
 APPLICATION NOTE

V850E2/ML4
USB Host Software

Summary

This application note provides an example of controlling a USB function by using the USB host controller.

Operation-verified devices

 V850E2/ML4 group (product name: PD70F4022)

Target board

 V850E2/ML4 CPU board (model: R0K0F4022C000BR)

Cautions

 Multiple USB devices can be controlled. The number of supported USB devices is up to 3 devices include
hub device.

 The hub layer is one layer (except for root hub) and maximum number of hub port is 7 ports.
 Bulk Only Transport of the mass storage class, Abstract Control Model of the communication class and hub

class are supported.

R01AN1217EJ0102
Rev.1.02

Jan. 10, 2013

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 2

Jan. 10, 2013

Contents

1. Preface... 3

2. Correlation Between Functions .. 5

3. Initialization ... 6

4. Control Transfer ... 11

5. Interrupt-in Transfer ... 22

6. Bulk Transfer (Mass Storage Class) ... 27

7. Bulk Transfer (Communication Class) ... 34

8. Creation of Descriptors ... 38

9. Application (Mass Storage Class) .. 45

10. Application (Communication Class) .. 50

11. Hub Class Driver .. 55

12. Hierarchical Structure .. 57

13. Interrupts ... 60

14. Data Structures ... 64

15. Reference Documents ... 68

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 3

Jan. 10, 2013

1. Preface

1.1 Specifications
 Multiple USB devices can be controlled. The number of supported USB devices is up to 3 devices include

hub device .
 The hub layer is one layer (except for root hub) and whose number of port is up to 7 ports..
 Bulk Only Transport of the mass storage class, Abstract Control Model of the communication class and hub

class are supported.
 If another class is required, you will need to implement that class yourself.
 The maximum capacity of the memory (USB memory, SD memory card, etc.) that can be mounted is 32

GB.
 The following operations can be performed on the memories, V850E2/ML4 USB Function sample

software[1] and SH7216 USB Function sample software[4] by using the file control application:
 Creation of 10 files in a root directory.
 Creation of another directory and creation of 10 files in that directory.
 Writing, reading, and verifying 1 to 40 blocks in block (512-byte) units.
 Writing, reading, and verifying 1 to 1024 bytes in byte units.

 FAT file system is used M3S-TFAT-Tiny that is Renesas original one.
 The communication class operations are checked only to V850E2/ML4 USB Function sample software[2].
 The following operations can be performed on the V850E2/ML4 USB Function sample software[2] by using

the communication class sample application:
 Set transfer rate(bps), stop bits, parity, data bits, etc.
 Get transfer rate(bps), stop bits, parity, data bits, etc.
 Writing, reading, and verifying 1 to 64 bytes in byte units.

 The communication class operations are checked only to V850E2/ML4 USB Function sample software[2].
 Support multiple interface (up to 3 interface). This software can also control V850E2/ML4 USB Function

Multifunction Operation sample software[3] support mass storage class and communication class.

1.2 Features Used
 H bus
 USB Host Controller
 Interrupts

1.3 Applicable Conditions
Microcontroller: V850E2/ML4 (PD70F4022)
Evaluation board: V850E2/ML4 CPU board (model: R0K0F4022C000BR)
Operating frequency:
 Input clock: 10 MHz
 Internal system clock (fCLK): 200 MHz
 MII transmission clock (fMIITX): 25 MHz
 MII reception clock (fMIIRX): 25 MHz
 H bus clock (fHCLK): 33.3 MHz
Operating mode: Normal operating mode
Integrated development environment: CubeSuite+ V1.02.00 [12 Apr 2012] from Renesas Electronics
C compiler: CX V1.21 from Renesas Electronics
Emulator: EI emulator from Renesas Electronics

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 4

Jan. 10, 2013

1.4 Related Application Note
[1] V850E2/ML4 Microcontrollers Example of USB Function Mass Storage Class Application Note (to be

published)
[2] V850E2/ML4 Microcontrollers Example of USB Communication Class Function Application Note (to be

published)
[3] V850E2/ML4 Microcontrollers Example of USB Function Multifunction Operation Application Note

(R01AN1037EJ)
[4] SH7216 Group USB Function Module: USB Mass Storage Class Application Note (REJ06B0897)
[5] V850E2M FAT File System Software M3S-TFAT-Tiny: Introduction Guide (R01AN1028EJ)

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 5

Jan. 10, 2013

2. Correlation Between Functions

The figure below shows the correlation between the functions. Each function is described in detail in section 3
and subsequent sections.

Figure 1. Correlation Between Functions

Indicates a function

Indicates that a function is
called and data is passed.
The arrow indicates the
direction of data transfers.

UsbhdInit
See section 3.

ControlProcess
See section 4.

initial
See section 3.

UsbhdMemInit
See section 8.

apltask_com
See section 10.

Communication
ClassExecute
See section 7.

Communication
interface

See section 10.

SetLineCodingExecute
GetLineCodingExecute
SetControlLineState
Execute
See section 4.

apltask_msc
See section 9.

FAT file
system

See section 9.

ATACommand
Execute

See section 6.

MassStorage
ClassExecute

See section 6.

BulkTransExecuteExecute
See section 6.

BulkOutProcess
BulkInProcess

See section 6.

USBFunction
Init

See section 4.

SetInterruptIn
Process

See section 5.

GetHubStatusExecute
SetPortFeatureExecute
ClearPortFeatureExecute
GetPortStatusExecute
See section 4.

ActiveHubPort
See section 11.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 6

Jan. 10, 2013

3. Initialization

This section provides a diagram indicating the correlation between the initialization functions, describes the
function specifications and operations.

3.1 Correlation Between Initialization Functions
The initial function calls each function. Each function initializes the corresponding peripheral module.

UsbhdInit

CpuInit

PciInit

chip_init

initial

PciCnfigRead

PciConfigWrite

romp_init

Indicates a function

Indicates the dependency

relationship between functions

Figure 2. Correlation Between Initialization Functions

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 7

Jan. 10, 2013

3.2 Description of Functions
The following shows the function names and processing details.

Function Description
initial This function is called when the CPU is turned on and calls

various initialization functions. The actual hardware initialization
is executed by each xxxInit function; this function only calls the
processing.

CpuInit This function initializes the CPU incorporated in the
V850E2/ML4.

romp_init ROMization package initialization processing
This function calls the copy function (_rcopy), which copies the
information stored at the specified address to the RAM area byte
by byte.

PciInit This function initializes the PCI bridge to access USB host
controller registers.

PciConfigRead This function is used to read the base address of the USB host
driver registers via the PCI configuration space.

PciConfigWrite This function is used to write the base address of the USB host
driver registers via the PCI configuration space.

UsbhdInit This function initializes the USB host controller. This function
must be called after PciInit processing because the PCI
bridge is used to access the USB host controller registers.

UsbhdMemInit This function initializes the global memory used by the EDs
(endpoint descriptors) and TDs (transfer descriptors).

chip_init This function performs initial setup of ports.

