 4 channels
[2C: 6 channels
CAN: 2 channels (uWPD70F3512, uPD70F3514, and uPD70F3515)
USB function controller: 1 channel
USB host controller: 1 channel
Ethernet controller : 1 channel (WPD70F3512, uPD70F3514, and uPD70F3515)

e DMA controllers
DMA controller: 16 channels
DTS: 128 channels maximum

RO1ANO011EJ0102 Rev.1.02 Page 9 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

3. USB Overview

This section provides a brief description of the USB standard to which the sample driver conforms.

USB (Universa Seria Bus) isastandard for interfacing various peripheral devices with a host computer with a
common connector. It provides an interface that is more flexible and easier to use than conventional interfaces. For
example, it supports the hot-plug feature and allows a maximum of 127 devices to be connected together through the
use of additional connection nodes called hubs. The ratio of the PCs having the USB interface installed to the entire
PCsthat are presently available is reaching amost 100%. It can safely be said that the USB interface has become the
standard interface for connecting the PC and peripheral devices.
The USB standard is formulated and managed by the organization called the USB Implementers Forum (USB-IF).
For details on the USB standard, visit the USB-IF s official web site (www.ush.org).

3.1 Transfer Modes

The USB standard defines four types of transfer modes (control, bulk, interrupt, and isochronous). The major
features of the transfer modes are summarized in table 3.1.

is used to exchange
information
necessary for
controlling
peripheral devices.

is used to handle a
large amount of data
nonperiodically.

Table 3.1 USB Transfer Modes
Transfer Mode Control Transfer Bulk Transfer Interrupt Transfer Isochronous
Item Transfer
Feature Transfer mode that Transfer mode that Transfer mode that Transfer mode used

is used to transfer
data periodically and
has a narrow band
width.

in applications that
are required of high
realtime
performance.

Allowable packet | High speed (480 | 64 bytes 512 bytes 1 to 1024 bytes 1 to 1024 bytes
size Mbps)
Full speed (12 8, 16, 32, or 64 8, 16, 32, or 64 | 1to 64 bytes 1to 1023 bytes
Mbps) bytes bytes
Low speed (1.5 | 8 bytes — 1 to 8 bytes —
Mbps)
Transfer priority 3 3 2 1

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

RENESAS

Page 10 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

3.2 Endpoints

An endpoint is an item of information used by the host device to identify a specific communication counterpart.
An endpoint is specified by a number from 0 to 15 and the direction (IN or OUT). An endpoint need be provided
for each data communication channel that isto be used by a peripheral device and cannot be shared by two or
more communication channels (Note 5). For example, a device that has the capabilities to write and read to and
from an SD card and to print out data need be provided with an endpoint for writing to an SD card, an endpoint
for reading from an SD card, and an endpoint for sending data to a printer. Endpoint O is used for control transfer
which must always be performed by every device.

In data communication, the host device specifies the destination within the USB device using the USB device
address which identifies the device and an endpoint (number and direction).

A buffer memory is provided within every peripheral device asaphysical circuit for endpoints. It also serves as
a FIFO that absorbs the difference in communication speed between the USB and the communication
counterpart (e.g., memory).

(Note 5) There is amethod of switching channels exclusively using a mechanism called the alternate setting.

3.3 Classes

Peripheral devices (function devices) connected viathe USB have various classes defined according to their
functionality. Typical classesinclude the mass storage class (M SC), communications device class (CDC), printer
class, and human interface device class (HID). For each class, standard specifications are defined in the form of
protocols. A common host driver can be used provided that it conforms to those standard specifications.

3.31 Mass Storage Class (MSC)
The mass storage class (MSC) is an interface class used to identify and control storage devicesthat are
connected viathe USB, such as flash memory and hard and optical disk storage devices.
There are two types of communication protocols for the MSC, i.e., the bulk-only transport protocol and CBI
(control/bulk/interrupt) transport protocol. With the bulk-only transport protocol, datais transferred only in bulk
transfer mode. With the CBI transport protocol, control and interrupt transfer modes are used in addition to the
bulk transfer mode. The CBI transport protocol is available only for full-speed floppy disk drives.
The sample driver uses the bulk-only transport protocol for the mass storage class (MSC). For the specifications
for the USB mass storage class (MSC), refer to the M SC specification entitled “Universal Serial Bus Mass
Storage Class Bulk-Only Transport Revision 1.0.”

(1) Datatransfer

With the bulk-only transport protocol, al transfers (commands, status, and data) are carried out in bulk transfer
mode.

The host sends commands to devices using bulk OUT transfers.

When acommand that involves data transfers is sent, data input/output operations are performed using bulk
IN/bulk OUT transfers.

The device sends the status (command execution result) to the host using abulk IN transfer.

RO1ANO011EJ0102 Rev.1.02 Page 11 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

Data read Data write No data transfer
Host Device Host Device Host Device

Command send Bulk OUT | Bulk OUT | Bulk OUT

(CBW) > > >

Bulk IN Bulk OUT
Data transfer |« »

Status response | Bulk IN P Bulk IN P Bulk IN

csw) [< <

Figure 3.1 Data Transfer Flow

(2) CBW format
The structure of a packet for sending a command is defined as a Command Block Wrapper (CBW).

Table 3.2 CBW Format

Bit 7 6 5 4 3 2 1 0
Byte
0-3 dCBWSignature
4-7 dCBWTag
8-11 dCBWDataTransferLength
12 bmCBWFlags
13 Reserved | bCBWLUN
14 Reserved | bCBWCBLength
15-30 CBwCB
dCBWSignature: Signature. Fixed at 0x43425355 (little endian).
dCBWTag: A tag containing an arbitrary number defined by the host. Used to associate the

status with the corresponding command.
dCBWDataTransferLength: Length of datato be transferred in the data phase. 0 if there is no data to transfer.

bmCBWFlags: Direction of transfer (bit 7). 0 = Bulk OUT, 1 = Bulk IN.
Bits 0 to 6 must always be set to 0.
bCBWLUN: Drive number of one of the two or more drives connected to asingle USB device
bCBWCBLength: Length of the command packet
CBWCB: Command packet data
RO1ANO011EJ0102 Rev.1.02 Page 12 of 151

Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(3) CSW format

The structure of the status packet is defined as a Command Status Wrapper (CSW).

Table 3.3 CSW Format
Bit 7 6 5 4 3 2 1 0
Byte
0-3 dCSWSignature
4-7 dCSWTag
8-11 dCSWDataResidue
12 bCSWStatus
dCSwSignature; Signature. Fixed at 0x53425355 (little endian).
dCSWTag: The host confirms a phase match when this tag matches with the dCBWTag that is
transferred with the command.
dCSwWDataResi due: Remaining data. Thisfield isloaded with the amount of remaining data when the
amount of data returned by the device is found smaller than the amount of data
regquested by the host due to, for example, an error occurring during data transfer. A
nonzero valuein thisfield indicates that the length of response data from the device
is shorter than the expected length of data even if the status (bCSWStatus) indicates
a success.
dCSw Status: Status indicating the result of CBW processing

Table 3.4 CBW Processing Status Parameter Values

dCSWstatus Description
0x00 Success
0x01 Failure
0x02 Phase error
0x03 to OxFF Reserved
RO1ANOO11EJ0102 Rev.1.02 Page 13 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

3.3.2 Subclasses

For the mass storage class (MSC), specify the format in which commands are transmitted from the host to the

target device as the subclass.

(1) Subclasstypes

Table 3.5 shows alist of subclass codes that are specified for the USB mass storage class.

Table 3.5 USB Mass Storage Subclass Codes
Subclass Code Specification
0x00 SCSI command set not reported (normally not used)
0x01 Reduced Block Commands (RBC), T10 Project 1240-D
0x02 MMC-5 (ATAPI)
0x03 SFF-8070i
0x04 USB Floppy Interface (UFI)
0x05 QIC-157 (IDE QIC tape drive)
0x06 SCSI transparent command set
0x07 Lockable Mass Storage
0x08 IEEE1667
0x09-0xFE Reserved
OxFF Specific to device vender

(2) SCSI commands

The SCSI transfer command set (0x06) must be specified as a subclass when USB memory or a USB card reader
isto be connected. SCSI (Small Computer System Interface) is an interface specification for connecting a
computer with peripheral devicesin abustopology configuration.
Data transfer and function configuration are carried out by specifying SCSI commands in the CBWCB
(command packet data) of the CBW. See section 4.1.4, SCSI Command Handling, for the SCSI commands

supported by the sample driver.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 14 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

3.4 Requests

According to the USB specification, communication isinitiated by the host device issuing acommand called a
reguest to al function devices. The request contains data such as the direction and type of processing and the
address of the target function device. Each function device decodes the request, determines whether the request is
directed to itself, and responds to the request only when it is directed to the device.

34.1 Types
There are three types of requests, namely, the standard requests, class requests, and vendor requests.
See section 4.1.2, Requests Handling, for the requests that the sample driver support.

(1) Standard requests
Standard requests are used in common by all USB compatible devices. A request is a standard request when both
bits 6 and 5 of the bmRequestType field of the request are set to 0. Refer to the USB specification (Universal
Serial Bus Specification Rev. 2.0) for the processing that is to be performed for the standard requests.

Table 3.6 List of Standard Requests

Request Name Target Descriptor Outline

GET_STATUS Device Read power (self or bus) and remote wakeup settings.
Endpoint Read Halt status.

CLEAR_FEATURE Device Clear remote wakeup.
Endpoint Cancel Halt (DATA PID = 0).

SET_FEATURE Device Set up remote wakeup or test mode.
Endpoint Set Halt

GET_DESCRIPTOR Device, configuration, string Read target descriptor

SET_DESCRIPTOR Device, configuration, string Set target descriptor (optional)

GET_CONFIGURATION Device Read current configuration value.

SET_CONFIGURATION Device Set configuration value.

GET_INTERFACE Interface Read alternate value out of the current settings of the

target interface.

SET_INTERFACE Interface Set alternate value of the target interface.

SET_ADDRESS Device Set USB address.

SYNCH_FRAME Endpoint Read frame-synchronous data.

RO1ANO011EJ0102 Rev.1.02 Page 15 of 151

Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(2) Classrequests
The class requests are unique to the class. A request is a class request when bit 6 of the bmRequestType field is
settoOand bit 5to 1.
The bulk-only transport protocol of the mass storage class (M SC) needs to handle the following requests:

e GET_MAX_LUN (bRequest = OXFE)

Request used to get the number of logical units (logical unit number) of the mass storage devices.
e MASS STORAGE_RESET (bRequest = OxFF)

Request used to reset the interface associated with the mass storage devices.

(3) Vendor requests
The vendor requests are defined uniquely by the individual vendors. A vendor who is to use a vendor request
needs to provide a host driver that handles that request. A request is avendor request when bit 6 of the
bmRequestTypefieldisset to 1 and bit 5to O.

3.4.2 Format
A USB request is 8 bytes long and consists of the fields that are listed in the table below.

Table 3.7 USB Request Format

Offset Field Description
0 bmRequestType Request attribute
Bit 7 Data transfer direction
Bits 6 and 5 Request type
Bits 4to 0 Target descriptor
1 bRequest Request code
2 wValue Lower Arbitrary value used in the request
3 Upper
4 windex Lower Index or offset used in the request
5 Upper
6 wlLength Lower Number of bytes to transfer in data stage (data
7 Upper length)
RO1ANOO11EJ0102 Rev.1.02 Page 16 of 151

Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

3.5 Descriptors

In the USB specification, a set of information that is specific to afunction device and is encoded in a predetermined
format is called a descriptor. Each function device sends its descriptor in response to a request from the host device.

351 Types
The following five types of descriptors are defined:

e Device descriptor
This descriptor is present in all types of devices. It contains basic information such as the version of the
supported USB specification, device class, protocol, maximum packet length available for transfer to
Endpoint0, vendor ID, and product ID.
The descriptor must be sent in responseto aGET_DESCRIPTOR_Device regquest.

e Configuration descriptor
Every device has one or more configuration descriptors. It contains such information as device attributes
(power supplying method) and power consumption. The descriptor must be sent in response to a
GET_DESCRIPTOR_Configuration request.

¢ Interface descriptor
This descriptor is necessary for each interface. It contains an interface ID, interface class, and the number
of endpoints that are supported. The descriptor must be sent in response to a
GET_DESCRIPTOR_Configuration request.

e Endpoint descriptor
This descriptor is necessary for each endpoint that is specified in the interface descriptor. It definesthe
transfer type (direction of transfer), maximum packet length available for transfer to the endpoint, and
transfer interval. EndpointO, however, does not have this descriptor.
The descriptor must be sent in responseto aGET_DESCRIPTOR_Configuration request.

e String descriptor
This descriptor contains an arbitrary string. The descriptor must be sent in response to a
GET_DESCRIPTOR_String request.

RO1ANO011EJ0102 Rev.1.02 Page 17 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

3.5.2

Formats

The size and field structure of descriptors varies depending on the descriptor type as summarized in the tables

below. The datain each field isarranged in little endian format.

Table 3.8 Device Descriptor Format
Field Size Description
(Bytes)
bLength 1 Size of the descriptor
bDescriptorType Type of the descriptor
bcdUSB 2 Release number of the USB specification
bDeviceClass 1 Class code
bDeviceSubClass 1 Subclass code
bDeviceProtocol 1 Protocol code
bMaxPacketSize0 1 Maximum packet size of Endpoint0
idVendor 2 Vendor ID
idProduct 2 Product ID
bcdDevice 2 Device release number
iManufacturer 1 Index of the string descriptor describing the manufacturer
iProduct 1 Index of the string descriptor describing the product
iSerialNumber 1 Index of the string descriptor describing the device’s serial number
bNumConfigurations 1 Number of configurations
Remarks Vendor ID: I dentification number that the vendor who is to develop a USB device acquires
from USB-IF
Product ID: Identification number that the vendor assigns to each of its products after
acquiring avendor ID.
Table 3.9 Configuration Descriptor Format
Field Size Description
(Bytes)
bLength 1 Size of the descriptor
bDescriptorType Type of the descriptor
wTotalLength 2 Total number of bytes of the configuration, interface, and endpoint descriptors
bNuminterfaces 1 Number of interfaces supported by this configuration
bConfigurationValue 1 Identification number of this configuration
iConfiguration 1 Index of the string descriptor describing this configuration
bmAttributes 1 Characteristics of this configuration
bMaxPower 1 Maximum consumption current of this configuration (in 2 pA units)

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

Page 18 of 151

RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

Table 3.10 Interface Descriptor Format
Field Size Description
(Bytes)
bLength 1 Size of the descriptor
bDescriptorType Type of the descriptor
binterfaceNumber 1 Identification number of this interface
bAlternateSetting 1 Presence or absence of alternate setting for this interface
bNumEndpoints 1 Number of endpoints used by this interface
binterfaceClass 1 Class code
binterfaceSubClass 1 Subclass code
binterfaceProtocol 1 Protocol code
iInterface 1 Index of the string descriptor describing this interface
Table 3.11 Endpoint Descriptor Format
Field Size Description
(Bytes)
bLength 1 Size of the descriptor
bDescriptorType 1 Type of the descriptor
bEndpointAddress 1 Transfer direction of this endpoint
Address of this endpoint
bmAttributes 1 Transfer type of this endpoint
wMaxPacketSize 2 Maximum packet size available for transfer at this endpoint
binterval 1 Interval for polling this endpoint
Table 3.12 String Descriptor Format
Field Size Description
(Bytes)
bLength 1 Size of the descriptor
bDescriptorType 1 Type of the descriptor
bString Arbitrary | Arbitrary data string

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 19 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

4. Sample Driver Specifications

This section contains a detailed description of the features and operations of the USB mass storage class (MSC)
sample driver for the V850E2/M N4 microcontroller. It also describes the specifications for the functions of the
sample driver.

4.1 Overview

4.1.1 Features
The sample driver has the following processing implemented:

(1) Main routine
The main routine performsinitialization and waits for interrupts. It performs suspend/resume processing when a
suspend/resume interrupt occurs. For details, see section 4.2.7, Suspend/Resume Processing.

(2) Initialization
The initialization routine manipulates and sets up various registers to make the USB function controller ready for
use. The register settings are broadly divided into those for the V850E2/MN4’s CPU registers and those for the
registers of the USB function controller. For details, see section 4.2.1, CPU Initiaization Processing, and section
4.2.2, USB Function Controller Initialization Processing.

(3) Interrupt processing
The INTUSFAOIL interrupt handler monitors the state of the endpoint for control transfer (Endpoint0) and the
endpoint for bulk OUT transfer (reception) (Endpoint2) and performs appropriate processing according to the
request and data that are received. The INTUSFAOI2 interrupt handler performs the processing that is required
when aresume interrupt occurs. For details, see section 4.2.3, USBF Interrupt Processing (INTUSFAOI1), and
section 4.2.4, USBF Resume Interrupt Processing (INTUSFAOI2).

(4) SCSI command processing
This routine analyzes the CBW data that is received and determines whether it isa SCSI command. If a SCSI
command is received, the routine performs the required processing according to the received SCSI command.
For details, see section 4.1.4, SCSI Command Handling.

RO1ANO011EJ0102 Rev.1.02 Page 20 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

4.1.2 Request Handling
Table 4.1 lists the USB requests that are defined for the hardware (V850E2/MN4) and firmware (sample driver).

Table 4.1 USB Request Processing

Request Name Code Processing
0 1 2 3 4 5 6 7
Standard request
GET_INTERFACE 0x81 | OXOA | Ox00 [Ox00 | OxXX | OxXX [Ox01 | Ox00 | Automatic HW response
GET_CONFIGURATION 0x80 [Ox08 | OxO0 | Ox00 [Ox00 | OxO0 | Ox01 [Ox00 | Automatic HW response
GET_DESCRIPTOR Device 0x80 | Ox06 | Ox00 [Ox01 | Ox00 | Ox00 [OxXX | OXXX | Automatic HW response
GET_DESCRIPTOR Configuration | 0x80 | Ox06 | 0x00 [0x02 | Ox00 | Ox00 [OxXX | OxXX | Automatic HW response
GET_DESCRIPTOR String 0x80 | Ox06 | Ox00 [Ox03 | Ox00 | Ox00 [OxXX | OXXX | FW response
GET_STATUS Device 0x80 | Ox00 | Ox00 [Ox00 | OxO0 | OX00 [Ox02 | OxO0 | Automatic HW response
GET_STATUS Interface 0x81 | Ox00 | Ox00 [Ox00 | OxXX | OxXX [0x02 | Ox00 | Automatic HW STALL
response
GET_STATUS Endpoint n 0x82 | Ox00 | 000 [Ox00 | OxXX [OxXX | Ox02 | Ox00 | Automatic HW response
CLEAR_FEATURE Device 0x00 | Ox01 [Ox01 | Ox00 | OO0 | Ox00 | OxO0 | Ox00 | Automatic HW response
CLEAR_FEATURE Interface 0x01 | Ox01 | Ox00 [Ox00 | OxXX | OXXX [Ox00 | Ox00 | Automatic HW STALL
response
CLEAR_FEATURE Endpoint n 0x02 | Ox01 | 0x00 [Ox00 | OxXX [OxXX | Ox00 | 0x00 | Automatic HW response
SET_DESCRIPTOR 0x00 | 0x07 | OXXX | OxXX [OxXX | OxXX | OxXX [OxXX | FW STALL response
SET_FEATURE Device 0x00 | Ox03 | Ox01 [Ox00 | OxO0 | Ox00 [Ox00 | OxOO | Automatic HW response
SET_FEATURE Interface 0x02 [Ox03 | OxXX | OXXX [OxXX | OxXX | 0x00 [Ox00 | Automatic HW STALL
response
SET_FEATURE Endpoint n 0x02 | Ox03 | Ox00 [Ox00 | OxXX | OXXX [Ox00 | Ox00 | Automatic HW response
SET_INTERFACE 0x01 | OxOB | OXXX [OxXX | OxXX | OxXX [Ox00 | Ox00 | Automatic HW response
SET_CONFIGURATION 0x00 | Ox09 [OXXX | OxXX | 0x0O0 | Ox00 | Ox00 | Ox00 | Automatic HW response
SET_ADDRESS 0x00 | Ox05 | OXXX [OxXX | Ox00 | 0x00 [Ox00 | OxO0 | Automatic HW response
Class request
MASS_STORAGE_RESET 0x21 | OXFE | Ox00 [Ox00 | OxXX | OxXX [Ox00 | Ox00 | FW response
GET_MAX_LUN OxAl | OXFF | 0x00 | Ox00 | OxXX | OxXX | OxO1 [Ox00 | FW response
Other requests Other than above FW STALL response

Remarks HW: Hardware (V850E2/MN4)
FW: Firmware (sample driver)
0xXX: Undefined

RO1ANO011EJ0102 Rev.1.02 Page 21 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(1) Standard requests
The sample driver performs the following response processing for requests that the V850E2/M N4 does not
automatically respond:

(2) GET_DESCRIPTOR_string
Thisrequest is used by the host to get the string descriptor of afunction device.
Upon receipt of this request, the sample driver performs the processing of sending the requested string descriptor
(control read transfer).

(b) SET_DESCRIPTOR

This request is used by the host to set the descriptor of afunction device.
Upon receipt of this request, the sample driver returns a STALL response.

(2) Classrequests
The sample driver performs the foll owing response processing for class requests of the bulk-only transport
protocol for the USB mass storage class (M SC):

(a) GET_MAX_LUN
Thisrequest is used to get the number of logical units (logical unit number) of mass storage device.
The host specifies the number of the logical unit in the bCBWLUN field of the CBW when sending it.
The sample driver returns O (number of logical units = 1) when it receivesa GET_MAX_LUN request.

Table 4.2 GET_MAX_ LUN Request Format
bmRequestType bRequest wValue windex wLength Data
OxAl OxFE 0x0000 0x0000 0x0001 1 byte

(b) MASS STORAGE_RESET

Thisrequest is used to reset the interface that is associated with a mass storage device.

When the sample driver receivesaMASS STORAGE_RESET request, it resets the interface of the USB
function controller that the sample driver isusing.

Table 4.3 MASS_STORAGE_RESET Request Format
bmRequestType bRequest wValue windex wLength Data
0x21 OxFF 0x0000 0x0000 0x0000 None

(3) Undefined requests

The sample driver returns a STALL response when it receives an undefined request.

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

RENESAS

Page 22 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

4.1.3 Descriptor Settings

The descriptor settings that the sample driver makes are summarized in the tables below. The settings of the
individual descriptors are defined in the header file named "usbf850 desc.h."

(1) Device descriptor
This descriptor is sent in response to a GET_DESCRIPTOR _device request.

Since the hardware automatically responds to the GET_DESCRIPTOR _device request, the settings are stored in
the USFAODDRN registers (n = 0 to 17) when the USB function controller isinitialized.

Table 4.4 Device Descriptor Settings

Field Size Value Description
(Bytes)
bLength 1 0x12 Size of the descriptor: 18 bytes
bDescriptorType 1 0x01 Type of the descriptor: Device
bcdUSB 2 0x0200 USB specification release number: USB 2.0
bDeviceClass 1 0x00 Class code: None
bDeviceSubClass 1 0x00 Subclass code: None
bDeviceProtocol 1 0x00 Protocol code: No unique protocol used
bMaxPacketSize0 1 0x40 Maximum packet size of Endpoint0: 64
idVendor 2 0x045B Vendor ID: Renesas Electronics
idProduct 2 0x0200 Product ID: V850E2/MN4
bcdDevice 2 0x0001 Device release number: First version
iManufacturer 1 0x01 Index of string descriptor describing the manufacturer: 1
iProduct 1 0x00 Index of string descriptor describing the product: 0
iSerialNumber 1 0x00 Index of string descriptor describing the serial number of the
device: 0
bNumConfigurations 1 0x01 Number of configurations: 1
RO1ANOO11EJ0102 Rev.1.02 Page 23 of 151

Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(2) Configuration descriptor
This descriptor is sent in response to a GET_DESCRIPTOR _configuration request.
Since the hardware automatically responds to the GET_DESCRIPTOR _configuration request, the settings are
stored in the USFAQCIEn registers (n = 0 to 255) when the USB function controller isinitialized.

Table 4.5 Configuration Descriptor Settings

Field Size Value Description
(Bytes)
bLength 1 0x09 Size of the descriptor: 9 bytes
bDescriptorType 1 0x02 Type of the descriptor: Configuration
wTotalLength 2 0x0020 Total number of bytes of the configuration, interface, and

endpoint descriptors: 32 bytes

bNuminterfaces 1 0x01 Number of interfaces supported by this configuration: 1

bConfigurationValue 1 0x01 Identification number of this configuration: 1

iConfiguration 1 0x00 Index of the string descriptor describing this configuration: 0

bmAttributes 1 0x80 Characteristics of this configuration: Bus powered, no remote
wakeup

bMaxPower 1 0x1B Maximum consumption current of this configuration: 54 mA

(3) Interface descriptor
This descriptor is sent in response to a GET_DESCRIPTOR _configuration request.
Since the hardware automatically responds to the GET_DESCRIPTOR _configuration request, the settings are
stored in the USFAQCI En registers (n = 0 to 255) when the USB function controller isinitialized.

Table 4.6 Interface Descriptor Settings

Field Size Value Description
(Bytes)
bLength 1 0x09 Size of the descriptor: 9 bytes
bDescriptorType 1 0x04 Type of the descriptor: Interface
binterfaceNumber 1 0x00 Identification number of this interface: 0
bAlternateSetting 1 0x00 Presence or absence of alternate setting for this interface:
Absence
bNumEndpoints 1 0x02 Number of endpoints used by this interface: 2
binterfaceClass 1 0x08 Class code: Mass storage class
binterfaceSubClass 1 0x06 Subclass code: SCSI transparent command set
binterfaceProtocol 1 0x50 Protocol code: Bulk-only transfer
ilnterface 1 0x00 Index of the string descriptor describing this interface: 0
RO1ANOO11EJ0102 Rev.1.02 Page 24 of 151

Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(4) Endpoint descriptor

This descriptor is sent in response to a GET_DESCRIPTOR _configuration request.

Since the hardware automatically responds to the GET_DESCRIPTOR _configuration request, the settings are

stored in the USFAQCIEn registers (n = 0 to 255) when the USB function controller isinitialized.
Since the sample driver uses two endpoints, two endpoint descriptors are set up.

Table 4.7 Endpointl (Bulk IN) Endpoint Descriptor Settings
Field Size Value Description
(Bytes)

bLength 1 0x07 Size of the descriptor: 7 bytes

bDescriptorType 1 0x05 Type of the descriptor: Endpoint

bEndpointAddress 1 0x81 Transfer direction of this endpoint: IN
Address of this endpoint: 1

bmAttributes 1 0x02 Transfer type of this endpoint: Bulk

wMaxPacketSize 2 0x0040 Maximum packet size available for transfer to this endpoint: 64
bytes

binterval 1 0x00 Interval for polling this endpoint: 0 ms

Table 4.8 Endpoint2 (Bulk OUT) Endpoint Descriptor Settings
Field Size Value Description
(Bytes)

bLength 1 0x07 Size of the descriptor: 7 bytes

bDescriptorType 1 0x05 Type of the descriptor: Endpoint

bEndpointAddress 1 0x02 Transfer direction of this endpoint: OUT
Address of this endpoint: 2

bmAttributes 1 0x02 Transfer type of this endpoint: Bulk

wMaxPacketSize 2 0x0040 Maximum packet size available for transfer to this endpoint: 64
bytes

binterval 1 0x00 Interval for polling this endpoint: 0 ms

RO1ANOO11EJ0102 Rev.1.02 Page 25 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(5) String descriptor
This descriptor is sent in responseto aGET_DESCRIPTOR_string request.
When the sample driver receivesa GET_DESCRIPTOR _string request, it fetches the string descriptor settings
from the header file named "usbf850_desc.h" and stores them in the USFAOEOW registers of the USB function

controller.
Table 4.9 String Descriptor Settings
(a) String 0
Field Size Value Description
(Bytes)
bLength 1 0x04 Size of the descriptor: 4 bytes
bDescriptorType 1 0x03 Type of the descriptor: String
bString 2 0x09, 0x04 | Language code: English (U.S.)
(b) String 1
Field Size Value Description
(Bytes)
bLength Nete & 1 0x16 Size of the descriptor: 24 bytes
bDescriptorType 1 0x03 Type of the descriptor: String
bString Nt ? 22 - Serial number:
V850E2/MN4: 020008065010

(Note 6) The value varies with the size of the bString field.
(Note 7) The size and value are not fixed because this area can be set up arbitrarily by the vendor.

RO1ANO011EJ0102 Rev.1.02 Page 26 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

414 SCSI Command Handling

The sample driver specifies the SCS| transfer command set (0x06) as a subclass.
The SCSI commands that are supported by the sample driver are listed in table 4.10. The sample driver returns a
STALL response when it receives acommand that is not listed in table 4.10.

Table 4.10 SCSI Commands Supported by the Sample Driver

Command Name Code Direction Outline

of Bulk

Transfer
TEST_UNIT_READY 0x00 NO DATA | Checks the type and configuration of the device.
REQUEST_SENSE 0x03 IN Gets the sense data.
READG6 0x08 IN Reads data.
WRITE6 0x0A ouT Writes data.
SEEK 0x0B NO DATA | Specifies a seek to given data position.
INQUIRY 0x12 IN Get configuration information/attributes.
MODE_SELECT 0x15 ouT Set parameters.
MODE_SENSE6 Ox1A IN Reads parameter values.
START_STOP_UNIT 0x1B NO DATA | Loads/unloads media or starts/stops the motor.
PREVENT OX1E NO DATA | Enables/disables media unloading.
READ_FORMAT_CAPACITIES 0x23 IN Gets storage capacity information.
READ_CAPACITY 0x25 IN Gets capacity information.
READ10 0x28 IN Reads data.
WRITE10 0x2A ouT Writes data.
WRITE_VERIFY Ox2E ouT Writes data and verifies it.
VERIFY 0x2F NO DATA | Executes verify processing.
SYNCHRONIZE_CACHE 0x35 NO DATA | Writes data left in cache.
WRITE_BUFF 0x3B ouT Writes data to buffer memory.
MODE_SELECT10 0x55 ouT Sets parameters.
MODE_SENSE10 O0x5A IN Gets parameter values.

(1) TEST_UNIT_READY command (Ox00)

This command notifies the initiator (host device) of the state of the logical unit. The sample driver initializes the
sense data and terminates normally.

Table 4.11 TEST_UNIT_READY Command Format

Bit 7 6 5 4 3 2 1 0
Byte
0 Operation code (0x00)
1 Logical unit number (LUN) Reserved
2-4 Reserved
5 Reserved | Flag | Link
RO1ANOO11EJ0102 Rev.1.02 Page 27 of 151

Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(2) REQUEST _SENSE command (0x03)

This command sends the sense data to the host. The sample driver sends the sense data listed in table 4.14 to the

host.
Table 4.12 REQUEST_SENSE Command Format
Bit 7 6 5 4 3 2 1 0
Byte
0 Operation code (0x03)
1 Logical unit number (LUN) Reserved
2 Page code
3 Reserved
4 Additional data length
5 Reserved | Flag | Link
Table 4.13 REQUEST_SENSE Data Format
Bit 7 6 5 4 3 2 1 0
Byte
0 VALID Response code
1 Reserved
2 Filemark | EOM | ILI | Reserved | Sense key
3-6 Information
7 Additional sense data length (n — 7 bytes)
8-11 Command specific information
12 ASC (Additional sense code)
13 ASCQ (Additional sense code qualifier)
14 FRU (Field Replaceable Unit) code
15 SKSV Sense key specific information
16 Sense key specific information
17 Sense key specific information
18-n Additional sense data (data length variable)
Table 4.14 Sense Data
Sense Key ASC ASCQ Outline
0x00 0x00 0x00 NO SENSE
0x05 0x00 0x00 ILLEGAL REQUEST
0x05 0x20 0x00 INVALID COMMAND OPERATION CODE
0x05 0x24 0x00 INVALID FIELD IN COMMAND PACKET
RO1ANOO11EJ0102 Rev.1.02 Page 28 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(3) READ6 command (0x08)

This command transfers data from the specified range of logical data blocks to the host.

Table 415 READ6 Command Format
Bit 7 6 5 4 3 2 1 0
Byte
0 Operation code (0x08)
1 Logical unit number (LUN) Logical block address (LBA)
2-3 Logical block address (LBA)
4 Transfer data length
5 Reserved | Flag Link
(49) WRITE6 command (0x0A)
This command writes the received data into the specified block on the storage device.
Table 416 WRITE6 Command Format
Bit 7 6 5 4 3 2 1 0
Byte
0 Operation code (Ox0A)
1 Logical unit number (LUN) Logical block address (LBA)
2-3 Logical block address (LBA)
4 Transfer data length
5 Reserved | Flag Link

(5) SEEK command (0x0B)

This command performs a seek to the specified position on the recording medium. The sample driver initializes

the sense data and terminates normally.

Table 4.17 SEEK Command Format
Bit 7 6 5 4 3 2 1 0
Byte

0 Operation code (Ox0OB)

1 Logical unit number (LUN) Logical block address (LBA)

2-3 Logical block address (LBA)

4 Reserved

5 Reserved | Flag Link
RO1ANOO11EJ0102 Rev.1.02 Page 29 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(6) INQUIRY command (0x12)

This command notifies the host of the configuration information and attributes of the device. The sample driver

sendsthe INQUIRY _TABLE values to the host.

Table 418 SEEK Command Format
Bit 7 6 5 4 3 2 1 0
Byte
0 Operation code (0x12)
1 Logical unit number (LUN) Reserved | CMDDT | EVPD
2 Page code
3 Reserved
4 Additional data length
5 Reserved | Flag | Link
Table 4.19 INQUIRY Data Format
Bit 7 6 5 4 3 2 1 0
Byte
0 Identifier Device type
1 RMB | Device type qualifier
2 ISO version ECMA version ANSI version
3 AENC | TmIOP Response data format
4 Additional data length (n — 4 bytes)
5-6 Reserved
7 RelAdr | WBus32 | WBUus16 | Sync | Linked | Reserved | CmdQue | SftRe
8-15 Vendor ID (ASCII string)
16-31 Product ID (ASCII string)
32-35 Product version (ASCII string)
36-55 Vendor specific information
56-95 Reserved
96-n Additional vendor specific information (data length variable)
UINTS INQUIRY TABLE[INQUIRY LENGTH] =

{

0x00, /* Qualifier, devic
0x80, /* RMB, device type
0x02, /* ISO Version, ECM
0x02, /* AENC, TrmIOP, re
0x1F, /* addition data le

0x00,0x00, 0x00, /* reserved */

1
’

'R','e','n','e','s','a','s',"

'S|I't|l'O'I'rll'all'gll'e'I'F'I

to',rLr,r0r, 01

e type code */
modification child */

A Version, ANSI Version */
sponse data form */

ngth */

/* vender ID */
/* product ID */

/* Product Revision */

Figure 4.1

INQUIRY_TABLE

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

Page 30 of 151

RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(7) MODE _SEL ECT command (0x15)

This command sets the data format of the device and other parameters. The sample driver loads

MODE_SELECT_TABLE with values.

Table 420 MODE_SELECT Command Format
Bit 7 6 5 4 3 2 1 0
Byte
0 Operation code (0x15)
1 Logical unit number (LUN) | PF | Reserved | SP
2-3 Reserved
4 Additional data length
5 Reserved | Flag | Link
Table 4.21 MODE_SELECT Data Format
Bit 7 6 5 4 3 2 1 0
Byte
0 Mode parameter length
1 Media type
2 Device specific parameter
3 Block descriptor length
4 Density code
5-7 Number of blocks
8 Reserved
9-11 Block length
12 PS | 1 | Page code
13 Page length (n — 13 bytes)
14-n Mode parameter (data length variable)
UINTS8 MODE_SELECT TABLE [MODE_ SELECT LENGTH] =
{
0x17, /* length of the mode parameter */
0x00, /* medium type */
0x00), /* device peculiar parameter */
0x08, /* length of the block descriptor */
0x00, /* density code */
0x00,0x00, 0xCO, /* number of the blocks */
0x00), /* Reserved x/
0x00,0x02, 0x00, /* length of the block */
0x01, /* PS, page code */
0x0A, /* length of the page */
0x08, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /* mode parameter */
}i

Figure 42 MODE_SELECT TABLE
RO1ANOO11EJO102 Rev.1.02 Page 31 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(8) MODE_SENSE6 command (0x1A)

This command sends the values of the mode select parameters and other attributes of the device to the host. The

sample driver sends the MODE_SENSE TABLE values to the host.

Table 4.22 MODE_SENSE6 Command Format
Bit 7 6 5 4 3 2 1 0
Byte
0 Operation code (0x14)
1 Logical unit number (LUN) | Reserved | DBD | Reserved
2 PC | Page code
3 Reserved
4 Additional data length
5 Reserved | Flag | Link
Table 4.23 MODE_SENSE®6 Data Format
Bit 7 6 5 4 3 2 1 0
Byte
0 Mode parameter length
1 Media type
2 Device specific parameter
3 Block descriptor length
4 Density code
5-7 Number of blocks
8 Reserved
9-11 Block length
12 PS | Reserved | Page code
13 Page length (n — 13 bytes)
14-n Mode parameter (data length variable)
UINTS8 MODE_SENSE TABLE [MODE SENSE LENGTH] =
{
0x17, /* length of the mode parameter */
0x00, /* medium type */
0x00, /* device peculiar parameter */
0x08, /* length of the block descriptor */
0x00, /* density code */
0x00,0x00, 0xCO, /* number of the blocks */
0x00, /* Reserved */
0x00,0x02, 0x00, /* length of the block */
0x81, /* PS, page code */
0x0A, /* length of the page */
0x08, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /* mode parameter */
Vi

Figure 43 MODE_SENSE_TABLE

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

RENESAS

Page 32 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(9) START_STOP_UNIT command (0x1B)

This command enables or disables accesses to the device. The sample driver initializes the sense data and

terminates normally.

Table 4.24 START_STOP_UNIT Command Format

Bit 7 6 5 4 3 2 1 0

Byte

0 Operation code (0x1B)

1 Logical unit number (LUN) Reserved IMMED

2 Reserved

3 Reserved

4 Reserved Load/Eject Start

5 Reserved Flag Link

(10) PREVENT command (Ox1E)

This command enables or disables medium unloading. The sample driver does nothing and terminates normally.

Table 4.25 PREVENT Command Format

Bit 7 6 5 4 3 2 1 0

Byte

0 Operation code (Ox1E)

1 Reserved

2 Reserved

3 Reserved

4 Reserved Persistent | Prevent

5 Reserved Flag Link

RO1ANO011EJ0102 Rev.1.02
Jan 23, 2012 RENESAS

Page 33 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(11) READ_FORMAT_CAPACITIES command (0x23)

This command notifies the host of the capacity (number of blocks and block length) of the device. The sample
driver sendsthe READ_FORMAT_CAPACITY_TABLE values to the host.

Table 4.26 READ_FORMAT_CAPACITIES Command Format

Bit 7 6 5 4 3 2 1 0
Byte
0 Operation code (0x23)
1 Logical unit number (LUN) Reserved
2-6 Reserved
7-8 Transfer data length
9 Reserved | Flag | Link
Table 4.27 READ_FORMAT_CAPACITIES Data Format
Bit 7 6 5 4 3 2 1 0
Byte
0-2 Reserved
3 Capacity list length (in bytes)
5-7 Number of blocks
8 Reserved Descriptor code
9-11 Block length
12-15 Number of blocks
16 Reserved
17-19 Block length

UINTS8 READ FORMAT CAPACITY TABLE [READ_FORM_CAPA_LENGTH] =

{
0x00,0x00, 0x00, /* Reserved */
0x08, /* Capacity List */
0x00,0x00,0x00,0x30, /* Block */
0x01, /* Descriptor Code */
0x00, 0x02, 000, /* Block */
0x00,0x00,0x00,0x30, /* Block */
0x00, /* Reserved */
0x00,0x02, 0x00 /* Block */

Vi

Figure 44 READ_FORMAT_CAPACITY_TABLE

RO1ANO011EJ0102 Rev.1.02 Page 34 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(12) READ_CAPACITY command (0x25)

This command notifies the host of the size of the data on the device. The sample driver sendsthe
READ_CAPACITY_TABLE vauesto the host.

Table 4.28 READ_CAPACITY Command Format

Bit 7 6 5 4 3 2 1 0
Byte
0 Operation code (0x25)
1 Logical unit number (LUN) Reserved | RA
2-8 Reserved
9 Reserved | Flag | Link
Table 4.29 READ_CAPACITY Data Format
Bit 7 6 5 4 3 2 1 0
Byte
0-3 Logical block address (LBA)
4-7 Block length (bytes)
UINTS8 READ CAPACITY TABLE[8] = /* big endian*/

{

0x00,0x00,0x00,0x2F, /* number of the outline reason blocks - 1 */
0x00, 0x00,0x02,0x00 /* size of the data block (Byte) */

Vi

Figure 4.5 READ_CAPACITY_TABLE

(13) READ10 command (0x28)
This command transfers data from the specified range of logical data blocks to the host.