3.3 Function Interfaces
The following shows the interface of each function.

Function initial

Parameter void

Parameter information 
Specifiable value 
Return value void
Return value usage 
Return value meaning 

Function CpuInit

Parameter void

Parameter information 
Specifiable value 
Return value void
Return value usage 
Return value meaning 

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 8

Jan. 10, 2013

Function romp_init

Parameter void

Parameter information 
Specifiable value 
Return value void
Return value usage 
Return value meaning 

Function PciInit

Parameter void

Parameter information 
Specifiable value 
Return value void
Return value usage 
Return value meaning 

Function PciConfigRead

Parameter RegisterNumber ReadData

Parameter information PCI configuration register number Data read out
Specifiable value 0x10 32-bit data
Return value Status
Return value usage Used to judge whether execution of PciConfigRead finished

successfully.
Return value meaning 0: Normal completion

1: Abnormal termination

Function PciConfigWrite

Parameter RegisterNumber WriteData

Parameter information PCI configuration register number USB host controller base address
Specifiable value 0x10 32-bit data
Return value Status
Return value usage Used to judge whether execution of PciConfigWrite finished

successfully.
Return value meaning 0: Normal completion

1: Abnormal termination

Function UsbhdInit

Parameter void

Parameter information 
Specifiable value 
Return value void
Return value usage 
Return value meaning 

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 9

Jan. 10, 2013

Function UsbhdMemInit

Parameter void

Parameter information 
Specifiable value 
Return value STATUS
Return value usage Used to judge whether execution of UsbhdMemInit finished

successfully.
Return value meaning 0: Normal completion (no error reported)

Function chip_init

Parameter void

Parameter information 

Specifiable value 
Return value void

Return value usage 

Return value meaning 

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 10

Jan. 10, 2013

3.4 Initialization Operation
The figure below shows the functions during initialization. Each function is called from the initial
function. Because these functions return no value (void), the figure below omits the returned message.

UsbhdInit

romp_init

chip_init

CpuInit

PciInit

initial

Power on

CpuInit()

romp_init()

PciInit()

UsbhdInit()

chip_init()

Figure 3. Initialization Function Behavior

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 11

Jan. 10, 2013

4. Control Transfer

This section provides a diagram indicating the correlation between the control transfer functions, describes the
function specifications and operations in the control transfer.

4.1 Correlation Between Control Transfer Functions
When the 1st USB device is connected or the user application accesses 3rd USB device connected to the
hub’s downstream port, the UsbFunctionInit is executed and then each function is executed according to
the enumeration sequence.
The hub class commands are executed to get the hub status, reset and enable the hub’s downstream ports,
get the status of the hub’s downstream ports when the hub enumeration sequence is completed or waiting the
detection to a device on the hub’s downstream port.
The mass storage class commands are executed when the USB mass storage device is initialized after
enumeration sequence.
The communication class commands are executed by the demand from the communication class layer.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 12

Jan. 10, 2013

Figure 4. Correlation Between Control Transfer Functions

AddressSet

DescriptorInitGet

DescriptorConfigGet

DescriptorConfigAllGet

ConfigurationSet

UsbFunctionInit ControlProcess

DescriptorGet

GetPortStatus
Execute

GetHubStatus
Execute

SetPortFeature
Execute

ClearPortFeature
Execute

GetHubStatus

SetPortFeature

ClearPortFeature

ControlProcess

MaxLUNGet ControlProcess

Indicates a function

Indicates the dependency

relationship between functions

1st USB device is connected

or

the user application accesses

3rd USB device connected to

the hub’s downstream port.

Communication
ClassInit

GetLineCoding
Execute

SetLineCoding
Execute

SetControlLine
StateExecute

GetLineCoding

SetLineCoding

SetControlLineState

ControlProcess

GetPortStatus

The USB mass storage

device is initialized after

enumeration sequence.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 13

Jan. 10, 2013

4.2 Description of Functions
The following shows the function names and processing details.

Function Description

UsbFunctionInit This function is called when the 1st USB device is connected
or the user application accesses 3rd USB device connected
to the hub’s downstream port.
This function calls functions that assign the address to the
USB device and acquire descriptor information.
1. Acquires standard device descriptor (device) and set a
maximum packet size of EP0 to a driver structure
(USBHD_DEV_INFO).
2. Assigns a address to USB device.
3. Acquires standard device descriptor (device)
4. Acquires standard device descriptor (configuration) and
set the length of standard device descriptor (configuration),
the number of interface and configuration to the driver
structure.
5. Acquires all of the standard device descriptor
(configuration) and set the endpoint information for all
interface (up to 3) to the driver structure.
6. Finishes the enumeration sequence of the USB device by
issuing Set Configuration.
7. Waits the detection to a device on the hub’s downstream
port. If the device detected, make enable the downstream
port.

ControlProcess This function is called during setup data transfer processing
and performs the following:
1. Acquires a transmission/reception ED, data stage TD,

and a TD area for the status stage.
2. Specifies various parameters for the ED and 8-byte

standard device request data for the current buffer pointer
of the setup stage TD.

3. Specifies a data reception buffer for the data stage TD, if
there is a data stage and the direction is in (function to
host).

4. Specifies a data transmit buffer for the data stage TD, if
there is a data stage and the direction is out (host to
function).

5. Links the ED and TD, sets the ED address to the
ControlHeadED register, writes 0x02 to the
HcCommandStatus register, and then starts control
transfer.

6. After transfer finishes, checks the Done queue to confirm
that the transfer was executed successfully.

DescriptorInitGet This function acquires a standard device descriptor (device)
of 64 bytes or less from the USB device before assigning an
address to the USB device.
1. Creates 8-byte standard device request data and assigns
Get Descriptor (0x06) to the request.

2. Calls ControlProcess to execute transfer processing.

AddressSet This function assigns an address to the USB device.
1. Creates 8-byte standard device request data and assigns
Set Address (0x05) to the request.

2. Calls ControlProcess to execute transfer processing.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 14

Jan. 10, 2013

Function Description

DescriptorGet This function acquires a standard device descriptor (device)
from the USB device.
1. Creates 8-byte standard device request data and assigns
Get Descriptor (0x06) to the request.

2. Calls ControlProcess to execute transfer processing.
DescriptorConfigGet This function acquires a standard device descriptor

(configuration) from the USB device (9 bytes).
1. Creates 8-byte standard device request data and assigns
Get Descriptor (0x06) to the request.

2. Calls ControlProcess to execute transfer processing.
DescriptorConfigAllGet This function acquires all standard device (configuration)

descriptors from the USB device.
1. Creates 8-byte standard device request data and assigns
Get Descriptor (0x06) to the request.

2. Calls ControlProcess to execute transfer processing.
GetHubDescriptor This function acquires hub descriptors from the USB device.

1. Creates 8-byte class specific request data and assigns
Get Descriptor (0x06) to the request.

2. Calls ControlProcess to execute transfer processing.
DeviceStatusGet This function acquires the device status from the USB

device.
1. Creates 8-byte standard device request data and assigns
Get Status Request (0x00) to the request.

2. Calls ControlProcess to execute transfer processing.
ConfigurationSet This function issues Set Configuration to the USB

device.
1. Creates 8-byte standard device request data and assigns
Set Configuration (0x09) to the request.

2. Calls ControlProcess to execute transfer processing.
GetHubStatus This function acquires the hub status from the USB device.