Table 4.30 READ10 Command Format

Bit 7 6 5 4 3 2 1 0
Byte

0 Operation code (0x28)

1 Logical unit number (LUN) | OPD | FUA | Reserved RA
2-5 Logical block address (LBA)

6 Reserved
7-8 Transfer data length

9 Reserved | Flag | Link

RO1ANO011EJ0102 Rev.1.02
Jan 23, 2012 RENESAS

Page 35 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(14) WRITE10 command (0x2A)
This command writes the received data into the specified block on the device.

Table 4.31 WRITE10 Command Format

Bit 7 6 5 4 3 2 1 0
Byte

0 Operation code (0x2A)

1 Logical unit number (LUN) | OPD | FUA | EBP | TSR | RA
2-5 Logical block address (LBA)

6 Reserved
7-8 Transfer data length

9 Reserved | Flag | Link

(15) WRITE_VERIFY command (0x2E)
This command writes the received data into the specified block on the device. After the datais written, its
validity is verified. The sample driver carries out only the write operation.

Table 4.32 WRITE_VERIFY Command Format

Bit 7 6 5 4 3 2 1 0

Byte

0 Operation code (Ox2E)

1 Logical unit number (LUN) | OPD | FUA | EBP | BYTCHK | RA

2-5 Logical block address (LBA)

6 Reserved

7-8 Transfer data length

9 Reserved | Flag | Link

(16) VERIFY command (Ox2F)
This command checks the validity of the data on the device. The sample driver does nothing and terminates

processing.
Table 4.33 VERIFY Command Format
Bit 7 6 5 4 3 2 1 0
Byte

0 Operation code (0x2F)

1 Logical unit number (LUN) | OPD | Reserved | BYTCHK | RA
2-5 Logical block address (LBA)

6 Reserved
7-8 Transfer data length

9 Reserved | Flag | Link

RO1ANOO11EJ0102 Rev.1.02 Page 36 of 151

Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(17) SYNCHRONIZE_CACHE command (0x35)

This command synchronizes the data in the specified range of blocks in cache memory with that on the medium.

The sample driver initializes the sense data and terminates normally.

Table 4.34 SYNCHRONIZE_CACHE Command Format
Bit 7 6 5 4 3 2 1 0
Byte

0 Operation code (0x35)

1 Logical unit number (LUN) Reserved | IMMED | RA
2-5 Logical block address (LBA)

6 Reserved
7-8 Transfer data length

9 Reserved | Flag | Link

(18) WRITE_BUFF command (0x3B)

This command writes data into memory (data buffer). The sample driver reads and discards data and terminates

normally.
Table 4.35 WRITE_BUFF Command Format
Bit 7 6 5 4 3 2 1 0
Byte

0 Operation code (0x3B)

1 Logical unit number (LUN) | OPD | FUA | EBP | Reserved | RA
2-5 Logical block address (LBA)

6 Reserved
7-8 Transfer data length

9 Reserved | Flag | Link

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012 RENESAS

Page 37 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(19) MODE_SENSE10 command (0x5A)

This command notifies the host of the values of the mode select parameters and attributes of the device. The

sample driver sendsthe MODE_SENSE10 TABLE valuesto the host.

Table 4.36 MODE_SENSE10 Command Format

Bit 7 6 5 4 3 2 1 0
Byte
0 Operation code (Ox5A)
1 Reserved | LLBAA | DBD | Reserved
2 PC | Page code
3-6 Reserved
7-8 Additional data length
9 Reserved | Flag | Link
Table 4.37 MODE_SENSE10 Data Format
Bit 7 6 5 4 3 2 1 0
Byte
0 Mode parameter length
1 Media type
2 Device specific parameter
3 Block descriptor length
4 Density code
5-7 Number of blocks (0x0000C0)
8 Reserved
9-11 Block length (0x000200)
12 PS | Reserved | Page code
13 Page length (n — 13 bytes)
14-n Mode parameter (data length variable)

UINTS8 MODE_SENSE10 TABLE [MODE_SENSE10 LENGTH] =

{
0x00, 0x1A, /* length of the mode parameter */
0x00), /* medium type */
0x00, /* device peculiar parameter */
0x00, 0x00, /* Reserved */
0x00, 0x08, /* length of the block descriptor */
0x00, /* density code */
0x00, 0x00, 0xCO, /* number of the blocks */
0x00, /* Reserved */
0x00,0x02, 0x00, /* length of the block */
0x81, /* PS, page code */
0x0A, /* length of the page */
0x08, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /* mode parameter */

Vi

Figure 4.6 MODE_SENSE10_TABLE

RO1ANO011EJ0102 Rev.1.02
Jan 23, 2012 RENESAS

Page 38 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(20) MODE_SEL ECT 10 command (0x55)

This command sets the data format of the device and other parameters. The sample driver loads

MODE_SELECT10 TABLE with values.

Table 4.38 MODE_SELECT10 Command Format
Bit 7 6 5 4 3 2 1 0
Byte
0 Operation code (0x55)
1 Logical unit number (LUN) | PF | Reserved | SP
2-6 Reserved
7-8 Additional data length
9 Reserved | Flag | Link
Table 4.39 MODE_SELECT10 Data Format
Bit 7 6 5 4 3 2 1 0
Byte
0 Mode parameter length
1 Media type
2 Device specific parameter
3 Block descriptor length
4 Density code
5-7 Number of blocks
8 Reserved
9-11 Block length
12 PS | 1 | Page code
13 Page length (n — 13 bytes)
14-n Mode parameter (data length variable)
UINTS8 MODE_SELECT10_ TABLE [MODE_SELECT10_LENGTH] =
{
0x00, 0x1A, /* length of the mode parameter */
0x00, /* medium type */
0x00, /* device peculiar parameter */
0x00, 0x00, /* Reserved */
0x00, 0x08, /* length of the block descriptor */
0x00, /* density code */
0x00,0x00, 0xCO, /* number of the blocks */
0x00, /* Reserved */
0x00,0x02, 0x00, /* length of the block */
0x01, /* PS, page code */
0x0A, /* length of the page */
0x08, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /* mode parameter */
Vi

Figure 47 MODE_SELECT10 TABLE
RO1ANOO11EJO102 Rev.1.02 Page 39 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

4.2 Operations

When the sample driver is started, it performs the sequence of processes that areillustrated in the figure below.
This section describes the individual processes.

(

Start)

v

‘ ‘ Initialization processing ‘ ‘

- Interrupt occurred Interrupt occurred
L
e e — ::—\ __________ <
5 -
‘ USBF interrupt ‘ ‘ USBF resume interrupt ‘
‘ ‘ INTUSFAQOI1 interrupt processing ‘ ‘ ‘ ‘ INTUSFAOI2 interrupt processing ‘ ‘
B v |
[
) 4

RSUSPD, BUSRST,
SETRQ, CPUDEC,
BKO1DT interrupt
processing

Suspend state?

Suspend processing

Main routine

Figure 4.8 Sample Driver Processing Flow

RO1ANOO11EJ0102 Rev.1.02 Page 40 of 151

Jan 23, 2012

RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

42.1 CPU Initialization Processing

The CPU initialization processing routine sets up the parameters that are necessary for using the USB function
controller.

< Start of CPU initialization >

Enable HCLK output

v

HBUS initialization processing

v

Initialize USB clock

v

Initialize VBUS signal

< End of CPU initialization >

Figure 4.9 CPU Initialization Processing Flow

(1) Enabling HCLK output
This process makes settings to enable the HCLK output so that the USBF connected to the H bus becomes
enabled. Since the SFRCTL 2 register used for this setup is a specific write register, a specific write sequenceis
followed for the setup.

(2) H businitialization
This processinitializes the H-bus. The routine initializes the H bus according to the specified directions. See the
V850E2/MN4 Microcontroller User’s Manual [Hardware].

(3) Initializing USB clock
This process sets up the multiplexed pin P13 to which UCLK is connected. This sample driver uses UCLK asthe
USB clock input to the USB.

(4) Initializing VBUS signal
This processinitializes the VBUS signal.

RO1ANO011EJ0102 Rev.1.02 Page 41 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

4.2.2 USB Function Controller Initialization Processing

The USB function controller initialization processing routine sets up the parameters necessary for starting the use
of the USB function controller.

< Start of USB initialization >

Configure D+ signal for no connection

v

Set up Supply of UCLK

v

Initialize EPC circuit

v

Initialize USBF buffer

v

Set up NAK for control endpoint

v

Initialize request data register area

v

Set up interfaces and endpoints

v

Reset NAK setting for control
endpoint

v

Initialize internal driver flags

v

Configure D+ signal for pull-up

< End of USB initialization >

Figure 410 USB Function Controller Initialization Processing Flow

(1) Configuring the D+ signal as pull down
Loads the CPU’s P4.10 with “0.” This sets the D+ signal low, disabling the host side to detect any device
connection.

(2) Setting up for the supply of UCLK
Loads the SFRCTL 3 register with “0x48” to enable the clock to be supplied to the USB function.

RO1ANO011EJ0102 Rev.1.02 Page 42 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(3) Initializing the EPC cir cuit
Loads the USFAOEPCCTL register with “0x00000000” to cancel the EPC reset signal.

(4) Initializing the USB function buffer
Loads the USFBC register with “0x00000003" to enable the USBF buffer and floating provisions.

(5) Setting up NAK for control endpoint
Sets the EPONKA bit of the USFAOEONA register to 1. This setting causes the hardware to respond with NAK
againgt all requests including automatically responded requests.
Thisbit is used by the software until the registration of datato be used in automatically responded requestsis
completed, so that the hardware will not return unintended data in response to an automatically responded
request.

(6) Initializing therequest data register area
L oads relevant registers with descriptor data that is to be used to automatically respond to GET_DESCRIPTOR
requests.
The following registers are accessed during this processing:

(a) The USFAODSTL register isloaded with “0x01.” This setting disables the remote wakeup function and the
USB function controller operates as a self-powered device.

(b) The USFAOQENSL registers (n = 0 to 2) are loaded with “0x00.” These settings indicate that the Endpoint n
are running normally.

(c) The USFAODSCL register isloaded with the total length (in bytes) of the data in the necessary descriptors.
This setting determines the range of the USFAOCIEn registers (n = 0 to 255) to be used.

(d) The USFAODDN registers (n = 0 to 7) are loaded with the data for the device descriptor.

(e) The USFAOCIEN registers (n = 0 to 255) are loaded with the data for the configuration, interface, and
endpoint descriptors.

(f) The USFAOMODC register isloaded with “0x00.” This setting enables GET_DESCRIPTOR _configuration
requests to be automatically responded.

(7) Setting up the interfaces and endpoints
Loads relevant registers with the number of interfaces to support, alternate setting status, and the relationship
between the interfaces and endpoaints.
The following registers are accessed during this processing:

(a) The USFAOQAIFN register isloaded with “0x00.” This setting enables only interface 0.

(b) The USFAOAAS register isloaded with “0x00.” This setting disables the alternate setting.

(c) The USFAOELIM register isloaded with “0x20.” This setting causes Endpointl to be linked to Interface0.
(d) The USFAOE2IM register isloaded with “0x20.” This setting causes Endopoint2 to be linked to Interface0.

(8) Resetting NAK setting for control endpoint
Sets the EPONKA bit of the USFAOEONA register to 0. This setting enables the resumption of responsesto all
reguests including automatically responded requests.

RO1ANO011EJ0102 Rev.1.02 Page 43 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(9) Setting up theinterrupt mask register
Sets the mask bits associated with the interrupt sources of the USB function controller.
The following registers are accessed during this processing:

(a) The USFAOICn registers (n = 0 to 4) are loaded with “0x00. This setting causes all interrupt sourcesto be
cleared.

(b) The USFAOFICO register isloaded with “OxF7” and the USFAOFIC1 register with “Ox0F.” These settings
cause all FIFOs available for data transfer to be cleared.

(c) The USFAOIMO register is loaded with “0Ox1B.” This setting masks al interrupt sources defined in the
USFAOI SO register, except those for the BUSRST, RSUSPD, and SETRQ interrupts.

(d) The USFAOIM1 register isloaded with “Ox7E.” This setting masks all interrupt sources defined in the
USFAOISL register, except that for the CPUDEC interrupt.

(e) The USFAOIM2 register is loaded with “OxF1.” This setting masks all interrupt sources defined in the
USFAOQIS2 register.

(f) The USFAOIM3 register is loaded with “OxFE.” This setting masks all interrupt sources defined in the
USFAOIS3 register, except that for the BKO1DT interrupt.

(g) The USFAOIM4 register isloaded with “0x20.” This setting masks all interrupt sources defined in the
USFAOQI A register.

(i) The USFAOEPCINTE register isloaded with “0x0003" to enable the interrupts for which the EPC_INTOBEN
and EPC_INT1BEN bits are set.

(j) The ICUSFAOQI1 isloaded with “0” and the ICUSFAOQI2 with “0” to enable INTUSFAOI1 and INTUSFAOQI2,
respectively.

(20) Initializing theinternal driver flags
Initializes the flags (usbf850 busrst_flg, usbf850 rsuspd flg, and usbf850 rdata flg) that are to be used within
the driver.

(11) Setting up the D+ signal as pull-up
Loads the CPU’ s P4 register with “0x0400.” This setting causes a“1” to be output from P4_10, which generates
ahigh-level output from the D+ signal pin, notifying the host that a device has been connected. The sample
driver assumes the wiring configuration shown in figure 4.11.

UVop

% UDop
——
INTUSF AOI1
P4 10 “:

1.5 kQ +5%
AN VBUS
UDPF D+
27 kQ +5%
UDMF AAN D-
27 kQ +5%
USB function controller i R2 USB connector
incorporated in More than 50 kQ
microcontroller

Figure 4.11 USB Function Controller Configuration Example

RO1ANO011EJ0102 Rev.1.02 Page 44 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

4.2.3 USBF Interrupt Processing (INTUSFAOI1)
The INTUSFAOIL interrupt handler monitors the state of the endpoint (Endpoint0) for control transfer and the
endpoint (Endpoint2) for bulk OUT transfer (reception) and takes the actions according to the received requests
and data.

Start of INTUSFAOIL interrupt
processing

RSUSPD interrupt processing

BUSRST interrupt processing

!

SETRQ interrupt processing

v

CPUDEC interrupt processing

BKO1DT interrupt processing

End of INTUSFAOL1 interrupt
processing

Figure 4.12 INTUSFAOI1 Interrupt Handler Processing Flow

(1) RSUSPD interrupt processing
Theinterrupt handler recognizes the occurrence of an RSUSPD interrupt when the RSUSPD bit of the
USFAOISO register isset to 1.
Theinterrupt handler takes the following actionsif an RSUSPD interrupt has occurred:

e Clearstheinterrupt source (sets the RSUSPDC bit of the USFAOICO register to 0.)
e Determines the suspend/resume state.

(2) Suspend-time processing
Theinterrupt handler determines that the endpoint isin the suspend state if the RSUM bit of the USFAOEPS1
register is set to 1.
The interrupt handler does not perform the subsequent processing and terminates the INTUSFAOI 1 interrupt
processing if the resume/suspend flag (rs flag) isaready set to "SUSPEND (0x00)" in the Suspend state.
If the resume/suspend flag (rs_flag) is not set to "SUSPEND," the interrupt handler sets that flag to "SUSPEND"
and clears al of the USB interrupt sources. This causes the subsequent INTUSFAOI 1 interrupt processing to be
skipped.

RO1ANO011EJ0102 Rev.1.02 Page 45 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(3) BUSRST interrupt processing
Theinterrupt handler recognizes the occurrence of a BUSRST interrupt when the BUSRST bit of the USFAOISO
registerissetto 1.
Theinterrupt handler takes the following actionsif aBUSRST interrupt has occurred:

e Clearstheinterrupt source (sets the BUSRST bit of the USFAOICO register to 0).
e Setsthe BUS Reset interrupt flag (usbf _busrst_flg) to 1.
e Clears FIFO for the bulk endpoints.

(4) SETRQ interrupt processing
The interrupt handler recognizes the occurrence of this interrupt when the SETRQ bit of the USFAOI SO register
issettol.
The interrupt handler takes the following actions if a SETRQ interrupt has occurred:

e Clearstheinterrupt source (sets the SETRQ bit of the USFAOQICO register to 0).
e Performs automatically responded request (SET_XXXX) processing.

(5) Automatically responded request (SET_XXXX) processing
Theinterrupt handler recognizes that a SET_CONFIGURATION request has been received and automatically
processed when the SETCON bit of the UFOSET register is set to 1.

Theinterrupt handler sets the BUS Reset interrupt flag (usbf_busrst_flg) to 0 when automatic processing is
performed.

(Note) Examine the value of the UFOCNF register to confirm more exactly that the Configured state has been
entered.

(6) CPUDEC interrupt processing
Theinterrupt handler recognizes the occurrence of this interrupt when the CPUDEC bit of the USFAOIS1
registerissetto 1.
Theinterrupt handler takes the following actions if a CPUDEC interrupt has occurred:

e Clearsthe port interrupt source (sets the PORT bit of the USFAOICL1 register to 0).
¢ Readsthe receive datafrom the FIFO and constructs request data.
e Performs request processing.

(7) Request processing
Theinterrupt handler checks to determine if the request data is not to be automatically responded by the
hardware (standard, class, or vendor) and processes the request according to its request type.
Endpoint0 is an endpoint dedicated to control transfer. During the enumeration processing performed at plug-in
time, almost all standard device reguests are automatically processed by the hardware. Here, the standard
reguests that are not to be automatically processed by hardware and the class and vendor requests are processed.

(8) BKOI1DT interrupt processing
Theinterrupt handler recognizes the occurrence of this interrupt when the BKODT hit of the USFAOIS3 register
issetto 1.

Theinterrupt handler takes the following actionsif aBKODT interrupt has occurred:

e Clearsthe BKODT interrupt source (setsthe BKO1DT bit of the USFAOIC3 register to 0).
e Callsthe CBW datareceive processing function (usbf850_rx_cbw) to receive the CBW data.

RO1ANO011EJ0102 Rev.1.02 Page 46 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

424 USBF Resume Interrupt Processing (INTUSFAOI2)

The INTUSFAOI2 interrupt handler performs processing when aresume interrupt occurs.

During resume interrupt processing, the resume/suspend flag (rs_flag) is set to "RESUME (0x01)."
The processing to be performed when rs flag is set to "RESUME" is accomplished by the main routine.

(Start of INTUSFAOI2 interrupt processing)

v

‘ Set resume/suspend flag ‘

v

(End of INTUSFADOI2 interrupt processing)

Figure 4.13

4.2.5 CBW Data Receive Processing

INTUSFAOI2 Interrupt Handler Processing Flow

The CBW data receive processing routine reads data from the FIFO for the bulk OUT endpoint (Endpoint2) and

calls the command analysis routine for the CSW data.

(Start of CBW data receive processing)

Processing Yes

MASS_STRAGE_RESET?

l

CBW data error processing

No

CBW format?

USB data receive processing

Processing CBW?

Yes

Clear Endpointl FIFO

!

Clear CBW processing-in-progress flag

Set CBW processing-in-progress flag

CBW data command analysis
processing

(End of CBW data receive processing)

Figure 4.14 CBW Data Receive

Processing Flow

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012 RENESAS

Page 47 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(1) Determining whether the MASS STORAGE_RESET processing isin progress
Theroutine recognizes that MASS STORAGE_RESET processing isin progressif the
MASS STRAGE RESET processing flag (mass_storage reset) isset to 1.
If the processing isin progress, the interrupt handler calls the CBW data error processing function
(ushf850_cbw_error) and terminates the CBW data receive processing.

(2) Determining the CBW for mat

The routine gets, from the UFO bulk out 1 length register (USFAOBOLL), the size (data length) of the datathat is
stored in the bulk OUT endpoint (Endpoint2). The data isjudged to match the CBW format if the data length is
31 bytes.

Theinterrupt handler terminates CBW data receive processing if the data does not conform to the CBW format.

For CBW format data, the interrupt handler calls the USB data receive processing function
(usbf850_data receive) and continues processing.

(3) Determining whether the CBW processing isin progress
The routine recognizes that CBW processing isin progress if the CBW processing flag (cbw_in_cbw) is set to
"USB_CBW_PROCESS (0x01)."
If the processing is in progress, the interrupt handler clears the FIFO for Endpointl and sets the CBW
processing-in-progress flag (cbw_in_cbw) to "USB_CBW_END (0x00)."

(4) Setting the CBW processing-in-progress flag
The routine sets the CBW processing-in-progress flag (cbw_in_cbw) to "USB_CBW_PROCESS (0x01)."

(5) CBW command processing

The routine calls the CBW command analysis function (usbf850_storage cbwchk) to process the SCSI
command that is received.

RO1ANO011EJ0102 Rev.1.02 Page 48 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

4.2.6 SCSI Command Processing

When CBW datais received viathe USB, the CBW command analysis function (usbf850_storage cbwchk) is
called to process the received SCSI command.

(Start of SCSI command processing)

Command packet length = Yes

l

CBW data error processing

No

Bulk OUT command?

NO DATA command processing Yes READ command processing

Data length = 0?

WRITE command processing

!

Issue CSW

(End of SCSI command processing)

Figure 4.15 SCSI Command Processing Flow

(1) Checking for a SCSI command
The command analysis function recognizes that the CBW datais not an SCSI command if the command packet
length (bCBWCBL ength) is 0x00.
If no SCSI command is identified, the command analysis function calls the CBW data error processing function
(ushf850_cbw_error) and terminates the SCSI command processing.

(2) Checking for a NO DATA command
The command analysis function recognizes that the CBW dataisaNO DATA command if the length of the data
to be transferred in the data phase (ACBWDataTransferLength) is set to 0x00000000.
For aNO DATA command, the command analysis function calls the NO DATA command processing function
(usbf850_no_data) to perform the processing associated with the received command.
Upon completion of the command processing, the command analysis function calls the CSW response
processing function (usbf850_csw_ret) to send CSW.

(3) Checking the direction of data transfer
If bit 7 of the transfer direction (bmCBWFlags) is set to 0, the command analysis function identifiesa WRITE
command and callsthe DATA OUT command processing function (usbf850_data_out) to perform the
processing associated with the received command.
If bit 7 of bnCBWFlagsis set to 1, the command analysis function identifiesa READ command and calls the
DATA IN command processing function (usbf850_data in) to perform the processing associated with the
received command.
Upon completion of the command processing, the command analysis function calls the CSW response
processing function (usbf850_csw_ret) to send CSW.

RO1ANO011EJ0102 Rev.1.02 Page 49 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

4.2.7 Suspend/Resume Processing
The suspend/resume processing is executed within the main routine according to the processing flow shown
below.

(Start of main routine)

Initialization

usbf850_rsuspd_flg set?

_DI() processing

v

__halt() processing

Y
Set usbf850_rsuspd_flg

v

__EI() processing

Figure 4.16 Suspend/Resume Processing Flow

(1) Monitoring the resume/suspend flag (usbf850 rsuspd_flg)
The main routine monitors the resume/suspend flag (usbf850 rsuspd flg) that is set up by the sample driver. The
value of the flag being "SUSPEND (0x00)" indicates that the USB bus in the suspend state.

(2) Disabling CPU interrupts.
The main routine disables CPU interrupts if the resume/suspend flag (usbf850_rsuspd_flg) is set to "SUSPEND
(0x00)."

(3) CPU HALT processing
The processor is stopped and placed in the HALT state. The restoration of the processor from the HALT state for
processing resumption is triggered by a maskable interrupt, NMI, or reset. In this sample program, processing is
resumed by an INTUSFAOI2 resume interrupt.

(4) Updating the resume/suspend flag (usbf850 _rsuspd_flg)
The main routine sets the resume/suspend flag (usbf850_rsuspd_flg) to “RESUME(0x01).”

(5) Enabling CPU interrupts
The main routine enables CPU interrupts. This completes the resume processing.

RO1ANO011EJ0102 Rev.1.02 Page 50 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

4.3 Function Specifications
This section describes the functions that are implemented in the sample driver.

43.1

List of Functions
Table 4.40 shows alist of functions that are implemented in the source files for the sample driver.

Table 4.40 Sample Driver Functions (1/2)
Source File Function Name Description
main.c main Main routine
cpu_init Initializes the CPU.
SetProtectReg Processes access to a write-protected register.
usbf850.c usbf850_init Initializes the USB function controller.

usbf850_intusbf0

Monitors Endpoint0 and controls responses to
requests.

usbf850_intusbfl

Processes resume interrupts.

usbf850_data_send

Sends USB data.

usbf850_data_receive

Receives USB data.

usbf850_rdata_length

Gets USB receive data length.

usbf850_send_EPO

Sends at Endpoint0.

usbf850_receive_EPO

Receives at EndpointO.

usbf850_send_null

Sends Null packets to Bulk/ Interrupt In Endpoint.

usbf850_sendnullEPO

Sends out NULL packet for EndpointO.

usbf850_sendstallEPO

Returns STALL for Endpoint0.

usbf850_ep_status

Notifies FIFO state of Bulk/ Interrupt In Endpoint.

usbf850_fifo_clear

Clears FIFOs for endpoints other than Endpoint0.

usbf850_standardreq

Processes a standard request.

usbf850_getdesc

Processes a GET_DESCRIPTOR request.

usbf850_storage.c

usbf850_classreq

Processes an MSC class request.

usbf850_blkonly_mass_storage_reset

Processes a Mass Storage Reset request.

usbf850_max_lun

Processes a Get Max Len request

usbf850_rx_cbw

Receives CBW data.

usbf850_storage_cbwchk

Analyzes a CBW data command.

usbf850_cbw_error

Processes CBW data errors.

usbf850_no_data

Processes a SCSI NO DATA command.

usbf850_data_in

Processes a SCSI WRITE command.

usbf850_data_out

Processes a SCSI READ command.

usbf850_csw_ret

Processes a CSW response.

usbf850_bulkin_stall

Controls bulk IN STALL responses.

usbf850_bulkout_stall

Controls bulk OUT STALL responses.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

Page 51 of 151
RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

Table 4.41 Sample Driver Functions (2/2)
Source File Function Name Description
scsi_cmd.c scsi_command_to_ata Executes a SCSI command.

ata_test_unit_ready

Processes the TEST UNIT READY command.

ata_seek

Processes the SEEK command.

ata_start_stop_unit

Processes the START STOP UNIT command.

ata_synchronize_cache

Processes the SYNCHRONIZE CACHE command.

ata_request_sense

Processes the REQUEST SENSE command.

ata_inquiry

Processes the INQUIRY command.

ata_mode_select

Processes the MODE SELECT(6) command.

ata_mode_selectl0

Processes the MODE SELECT(10) command.

ata_mode_sense

Processes the MODE SENSE(6) command.

ata_mode_sensel0

Processes the MODE SENSE(10) command.

ata_read_format_capacities

Processes the READ FORMAT CAPACITIES
command.

ata_read_capacity

Processes the READ CAPACITY command.

ata_read6 Processes the READ(6) command.
ata_read10 Processes the READ(10) command.
ata_write6 Processes the WRITE(6) command.
ata_write10 Processes the WRITE(10) command.
ata_verify Processes the VERIFY command.

ata_write_verify

Processes the WRITE VERIFY command.

ata_write_buff

Processes the WRITE BUFFER command.

scsi_to_usb

Performs USB data transmission processing (SCSI

commands).

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

RENESAS

Page 52 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

4.3.2 Correlation among the Sample Driver Functions

There are some sample driver functions that call another function during their execution. This function call
relationships are shown below.

main

cpu_init

usbf850_init

__halt

Figure 4.17 Function Calls within main Processing

usbf850_intusbf0

usbf850_sendstallEPO

usbf850_standardreq

ushf850_sendstallEPO

usbf850_getdesc

usbf850_sendstallEPO

usbf850_rx_cbw

usbf850_cbw_error

usbf850_bulkin_stall

usbf850_bulkout_stall

usbf850_data_receive

usbf850_storage_cbwchk

usbf850_cbw_error

usbf850_bulkin_stall

usbf850_bulkout_stall

usbf850_no_data

usbf850_data_out

usbf850_intusbfl usbf850_data_in

Figure 4.18 Function Calls within USB Interrupt Processing

RO1ANO011EJ0102 Rev.1.02 Page 53 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

usbf850_no_data

scsi_command_to_ata

usbf850_csw_ret

usbf850_data_send

usbf850_data_out

scsi_command_to_ata

usbf850_bulkout_stall

usbf850_csw_ret

usbf850_data_send

usbf850_data_in

scsi_command_to_ata

usbf850_sendstallEPO

usbf850_bulkin_stall

usbf850_bulkout_stall

usbf850_csw_ret

usbf850_data_send

Figure 4.19 Function Calls within CBW/CSW Processing

RO1ANO011EJ0102 Rev.1.02 Page 54 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

scsi_command_to_ata

—| ata_test_unit_ready |

ata_seek

—| ata_start_stop_unit |

ata_synchronize_cache

ata_request_sense
I
ata_inquiry
T
ata_mode_sense
11
ata_mode_sensel0
[T11
ata_read_format_capacities
[TTTT
ata_read_capacity

|—|—|—|—|—|— scsi_to_usb

ata_read6 usbf850_data_send
I

ata_readl10

usbf850_data_send

scsi_to_usb

ata_mode_select usbf850_data_send
I
ata_mode_select10
T
ata_write6
[T1
ata_write10
[T11
ata_verify
[TTTT
ata_write_verify
I
ata_write_buff

|—|—|—|—|—|—|— usbf850_data_receive

Figure 4.20 Function Calls within SCSI Command Processing

RO1ANO011EJ0102 Rev.1.02 Page 55 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

433 Function Descriptions
This section contains a description of the functions that are implemented in the sample driver.

(1) Functional description for mat
The functional descriptions are given in the format shown below.

Function Name

[Synopsis]
Gives asynopsis of the function.

[C language format]
Shows the format in C language

[Parameters]
Describes the parameters (arguments).

Parameter Description

Parameter type, name Parameter outline

[Return Value]
Describes the return value.

Symbol Description

Type of return value, name | Return value outline

[Function]
Explains the function.

RO1ANO011EJ0102 Rev.1.02
Jan 23, 2012 RENESAS

Page 56 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(2) Main routine functions

main

[Synopsis]
Perform main processing.

[C language format]
void main(void)

[Parameters]
None

[Return Value]
None

[Function]
Thisfunction is called first when the sample driver is started.
The function calls the USB initialization function (usbf850 init), then monitors the resume/suspend flag
(usbf850_rsuspd_flg). It performs suspend processing when the usbf850_rsuspd_flg is set to "SUSPEND
(0x00)."

RO1ANO011EJ0102 Rev.1.02 Page 57 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

cpu_init

[Synopsis]
Initialize CPU.

[C language format]
void cpu_init(void)

[Parameters]
None

[Return Value]
None

[Function]
Thisfunction is called during initialization processing.
It initializes the H bus and sets up the USB clock and other parameters that are necessary to use the USB
function controller.

RO1ANO011EJ0102 Rev.1.02 Page 58 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

SetProtectReg

[Synopsis]
Access write-protected register.

[C language format]
void SetProtectReg(volatile UINT32 *dest_reg, UINT32 wr_dt, volatile UINT8 *prot_reg)

[Parameters]

Parameter Description
volatile UINT32 *dest_reg Protected register address
UINT32 wr_dt Write value
volatile UINT8 *prot_reg Protect command register address

[Return Value]
None

[Function]
This function writes a value into the given write-protected register.

RO1ANO011EJ0102 Rev.1.02 Page 59 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(3) USB function controller processing functions

usbf850 _init

[Synopsis]
Initialize USB function controller.

[C language format]
void usbf850 init(void)

[Parameters]
None

[Return Value]
None

[Function]
Thisfunction is called during initialization processing.
It allocates and sets up the data area, and sets interrupt request masks and other parameter itemsthat are
necessary to use the USB function controller.

RO1ANO011EJ0102 Rev.1.02 Page 60 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

usbf850 intusbfO

[Synopsis]
INTUSFAOQIL interrupt handler processing.

[C language format]
void usbf850_intusbfO(void)

[Parameters]
None

[Return Value]
None

[Function]
Thisfunction is called as a USB interrupt handler INTUSFAOIL).
It monitors the endpoint for control transfer (Endpoint0) and the endpoint for bulk OUT transfer (reception)
(Endpoint2), and takes the required actions according to the received request or command.
For Endpoint0, the function checks for RSUSPD, BUSRST, SETRQ, and CPUDEC interrupts. When a
CPUDEC interrupt occurs, the function decodes the request data and calls the pertinent function for response
processing.
For Endpoint2, the function checks for BKO1DT interrupts. When a BKO1DT interrupt occurs, the function
calls the CBW data receive function (usbf850 rx_cbw) and takes the required actions according to the
received command.

RO1ANO011EJ0102 Rev.1.02 Page 61 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

usbf850 intusbfl

[Synopsis]
Perform INTUSFAOI2 interrupt handler processing.

[C language format]
void usbf850_intusbf1(void)

[Parameters]
None

[Return Value]
None

[Function]
Thisfunction is called as a USB resume interrupt (INTUSFAOI2) handler.
It sets the resume/suspend flag (usbf850_rsuspd_flg) to "RESUME (0x01)."

RO1ANO011EJ0102 Rev.1.02 Page 62 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

usbf850 data send

[Synopsis]
Send USB data.

[C language format]
INT32 usbf850_data send(UINT8 *data, INT32 len, INT8 ep)

[Parameters]
Parameter Description
UINTS8 *data Pointer to transmit data buffer
INT32 len Transmit data length
INT8 ep Endpoint number of the endpoint to be used for data
transmission

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERROR Abnormal termination
[Function]
Thisfunction transfers data from the transmit data buffer to the FIFO for the specified endpoint, one byte at a
time.
RO1ANO011EJ0102 Rev.1.02 Page 63 of 151

Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

usbf850 data receive

[Synopsis]
Receive USB data.

[C language format]
INT32 usbf850_data receive(UINT8 *data, INT32 len, INT8 ep)

[Parameters]
Parameter Description
UINT8 *data Pointer to receive data buffer
INT32 len Receive data length
INT8 ep Endpoint number of the endpoint to be used for data
reception
[Return Value]
Symbol Description
DEV_OK Normal termination
DEV_ERROR Abnormal termination
[Function]
This function reads data from the FIFO for the specified endpoint into the receive data buffer, one byte at a
time.
RO1ANO011EJ0102 Rev.1.02 Page 64 of 151

Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 rdata length

[Synopsis]

Get USB receive data length.

[C language format]

void usbf850 rdata length(INT32 *len, INT8 ep)

[Parameters]
Parameter Description
INT32* len Pointer to the address storing the receive data length
INT8 ep Endpoint number of the data receiving endpoint

[Return Value]
None

[Function]

This function reads the receive data length of the specified endpoint.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 65 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 send EPO

[Synopsis]

Send USB data for EndpointO.

[C language format]

INT32 ushf850_send_EPO(UINT8* data, INT32 len)

[Parameters]
Parameter Description
UINT8* data Pointer to transmit data buffer
INT32 len Transmit data size

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERROR Abnormal termination

[Function]

This function transfers data from the transmit data buffer to the transmit FIFO for EndpointO, one byte at a

time.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 66 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 receive EPO

[Synopsis]

Receive USB data for EndpointO.

[C language format]

INT32 usbf850_receive EPO(UINT8* data, INT32 len)

[Parameters]
Parameter Description
UINT8* data Pointer to receive data buffer
INT32 len Receive data size

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERROR Abnormal termination

[Function]

This function reads data from the receive FIFO for EndpointO into the receive data buffer, one byte at atime.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 67 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 _send_null

[Synopsis]

Send Null packet for Bulk/Interrupt In Endpoint.

[C language format]

INT32 usbf850_send_null(INTS ep)

[Parameters]
Parameter Description
INT8 ep Endpoint number of the data transmitting endpoint

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERROR Abnormal termination

[Function]

This function sends a Null packet from the USB function controller by clearing the FIFO for the specified
Endpoint (for transmission) and setting the bit that specifies the end of datato 1.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 68 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850_sendnullEPO

[Synopsis]

Send NULL packet for EndpointO.

[C language format]
void usbf850 sendnul| EPO(void)

[Parameters]
None

[Return Value]
None

[Function]

This function sends a Null packet from the USB function controller by clearing the FIFO for Endpoint0 and
setting the bit that specifies the end of datato 1.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 69 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 sendstallEPO

[Synopsis]

Send STALL response for EndpointO.

[C language format]
void usbf850 sendstall EPO(void)

[Parameters]
None

[Return Value]
None

[Function]

This function causes the USB function controller to return a STALL response by setting the bit that indicates

the use of aSTALL handshaketo 1.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 70 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 ep_status

[Synopsis]

Notify state of FIFO for Bulk/ Interrupt In Endpoint.

[C language format]

INT32 usbf850_ep_status(INT8 ep)

[Parameters]

Parameter

Description

INT8 ep

Endpoint number of the data transmitting endpoint

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_RESET Bus Reset processing in progress
DEV_ERROR Abnormal termination

[Function]

This function notifies the state of the FIFO for the specified Endpoint (for transmission).

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 71 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 fifo_clear

[Synopsis]

Clear FIFO for Bulk/ Interrupt Endpoint.

[C language format]

void ushbf850 fifo_clear(INT8in_ep, INT8 out_ep)

[Parameters]
Parameter Description
INT8 in_ep Data transmitting Endpoint
INT8 out_ep Data receiving Endpoint

[Return Value]
None

[Function]

This function clears the FIFO for the specified Endpoint (Bulk/Interrupt) and the data receive flag

(usbf850_rdata flg).

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 72 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

usbf850 standardreq

[Synopsis]
Process standard request not automatically responded by USB function controller.

[C language format]
void ushf850 standardreq(USB_SETUP *req_data)

[Parameters]
Parameter Description
USB_SETUP Pointer to area storing the request data
*req_data

[Return Value]
None

[Function]
Thisfunction is called by the EndpointO monitoring routine.
It callsthe GET_DESCRIPTOR request processing function (usbf850_getdesc) if the decoded request is
GET_DESCRIPTOR. For the other requests, the function calls the STALL response processing function for
Endpoint0 (usbf850_sendstal|EPQ).

RO1ANO011EJ0102 Rev.1.02 Page 73 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

usbf850 getdesc

[Synopsis]
Process GET_DESCRIPTOR request.

[C language format]
void usbf850 getdesc(USB_SETUP *req_data)

[Parameters]
Parameter Description
USB_SETUP Pointer to area storing the request data
*req_data

[Return Value]
None

[Function]
Thisfunction is called to process standard requests that are not automatically responded by the USB function
controller.
If the decoded request asks for a string descriptor, the function calls the USB data transmit processing
function (usbf850 data send) to send a string descriptor from EndpointO. If a descriptor other than the string
descriptor is requested, the function calls the STALL response processing function for EndpointO
(usbf850_sendstallEPO).

RO1ANO011EJ0102 Rev.1.02 Page 74 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(4) USB Mass storage class processing functions

usbf850 classreq

[Synopsis]
Process M SC class request.

[C language format]

void ushbf850 classreq(USB_SETUP*req_data)

[Parameters]
Parameter Description
USB_SETUP Pointer to area storing the request data
*req_data

[Return Value]
None

[Function]

Thisfunction is called for the CPUDEC interrupt source during INTUSFAOI L interrupt processing. If the
decoded request is the one that is specific to the communication device class, the function calls the
corresponding request processing function. In the other cases, the function sends a STALL to EndpointO.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 75 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

usbf850 blkonly mass_storage_reset

[Synopsis]
Perform Mass Storage Reset processing.

[C language format]
void usbf850_blkonly mass storage reset(USB_SETUP *req_data)

[Parameters]
Parameter Description
USB_SETUP Pointer to area storing the request data
*req_data

[Return Value]
None

[Function]
This function clears the FIFOs for Endpoint1 and Endpoint2 and sets up a STALL response. Subsequently, the
function sends a NULL packet from EndpointO.

RO1ANO011EJ0102 Rev.1.02 Page 76 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 _max_lun

[Synopsis]

Perform Get Max Lun processing.

[C language format]

void usbf850 _max_lun(USB_SETUP*req_data)

[Parameters]
Parameter Description
USB_SETUP Pointer to area storing the request data
*req_data

[Return Value]
None

[Function]

This function sends the number of logical units (Logical Unit Number) of the mass storage device.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 77 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 rx_cbw

[Synopsis]
Receive CBW data.

[C language format]
void usbf850_rx_cbw(void)

[Parameters]
None

[Return Value]
None

[Function]

This function reads CBW data from the FIFO for the bulk IN endpoint (Endpoint2) and calls the CBW data
command analysis function (usbf850_storage cbwchk).

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 78 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 storage cbwchk

[Synopsis]

Analyze and process CBW data command.

[C language format]

INT32 ushf850_storage _cbwchk(void)

[Parameters]
None

[Return Value]

The status established during CBW checking is returned.