1. Creates 8-byte class specific request data and assigns
Get Status Request (0x00) to the request.

2. Calls ControlProcess to execute transfer processing.
SetPortFeature This function issues Set Port Feature to the USB device.

1. Creates 8-byte class specific request data, assigns Set
Feature Request (0x03) to the request and controlled
port number to the index.

2. Calls ControlProcess to execute transfer processing.
ClearPortFeature This function issues Set Port Feature to the USB device.

1. Creates 8-byte class specific request data, assigns
Clear Feature Request (0x01) to the request and
controlled port number to the index.

2. Calls ControlProcess to execute transfer processing.
GetPortStatus This function issues Get Port Status to the USB device.

1. Creates 8-byte class specific request data, assigns Get
Status Request (0x00) to the request and controlled
port number to the index.

2. Calls ControlProcess to execute transfer processing.
MaxLUNGet This function issues Max LUN Get to the USB device.

1. Creates 8-byte class specific request data and assigns
Max LUN Get (0xFE) to the request.

2. Calls ControlProcess to execute transfer processing.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 15

Jan. 10, 2013

Function Description

SetLineCoding This function issues Set Line Coding to the USB device.
1. Creates 8-byte class specific request data and assigns
Set Line Coding (0x20) to the request.

2. Calls ControlProcess to execute transfer processing.
GetLineCoding This function issues Get Line Coding to the USB device.

1. Creates 8-byte class specific request data and assigns
Get Line Coding (0x21) to the request.

2. Calls ControlProcess to execute transfer processing.
SetControlLineState This function issues Set Control Line State to the USB

device.
1. Creates 8-byte class specific request data and assigns
Set Control Line State (0x22) to the request.

2. Calls ControlProcess to execute transfer processing.

4.3 Function Interfaces
The following shows the interface of each function. For details about Driver structure(=USBDevInfo),
see section 14.

Function UsbFunctionInit

Parameter UsbDevInfo dev_num

Parameter information Driver structure (USB device information, Transfer
information)

USB
Device number

Specifiable value Other than NULL 0, 1, 2
Return value STATUS
Return value usage Used to judge whether execution of UsbFunctionInit finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function ControlProcess

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of ControlProcess finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function DescriptorInitGet

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of DescriptorInitGet finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 16

Jan. 10, 2013

Function AddressSet

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of AddressSet finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function DescriptorGet

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of DescriptorGet finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function DescriptorConfigGet

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of DescriptorConfigGet

finished successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function DescriptorConfigAllGet

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of DescriptorConfigAllGet

finished successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function GetHubDescriptor

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of GetHubDescriptor finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 17

Jan. 10, 2013

Function DeviceStatusGet

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of DeviceStatusGet finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function ConfigurationSet

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of ConfigurationSet finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function GetHubStatus

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of GetHubStatus finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function SetPortFeature

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of SetPortFeature finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function ClearPortFeature

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of ClearPortFeature finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 18

Jan. 10, 2013

Function GetPortStatus

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of GetPortStatus finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function MaxLUNGet

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of MaxLUNGet finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function SetLineCoding

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of SetLineCoding finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function GetLineCoding

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of GetLineCoding finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function SetControlLineState

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of SetControlLineState

finished successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 19

Jan. 10, 2013

4.4 Control Transfer Operation
This section describes the dynamic behavior of the functions during control transfer.
There are two cases for the control transfer. Those cases are the enumeration sequence operation when a
USB device is connected and the class command sequence operation.

(1) Enumeration

The UsbFunctionInit function is executed when the 1st USB device is connected or the user application
accesses 3rd USB device connected to the hub’s downstream port. For details about the interrupt that occurs
when the USB device is connected, see section 13.

Figure 5 shows the enumeration sequence.
Acquires the maximum packet size of the USB device by the DescriptorInitGet function. Hereafter, the
address of the USB device is assigned by the AddressSet function. Functions such as the DescriptorGet
function are used to acquire information from the USB device at this address.
If the USB device is hub device, acquires hub descriptor from the USB device at this address.
The acquired information is stored in USBDevInfo.

(2) Class commands

Figure 6 shows the communication class command sequence for SetLineCoding and GetLineCoding as
typical example.

Set communication parameter such as transfer rate, data length and so on to USB device by the
SetLineCoding when the application requires it.
Get communication parameter such as transfer rate, data length and so on from USB device by the
GetLineCoding when the application requires it.
Skip sequences of the class commands belong to the hub, mass storage and communication class because
those behavior are almost same.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 20

Jan. 10, 2013

DescriptorGet

DescriptorConfigGet

AddressSet

1st device connection, or
accesses 3rd device

AddressSet (UsbDevInfo)

DescriptorGet (UsbDevInfo)

DescriptorConfigGet (UsbDevInfo)

ConfigurationSet (UsbDevInfo)

ControlProcess (UsbDevInfo)

ControlProcess (UsbDevInfo)

ControlProcess (UsbDevInfo)

ControlProcess (UsbDevInfo)

Save assigned address

Save acquired descriptor (Device)
information

Save acquired descriptor
(Configuration) information

End of the USB device enumeration

DescriptorInitGet

DescriptorInitGet (UsbDevInfo)
ControlProcess (UsbDevInfo)

Save EP0 MaxPacketSize

ControlProcess UsbFunctionInit

Get EP0 MaxPacketSize

Address assign completed

Get descriptor (Device) information

Get descriptor (Configuration) information

DescriptorConfigAllGet

DescriptorConfigAllGet
 (UsbDevInfo)

ControlProcess (UsbDevInfo)

Save acquired descriptor (All
Configuration) information

Get descriptor (All Configuration)
information

ConfigurationSet

GetHubDescriptor

GethubDescriptor (UsbDevInfo)
ControlProcess (UsbDevInfo)

Save hub descriptor information
Get hub descriptor information

DeviceStatusGet

DeviceStatusGet (UsbDevInfo)
ControlProcess (UsbDevInfo)

Save device status
Get device status

Complete the USB device enumeration

Figure 5. Correlation Transfer Function Behavior (Enumeration)

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 21

Jan. 10, 2013

Figure 6. Correlation Transfer Function Behavior (Class commands)

SetLineCodingExecute ControlProcess

SetLineCoding

SetLineCoding(UsbDevInfo)
ControlProcess(UsbDevInfo)

GetLineCodingExecute ControlProcess

GetLineCoding

GetLineCoding(UsbDevInfo)
ControlProcess(UsbDevInfo)

Complete

Indication

Communication parameter

Complete

Indication

Communication parameter

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 22

Jan. 10, 2013

5. Interrupt-in Transfer

This section provides a diagram indicating the correlation between the interrupt-in transfer functions, describes
the function specifications and operations in the interrupt-in transfer.

5.1 Correlation Between Interrupt-In Transfer Functions
When the enumeration completed for the hub device, executes the ActiveHubPort to enable the hub’s
downstream port.
Starts issue the interrupt-in transfer to detect the status change of the downstream ports. This operation is
executed in the SetInterruptInProcess called by the ActiveHubPort.