Symbol Description
DEV_OK Normal termination
DEV_ERROR Abnormal termination

[Function]

This function analyzes the CBW data, identifies the command type (NO DATA, DATA IN (WRITE), or
DATA OUT (READ)), and processes the command.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 79 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 cbw_error

[Synopsis]

Perform CBW data error processing.

[C language format]
void usbf850_cbw_error(void)

[Parameters]
None

[Return Value]
None

[Function]

This command reports a STALL response for the bulk IN endpoint (Endpoint1) and bulk OUT endpoint

(Endpoint2).

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 80 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 no_data

[Synopsis]

Process SCSI NO DATA command.

[C language format]
void usbf850_no_data(void)

[Parameters]
None

[Return Value]
None

[Function]

This function performs NO DATA command processing and returns the processing results in the CSW format.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 81 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 data in

[Synopsis]

Performs SCSI DATA IN command.

[C language format]
void usbf850_data in(void)

[Parameters]
None

[Return Value]
None

[Function]

This function performs DATA IN (WRITE) command processing and returns the processing results in the

CSW format.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 82 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 data out

[Synopsis]

Process SCSI DATA OUT command.

[C language format]
void usbf850 data out(void)

[Parameters]
None

[Return Value]
None

[Function]

This function performs DATA OUT (READ) command processing and returns the processing results in the

CSW format.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 83 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

usbf850 csw_ret

[Synopsis]
Process CSW response.

[C language format]
INT32 usbf850_csw_ret(UINT8 status)

[Parameters]
Parameter Description
UINTS status Results of command processing

[Return Value]
Results of CSW transmission processing

Symbol Description

DEV_OK Normal termination

[Function]
This function creates CSW format data from the processing results and sendsit via USB.

RO1ANO011EJ0102 Rev.1.02 Page 84 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 bulkin_stall

[C language format]
void usbf850_bulkin_stall(void)

[Parameters]
None

[Return Value]
None

[Function]

This function clears the FIFO for Endpoint1 and returns a STALL response.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 85 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

usbf850 bulkout_stall

[C language format]
void usbf850 bulkout_stall(void)

[Parameters]
None

[Return Value]
None

[Function]

This function clears the FIFO for Endpoint2 and returns a STALL response.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 86 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(5) SCSI command processing functions

scsi_command_to_ata

[Synopsis]

Process SCSI command execution.

[C language format]

INT32 scsi_command_to_ata(UINT8 * ScsiCommandBuf, UINT8 *pbData, INT32 IDataSize, INT32

TransFlag)

[Parameters]

Parameter

Description

UINT8 *ScsiCommandBuf

Pointer to buffer storing the SCSI command

UINT8 *pbData

Pointer to buffer storing command data

INT32 IDataSize

Data size

INT32 TransFlag

Direction of data transfer

[Return Value]

The processing result of the SCSI command is returned.

Symbol

Description

DEV_OK

Normal termination

DEV_ERR_NODATA

Transfer direction error in a NO DATA command

DEV_ERR_READ

Transfer direction error in a READ command

DEV_ERR_WRITE

Transfer direction error in a WRITE command

DEV_ERROR

Status other than the above or illegal request

[Function]

This function identifies a SCSI command and performs the corresponding command processing. If no
pertinent command is found, the function sets the sense key to ILLEGAL REQUEST and updates the sense

data.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 87 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_test_unit_ready

[Synopsis]
Process TEST UNIT READY command.

[C language format]
INT32 ata_test_unit_ready(INT32 TransFlag)

[Parameters]
Parameter Description

INT32 TransFlag Direction of data transfer

[Return Value]
Symbol Description

DEV_OK Normal termination
DEV_ERR_NODATA Transfer direction error in NO DATA command

[Function]
This function clears the sense data (sense key = 0x00). If the transfer direction is not NO DATA, the function
sets the sense key to ILLEGAL REQUEST and updates the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 88 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_seek

[Synopsis]
Process SEEK command.

[C language format]
INT32 ata_seek(INT32 TransHlag)

[Parameters]
Parameter Description

INT32 TransFlag Direction of data transfer

[Return Value]
Symbol Description

DEV_OK Normal termination
DEV_ERR_NODATA Transfer direction error in a NO DATA command

[Function]
This function clears the sense data (sense key = 0x00). If the transfer direction is not NO DATA, the function
sets the sense key to ILLEGAL REQUEST and updates the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 89 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_start_stop_unit

[Synopsis]
Process START STOP UNIT command.

[C language format]
INT32 ata_start_stop_unit(INT32 TransH ag)

[Parameters]
Parameter Description

INT32 TransFlag Direction of data transfer

[Return Value]
Processing result

Symbol Description

DEV_OK Normal termination
DEV_ERR_NODATA Transfer direction error in a NO DATA command

[Function]
This function clears the sense data (sense key = 0x00). If the transfer direction is not NO DATA, the function
sets the sense key to ILLEGAL REQUEST and updates the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 90 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_synchronize_cache

[Synopsis]
Process SY NCHRONIZE CACHE command.

[C language format]
INT32 ata_synchronize_cache(INT32 TransFlag)

[Parameters]
Parameter Description

INT32 TransFlag Direction of data transfer

[Return Value]
Processing result

Symbol Description

DEV_OK Normal termination
DEV_ERR_NODATA Transfer direction error in a NO DATA command

[Function]
This function clears the sense data (sense key = 0x00). If the transfer direction is not NO DATA, the function
sets the sense key to ILLEGAL REQUEST and updates the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 91 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

ata_request_sense

[Synopsis]

Process REQUEST SENSE command.

[C language format]

INT32 ata_request_sense(UINT8 * ScsiCommandBuf, UINT8 *pbData, INT32 |IDataSize, INT32 TransFlag)

[Parameters]

Parameter

Description

UINTS8
*ScsiCommandBuf

Pointer to buffer storing the SCSI command

UINTS8 *pbData

Pointer to buffer storing command data

INT32 IDataSize

Data size

INT32 TransFlag

Direction of data transfer

[Return Value]

Symbol

Description

DEV_OK

Normal termination

DEV_ERR_NODATA

Transfer direction error in a NO DATA command

DEV_ERR_READ

Transfer direction error in a READ command

[Function]

This function sends sense data.
If the specified data size is set to 0 and the transfer direction isnot NO DATA, the function sets the sense key
to ILLEGAL REQUEST and updates the sense data.

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 92 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_inquiry

[Synopsis]
Process INQUIRY command

[C language format]
INT32 ata_inquiry(UINT8 * ScsiCommandBuf, UINT8 * pbData, INT32 IDataSize, INT32 TransH ag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_READ Transfer direction error in a READ command
DEV_ERROR Status other than the above or illegal request

[Function]
This function clears the sense data (sense key = 0x00) and sends INQUIRY data. If the CMDDT and EVPD
bits of command byte 1 are both set to 1, the function sets the sense key to ILLEGAL REQUEST and updates
the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 93 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_mode_select

[Synopsis]
Process MODE SELECT(6) command.

[C language format]
INT32 ata_mode_select(UINT8 * ScsiCommandBuf, UINT8 *pbData, INT32 IDataSize, INT32 TransFlag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_WRITE Transfer direction error in a WRITE command
DEV_ERROR Status other than the above or illegal request
[Function]
This function clears the sense data (sense key = 0x00) and updates the MODE SELECT data table with the
receive data.

If an illegal transfer direction or data size is found, the function sets the sense key to ILLEGAL REQUEST
and updates the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 94 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_mode_selectl0

[Synopsis]
Process MODE SELECT(10) command.

[C language format]
INT32 ata_mode_select10(UINT8 * ScsiCommandBuf, UINT8 *pbData, INT32 |IDataSize, INT32 TransH ag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_WRITE Transfer direction error in a WRITE command
DEV_ERROR Status other than the above or illegal request
[Function]
This function clears the sense data (sense key = 0x00) and updates the MODE SELECT(10) data table with
the receive data.

If an illegal transfer direction or data size is found, the function sets the sense key to ILLEGAL REQUEST
and updates the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 95 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_mode_sense

[Synopsis]
Process MODE SENSE(6) command.

[C language format]
INT32 ata_mode_sense(UINT8 * ScsiCommandBuf, UINT8 *pbData, INT32 |DataSize, INT32 TransFlag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_READ Transfer direction error in a READ command
DEV_ERROR Status other than the above or illegal request

[Function]
This function clears the sense data (sense key = 0x00) and sends the MODE SENSE data.

RO1ANO011EJ0102 Rev.1.02 Page 96 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_mode_senselO

[Synopsis]
Process MODE SENSE(10) command.

[C language format]
INT32 ata_mode_sense10(UINT8 * ScsiCommandBuf, UINT8 * pbData, INT32 IDataSize, INT32 TransH ag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_READ Transfer direction error in a READ command
DEV_ERROR Status other than the above or illegal request

[Function]
This function clears the sense data (sense key = 0x00) and sends the MODE SENSE(10) data.

RO1ANO011EJ0102 Rev.1.02 Page 97 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_read_format_capacities

[Synopsis]
Process READ FORMAT CAPACITIES command.

[C language format]
INT32 ata_read_format_capacities(UINT8 * Scsi CommandBuf, UINT8 *pbData, INT32 IDataSize, INT32

TransFlag)
[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_READ Transfer direction error in a READ command
DEV_ERROR Status other than the above or illegal request

[Function]
This function clears the sense data (sense key = 0x00) and sends the FORMAT CPACITY data.

RO1ANO011EJ0102 Rev.1.02 Page 98 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_read_capacity

[Synopsis]
Process READ CAPACITY command.

[C language format]
INT32 ata_read_capacity(UINT8 * ScsiCommandBuf, UINT8 *pbData, INT32 |IDataSize, INT32 TransH ag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_READ Transfer direction error in a READ command
DEV_ERROR Status other than the above or illegal request

[Function]
This function clears the sense data (sense key = 0x00) and sends the CPACITY data.

RO1ANO011EJ0102 Rev.1.02 Page 99 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_read6

[Synopsis]
Process READ(6) command.

[C language format]
INT32 ata_read6(UINT8 * ScsiCommandBuf, UINT8 *pbData, INT32 IDataSize, INT32 TransFlag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_READ Transfer direction error in a READ command
DEV_ERROR Status other than the above or illegal request

[Function]
This function clears the sense data (sense key = 0x00) and sends the data that is read from the data area.
Theread start addressis calculated from the LBA (Local Block Address) and block sizein the SCSI
command.
If the transfer direction or the Flag or Link bit of the SCSI command isillegal, the function sets the sense key
to ILLEGAL REQUEST and updates the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 100 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_readl10

[Synopsis]
Process READ(10) command.

[C language format]
INT32 ata_read10(UINT8 * ScsiCommandBuf, UINT8 *pbData, INT32 IDataSize, INT32 TransFlag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_READ Transfer direction error in a READ command
DEV_ERROR Status other than the above or illegal request

[Function]
This function clears the sense data (sense key = 0x00) and sends the data that is read from the data area.
Theread start addressis calculated from the LBA (Local Block Address) and block sizein the SCSI
command.
If the transfer direction or the Flag or Link bit of the SCSI command isillegal, the function sets the sense key
to ILLEGAL REQUEST and updates the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 101 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_write6

[Synopsis]
Process WRITE(6) command

[C language format]
INT32 ata write6(UINT8 * ScsiCommandBuf, UINT8 *pbData, INT32 IDataSize, INT32 TransFlag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_WRITE Transfer direction error in a WRITE command
DEV_ERROR Status other than the above or illegal request

[Function]
This function clears the sense data (sense key = 0x00) and writes the receive data into the data area.
The write start address is calculated from the LBA (Local Block Address) and block size in the SCSI
command.
If the transfer direction or the Flag or Link bit of the SCSI command isillegal, the function sets the sense key
to ILLEGAL REQUEST and updates the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 102 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_writel0

[Synopsis]
Process WRITE(10) command.

[C language format]
INT32 ata writelO(UINT8 * ScsiCommandBuf, UINT8 *pbData, INT32 |IDataSize, INT32 TransFlag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_WRITE Transfer direction error in a WRITE command
DEV_ERROR Status other than the above or illegal request

[Function]
This function clears the sense data (sense key = 0x00) and writes the receive data into the data area.
The write start address is calculated from the LBA (Local Block Address) and block size in the SCSI
command.
If the transfer direction or the Flag or Link bit of the SCSI command isillegal, the function sets the sense key
to ILLEGAL REQUEST and updates the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 103 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_verify

[Synopsis]
Process VERIFY command.

[C language format]
INT32 ata_verify(UINT8 * ScsiCommandBuf, UINT8 *pbData, INT32 |IDataSize, INT32 TransFlag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_NODATA Transfer direction error in a NO DATA command
DEV_ERROR Status other than the above or illegal request

[Function]
This function writes the receive data into the data area.
The write start address is calculated from the LBA (Local Block Address) and block size in the SCSI
command.
If the transfer direction or the BY TCHK bit of the SCSI command isillegal, the function sets the sense key to
ILLEGAL REQUEST and updates the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 104 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_write_verify

[Synopsis]
Process WRITE VERIFY command.

[C language format]
INT32 ata_write verify(UINT8 * ScsiCommandBuf, UINT8 * pbData, INT32 IDataSize, INT32 TransFlag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_WRITE Transfer direction error in a WRITE command
DEV_ERROR Status other than the above or illegal request

[Function]
This function clears the sense data (sense key = 0x00) and writes the receive data into the data area.
The write start address is calculated from the LBA (Local Block Address) and block size in the SCSI
command.
If the transfer direction or the Flag or Link bit of the SCSI command isillegal, the function sets the sense key
to ILLEGAL REQUEST and updates the sense data.

RO1ANO011EJ0102 Rev.1.02 Page 105 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

ata_write_buff

[Synopsis]
Process WRITE BUFF command.

[C language format]
INT32 ata_ write_buff(UINT8 * ScsiCommandBuf, UINT8 *pbData, INT32 IDataSize, INT32 TransFlag)

[Parameters]
Parameter Description
UINT8 Pointer to buffer storing the SCSI command
*ScsiCommandBuf
UINT8 *pbData Pointer to buffer storing command data
INT32 IDataSize Data size
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_WRITE Transfer direction error in a WRITE command
DEV_ERROR Status other than the above or illegal request

[Function]
This function clears the sense data (sense key = 0x00) and reads and discards the receive data.

RO1ANO011EJ0102 Rev.1.02 Page 106 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

scsi_to_usb

[Synopsis]
Send USB data (SCSI command).

[C language format]
INT32 scsi_to_usb(UINT8 *pbData, INT32 TransFlag)

[Parameters]
Parameter Description
UINT8 *pbData Pointer to buffer storing command data
INT32 TransFlag Direction of data transfer

[Return Value]

Symbol Description
DEV_OK Normal termination
DEV_ERR_READ Transfer direction error in a READ command
[Function]
This function calls the USB data send function (usbf850_data _send) to send data from the bulk OUT endpoint
(Endpointl).
If the transfer direction isillegal, the function sets the sense key to ILLEGAL REQUEST and updates the
sense data.
RO1ANO011EJ0102 Rev.1.02 Page 107 of 151

Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

4.4 Data Structures
This section describes the data structures that are used by the sample driver.

(1) USB devicerequest structure
The USB device request structure is defined in the file "usbf850.h."

typedef struct {
UINT8 RequstType; /*bmRequestType */
UINT8 Request; /*bRequest */
UINT1l6 Value; /*wValue */
UINT16 Index; /*wIndex */
UINT16 Length; /*wLength */
UINT8* Data; /*index to Data */

} USB_SETUP;

Figure 4.21 USB Device Request Structure

(2) CBW data structure
The CBW data structure is defined in the file "usbf850_storage.h."

typedef struct { /* CBW (Command Block Wrapper) DATA */
UINT8 dCBWSignature [4]; /* Signature */
UINT8 dCBWTag[4]; /* Tag */
UINT8 dCBWDataTransferLengthl[4]; /* Transfer data length */
UINT8 DbmCBWFlags; /* Specifies data direction */
/* (OUT/IN/NO DATA). */
UINT8 bCBWLUN; /* Number of target device */
UINT8 DbCBWCBLength; /* Number of significant CBWCB bytes */
UINT8 CBWCBI[16]; /* CBWCB (command) */
} CBW_INFO, *PCBW_INFO;

Figure 4.22 CBW Data Structure

(3) CSW data structure
The CSW data structure is defined in the file "usbf850_storage.h.”

typedef struct { /* CSW(Command Status Wrapper) DATA */
UINT8 dCSWSignature [4]; /* Signature */
UINT8 dCSWTagl[4] ; /* Tag */
UINTS dCSWDhataResidue [4] ; /* Difference between specified transfer */

/* data length and length of processed data */
UINT8 bmCSWStatus; /* Status indicating processing result */
} CSW_INFO, *PCSW_INFO;

Figure 4.23 CSW Data Structure

RO1ANO011EJ0102 Rev.1.02 Page 108 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(4) SCSI SENSE DATA Structure
The SCSI SENSE DATA structure is defined in the file"scsi_cmd.c.”

typedef struct SCSI SENSE DATA {
UINT8 sense_ key;
UINT8 asc;
UINT8 ascqg;
} SCSI_SENSE DATA, *PSCSI_SENSE DATA;
Figure 4.24 SCSI SENSE DATA Structure

RO1ANO011EJ0102 Rev.1.02 Page 109 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

5. Development Environment

This section gives an example of constructing an environment for devel oping application programs using the USB
mass storage class sample driver for the VB50E2/M N4 and the procedures for debugging them in that environment.

5.1 Development Environment
This section introduces a sample development configuration of hardware and software tool products.

511 System Configuration
The system configuration in which the sample driver isto be used is shown in figure 5.1.

LI

Host machine

RTE-VBS0E2/MN4-EB-5

MIMIC UBE

Remarks: See section 7, Outline of the Starter Kit, for the physical appearance and port configuration of
the RTE-V850E2/MN4-EB-S.

Figure 5.1 System Configuration of the Development Environment

RO1ANO011EJ0102 Rev.1.02 Page 110 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

51.2

Program Development

The hardware and software that are summarized below are required to develop a system using the sample driver.

Table 5.1 Example of Program Development Environment Configuration
Component Products Product Example Remarks
Hardware Host machine — PC/AT™ compatible
(OS: Windows XP or Windows Vistag)
Software Integrated development tool CubeSuite V1.40
Multi V5.1.7D
IAR Embedded Workbench V3.71
Compiler CX850 V1.00
CCVv850 V5.1.7D
ICCV850 V3.71.2
5.1.3 Debugging

The hardware and software that are summarized below are required to debug a system using the sample driver.

Table 5.2 Example of Debugging Environment Configuration
Component Products Product Example Remarks
Hardware Host machine — PC/AT compatible
(OS: Windows XP or Windows Vistag))

Target RTE-V850E2/MN4-EB-S Manufactured by MIDAS LAB

USB cable — Connection between B receptacle to A receptacle
Software Integrated development CubeSuite V1.40

tool/debugger Multi V5.1.7D

IAR Embedded Workbench V3.71

File Device file DF703512 For V850E2/MN4

(separately available for CubeSuite, Multi, and IAR
Embedded Workbench)

Host driver for — (Note 8)
debugging port
Project-related file — (Note 9)

(Note 8) Contact Renesas for product and ordering information.

(Note 9) The sample driver package comes with sample files that are built with CubeSuite, Multi, and IAR
Embedded Workbench.

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

RENESAS

Page 111 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

5.2 Setting up a CubeSuite Environment

This section explains the preparatory steps that are required to develop or debug using CubeSuite which is
introduced in section 5.1, Development Environment. See section 5.4, Setting up a Multi Environment, when
using Multi for program development and debugging. See section 5.6, Setting up IAR Embedded Workbench
Environment, when using IAR Embedded Workbench for program development and debugging.

5.2.1 Setting up the Host Environment
Y ou create a dedicated workspace on the host machine.

(1) Installing the CubeSuiteintegrated development tools
Install CubeSuite. Refer to the CubeSuite user’s manual for details.

(2) Expanding driver and other files

Store a set of distribution sample driver filesin an arbitrary directory without modifying their folder structure.
Store the host driver for the debugging port in an arbitrary directory.

Arbitrary folder include Folder storing the include files
prj Folder storing CubeSuite projects
src Folder storing source files

Figure 5.2 Folder Configuration for the Sample Driver (CubeSuite Version)

RO1ANO011EJ0102 Rev.1.02 Page 112 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(3) Installing devicefiles
Copy the V850E2/MN4 device files for CubeSuite in the folder where CubeSuite isinstalled.

Example: D:\Renesas Electronics CubeSuite\CubeSuite\Device_Custom

File Edit View Favorites Tools Help

@ DeviceCustom

=1o1x]

L

Address I@ D:\Renesas Eleckronics CubeSuite)CubeSuikeDeviceCustom

jGo

(JBack ~ | - 5 ‘) search ||[‘f Folders | & 3 X) | [~

Folders

X | | :bevicedependence:

=l [C3) Renesas Electronics CubeSute
=l [Cubesuite
I3 AdviceContents
I3 BuildTools
5 carako
1) CATEKOR
5 caaso
I CommonLibraries
IC3) DebugTonls
I5) Device
= I3 DeviceCustom
IL7) Devicedependence
15 Devicefile
1) Help
=i
@ ja-Jp
1) Plugins
1) sampleProjects
I3 UpdateManager
[25) Mew Falder
I3 Mew Folder (2)
IC) Program Files
I3) Renesas
[[vfn

;I |5 Devicefile

|| UPDTOF3512_commmon. xml
| 2| YaS0E2_Custom_Productlist.xml

‘4 objects (Disk free space: 3.76 GB)

[19z kB

| :‘ My Corpuker v

Figure 5.3

(4) Setting up a workspace
Follow the procedure given below when using the project-related files that come with the sample driver package.

<1>

Start CubeSuite and choose “Open File” from the “File” menu.

Example of Destination Folder for Storing the Device Files

‘M CubeSuite - [Project Tree]

File | Edit Wiew Project Buld Debug Tool Window Help
e I XIEYL XY -
P & Start |
Add r
B Close Project G CubeSuite
b Close File
B Save Project Chrl4+-Shift+5
We recommend
kel Save Object Zkrl+5 The tutarial con
Save Project As...,
Save Ohjeck As. .,
@l save sl Chrl+Shift+a A new project c.
| f oz memiaet -
Figure 5.4 Choosing a CubeSuite Menu Item

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

RENESAS

Page 113 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

<2> The"“Open File" dialog box will appear. Select the project file for CubeSuite which islocated in the “prj”
folder in the directory in which the sample driver isinstalled.

Loak jr: I@pri j QT E-

Desktap

My Documents
"
Iy Computer
ok [T [Va50E2_MMAMSCLcspi =l Open |
Files of type: IProiect File for CubeSuite[* capj) j Cancel |
7|
Figure 5.5 Selecting the CubeSuite Project File
RO1ANOO11EJ0102 Rev.1.02 Page 114 of 151

Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(5) Setting up the build tool

Follow the procedure given below to select the version of CX850 which isto be used as the build tool and to

designate V850E2M MINICUBE as the debugging tool.

“ H ” “« H ” H H H H
<1> Seect “CX (buildtool)” from the “Project Tree” for CubeSuite to display its properties.
M YB50E2_MN4{MSC) - CubeSuite - [Project Tree] —|O LI
File Edit W¥ew Project Buld Debug Test Flash Tool Wwindow Help
G |H@i Y B9 CRE A TEHBRAI RN @O ==
oF
Project Tree - X
% ® 3 “\ 4 Property
=ik ojec |2 Build Mode -
’ UPD7OF3S1Z (Microconl Build mode: DefaultBuild
Dutput File Type andPath
Output file type Execute MadulelLoad Module File]
EZM MINICLEE Intermediate file output folder ZBuildiodeN ame
i nalyze E Frequently Used Dptions{for Compie)]
%, nutoTest (TestTaol) Level of optimization Default Dptimization(-0default]
-3 B-Programmer (Flash Prog Additional include paths Additional include paths[1]
E:‘B File Sustem include paths Syster include paths{0]
B;{ Startup acro definition Macro definition[0]
.L..‘. cstart.asm E Frequently Used Dptions{for Link]
;__gﬂ VBSOEE_MNA(MSC).dir Using libraries Using libraries[0]
- Additional library paths Additional librany paths[0]
&
.CJ ushf850_storage.c Dutput folder #BuildModeName%
i J main.c Output file name #PrajectM ame?.Imf
+-&| scsi_emd.c L Vel Mimabicam il fras L asn Dl s) L'
i & ushfg50.c Build mode
Selects the build mode name to be used during build
Common Options Campile Options Link Options ROMize Options Hex Output Opkions hd
3 x
=== Difference information about project =
VEEOEZ_MN4 (MSCH:]
C¥ V1.10 -+ El.10m]
Al
H
Warning(W0Z02005) : Can not open the project with last saved status. See the [All Messages] tah —
in the Ducput panel.,]
[EOF]
=
4 j All Messages =
N (TN | | E T G M | T T T = |
|poscomecr |
Figure 5.6 Selecting the Build Tool
“ : ” H H “ : : : tl
<2> Select the“Version Select” properties item and sets the “Using compiler package version” entry to

“Always latest version which was installed.”

E Verzion Select
|Jzing compiler package install folder
|dzing compiler package version

- . ic= CubeSuitehCubeSuitehCxYY1_.00
Always latest verzion which wasz inztalled
Latest compiler package version which wasz ingtalled .

[Nates

Figure 5.7

Setting up the Compiler Package

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

Page 115 of 151

RENESAS

USB MSC (Mass Storage Class) Driver

V850E2/MN4

<3>
Tool”—"V850E2M MINICUBE" from the right-click menu.

Select "V850E2M MINICUBE (Debug Tool)” from the Project Tree and select "Using Debug

MM YB50EZ_MM4{MSC) - CubeSuite - [Projeck Tree]
Flash Toal

0| BE A

Vieww Project Build Debug Test Window Help

Ha

File Edit

Gy, start TAT,

i

I -

% g

oo

£ -8

Praject T

=1=]

=i WBROE2M MINICUBE Property

Size af internal ROM[FButez)
Size of internal RAk[Bytes]
Size of DataFlazh memon(kBptes]

{NFat

VESOEZM MIMICIIEE (Debu

E
::' Program Analyzer (Anal WESOEZM MIMICUBE

..... AutaTest (TestTool
%? utoTest (TestToo) Property WES0E2M IECLUBEZ
----- i“#‘ QB-Programmer (Flash - .
=3 File B Flash YES0EZM E1(1TAG)
g 5
=81 Startup Security 1D YASOEZM Simulabor

: o Bi,":' cstart.asm
. fie| YESOEZ_MMN4{MSC) . dir

.| ushf850_storage.c

Figure 5.8 Selecting the Debugging Tool

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012 RENESAS

Page 116 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

522 Setting up the Target Environment

Y ou connect the target device to be used for debugging to the host machine. The procedure is common to
CubeSuite, Multi, and IAR Embedded Workbench.

(1) Connecting to the debugging port
Connect between the RTE-V850E2/MN4-EB-S and the host machine. Connect the RTE-V850E2/MN4-EB-S
and the host machine viathe MINICUBE for debugging. In addition, connect between the USB B type
receptacle of the RTE-V850E2/MN4-EB-S and the USB receptacle of the host machine for the M SC.

RTE-\B50E2/MN4-EE-S
Host machine

MINIC UBE

Remarks: See section 7, Outline of the Starter Kit, for the physical appearance and port configuration
of the RTE-V850E2/MN4-EB-S.

Figure 5.9 Connecting the RTE-V850E2/MN4-EB-S

(2) Installing the host driver
It is necessary to install adriver to connect any device to the host machine using a USB B receptacle.

The driver to be used for connection with a USB B receptacle is the mass storage class host driver which comes
standard with Windows. See section 5.8, Operation Check, for details.

RO1ANO011EJ0102 Rev.1.02 Page 117 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

5.3 Debugging in the CubeSuite Environment

This section explains the procedure to debug an application program that is developed in the workspace
introduced in section 5.2, Setting up the CubeSuite Environment.

53.1

Generating a Load Module

To write aprogram into the target device, it is necessary to compile its source file that is coded in C or assembly

language into aload module.
In CubeSuite, aload module is generated by choosing “Build Project” from the “Build” menu.

"MW YB50E2_MN4{MSC) - CubeSuite - [Project Tree]

File Edit ‘“iew Project | Buld | Debug Test Flash Tool Window Help
G, start | | @ G
&7 Rebuild Project Shift+F7
@ Clean Project
Rapid Build
“% Update Dependencies
L] Buid vBS0EZ_MN4{MSC)
..... L PRI] Rebuild YESOEZ_MN4(MSC)
----- & Program Analyz) | 3 Clean YBS0E2_MN4(MSC)
..... %, nutaTest (Test] _
e =Y Update Dependencies of YES0E2_MM4(MSC)
----- # CB-Programrmet,
=[P File $, Stop Build Chr+F7
=80 starkin
Figure 5.10 Selecting a Build Project
RO1ANOO11EJ0102 Rev.1.02 Page 118 of 151
Jan 23, 2012 ENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

53.2 Loading and Executing
Y ou write (load) the generated load module into the target for execution.

(1) Writing aload module
Shown below isthe procedure to write aload module into the RTE-V850E2/MN4-EB-S via CubeSuite.

<1> Choose “Download” from the “Debug” menu and start the debugger.

/@ ¥Y850E2_MMN4{MSC) - CubeSuite - [Project Tree]
File Edit “iew Project Build | Debug | Test Flash Tool ‘Window Help
G start | [@l | xS (S &
Build & Download Fé z
Praject Tree Connect ta Debug Tool B
8 @2 37 Upload...
SRl ¥850E2 MN4{MSC) (Prc % Disconnect From Debug Tool Shift+Fé
..... IR UPDTOF351Z (Micracon
..... A, % (Build Taal) & ztop SRS
..... B SS0E2M MINICUBE (Dol e F3
]
""" *:, Pragram Analyzer (Ana [= Ignore Break and Go F&
----- @; AutoTest (TestTool)
..... # QB-Programmer {Flash W stepIn Fil
H:ﬂ File: L= 5Shep Over F10
B840 Startup ®= Return Out Shift-+F11
i o.hel cstart.asm |
_____ dﬂ YAS0EZ_MN4(MSC) =N CPUReset Chrl+F5
----- ﬂ ushf850_storage "";'. Restart
o] mainor L]

Figure 5.11 Choosing Download into Debugging Tool

<2> Thedownloading of the load module is started via the debugging tool.

Progress Status ﬂ

® Downloading load module ...

\\J) DefaultBuildE50E 2_bM4[MST). Ik

Cancel

Figure 5.12 Executing the Download

RO1ANO011EJ0102 Rev.1.02 Page 119 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(2) Running the program

Press the CubeSuite's \») button or choose “ Go” from the “ Debug” menu.

‘W YB50EZ_MN4{MSC) - YBSOEZM MINICUBE - CubeSuite - [Project Tree]

f‘# QB-Programmer (Flash Pro g2

fﬁﬁﬂ‘ﬂ‘ﬁﬁﬂ‘ﬂ‘ﬁﬁﬂ‘ﬂ‘ﬁ

Fil= Edit Wew Project Build Debug Test Flash Tool Window Help
- A WA 5
Qoo |G X D@00 BE R TiEB AR
1BVl WA T RIBS
37 Property FPj Disassemble1 |j main.c | -
8 @D 3 77 /% Initialize VEUS port */
= 7a out data = PDIC4 | O0x0400; /f* P4 9
- _ _
E L5 ¥850E2 MN4(MSC) (Projec 70 SetProtectReg [¢PD3C4, out data, &PPCHI
#& LP07OF3512 (Microrontroll a0 - = PM4 ¢ Oxfbif:
<A ¥ (Build Tool) =1
. WES0EZM MINICUBE (Debu a2 returmn;
-
. J Program Analyzer (Analyze 3|}
Qb AutoTest (TestToal) 54

Eoe ol o o o o il

Mokati

Current

Mame

E|_rﬂ File S6|* Function Nage: main
] .) g7 |* Description @ main routine.
Eﬂ Build tool generated fie 55 |* Arguments none
ﬂ VESOEZ_MN4(MSC) 9% Beturn Value none
- |:|ﬂ VEEDEZ_MNq-(MSC) R R R R R
|:_:|5;: Skartup 91 [woid main(wvoid)
i Bi,"" cskart, asm L‘}‘ gz |{
----- dir| wES0EZ_MNHMSC). dir 93 epu_initi):
----- '-'ﬂ usbfas0_storage.c 24 o .]
_____ U gg usbfe50_init(): £* initial setting
----- ‘ﬂ scsi_cmd.c a7 EI();
----- | ushFas.c ag - b
a9 while (1) .
Figure 5.13 Running the Program
RO1ANO011EJ0102 Rev.1.02 Page 120 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

5.4 Setting up a Multi Environment

This section explains the preparatory steps that are required to develop or debug using Multi which isintroduced in
section 5.1, Development Environment.

54.1 Setting up the Host Environment
Y ou create a dedicated workspace on the host machine.

() Installing the M ulti integrated development tools
Install Multi. Refer to the GHS user’s manual for details.

(2) Expanding driver and other files
Store a set of distribution sample driver filesin an arbitrary directory without modifying their folder structure.

LArbitrary folder; include Folder storing the include files

prj Folder storing Multi projects

src Folder storing source files

[

Figure 5.14 Folder Configuration for the Sample Driver (Multi Version)

(3) Installing devicefiles
Copy the V850E2/MN4 device files for Multi in the folder where Multi isinstalled.

Example: C:\Green\VV800.V517D\devicefile

@ USB-CDC

-loix]
| A

8

File Edit ‘Wiew Favorites Tools Help

Address In.:l CA\Green\WB00 V51 7DVdevicefile
(JBack ~) - b |,- Search |,_' Folders | & (X KJ| -
x

Folders df35125800
& VB waz3 N
= 5 VE00 17D
1) ansi
1) confie
I5) copyright
|5 defaults
) devicefile
1) docs
&) eclipse
|5 e
15 escon
|2 EXBB0GI2ELR 102
|3 EXER0GI2EZR 103
|2 ehprobe

12 include -
4 | r

|2 ohjects {Disk free space: 3,76 GB)

o bytes |4 My Computer v

Figure 5.15 Example of Destination Folder for Storing the Device Files

RO1ANO011EJ0102 Rev.1.02 Page 121 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

(4) Starting Multi
Select and start Multi Project Filein “V850E2 MN4(MSC)_GHS.gpj” which isincluded in the sample driver
package from the Explorer.

Fle Edit Yew Favorites Tools Help

g [=[3]

|

Address [CHworkvas0Ez M LISB driver{MSC)_GHSprj

B> [

Q@Back -) - (¥ | O search |F[‘_‘-Folders |F 3 X 9| E-

Folders

1) test
12 tmp
123 WINDOWS
El 25 work,
I @=l_winn_j
|5) CubeSuite_E140h_packags
15 FTFP_seminer
|5 test3_preempt
() testé_intnests

() inchude
=2 prj
|2 obis
(2 sre
1 st
e Work (D)
e Local Disk (E1)
b CD Drive (@)
[} Conkrol Panel

S e d e

4 — |

=) () VES0E2 Mk USE driver(MSC)_GH:

= vesuE2_Mh4_MSC_GHS.map

il

|Type: GPIFile Date Modified: 1/6/2011 4:27 PM Size: 224 bytes |224 bytes

| 4 My Computer i

Figure 5.16

(5) Setting up the debugging tool
Given below is the procedure to use MINICUBE as the debugging tool.

Selecting the Multi Project File

<1> Choose “Connect” from the Multi’s “ Connect” menu to open the Connection Chooser.

pri¥¥850E2_MN4{MSC)_GHS.gpj - MULTI Project Manager

File Edit ‘Wiew Build

Conmect Debug Tools windows Help

=10l x|

IFlnd: -I Connection Organizer

I

B
B
B
B
B
ir]

BB schWESOES,

-

Task Manager

Load Madule 3 ~

1 MINICUBE
ks 2 MiniCube-Mr4Single
3RTE - ML4
AT o e Msingle
AR
o harcmain. o C Filz
A harehinitial s Azzambly
b harchwecton s Azzembly
WEEOEZ MMA[MSC]Id Linker Directives

Status I\nln Command ‘

|vaon

Figure 5.17 Starting the Connection Chooser

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

RENESAS

Page 122 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

<2> Select the“ Create New Connection Method” icon from the “ Connection Chooser” dialog box.

Custarn... | Connectl Cancel |

Figure 5.18 Selecting the Create New Connection Method

<3> Inthe Create New Connection Method dialog box, enter an arbitrary name in the Name textbox and select
“Custom” in the Type combobox, then click the “ Create...” button to create MINICUBE connection
settings. In the example shown here, the nameis set to “MINICUBE” in the Name textbox.

Create Mew Connection Method

MName: | MINICUEBE

Create. ., l Cancel |

Figure 5.19 Creating the Create New Connection Method

<4> Connection Editor will then start. Fill the “ Server” and “Arguments” fields as shown below and click the
OK button.

Server: 850eserv2
Arguments. -minicube -e2 -ip=c:\green\v800.V 517d\devicefile -df=df3512.800 -id
FEFFFEFFFFFFFFFFFFFfffff (Note 10)

(Note 10) 24 occurrences of "f”

Connection Editar

Mame: [MINICUBE

Type: I Cusztom

™ Log Connection ta file; I

Target setup script: I E{

Server I A80esery?

Arguments: Ininicube -2 -ip=c:¥oreen¥vB00.Y51 7 d¥devicefile -df=df3512.800 -id FFEFEFEFEFFFFFFEEE

880ezery2 -minicube -e2 -ip=c:\green'wB00 V51 7d\devicefile -df=df3512 800 -id FrEFFEFERRFEFRFFFEFEFFEE

oK | Cancel | Revert | T Apply

Figure 5.20 Configuring Connection Editor

RO1ANO011EJ0102 Rev.1.02 Page 123 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

54.2 Setting up the Target Environment

Y ou connect the target device to be used for debugging to the host machine. The procedure is common to
CubeSuite, Multi, and |AR Embedded Workbench.

(1) Connecting to the debugging port
Connect between the RTE-V850E2/MN4-EB-S and the host machine. Connect the RTE-V850E2/MN4-EB-S
and the host machine viathe MINICUBE for debugging. In addition, connect between the USB B type
receptacle of the RTE-V850E2/MN4-EB-S and the USB receptacle of the host machine for the M SC.

RTE-\B50E2/MN4-EE-S
Host machine

MINIC UBE

Remarks: See section 7, Outline of the Starter Kit, for the physical appearance and port configuration
of the RTE-V850E2/MN4-EB-S.

Figure 5.21 Connecting the RTE-V850E2/MN4-EB-S

(2) Installing the host driver
It is necessary to install adriver to connect any device to the host machine using a USB B receptacle.

The driver to be used for connection with a USB B receptacle is the mass storage class host driver which comes
standard with Windows. See section 5.8, Operation Check, for details.

RO1ANO011EJ0102 Rev.1.02 Page 124 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

5.5 Debugging in the Multi Environment

This section explains the procedure to debug an application program that is devel oped in the workspace that is
introduced in section 5.4, Setting up the Multi Environment.

55.1 Generating a Load Module
To write aprogram into the target device, it is necessary to compileits source file that is coded in C or assembly
language into aload module.
In Multi, aload module is generated by choosing “Build Top Project V850E2 MN4(MSC)_GHS.gpj” from the

“Build” menu.
RT=IEY
File Edit W¥iew | Build Connect Deb Tools Windows Help
_MN4{MSC)_GHS.gpi F7
Ereprocess YASOEE [WHMSE) GHS gpj J
-
Rebuild YES0EZ_MM4(MSC)_GHS. gpi
Build Ignoring Errors YBS0EZ_MM4(MSC)_GHS. gpj il
Y Clean YBS0EZ_MRM4(MSC)_GHS. gpj
E [srch! Advanced Buld YES0EZ_MM4{MSC)_GHS. gpj...
4
S \ Wiew Build Details F&
By .\ herchscsicomdc CFile
B . harchmainc C File
B .\ harchiniialz Azzembly
By . hsrchwectors Azzembly
4 WEE0E2_PM4[MEC)Id Linker Directives
Status IInfo I Cormmand [[van0
Figure 5.22 Choosing Build
RO1ANOO11EJ0102 Rev.1.02 Page 125 of 151

Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

55.2 Loading and Executing
Y ou program (load) the generated |oad module into the target for execution.

(1) Programming the load module

Shown below is the procedure to program aload module into the RTE-V850E2/MN4-EB-S via Multi.

<1> Choose “Connect” from the Multi’s “ Connect” menu to open the Connection Chooser.

- prj¥¥850E2_MN4(MSC)_GHS.gpj - MULTI Project Manager

Connect Debug Tools ‘Windows Help

CeolElr
| = —

B prisE50EZ_MH

O (B schWEE0ES.
4 harchy
o hanchy
e

w

Conneck,..