Figure 7. Correlation Between Interrupt-In Transfer Functions (Hub class)

ActiveHubPort SetInterruptInProcess

Indicates a function

Indicates the dependency

relationship between functions

The hub device enumeration

completed.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 23

Jan. 10, 2013

5.2 Description of Functions
The following shows the function names and processing details.

Function Description

ActiveHubPort This function is called when the enumeration completed for
the hub device.
Detects the change of the downstream ports which are
connected device and makes enable them.
1. Starts issue interrupt-in transfer to detect the status
change of the hub device.
2. Transfer all connecting ports from “Powered-off state” to
“Disconnected state”.
3. Waits the status change of the hub device by interrupt-in
transfer.
4. Resets one of the device connected port.
5. Waits the status change of the hub device by interrupt-in
transfer..
6. Verifies the reset port transferred to “Enable state”.

SetInterruptInProcess This function is called when the interrupt-in transfer is
started to detect the status change of the hub device.
Thereafter, starts issue interrupt-in transfer.
1. Acquires multiple EDs, one TD area for the interrupt-in

transfer. The number of EDs is 32.
2. Specifies various parameters for the ED.
3. Specifies various parameters for the TD.
4. Links the multiple ED and one TD.
5. Sets the multiple ED’s Skip bit depend on the interbal of

the endpoint descriptor.
6. Starts issue interrupt-in transfer setting the multiple ED

address to the HccaInterruptTable in the HCCA..

5.3 Function Interfaces
The following shows the interface of each function. For details about Driver structure (=USBDevInfo),
see section 14.

Function ActiveHubPort

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of ActiveHubPort finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 24

Jan. 10, 2013

Function SetInterruptInProcess

Parameter UsbDevInfo Num

Parameter information Driver structure (USB device information, Transfer
information)

Interface
number

Specifiable value Other than NULL 0, 1, 2
Return value STATUS
Return value usage Used to judge whether execution of SetInterruptInProcess

finished successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 25

Jan. 10, 2013

5.4 Interrupt-In Transfer Operation
The Interrupt-in transfer is started by setting the multiple ED (Endpoint Descriptor) addresses to the
HccaInterruptTable field in the HCCA (Host Controller Communication Area). Total number of ED is 32.
HC (Host Controller) make a polling each ED addresses 32msec interval.
If the polled ED is linked to a TD (Transfer Descriptor), HC do the interrupt-in transfer refer to the ED and
the TD.
Figure 8 shows the example for the 8msec interval. Links the IntInEd[0] to IntInED[4] (total four) to the IntInTD
and permutates each IntInEDs to balanced order, the 8msec interval interrupt-in transfer is executed by the
HC.
Figure 9 shows the operation flow of the interrupt-in transfer function

Figure 8. ED/TD Setting Interrupt-In Transfer

HCCA
HccaInterruptTable Field

ED[1] Address

ED[2] Address

ED[31] Address

128Byte

IntInED[16]

ED[0] Address IntInED[0]

IntInED[8]

IntInED[31]

Permutation

IntInED[1]

IntInED[0]

IntInED[2]

IntInED[31]

Links TD

- Interrval (ex.8msec)
- IntInTD {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}
→
{0, 16, 8, 24, 4, 20, 12, 10, 2, 18, 10, 26, 6, 28, 14, 30,
1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31}

IntInED[1]

IntInED[0]

IntInED[2]

IntInED[31]

ED[3] Address

ED[4] Address

IntInED[24] IntInED[3]

IntInED[4] IntInED[4]

IntInED[3]

IntInED[4]

Links IntED[0] - IntED[3]
to IntInTD.
The number of linked ED
is four.

Permutates each IntInEDs
refer to the permutation table.Permutation table

ED linked TD

ED not linked TD

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 26

Jan. 10, 2013

Figure 9. Interrupt-In Transfer Operation Flow

ActiveHubPort

Start

Assigns IntInED[0] –
IntInED[31] areas

Sets parameter of the
IntInED[0] – IntInED[31]

Sets the Skip bit of the IntInED[0] –
IntInED[31] to 0
depend on the endpoint’s interval

Assigns IntInTD area

Sets parameter of the IntInTD

Assigns DummyTD area

Sets parameter of the DummyTD

Permutates each IntInEDs to
balanced order

Sets the balanced ordered address of the
IntInEDs to HccaInterruptTable on the
HCCA

Finish

SetIniterruptInProcess

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 27

Jan. 10, 2013

6. Bulk Transfer (Mass Storage Class)

This section provides a diagram indicating the correlation between the bulk transfer functions, describes the
function specifications and operations in the bulk transfer (mass storage class).

6.1 Correlation Between Bulk Transfer Functions
The ATACommandExecute function is called from the file system and converted to an ATAPI command, based
on which bulk transfer is executed.

MassStorageClassExecute

ATACommandExecute

AtaReadFormatCapacities

AtaModeSense6

AtaInquiry

AtaRead10

AtaWrite10

AtaReadCapacity

CBWStageExecute

DataInStageExecute

DataOutStageExecute

CSWStageExecute

AtaRequestSense

BulkTransExecute

BulkOutProcess

BulkInProcess

Indicates the dependency
relationship between
functions.

Indicates a function

Figure 10. Correlation Between Bulk Transfer Functions (Mass Storage Class)

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 28

Jan. 10, 2013

6.2 Description of Functions
The following shows the function names and processing details.

Function Description

ATACommandExecute This is an interface function between the FAT file system
and the ATA layer functions.
This function then executes functions such as AtaWrite10
based on commands received from the file system.

AtaRead10 This function creates the data structure used to store data
such as the number of the block to be read and the
reception buffer area and calls the
MassStorageClassExecute function.

AtaWrite10 This function creates the data structure used to store data
such as the number of the block to be written and the data
area and calls the MassStorageClassExecute function.

AtaModeSense6 This function is used to read the mode sense table.
This function creates the data structure used to store data
such as the reception buffer area and calls the
MassStorageClassExecute function.

AtaInquiry This function is used to read the inquiry table.
This function creates the data structure used to store data
such as the reception buffer area and calls the
MassStorageClassExecute function.

AtaRequestSense This function is used to read the sense data.
This function creates the data structure used to store data
such as the reception buffer area and calls the
MassStorageClassExecute function.

AtaReadFormatCapacities This function is used to read the ReadFormatCapacity
table.
This function creates the data structure used to store data
such as the reception buffer area and calls the
MassStorageClassExecute function.

AtaReadCapacitys This function is used to read the ReadCapacity table.
This function creates the data structure used to store data
such as the reception buffer area and calls the
MassStorageClassExecute function.

MassStorageClassExecute This function analyzes the data structure and calls the
CBWStageExecute, DataInStageExecute,
DataOutStageExecute, or CSWStageExecute function.
After transfer finishes, confirms that the transfer was
executed successfully. If transfer terminated abnormally,
this function performs the appropriate processing, such as
retransferring the data.

CBWStageExecute This function creates CBW data and calls the
BulkTransExecute function.

DataInStageExecute This function specifies the area for receiving data and calls
the BulkTransExecute function.

DataOutStageExecute This function specifies the area for transmitting data and
calls the BulkTransExecute function.

CSWStageExecute This function creates CSW data and calls the
BulkTransExecute function.