Connection Organizer

Task Manager
Load Module

1 MINICUBE

2 MiniCube-MN4Single

3RTE - ML4
4 RTE-MN4Single

=10l x|

1=

-

B

B

B .\ hsrchmainc

B . herchinitial s

B .\herchwectars

[YE50E2_MN4MSC)Id

C File
Assembly
Azzembly

Linker Directives

H_4

Status I\nlo Command ‘

|va00

Figure 5.23

Starting the Connection Chooser

<2> From the Connection Chooser, select the MINICUBE connection settings you created according to the
procedure explained in section 5.4.1, Setting up the Host Environment, and click the “Connect” button.

Connection Chooser

Connect to a Target:

Custarn... |

| Connect! Cancel |

Figure 5.24

Selecting the MINICUBE Connection Settings

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

RENESAS

Page 126 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

<3> MULTI Debugger will then start. Choose “Debug Program” from the “File” menu and download the load

module.
<Direct hardware access > - MULTI Debugger 18] x|
Fle Debug YView Browse Target TimeMachine Tools Config Windows Help
Debug Program as Mew Entry. . IT B D3| & &e a6 @‘| §D| =] | iy
Debug Program... 3 Sk
tatus
Brinike.. H / <Direct hardware = > Stopped
Print wwindow, .,
‘Write to Eile...
Atbach to Process, .
Detach from Process xe38 ;I
1 Ci¥warky¥ ol -2[1pl, 1p
2 Di¥profé cl. hu -2[1pl, lp
3 Dn¥projé 4. hu -201pl, 1p
4 Di¥profé cl. hu -2[1pl, lp
.hu -Z[1p]l, 1lp
Close Entry CErl A ol hu -2[1lpl, lp
Close Debugger Window Chrl+Q cl. hu -Z[1pl, 1p -t
Exit All ol b -2[1lp]l, lp
v (b ot 3 e e s e s e e Td.hu -2[1p], 1p
s 0Ox2S: IEffffff ld.hu —z[1pl, lp
® OxZo: oo b i i o ld.hu -2[1lpl, lp
s 0Ox30: TEEfEfff ld.hu —z[1p], lp
® Ox34: oo b i i o ld.hu -2[1lpl, lp _I
-
ISoulce j File: I j Proc: I ﬂ | | =
B30 code werify ok 1=
Connected.

Device File c:l\green\v800.V517d\devicefileldf3i512.800

Target: Initiaslizing ~C:hWGreentWa00.W517D4850eserv:Z —minicube -22 —ip=c:\green\vE00.V517dvdevicest
Target: Target cpu: VSS0EZWV3
MULTI> |

-
4| | »

Crnd | Trg® | 140 | Py | Tfe ||In <unknowrs section: 0 |5TDF’PED

Figure 5.25 Choosing a MULTI Debugger Menu

The load module is generated in the “prj” folder under the name of “V850E2 MN4 MSC_GHS.” Select it and
click the “Open” button.

Debuz Program 2 x|
Look jn I@prj j €] il -

WBS0EZ_MH4(MSCY.Id
% YBS0E2_MN4(MSC)_5HS .gpj

S0E2_MN4_MSC_GHS. dep
WBSOE2_Mh4_M5C_GHS.dla

WBENEZ_Mh4_MSC_GHS. drm
WBEDEZ_MN4_MSC_GHS.map

File name: I j | Open I |
Files of type: Iml Files (¥%) j Cancel |

e

Figure 5.26 Selecting the Load Module

RO1ANO011EJ0102 Rev.1.02 Page 127 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(2) Running the program
Pressthe MULTI Debugger’s b’ button or choose “ Go on Selected Items’ from the “Debug” menu.

pri¥¥850E2_MN4_MSC_GHS - MULTI Debugger =] S

File Debug Yiew EBrowse Tarnet TimeMachine Tools Config Windows Help

diks3IFplessa|n EReoacearEFH

Target Status & koo

E 850eservi Debug Connection
E ¥8E50EZV3

Stopped

Not Loaded
35 l,.n’xxwxwxwxwxxwwxxxxxxxxxx-xwwxxxxxwxxxxxwxxxxwxwxwxxxxxwxxxxxxxxxxwxwxwxxxwxxxxxx :I
(=14 * Function MName: main
57 * Description : main routine.
=153 * Argnauments @0 none
(=2=] * Return Walue : none
{=1n] *****t*****t*t************t***t*#**********1*******#*#************t***t*#*****f
91 voild maini(void)
= 1 {
93 Z mpe cpu_init();
o4 3
=L - ush£850_init () : f* dinitial setting of the USE Function */
96 5 J
97 & . _EI():
=1= B
EER- while (1)
100 9 { -
1 | _>l_I
|Souce | Filer | hsrchmainc | Proc: [main =] |4§ =
R2U code werify ok 1E=
Connected.

Device File c:l\green'\vS00.V517d\devicefile) df3512.800

Target: Initializing ~C:\GreenyVS00.W517D4850eserv: -minicube -22 -ip=c:hgreen,vg00.V517dvdevicest:
Target: Target cpu: VSSOEEZW3 fom
Loading executsble: C:Ywork\WS50EZ MN4 USthf‘:ofoD(HSC]_GHS\prj\VSSDEZ_MN‘l_HSC_GHS...

Source FRoot: C:hwork\VS50EZ MW4 USEfhf%fCfo(M3C)_ GHS\src

Finished loading.

MULTI=> -
1| | 3

Cmd] Trg* J_Out] Py J Tfe] NO PROCESS
Figure 5.27 Running the Program
RO1ANO011EJ0102 Rev.1.02 Page 128 of 151

Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

5.6 Setting up IAR Embedded Workbench Environment

This section explains the preparatory steps that are required to develop or debug using IAR Embedded Workbench
which isintroduced in section 5.1, Development.

5.6.1 Setting up the Host Environment
Y ou create a dedicated workspace on the host machine.

(1) Installing the lAR Embedded Workbench integrated development tools
Install the AR Embedded Workbench. Refer to the AR Embedded Workbench user’s manual for details.

(2) Expanding driver and other files
Store a set of distribution sample driver filesin an arbitrary directory without modifying their folder structure.

Arbitrary folder include Folder storing the include files
j Folder storing IAR Embedded Workbench projects

prj

src Folder storing source files

Figure 5.28 Folder Configuration for the Sample Driver (IAR Embedded Workbench Version)

RO1ANO011EJ0102 Rev.1.02 Page 129 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(3) Installing devicefiles
Copy the V850E2/MN4 devicefiles for the IAR Embedded Workbench in the folder where the |AR Embedded
Workbench isinstalled.

Example: C:\Program Files\|AR Systems\Embedded Workbench 6.0 for V850 kickstart\v850\inc

-0/
File Edit Yiew Favorites Tools Help | ::'
Address I@ i\ Program Files| IAR Systems! Embedded Workbench 60 for w850 Kickstart) 850 linc j Go
QBack -) - (T |,- Search |Fﬁ~FoIders | & X g | -

inTOf3506 h H] i T0f3853 h
[H] 0703554 h
[H] i0703555 h
[H] i0703556 h
[H]i0703557 h
[H] i0703558 h
[H] i 703558 h
[H] i0703580 h

Falders S

[DIFX =
) eclipse

| Hidemaru
=) IAR Systems

) Embedded Workbench 60

=l [Embedded Workbench 60 for WB50 Kick

H] io 03613 exth
[H] ic70f3614 h
[H]i07013614 exth
[H]i070f3615 h
[H] i07013615 exth
[H] i070f3616h
[H] ioT0f3616_exth
[H]i070f3617h

i 2h
[H] io70f3514

[H]i070f3515 h
[H]i070f3524 h
[H] i 703625 h
H]i070f3526 h

|5 common

=) g l,?;; e [H]i0703535 h [H] i0703588 h [H]i070f3618 h
& bin [H] i070{2535p h [H] i070f3583 h [H] 0703618 _exth

) confi [H] i0703536 h [H] i0703551 h [H]i070f3619h
) doc [H] i0703536p h [H] in70f3592h [H] i07013619_exth

|) drivers
|2) examples

H]i070f3532h

[H]i0703537 h
H]i070f3537p h
[H] ic70f3548 h

[H] i0703564 h

[H]io703610h
[H] i0703610_exth
[H] 0703611 h

[H]i07013617 _exth

[H] i070f3620 h
[H] i07013620_exth
[H] i 70f2621 h

S e [H] in 703549 (] in70/3611 exth [io70f3621_exth
& pluins A |H)io70i3550 K [H] i070f3612h H]i070f3622h
o = [H] i0703551 h [Hio70f361 2 exth [H]io70f3622 exth
= tutar [H]io70f3662 h [H] 07013613 h [H] i 7013700 h
192 KB ¢ My Computer
| |) 4
Figure 5.29 Example of Destination Folder for Storing the Device Files

(4) Starting IAR Embedded Workbench

Select an |AR IDE Workspacein “V850E2_ MN4(MSC) |AR.eww” which isincluded in the sample driver
package from the Explorer. And start the IAR Embedded Workbench.

1) ad_vino_j s
I3 CubeSuite_E140h_package
(L) FTFP_seminer
() test3_preempt
() testd_intnest4
] [0 Y8502 MN4 UISE driver(M5C)_TaR:
(2 include
= 3 prj
1) Debug
I) Release
1) settings
[st
= S Mdork (D)
T m v

4

I =T
File Edit VWiew Favorites Tools Help | ",'
Address |@ € \work\WES0E2 MN4 USE driver(M5C)_IAR\pr] | Ga
Qoback ~ O - (¥ ‘) search ‘Fl“ Folders ‘ B 3 X 9 | -

Folders X || Name = S\zel Type |
) SelfLIBYESD_Typed4r 2| Spebug File Folder
IC) softsimulator Lessons Dhrelease File: Foldsr
) test [Chsettings File: Foldzr
2 tmp = wAE0EZ_MK4{MSCY_TAR. dep GKE DEP File
) WINDOWS = vasoE2_MN4(MSC)_1AR ewd Z7KE EWD File
2 0D work = vesoE2_MM4(MSC)_TAR. 2w 45KB EWPFis

1KE IAR IDE Workspace

|Type: IAR IDE Workspace Date Modified: 3072011 10:43 AM Size: 173 bytes

[173 bytes

| J My Computer

i
4

Figure 5.30

Selecting IAR IDE Workspace

RO1ANOO011EJ0102
Jan 23, 2012

Rev.1.02

RENESAS

Page 130 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(5) Setting up the debugging tool
Given below isthe procedure to use MINICUBE as the debugging tool.

<1> Select “Options’ of the “V850E2_MN4(MSC)_|IAR- Release (or Debug)” propertiesitem, and open the
Connection Chooser.

y:IFHFL Embedded Waorkbench IDE

File Edit Miew Project Toolz Window Help

DEH@ &) s B0 o] EEA S
Woarkspace =
IHeIease j —
Filez - | o, |
S]] ¥850E2_MWN4(NSC)_IAR - Rele -
main.c == N
=cgi_ond. o Make_
ushfas0.c QDmE!HB .
usbf850_storage.c Rebuild All .
I_E-‘ 7 Output Glean
[YO50E2_MNACHSCI_TAR. 85 | oy cuild
Add »
Remowve
Bename.

Source Code Contral

File Properties..

Set ag fotive

Figure 5.31 Selecting Options

<2> Select “Debugger” from the “Category” in the “ Options for node “V850E2 MN4(MSC)_IAR"” dialog box.

Categony: Factory Settings |

General Options
C/C++ compiler

Assembler Setup | Extra Options | Imazes | Pluging |

Custorn Build

Eiild Actions Driver

Linkas [MINICUBE E2x 3
CIOMM [©

TR 55850 main

IECUEE

IECUBE2 E2x - Setup macros —

MINICIUEE I Use macro file

MINICLUBEZ I |

MIMICIBE E2x

Wi — Device description file
N-tire OCD I~ Owerride default
Simulataor -
TK-WESH |$TOOLK1T_DIR$¥OONFIG¥DDF¥|0?Df351 2.ddf |

()8 I Cancel |

Figure 5.32 Selecting Debugger

RO1ANO011EJ0102 Rev.1.02 Page 131 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

<3> Select “MINICUBE E2x” from Driver in the “ Setup” tab and pressthe “OK” button.

General Options
CHC++ compiler
Assembler
Custom Build
Build Actions

Liker = |
]

Debugger

IE-ox | S5-4650 R

[ECUEE

[ECUBEZ E2x !
MIMICUBE N
MIMICUBEZ

MIMICUBE E2x

M-Wire OCD
] [
Sirnulator
TK-WES0

o] coed |

Figure 5.33 Selecting Debugger

RO1ANO011EJ0102 Rev.1.02 Page 132 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

5.6.2 Setting up the Target Environment
Y ou connect the target device to be used for debugging to the host machine. The procedure is common to
CubeSuite, Multi, and |AR Embedded Workbench.

(1) Connecting to the debugging port
Connect between the RTE-V850E2/MN4-EB-S and the host machine. Connect the RTE-V850E2/MN4-EB-S
and the host machine viathe MINICUBE for debugging. In addition, connect between the USB B type
receptacle of the RTE-V850E2/MN4-EB-S and the USB receptacle of the host machine for the MSC.

Host machine

RTE-VWSE0E2/MN4-EE-5

MINIC UBE

Remarks: See section 7, Outline of the Starter Kit, for the physical appearance and port
Configuration of the RTE-V850E2/MN4-EB-S.

Figure 5.34 Connecting the RTE-V850E2/MN4-EB-S

(2) Installing the host driver
It is necessary to install adriver to connect any device to the host machine using a USB B receptacle.
The driver to be used for connection with a USB B receptacle is the mass storage class host driver which comes
standard with Windows. See section 5.8, Operation Check, for details.

RO1ANO011EJ0102 Rev.1.02 Page 133 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

5.7 Debugging in the IAR Embedded Workbench Environment

This section explains the procedure to debug an application program that is devel oped in the workspace that is
introduced in section 5.6, Setting up AR Embedded Workbench Environment.

5.7.1 Generating a Load Module

To write aprogram into the target device, it is necessary to compile its source file that is coded in C or assembly

language into aload module.

In the IAR Embedded Workbench, aload module is generated by choosing “Rebuild All” from the “Project”

menu.

;FIFHF: Embedded Warkbench IDE

File Edit Yiew Project Toole Window Help

DeEH@ & s R o o EE AN
Workspace =
IHeIeaae j B
Files £ | By |
=]E]v850E2_MN4(NSC)_IAR - Release ! L ||
. Options...
scsi_cnd. o Make
usbf850.c Campile
usbfBh0_storaze.c Febuild &ll }
L= (7 Output Glean
L
[vB50E2_MN4(HSC)_IAR. d35 Stop Build
Add »
Femowe
Berame..

Source Code Contral »

File Properties..

et ag Betive

Figure 5.35 Choosing Rebuild All

RO1ANO011EJ0102 Rev.1.02
Jan 23, 2012 RENESAS

Page 134 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

5.7.2 Loading and Executing

Y ou program (load) the generated load module into the target for execution.

(1) Programming the load module
Shown below is the procedure to program aload module into the RTE-V850E2/MN4-EB-S via |AR Embedded
Workbench.

<1> Select “Download and Debug” from the “Project” menu in the AR Embedded Workbench. And load the
generated load module into the target.

,}zIH F. Embedded Workbench IDE

File Edit Miew | Project Tools Window Help
fdd Files...
= = Add Group...
Impart File List.

IHeIease Edit Gonfigurations..
Files Remaye

=

B Create Mew Project...

aln. & #idd Existing Project
zozi_cmd = ==

ushf350. Options.. Alt+F7
usbif#50._ Source Code Control 3
L= O output
[vas0E; Make F7
Campile Ctel&ET
Rebuild All
Glean
Batch build.. Fa
Stop Build Girl#Ereak:

Download and Debug Cirl+Dr

Debug without Downloading

[ake & Restart Debueeer Shift+Ea
Bestart Debuseer GirltES
Download >

Figure 5.36 Starting Debugger

<2> Download of load module starts via the debugging tools.

RO1ANO011EJ0102 Rev.1.02 Page 135 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(2) Running the program
Press the |AR Embedded Workbench button or choose “Go” from the “Debug” menu.

J:IH F. Embedded Workbench IDE
File Edit Miew Project Debug Emulator Tools Window Help
P E bR s | Y S =6 »
S8 22 LB 22X
Bie o/ BP
Workspace x
IHeIease j
Files EEEE
Ef=]v850E2_NN4(NSC)... v | |
M i i
zoai_omd.c
ushf850. ¢
usbf8h0_storage.c
(1 Output
Figure 5.37 Running the Program
RO1ANOO11EJ0102 Rev.1.02 Page 136 of 151
RENESAS

Jan 23, 2012

V850E2/MN4 USB MSC (Mass Storage Class) Driver

5.8 Operation Check

This section describes the procedures for verifying the results of executing the sample driver program in the
CubeSuite, Multi, or IAR Embedded Workbench environment.

(1) Connecting to the USB B receptacle
Connect between the USB B receptacle of the RTE-V850E2/MN4-BE-S and a USB port of the host machine
with aUSB cable.

(2) Installing the host driver
The driver to be used for connection with the USB B receptacle is the host driver for the mass storage class
which comes standard with Windows. The driver will automatically be installed when you connect to the host
machine viathe USB while the sample driver is running.

(3) Checking the connection status of the USB devices
Open the Windows Device Manager. Expand the “ Universal Serial Bus controllers’ tree and make sure that
“USB Mass Storage Device” is shown. In addition, expand the “Disk drives’ tree and make sure that “ Renesas
StorageFncDriver USB Device” is shown.

EI@ System Tools
[el-{ga] Event Yiswer
% shared Folders

Local Users and Groups

g ¥Device Manager

[—:I--@ Storage

=5 Femovable Storage

Disk Defragmenter
Disk Management

E]--& Services and Applications

Performance Logs and alerts

-i0i]
g File Action View Window Help |;|i|ﬁ|
- OE @

g Computer Managarment {Local) _J Computer ;I

[l Disk drives
“ee# Fenesas StorageFncDriver USE Device
g SAMSLING SVORLZH
- -j Display adapters
H- il DVDICD-ROM drives
H-{=%) Floppy disk controllers
]_a Floppy disk drives
- Human Interface Devices
]--@ IDE ATASATAPI controllers
H-z» Keyboards
H- ")y Mice and other pointing devices
- -; Moniktors
H-EE Metworl, adapters
]--@ Other devices
- 5 Ports (COM & LPT)
-5 Processors
0-@, sound, video and game controllers
H-2e@ Storage volumes
- System devices
I'_—'I--é Universal Serial Bus contrallers

i & Generic USE Hub

E
[E
[E
E
[E
E
[E
E
E
[E
E
[E
E
E
[E
E

‘| 2]

Inkel(R) 828010B/DBM USE 2.0 Enhanced Host Contraller - 24CD
Intel{R) 82801 06/DEM USE Universal Host Controller - 24C2
Intel(R) 52501 0B/CBM USE Universal Host Contraller - 24C4

S USB Mass Storage Device

1JSE ook Hub
1ISE Roat Hub
: 1ISE Foak Hub

[«

Figure 5.38

Checking with the Device Manager

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 137 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

(4) Formatting a removable disk
Open the Windows's “My Computer” and “Removable Disk” will appear.

& My Computer _ |D|£|
File Edit “ew Favorites Tools Help | ,"
"\E_ldl’BSSI § My Computer j =
QBack -) - (T |) search ||t'“_‘ Folders | & [) | -

Folders X | |34 Floppy (8))
@' Deskkop e Local Disk (1)
) My Documents e Work (D:)
= _J Iy Computer e Local Disk (Ed)
S 3% Floppy (80 == Removable Disk (F:)
e Local Disk (1) | CD Drive (G:)
e \Work (D) |_7)Shared Documents
Ca LomalDicl (LY) kawaguti's Documents
S Femovable Disk (F:) \J)micomtoole's Documents
e LD UrveE (i)
{} Control Panel
‘-_g My Mebwark Flaces
@ Recyds Bin
1] | ’
|9 ohjects | | :J My Computer 4

Figure 5.39 Checking the Removable Disk

Remarks: " (F:)" in this screen exampleis the drive letter that is automatically assigned by the OS. Thisdrive
|etter varies with the host machine’ s configuration.

<1> Click “Removable Disk” under “My Computer,” and the message “Disk is not formatted.” will appear.
Click the*Yes’ button.

Disk is not formatted |

'j The disk in drive F is nok Formatted,
-

D wou want ko Format it now?

Figure 540 Formatting Confirmation Dialog Box

RO1ANO011EJ0102 Rev.1.02 Page 138 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

<2> The"“Format Removable Disk” dialog box will then appear. Select necessary items and click the “ Start”
button.