BulkTransExecute This function analyzes the received command and calls the
BulkOutProcess or BulkInProcess function.
After transfer finishes, confirms the completion status.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 29

Jan. 10, 2013

Function Description

BulkOutProcess This function performs the following:
1. Acquires the bulk-out ED and data TD area.
2. Assigns an address for transmitting data to the current

buffer pointer.
3. Links the ED and TD, sets the ED address to the

HcBulkHeadED register, writes 0x04 to the
HcCommandStatus register, and then starts bulk
transfer.

4. After transfer finishes, checks the Done queue to confirm
that the transfer was executed successfully.

BulkInProcess This function performs the following:
1. Acquires the bulk-in ED and data TD area.
2. Assigns an address for receiving data to the current

buffer pointer.
3. Links the ED and TD, sets the ED address to the

HcBulkHeadED register, writes 0x04 to the
HcCommandStatus register, and then starts bulk
transfer.

4. After transfer finishes, checks the Done queue to confirm
that the transfer was executed successfully.

6.3 Function Interfaces
The following shows the interface of each function. For details about USBDevInfo, see section 14.

Function ATACommandExecute

Parameter UsbDevInfo Command

Parameter information Driver structure Command type
Specifiable value Other than

NULL
ATA_INQUIRY, ATA_RREAD_FORMAT,
ATA_RREAD_CAPACITY, ATA_RREAD_10,
ATA_MODE_SENCE6, ATA_REQUEST_SENCE,
ATA_WRITE_10

Return value STATUS
Return value usage Used to judge whether execution of ATACommandExecute finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function AtaRead10

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of AtaRead10 finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 30

Jan. 10, 2013

Function AtaWrite10

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of AtaWrite10 finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function AtaModeSense6

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of AtaModeSense6 finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function AtaInquiry

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of AtaInquiry finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function AtaRequestSense

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of AtaRequestSense finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function AtaReadFormatCapacities

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of AtaReadFormatCapacities

finished successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 31

Jan. 10, 2013

Function AtaReadCapacity

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of AtaReadCapacity finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function MassStorageClassExecute

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of MassStorageClassExecute

finished successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function CBWStageExecute

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of CBWStageExecute finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function DataInStageExecute

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of DataInStageExecute finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function DataOutStageExecute

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of DataOutStageExecute

finished successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 32

Jan. 10, 2013

Function CSWStageExecute

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of CSWStageExecute finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function BulkTransExecute

Parameter UsbDevInfo Command Num

Parameter
information

Driver structure (USB device
information, Transfer
information)

Command type Interface number

Specifiable
value

Other than NULL BULK_OUT_COMMAND,
BULK_IN_COMMAND

0, 1, 2

Return value STATUS
Return value
usage

Used to judge whether execution of BulkTransExecute finished successfully.

Return value
meaning

0: Normal completion
Other than 0: Abnormal termination

Function BulkOutProcess

Parameter UsbDevInfo Num

Parameter
information

Driver structure (USB device information, Transfer
information)

Interface number

Specifiable
value

Other than NULL 0, 1, 2

Return value STATUS
Return value
usage

Used to judge whether execution of BulkOutProcess finished successfully.

Return value
meaning

0: Normal completion
Other than 0: Abnormal termination

Function BulkInProcess

Parameter UsbDevInfo Parameter
Parameter
information

Driver structure (USB device information, Transfer
information)

Parameter information

Specifiable
value

Other than NULL Specifiable value

Return value STATUS
Return value
usage

Used to judge whether execution of BulkInProcess finished successfully.

Return value
meaning

0: Return value meaning
Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 33

Jan. 10, 2013

6.4 Read/Write Operation
The following shows the operation when AtaRead10 or AtaWrite10 is executed.
When an access is made from the file system, the ATACommandExecute function is executed, and functions
such as AtaRead10 and AtaWrite10 are executed according to the type of access. The
MassStorageClassExecute function is subsequently called from the AtaRead10 or AtaWrite10 function,
and bulk transfer is performed.

MassStorageClassExecute

ATACommandExecute

AtaRead10/AtaWrite10

CBWStageExecute

DataInStageExecute/

DataOutStageExecute

CSWStageExecute

AtaRead/
Write10
(UsbDevInfo)

File system
access

MassStorageClassExecute
(UsbDevInfo)

CBWStageExecute
(UsbDevInfo)

DataInStageExecute/
DataOutStageExecute
(UsbDevInfo)

CSWStageExecute
(UsbDevInfo)

Figure 11. Read/Write Function Behavior

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 34

Jan. 10, 2013

7. Bulk Transfer (Communication Class)

This section provides a diagram indicating the correlation between the bulk transfer functions, describes the
function specifications in the bulk transfer (communication class).

7.1 Correlation Between Bulk Transfer Functions
The CommunicationClassExecute function is called from the ComRead and ComWrite functions of the
communication class interface and executes bulk transfer.

Figure 12. Correlation Between Bulk Transfer Functions (Communication Class)

CommunicationClassExecut

COMReadExecute

COMWriteExecute

BulkTransExecute

BulkOutProcess

BulkInProcess

ComRead ComWrite

Indicates a function

Indicates the dependency

relationship between functions

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 35

Jan. 10, 2013

7.2 Description of Functions
The following shows the function names and processing details.

Function Description

ComRead
This is called from user application as read requirement and
executes CommunicationClassExecute function.

ComWrite
This is called from user application as write requirement and
executes CommunicationClassExecute function.

CommunicationClassExecute

This function analyzes the driver structure
(USBHD_DEV_INFO) and calls the Com
ReadExecute or the COMWriteExecute function
depend on the analyzed result.
After transfer finishes, confirms that the transfer was
executed successfully. If transfer terminated abnormally,
this function performs the appropriate processing, such as
retransferring the data.

COMReadExecute
This function specifies the area for receiving data and calls
the BulkTransExecute function.

COMWriteExecute
This function specifies the area for transmitting data and
calls the BulkTransExecute function.

BulkTransExecute
This function analyzes the received command and calls the
BulkOutProcess or BulkInProcess function.
After transfer finishes, confirms the completion status.

BulkOutProcess This function performs the following:
1. Acquires the bulk-out ED and data TD area.
2. Assigns an address for transmitting data to the current

buffer pointer.
3. Links the ED and TD, sets the ED address to the

HcBulkHeadED register, writes 0x04 to the
HcCommandStatus register, and then starts bulk
transfer.

4. After transfer finishes, checks the Done queue to confirm
that the transfer was executed successfully.

BulkInProcess This function performs the following:
1. Acquires the bulk-in ED and data TD area.
2. Assigns an address for receiving data to the current

buffer pointer.
3. Links the ED and TD, sets the ED address to the

HcBulkHeadED register, writes 0x04 to the
HcCommandStatus register, and then starts bulk
transfer.

4. After transfer finishes, checks the Done queue to confirm
that the transfer was executed successfully.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 36

Jan. 10, 2013

7.3 Function Interfaces
The following shows the interface of each function. For details about USBDevInfo, see section 14.
Furthermore, for details about BulkTransExecute, BulkOutProcess and BulkInProcess, see
section 6.3.