Format Removable Disk (F: 21x|

Capacity:

|z4.0kB =l
File system

[FaT =l
Allocation unit size

IDeFauIt allocation size j

‘Wolume label

Farmat options

[T Quick Format

™| Eniatile: Cannpressian

| Greate an [M5-DEE starbum disk:

Formatting Removable Di x|

\ll) Format Complete,

| . §tart| Close | | I

Figure 541 Format Menu and Format Complete Dialog Box

<3> A message will appear when formatting is completed. Click the “OK” button.

(5) Storing filesand unloading
Check for normal write and read of afile to and from the removable disk.

<1> Prepareafile named TEST.txt and the Test folder on alocal disk.

ol
File Edit ‘iew Favorites Tools Help | ’,’
Address Iuﬁ DriMSC Test j e
QBack ») ~ (T |,‘-:'Saar[h ~ Folders | & G X Kjl [

B TEST.Ext - Motepad o] |
File Edit Formak Wiew Help
renesas Electronics ;|

USE Driver for Mass strage Class

Z objects 0 bytes m

KN o

Figure 5.42 Test Folder and Test Data File

RO1ANO011EJ0102 Rev.1.02 Page 139 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

<2> Openthe Removal Disk in the My Computer and copy the TEST.txt file from the local disk to the
Removable Disk.
o]
File Edit Miew Favorites Tools Help | ’f
Address I'«-ﬂ F:y j Go
() Back ~ €3 - (B | - search |FL'_‘! Folders | & (@ X g ‘ [~
Folders X | | Mame Sizel Type
@ Desktop
@ My Documents
= :J I¥y Computer
5 F14 Floppy (&)
< Local Disk (i)
“a WWork (D)
% Local Disk (E:) ‘ |
T=TE
File Edit Yiew Favortes Tos' Help | ’,'
Address IL’:} DiyMSC Test j Go
DBack ») - O I,‘«:" Search Folders | B O X) ‘ -
| I
Type: Text Document Date Modified: 1/16/2012 ‘IJ bytes ‘ d My Computer 4 |D e ‘ d i G 7
Figure 5.43

<3>

Copying the Test Data File

Open the Test folder in the local disk and copy the TEST.txt file from the Removable Disk to the Test
folder.

File Edt Wew Favorites Tools Help

@ Removable Disk (F:)

=10l x|

Address I‘w-' Fiy

| ':!'

Folders

) Back = £ - ? | /':" Search ||[‘;‘! Folders | & @ X) | [+

jGo

x

@ Deskkop

B My Documents

= :} My Computer
_% 12 Floppy (A:)
“e Local Disk (C:)
S Work (D)
“e Local Disk (E:)

“» Removable Disk (F:)

File Edt ‘iew Favorites 1ools Help

Mame

Bl

Size: | Tvpe

=]
| [T

Address I@ DiMSC Tead st

jGo

Back -~ T |) search
wd

* Folders | & (F XR)"

|El objects

OKE Text Document

|El bytes | d MMy Computer

4

| |
4

‘D bytes | d My Camputer

Figure 5.44

Copying back the Test Data File

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 140 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

<4> Openthe TEST.txt filein the Test folder and make sure that its contents match those of the TEST .txt file
on the local disk.

[P TEST.txt - Notepad 10l x|
Ele Edit Format Yiew Help
Renesas Electronics ;'

USE Driver for Mass strage Jlass

-

<] 2V

Figure 5.45 Checking the Test Data File

Remarks: Aninternal RAM area of 24 Kbytesis used as the data area. Consequently, the data you stored will be
initialized when the device power isturned off or the Reset switch is pressed. Normal operation is not
guaranteed if an attempt is made to write afile of 24 Kbytes or larger.

RO1ANOO11EJ0102 Rev.1.02

Page 141 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

6. Sample Driver Application

This section contains the information you should be aware of when using the USB mass storage class (M SC) sample
driver for the V850E2/MN4.

6.1 Overview

Y ou create adriver that suits your system by customizing the sample driver.
The major sections you should rewrite as required are listed below.

e Sample application section in the file "main.c"

o Register settingsin the file "usbf850.h"

e Contents of the descriptors in the file "usbf850_desc.h"

e SCSI command processing in the files"scsi_cmd.c" and "scsi.h"
¢ RAM disk sizeinthefile"scs.h"

e Vendor and product namesin thefile"scsi_cmd.c"

Note: See section 2.1.3, Sample Driver Configuration, for the file configuration of the sample driver.

RO1ANO011EJ0102 Rev.1.02 Page 142 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

6.2 Customization

This section describes the sections you should rewrite when using the sample driver.

6.2.1 Application Section

The main routine processing function (main) in the file "main.c” shows simple processing as an example of use
of the sample driver. By coding the processing that is to be executed by the practical application in this section,

you can make use of the existing initialization and interrupt processing without modification.

* Function Name: main
* Description : main routine.
* Arguments : none

* Return Value : none

void main (void)

{

cpu_init () ;

EI();

while (1)

{

if (usbf850 rsuspd flg == SUSPEND)

{

__DI();
__halt();

usbf850_rsuspd flg = RESUME;

EI();

/**

**/

usbf850_init () ; /* initial setting of the USB Function */

Figure 6.1 Coding the Main Routine

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012 RENESAS

Page 143 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

6.2.2 Register Settings
The registers that the sample driver uses (writes to) and their settings are defined in the file "usbf850.h." By
rewriting these values in the file according to the actual application, you can configure the operation of the target
device through the sample driver.

The GHS version of the sample driver comes with a separate file named "df3512_800.h" which contains the
definitions of internal 1/0 registers of the V850E2/MNA4.

The IAR Embedded Workbench version of the sample driver comes with a separate file named "i070f3512.h"
which contains the definitions of internal 1/0 registers of the V850E2/MNA4.

(2) File" usbf850.h"
Defines the settings of the USB function controller registers.

(2) File" df3512 800.n" (GHSversion only)
Contains the definitions of the internal 1/O registers of the V850E2/MNA4.

(3) File"io70f3512.h" (IAR Embedded Workbench version only)
Contains the definitions of theinternal 1/0 registers of the V850E2/MNA4.

6.2.3 Contents of the Descriptors
Thefile "usbf850_desc.h" defines the data (see section 4.1.3, Descriptor Settings) that the sample driver registers
in the USB function controller during initialization processing. By rewriting these values in the file according to
the actual application, you can set up the attributes and other information of the target device through the sample
driver.

You can register arbitrary information in string descriptors. For the sample driver, a serial number is defined; you
should rewrite it accordingly.

/* 0 : Language Code*/

DSTR (LangString, 2, (0x09,0x04));

/* 1 : Serial Number*/

USTR (SerialString, 12, ('0','2','0','0','0','8','0','6','5"','0','1','0"));

Figure 6.2 String Descriptor Settings in "usbf850_desc.h"

RO1ANO011EJ0102 Rev.1.02 Page 144 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

6.2.4 Making Changes to the SCSI Command Processing

The SCSI command processing is coded in the files"scsi_cmd.c" and "scsi.h." Make the changes shown below
when adding anew SCSI command that isto be supported.

e Add the definition of the new processing function to thefile"scsi_cmd.c.”

e Add acase statement that calls the new function to the SCSI command execution function
(scsi_command_to_ata) inthefile"scsi_cmd.c".

¢ Add the declaration of the new function in the function declaration section of the file "scsi.h."

INT32
scsl command to ata (UINT8 * ScsiCommandBuf, UINT8 * pbData, INT32 lDataSize, INT32
TransFlag)

{

long status;
/* HE S

switch (ScsiCommandBuf [0])
/* No data Access */
case TEST UNIT READY: /* processing of TEST UNIT READY command */
status = ata_test_unit_ready(TransFlag) ;

return status;

case SEEK: /* processing of SEEK command */
status = ata_seek(TransFlag) ;

return status;
Snip

case PREVENT: /* PREVENT/ALLOW MEDIUM REMOVAL command */
u.clear_sense_data = 0;
return DEV_OK;

default: /* processing of an un- supported command */
u.sense_data.sense key = ILLEGAL REQUEST;
u.sense _data.asc = 0x20; /* Invalid Command Operation Code */
u.sense_data.ascq = 0x00;
return DEV_ERROR;

Figure 6.3 SCSI Command Execution Function (scsi_command_to_ata)

RO1ANO011EJ0102 Rev.1.02 Page 145 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

6.2.5

Changing the RAM Disk Size

The size of the RAM disk is defined in the file "scsi.h." The product of ALL_LOGICBLOCK (total number of
blocks) and LOGICBLOCK _SIZE (block size) indicates the capacity of the RAM disk (thisis set to 0x6000 (=
24 K bytes) for the sample driver). Since disk space is also consumed by the FAT and other information, the size
of disk space available for the PC isless than this set value.

#define INQUIRY LENGTH (36)
#define MODE_SENSE_ LENGTH (24)
#define MODE_SENSE10_ LENGTH (28)
#define MODE_SELECT LENGTH (24)
#define MODE_ SELECT10 LENGTH (28)
#define REQUEST SENSE LENGTH (18)

#define READ FORM CAPA LENGTH (20)

#define MODE_SELECT MIN LEN (4)
#define ALL LOGICBLOCK (0x30)
#define LOGICBLOCK STZE (0x200)

/**

Macro definitions - data length of the table

**/

/* 36Byte */
/* 24Byte */
/* 28Byte */
/* 24Byte *x/
/* 28Byte */
/* 18Byte */
/* 20Byte */

/* 4Byte */

/* number of the outline reason blocks (48) */

/* 1 logic block size(512Byte) */

Figure 6.4 Data Length Section of the "scsi.h" File

RO1ANOO11EJ0102 Rev.1.02

Jan 23, 2012

RENESAS

Page 146 of 151

V850E2/MN4

USB MSC (Mass Storage Class) Driver

6.2.6

Vendor and Product Name Settings

Y ou can modify the vendor and product names for any disk drive by editing the response values to the INQUIRE

command defined in thefile

(1) INQUIRY_TABLE code
"INQUIRY_TABLE" in the

"scsi_cmd.c.”

file"scsi_cmd.c" contains the code that is shown in figure 6.5.

1 UINTS8 INQUIRY_TABLE[INQUIRY_LENGTH] =
2 {
3 0x00), /* Qualifier, device type code */
4 0x80, /* RMB, device type modification child */
5 0x02, /* 1ISO Version, ECMA Version, ANSI Version */
6 0x02, /* AENC, TrmIOP, response data form */
7 0x1F, /* addition data length */
8 0x00, 0x00, 0x00, /* reserved */
9 'R','e','n','e','s','a','s", "', /* vender ID */ <1l>
10 's','t','o','xr','a','g','e','F','n','c','D','r", "L, 'v','e', ', /* product ID */ <2>
11 o', ., ror, 1 /* Product Revision */
12 };
Figure 6.5 "INQUIRY_TABLE" Code in the "scsi_cmd.c" File

Setting <1> on the Sth lined

efines the vendor name and setting <2> on the 10th line defines the product name.

The vendor name may be a string of not longer than 8 bytes (eight 1-byte characters) and the product name a
string of not longer than 16 bytes (sixteen 1-byte characters).

On data transmission, each character is converted to ASCII code. Consequently, any characters that cannot be
decoded into ASCII code may not be displayed correctly.

(2) Displaying device names (list of devices)
The vendor and product names specified in "INQUIRY _TABLE" are displayed as the disk drive name for the

Device Manager.

=] m System Tools

@ Ewent Vigwer

Shared Folders
Local Users and

Storage

~loix]
Q File Ackion View ‘Window Help ‘;lilﬂ
e = [@m| @

@Computar Management {Local) g Computer :I

] Performance Logs and Alerts
vice Manager

[Disiediives

“e Renesas StorageFncOriver LSE Device
ML SHOANTH

- »2 Display adapters <1>

b o DWDCD-ROM drives

=) Floppy disk controllers

:I_g Floppy disk drives

aroups

<2>

Removable Storage

Dick. Defragmenter

Disk. Management
& Services and Applications

4

|2

- Human Interface Devices
e} IDE ATA[ATAPI controllers
H-z# Keyboards

) Mice and other pointing devices

[
3
[
[
[
[
[
[
[5 Monitars
[
[
3
[
[
[
[

¥|- B8 Metwark adapters

]@ Other devices

- Ports (COM & LPT)

o Processors

7@, Sound, videa and game controllers
Hl-Ge8 Shorage volumes

|- b System devices
=] Universal Serial Bus controllers

Generic USE Hub

Intel{R) 8280106/DEM USE 2.0 Enhanced Host Contraller - 24C0
Intel{R) 5280106/DEM USE Universal Host Controller - 24C2
Inkel(R) 5280106/DBM USE Universal Host Controller - 24C4

USE Mass Starage Device

UISE Root Hub

UISB Root Hub

USE Root Hub

L«

Figure 6.6

Device Manager Window View

RO1ANOO11EJ0102 Rev.1.02
Jan 23, 2012

RENESAS

Page 147 of 151

V850E2/MN4 USB MSC (Mass Storage Class) Driver

6.3 Using Functions

Since processes that are frequently used or that have broad utility are implemented as defined functions, they
simplify coding and contribute to reduction in code size. See section 4.3, Function Specifications, for details on the
functions.

For example, CBW data receive processing in the file "usbf850_storage.c" is coded as shown in figure 6.7.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

void usbf850_rx cbw(void)

{

UINT8 * data = (UINT8 *)&CBW_TABLE;

INTS8 len;

if (mass_storage_ reset)

{

/*wait "Bulk-Only Mass Storage Reset" request*/
usbf850 cbw error() ;

return;

}

len = USFAOBO1L;

if (len != Ox1F)

{

return; /*don't CBW*/

usbf850_data_ receive(data, len, C_BKO1l);

if (cbw_in cbw)

{
/*CBW in CBW*/
USFAOFICO = (C_BKI1SC ‘ C BKI1CC); /*Clears EP1 buffersx/
cbw_in cbw = USB_CBW_END;

}

cbw_in cbw = USB_CBW_PROCESS;

usbf850_storage cbwchk () ;

return;

Figure 6.7 CBW Data Receive Processing Function

(1) Monitoring the mass storage reset flag (mass_storage reset)
The code on the 6th line monitors the flag (mass_storage reset) that will be set by the sample driver. When this
flagissetto"USB_MASS RESET WAIT (0x01)," it indicates that the sample driver iswaiting for a mass
storage reset request as the result of a command processing failure or another reason.

(2) Data receive processing
The code on the 19th line calls the function (usbf850_data receive) that defines the processing of transferring
data from an endpoint to its buffer. "C_BKO1" that represents the endpoint number is defined in the header file
"ushf850.h."

RO1ANO011EJ0102 Rev.1.02 Page 148 of 151
Jan 23, 2012 RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

7. Outline of the Starter Kit

This section gives a brief description of the RTE-V850E2/MN4-EB-S starter kit for the V850E2/M N4, manufactured
by Midaslab Inc.

7.1 Outline

The RTE-V850E2/MN4-EB-Sis a starter kit that allows you to experience the development of an application
system using the V850E2/MNA4. Y ou can follow a sequence of development processes from program preparation,
building, debugging, to operation check simply by installing required devel opment tools and a USB driver on the
host machine and connecting this kit via MINICUBE.

RTE-\B50E2/ MMN4-EB-5

Host machine

MIMIC UBE

Figure 7.1 Outline of RTE-V850E2/MN4-EB-S Connection

7.2 Features of the Starter Kit
The RTE-V850E2/MN4-EB-S has the following features:

e 2 systemsof memory controllers, DMA, timer array, UART, CSl , CAN, A/D converter, USB function
controller, USB host controller, Ethernet controller, and other peripheral functions

e |/Oportsfor 7 input linesand 181 1/O lines

o Permits efficient development when combined with an integrated devel opment environment
(CubeSuite/Multi/|AR Embedded Workbench).

RO1ANO011EJ0102 Rev.1.02 Page 149 of 151
Jan 23, 2012 RENESAS

V850E2/MN4

USB MSC (Mass Storage Class) Driver

7.3 Major Specifications
The major specifications of the RTE-V850E2/MN4-EB-S are given below.

e CPU:
¢ Operating frequency:
o Interface:

¢ Supported models:

e Operating voltage:
e Dimensions:

uPD70F3512 (V850E2/MN4)

200 MHz (PLL-driven x20 multiplier function)

Two USB receptacles (USB host type A x 1, USB function type B x 1)
N-Wire connector

Two channels of UART

Two channels of CAN

Ethernet connector

Host machine: PC/AT compatible with a USB interface
os. Windows 2000 or Windows XP

50V

W200 x D150 (mm)

RO1ANOO11EJ0102 Rev.1.02 Page 150 of 151

Jan 23, 2012

RENESAS

V850E2/MN4 USB MSC (Mass Storage Class) Driver

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

RO1ANO011EJ0102 Rev.1.02 Page 151 of 151
Jan 23, 2012 RENESAS

http://www.renesas.com/
http://www.renesas.com/inquiry

Revision Record

Description
Rev. Date Page Summary
1.00 Jun 30, 2010 — First edition issued.
1.01 Jan 14, 2011 All Text format revised.
Descriptions of GHS version added to Chapter 5, Development
Environment.
1.02 Jan 23, 2012 2,5,7,124, Desriptions of IAR Embedded Workbench are added.
129 to 136,
144,149

A-1

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the

change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ
because of the differences in internal memory capacity and layout pattern. When changing to
products of different part numbers, implement a system-evaluation test for each of the products.

Notice

1. Allinformation included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas
Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to
be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and
regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to
the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard”, "High Quality", and "Specific". The recommended applications for each Renesas Electronics product
depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the
use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.
The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;
personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
designed for life support.

"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage
range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the
use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,
please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics
products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes
no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

LENESANS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632

Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 1.1

	1. Introduction
	1.1 Note
	1.2 Intended Audiences
	1.3 Objective
	1.4 Organization
	1.5 How to Read this Document

	2. Overview
	2.1 Overview
	2.1.1 Features of the USB Function Controller
	2.1.2 Features of the Sample Driver
	2.1.3 Sample Driver Configuration

	2.2 V850E2/MN4 Microcontroller
	2.2.1 Applicable Products
	2.2.2 Features

	3. USB Overview
	3.1 Transfer Modes
	3.2 Endpoints
	3.3 Classes
	3.3.1 Mass Storage Class (MSC)
	3.3.2 Subclasses

	3.4 Requests
	3.4.1 Types
	3.4.2 Format

	3.5 Descriptors
	3.5.1 Types
	3.5.2 Formats

	4. Sample Driver Specifications
	4.1 Overview
	4.1.1 Features
	4.1.2 Request Handling
	4.1.3 Descriptor Settings
	4.1.4 SCSI Command Handling

	4.2 Operations
	4.2.1 CPU Initialization Processing
	4.2.2 USB Function Controller Initialization Processing
	4.2.3 USBF Interrupt Processing (INTUSFA0I1)
	4.2.4 USBF Resume Interrupt Processing (INTUSFA0I2)
	4.2.5 CBW Data Receive Processing
	4.2.6 SCSI Command Processing
	4.2.7 Suspend/Resume Processing

	4.3 Function Specifications
	4.3.1 List of Functions
	4.3.2 Correlation among the Sample Driver Functions
	4.3.3 Function Descriptions

	4.4 Data Structures

	5. Development Environment
	5.1 Development Environment
	5.1.1 System Configuration
	5.1.2 Program Development
	5.1.3 Debugging

	5.2 Setting up a CubeSuite Environment
	5.2.1 Setting up the Host Environment
	5.2.2 Setting up the Target Environment

	5.3 Debugging in the CubeSuite Environment
	5.3.1 Generating a Load Module
	5.3.2 Loading and Executing

	5.4 Setting up a Multi Environment
	5.4.1 Setting up the Host Environment
	5.4.2 Setting up the Target Environment

	5.5 Debugging in the Multi Environment
	5.5.1 Generating a Load Module
	5.5.2 Loading and Executing

	5.6 Setting up IAR Embedded Workbench Environment
	5.6.1 Setting up the Host Environment
	5.6.2 Setting up the Target Environment

	5.7 Debugging in the IAR Embedded Workbench Environment
	5.7.1 Generating a Load Module
	5.7.2 Loading and Executing

	5.8 Operation Check

	6. Sample Driver Application
	6.1 Overview
	6.2 Customization
	6.2.1 Application Section
	6.2.2 Register Settings
	6.2.3 Contents of the Descriptors
	6.2.4 Making Changes to the SCSI Command Processing
	6.2.5 Changing the RAM Disk Size
	6.2.6 Vendor and Product Name Settings

	6.3 Using Functions

	7. Outline of the Starter Kit
	7.1 Outline
	7.2 Features of the Starter Kit
	7.3 Major Specifications

	Revision Record
	General Precautions in the Handling of MPU/MCU Products
	Notice