Function ComRead

Parameter buffer CntByte

Parameter
information

Read data buffer Read require byte

Specifiable
value

Other than NULL From 1 to 64

Return value The number of read complete bytes
Return value
usage

Used to judge whether execution of ComRead finished successfully and get the
number of read complete byte

Return value
meaning

0: Normal completion
Other than 0: Abnormal termination

Function ComWrite

Parameter buffer CntByte

Parameter
information

Write data buffer Write require byte

Specifiable
value

Other than NULL From 1 to 64

Return value The number of write complete bytes
Return value
usage

Used to judge whether execution of ComWrite finished successfully and get the
number of read complete byte

Return value
meaning

0: Normal completion
Other than 0: Abnormal termination

Function CommunicationClassExecute

Parameter UsbDevInfo Command

Parameter information Driver structure (USB device information,
Transfer information)

Command type

Specifiable value Other than NULL COMReadExecute、
COMWriteExecute

Return value STATUS
Return value usage Used to judge whether execution of

CommunicationClassExecute finished successfully.

Return value meaning 0: Normal completion
Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 37

Jan. 10, 2013

Function COMReadExecute
Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of COMReadExecute finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function COMWriteExecute
Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of COMWriteExecute finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 38

Jan. 10, 2013

8. Creation of Descriptors

This section provides a diagram indicating the correlation between the descriptor creation functions, describes
the function specifications and operations in the descriptor creation.

8.1 Correlation Between Descriptor Creation Functions
A diagram indicating the correlation between descriptor creation functions is shown below. EDs and TDs are
generated by the UsbhdMemInit function during initialization.

UsbhdMemInit

EDInit GTDInit

UsbMemoryInit

ControlBufferMalloc BulkBufferMalloc

EdDescriptorCreate GtdDescriptorCreate

AllocateED AllocateGTD

EdDescriptorFree

UsbConnect

(when device disconnected

GtdDescriptorFree

DescriptorBufferMall

Indicates a function

Indicates the dependency

relationship between functions

Figure 13. Correlation Between Descriptor Creation Functions

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 39

Jan. 10, 2013

8.2 Description of Functions
The following shows the function names and processing details.

Function Description

UsbhdMemInit This function acquires the ED and TD parameters and calls
the EDInit and GTDInit functions.

EDInit This function initializes the ED descriptor area.
GTDInit This function initializes the TD descriptor area.
UsbMemoryInit This function initializes the buffers for control and bulk

transfer when a USB device is connected.
ControlBufferMalloc This function allocates data area for control transfer.
BulkBufferMalloc This function allocates data area for bulk and interrupt-in

transfer.
DescriptorBufferMalloc This function sets the EDs and TDs.

The control transfer uses one EDs and four TDs.
The bulk transfer uses two EDs and four TDs per interfaces
(total three).
The interrupt-in transfer uses thirty two EDs and two TDs.
(total three).

EdDescriptorCreate This function assigns one ED from the ED area and returns
the address of that ED.

GtdDescriptorCreate This function assigns one TD from the TD area and returns
the address of that TD.

AllocateED This function searches for an unused (free) ED in the ED
area and returns the address of that ED.

AllocateGTD This function searches for an unused (free) TD in the TD
area and returns the address of that TD.

EdDescriptorFree This function removes the specified ED from the chain and
updates its status to unused.

GtdDescriptorFree This function removes the specified TD from the chain and
updates its status to unused.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 40

Jan. 10, 2013

8.3 Function Interfaces
The following shows the interface of each function.

Function UsbhdMemInit

Parameter void

Parameter information 
Specifiable value 
Return value STATUS
Return value usage Used to judge whether execution of UsbhdMemInit finished

successfully.
Return value meaning Normal completion

Function EDInit

Parameter void

Parameter information 
Specifiable value 
Return value STATUS
Return value usage Used to judge whether execution of EDInit finished successfully.

Return value meaning 0: Normal completion

Function GTDInit

Parameter void

Parameter information 
Specifiable value 
Return value STATUS
Return value usage Used to judge whether execution of GTDInit finished successfully.

Return value meaning 0: Normal completion

Function UsbMemoryInit

Parameter UsbDevInfo

Parameter information USB device information
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of UsbMemoryInit finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function ControlBufferMalloc

Parameter UsbDevInfo

Parameter information USB device information
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of ControlBufferMalloc

finished successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 41

Jan. 10, 2013

Function BulkBufferMalloc

Parameter UsbDevInfo

Parameter information USB device information
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of BulkBufferMalloc finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function DescriptorBufferMalloc

Parameter UsbDevInfo

Parameter information USB device information
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of DescriptorBufferMalloc

finished successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function EdDescriptorCreate

Parameter void

Parameter information 
Specifiable value 
Return value USBHD_ED_DESC

Return value usage Address of the assigned ED
Return value meaning Other than NULL: Normal completion

NULL: No free ED

Function GtdDescriptorCreate

Parameter void

Parameter information 
Specifiable value 
Return value USBHD_GTD_DESC

Return value usage Address of the assigned TD
Return value meaning Other than NULL: Normal completion

NULL: No free TD

Function AllocateED

Parameter void

Parameter information 
Specifiable value 
Return value DESC_ED_MEMORY

Return value usage Address of unused ED
Return value meaning Other than NULL: Normal completion

NULL: No free ED

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 42

Jan. 10, 2013

Function AllocateGTD

Parameter void

Parameter information 
Specifiable value 
Return value DESC_GTD_MEMORY

Return value usage Address of unused TD
Return value meaning Other than NULL: Normal completion

NULL: No free TD

Function EdDescriptorFree

Parameter ED

Parameter information Address of the ED to be released
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of EdDescriptorFree finished

successfully.
Return value meaning 0: Normal completion

1: Abnormal termination

Function GtdDescriptorFree

Parameter GTD

Parameter information Address of the TD to be released
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of GtdDescriptorFree finished

successfully.
Return value meaning 0: Normal completion

1: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 43

Jan. 10, 2013

8.4 ED/TD Acquisition Operation
The following shows the operation when EDs and TDs are acquired.
UsbhdMemInit specifies the ED and TD base addresses and calls the EDInit and GTDInit functions.

 UsbhdMemInit

EDInit

GTDInit

EDInit()

GTDInit()

Figure 14. ED/TD Acquisition Function Behavior

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 44

Jan. 10, 2013

8.5 ED/TD Setting Operation
The following shows the operation when EDs and TDs are set.
UsbhdMemInit allocates the areas for EDs and TDs when performing control, bulk and interrupt-in transfer.
UsbhdMemInit also allocates the data areas which are used control, bulk and interrupt-in transfer.

Figure 15. ED/TD Setting Function Behavior

UsbMemoryInit

GtdDescriptorCreate

EdDescriptorCreate

AllocateED

AllocateGTD

DescriptorBufferMallo

ControlBufferMalloc

ControlBufferMalloc(UsbDevInfo)

ControlBufferMalloc(UsbDevInfo)

EdDescriptorCreate()

AllocateED ()

ED address

GtdDescriptorCreate()

AllocateGTD ()

GTD address
GTD address

ED address

BulkBufferMalloc

BulkBufferMalloc(UsbDevInfo)

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 45

Jan. 10, 2013

9. Application (Mass Storage Class)

This section provides a diagram indicating the correlation between the functions (mass storage class),
describes the function specifications and operations in the application.

9.1 Application Correlation
A diagram indicating the correlation between application functions is shown below.
FAT file system is used M3S-TFAT-Tiny (following is TFAT) that is Renesas original one.
This section describes the typical usage of the application. As for other usage for other applications, please
refer to TFAT application note[5].

\
Figure 16. Correlation Between Application Functions

9.2 Description of Functions
The following shows the function names and processing details.

Function Description

Apltask_msc This function is called from the main function and executes
application processing.

R_tfat_f_mount This function allocates the work area for FAT file system
and connects it to the device drivers.

R_tfat_f_mkdir This function makes the directories.
R_tfat_f_open This function opens the existing file or creates the new file if

specified file is not existed.
R_tfat_f_write This function writes data to the opened file.
R_tfat_f_read This function reads data from the opened file.
R_tfat_f_close This function closes the opened file.

main

R_tfat_f_closeR_tfat_f_write R_tfat_f_open R_tfat_f_mount

apltask_msc

R_tfat_f_read

TFAT

R_tfat_f_mkdir

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 46

Jan. 10, 2013

9.3 Function Interfaces
The following shows the interface of each function.

Function apltask_msc

Parameter void

Parameter information 
Specifiable value 
Return value STATUS
Return value usage Used to judge whether execution of apltask_msc finished

successfully.
Return value meaning 0: Normal completion

1: Abnormal termination

Function R_tfat_f_mount

Parameter Logical drive number Work area
Parameter information Logical drive number whose work

area is allocated and removed by
this function

Pointer to the work area

Specifiable value Always 0
(Only 1 drive supported)

Other than NULL

Return value Result of allocation or removal
Return value usage Used to judge whether execution of R_tfat_f_mount finished

successfully.
Return value meaning TFAT_FR_OK: Normal completion

Other than TFAT_FR_OK: Abnormal termination

Function R_tfat_f_mkdir

Parameter Directory name
Parameter information Pointer to the creating directory
Specifiable value ASCII code, short file name (8.3 format)
Return value Result of creating directory
Return value usage Used to judge whether execution of R_tfat_f_mkdir finished

successfully.
Return value meaning TFAT_FR_OK: Normal completion

Other than TFAT_FR_OK: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 47

Jan. 10, 2013

Function R_tfat_f_open

Parameter File pointer File name Attribute
Parameter information Pointer to the structure

that contains
information about the
opened file

File to be opened Attribute of file

Specifiable value Other than NULL ASCII code,
short file name (8.3
format)

Example:
TFAT_FA_OPEN_ALWAYS:
Open or create if file is not
existed.
TFAT_FA_WRITE: Write
allowed
TFAT_FA_READ: Read
allowed

Return value Result of file opened or created
Return value usage Used to judge whether execution of R_tfat_f_open finished

successfully.
Return value meaning TFAT_FR_OK: Normal completion

Other than TFAT_FR_OK: Abnormal termination

Function R_tfat_f_write

Parameter File pointer Buffer Requirement size Completion size

Parameter
information

Pointer to the
structure that
contains
information about
the opened file

Pointer to the
write data
buffer

Write requirement size
(byte units)

Write completion
size (byte units)

Specifiable value File pointer get by
R_tfat_f_open

Other than
NULL

Other than NULL -

Return value Result of write data to the file
Return value usage Used to judge whether execution of R_tfat_f_write finished successfully.

Return value
meaning

TFAT_FR_OK: Normal completion
Other than TFAT_FR_OK: Abnormal termination

Function R_tfat_f_read

Parameter File pointer Buffer Requirement size Completion size

Parameter
information

Pointer to the
structure that
contains
information about
the opened file

Pointer to the
read data buffer

Read requirement
size (byte units)

Read completion
size (byte units)

Specifiable value File pointer get by
R_tfat_f_open

Other than
NULL

Other than NULL -

Return value Result of read data from the file
Return value usage Used to judge whether execution of R_tfat_f_read finished successfully.

Return value
meaning

TFAT_FR_OK: Normal completion
Other than TFAT_FR_OK: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 48

Jan. 10, 2013

Function R_tfat_f_close

Parameter File pointer
Parameter information Pointer to the structure that contains information about the opened file
Specifiable value File pointer get by R_tfat_f_open

Return value Result of close the file
Return value usage Used to judge whether execution of R_tfat_f_close finished

successfully.
Return value meaning TFAT_FR_OK: Normal completion

Other than TFAT_FR_OK: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 49

Jan. 10, 2013

9.4 Application Operation
The application performs the following operations:

 Creation of 10 files in a root directory.
 Creation of another directory and creation of 10 files in that directory.
 Writing, reading, and verifying data (1 to 40 blocks) in block (512-byte) units.
 Writing, reading, and verifying data (1 to 1024 bytes) in byte units.

Figure 17 shows an example of the write-read-verify operation.

Figure 17. Application Operation

R_tfat_f_mount

R_tfat_f_mount

R_tfat_f_open

R_tfat_f_write

R_tfat_f_close

main

apltask_msc

apltask_msc()

R_tfat_f_mount (0, fatfs)

R_tfat_f_open (fp, path, OpenMode)

R_tfat_f_write (fp, Buff, ReqSize, CompSize)

R_tfat_f_close (fp)

R_tfat_f_open

R_tfat_f_close

R_tfat_f_read

Data comparison

Processing repeated for 1 to

40 blocks in block (512 byte)

units and 1 to 1024 bytes in

bytes units

R_tfat_f_mkdir

R_tfat_f_mkdir (“USB”)

R_tfat_f_open (fp, path, OpenMode)

R_tfat_f_read (fp, Buff, ReqSize, CompSize)

R_tfat_f_close (fp)

R_tfat_f_mount (0, NULL)

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 50

Jan. 10, 2013

10. Application (Communication Class)

This section provides a diagram indicating the correlation between the functions (communication class),
describes the function specifications and operations in the application.

10.1 Application Correlation
A diagram indicating the correlation between application functions is shown below.

Figure 18. Correlation Between Application Functions

10.2 Description of Functions
The following shows the function names and processing details.

Function Description

apltask_com This function is called from the main function and executes
application processing.

ComInit This function acquires initial communication state from the
USB device.

ComOpen This function sets the software flag indicating the USB
device started.

ComClose This function clears the software flag indicating the USB
device started.

ComGetStatus This function acquires the communication parameter that is
composed of transfer speed, stop bits, parity and start bit.

ComIOCtrl This function sets the communication parameter that is
composed of transfer speed, stop bits, parity and start bit.

ComIOSet This function sends carrier control signal to the USB device.
ComWrite This function specifies the pointer to the buffer storing the

data to be written, and writes the data with the number of
bytes to be write.

ComRead This function specifies the pointer to the buffer storing the
data to be read, and reads the data with the number of bytes
to be read.

main

ComGetStatus ComClose ComWrite ComIOSetComInit

apltask_com

ComIOCtrl ComRead ComOpen

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 51

Jan. 10, 2013

10.3 Function Interfaces
The following shows the interface of each function.

Function apltask_com

Parameter void

Parameter information 
Specifiable value 
Return value STATUS
Return value usage Used to judge whether execution of apltask_com finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function ComInit

Parameter void

Parameter information 
Specifiable value 
Return value STATUS
Return value usage Used to judge whether execution of ComInit finished successfully.

Return value meaning 0: Normal completion
Other than 0: Abnormal termination

Function ComOpen

Parameter void

Parameter information 
Specifiable value 
Return value STATUS
Return value usage Used to judge whether execution of ComOpen finished successfully.

Return value meaning 0: Normal completion
Other than 0: Abnormal termination

Function ComClose

Parameter void

Parameter information 
Specifiable value 
Return value 

Function ComGetStatus

Parameter param

Parameter information Communication parameter structure (Transfer speed, Stop bit, Parity
and Start bit)

Specifiable value none
Return value STATUS
Return value usage Used to judge whether execution of ComGetStatus finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 52

Jan. 10, 2013

Function ComIOCtrl

Parameter param

Parameter information Communication parameter structure (Transfer speed, Stop bit, Parity
and Start bit)

Specifiable value none
Return value STATUS
Return value usage Used to judge whether execution of ComIOCtrl finished successfully.

Return value meaning 0: Normal completion
Other than 0: Abnormal termination

Function ComIOSet

Parameter void

Parameter information 
Specifiable value 
Return value STATUS
Return value usage Used to judge whether execution of ComIOSet finished successfully.

Return value meaning 0: Normal completion
Other than 0: Abnormal termination

Function ComWrite

Parameter buffer CntByte

Parameter information Data to write Requirement size of the data to
write

Specifiable value Data of the size specified by
WriteSize

1 to 64 (bytes)

Return value Size of the written data
Return value usage Used to judge whether execution of ComWrite finished successfully.

Return value meaning More than 1: Normal completion (Write complete size)
Negative value: Abnormal termination

Function ComRead

Parameter buffer CntByte

Parameter information Data to read Requirement size of the data to
read

Specifiable value Data of the size specified by
ReadSize

1 to 64 (bytes)

Return value Size of the read data
Return value usage Used to judge whether execution of ComRead finished successfully.

Return value meaning More than 1: Normal completion (Read complete size)
Negative value: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 53

Jan. 10, 2013

10.4 Application Operation
The application performs the following operations:
1. Starts access operation to the USB device. (Execute: ComOpen)
2. Sets the communication parameter. (ComIOCtrl)
3. Acquires the communication parameter got sequence 2., and verifies its contents. (ComGetStatus)
4. Sends the carrier control signal. (ComIOSet)
5. Sets the communication parameter again. (ComIOCtrl)
6. Acquires the communication parameter got sequence 5., and verifies its contents. (ComGetStatus)
7. Writes data to the USB device. (ComWrite)
8. Acquires the communication parameter written by sequence 7., and verifies its contents. (ComGetStatus)
9. Reads data from the USB device. (ComRead)
10. Finalizes access operation to the USB device. (ComClose)
From sequence 1. to sequence 10. are repeated for 1 to 64 bytes in byte units.
Table 1. Shows the communication parameter and Figure 19 shows an example of the write-read-verify
operation.

Table 1. Communication Parameter

Communication Parameter Value (Contents)

Transfer speed 115200 (115200bp), 57600 (57600bps), 38400 (38400bps),
14400（14400bps）, 9600 (9600bps), 4800 (4800bps)

Stop bit 0 (1bit), 1 (1.5bits), 2 (2bits)
Parity 0 (None), 1 (Odd), 2 (Even), 3 (Mark), 4 (Space)
Data bit 5 (5bits), 6 (6bits), 7 (7bits), 8 (8bits), 16 (16bits)

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 54

Jan. 10, 2013

Figure 19. Application Operation

ComOpen

ComIOCtrl

ComIOSet

main

apltask_com

apltask_com()

1.ComOpen()

2.ComIOCtrl (ComParamHost)

7.ComWrite(WriteData, WriteSize)

ComWrite

ComGetStatus

3.ComGetStatus (ComParamHost)

4.ComIOSet (ComParamHost)

ComIOCtrl

5.ComIOCtrl (ComParamHost)

ComGetStatus

6.ComGetStatus (ComParamFunc)

ComGetStatus

8.ComGetStatus (ComParamFunc)

9.ComRead(ReadData, ReadSize)

ComRead

ComClose

10.ComClose()

Processing repeated

for 1 to 64 bytes in

byte units

Data verification

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 55

Jan. 10, 2013

11. Hub Class Driver

This section describes the function specifications.

11.1 Description of Functions
The following shows the function names and processing details.

Function Description

HubClassInit

Transfer all connecting ports of the hub device from
“Powered-off state” to “Disconnected state”.

WaitHubChange Waits the status change of the hub device by interrupt-in
transfer.

ResetHubPort Resets one of the device connected port and waits the reset
completion of the hub device by interrupt-in transfer.

ReadHubStatus Saves the received data by the interrupt-in transfer.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 56

Jan. 10, 2013

11.2 Function Interfaces
The following shows the interface of each function.

Function HubClassInit

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of HubClassInit finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function WaitHubChange

Parameter UsbDevInfo port

Parameter information Driver structure (USB device information,
Transfer information)

Port number

Specifiable value Other than NULL 0 to 6
(max number of port: 7)

Return value STATUS
Return value usage Used to judge whether execution of WaitHubChange finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function ResetHubPort

Parameter UsbDevInfo port

Parameter information Driver structure (USB device information,
Transfer information)

Port number

Specifiable value Other than NULL 0 to 6
(max number of port: 7)

Return value STATUS
Return value usage Used to judge whether execution of ResetHubPort finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

Function ReadHubStatus

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of ReadHubStatus finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 57

Jan. 10, 2013

12. Hierarchical Structure

The hierarchical structure of the USB host software is shown below.

12.1 Hierarchical Structure
The hierarchical structure is shown in Figure 20 below.

 Application layer

(Mass Storage Class)

FAT file system layer

ATAPI layer

Mass storage layer

USB host driver layer

OHCI

PCI bridge driver layer

Packets

USB function

Application layer

(Communication Class)

Communication interface

layer

Communication layer Hub layer

Figure 20. Hierarchy Diagram

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 58

Jan. 10, 2013

12.2 Description of Hierarchy
The following shows the function names and processing details for each layer in the hierarchy.

Layer Function Description

Application apltask_msc
apltask_com

In this layer, data is sent to and
received from lower layers.

FAT file system cfs_mountfs
cfs_open
cfs_write
cfs_read
cfs_close
cfs_umountfs

In this layer, commands sent
from the application layer, such
as to open files and write and
read data, are executed.
Information such as the block
number, the address of the
reception buffer for the Read
command and the address of the
data buffer for the Write
command are passed from this
layer to lower layers.

Communication
interface

ComInit
ComOpen
ComClose
ComRead
ComWrite
ComGetStatus
ComIOCtrl
ComIOSet

In this layer, commands sent
from the application layer, such
as to open and write and read
data, are executed to/from the
USB device. Information such as
the block number, the address of
the reception buffer for the Read
command and the address of the
data buffer for the Write
command are passed from this
layer to lower layers.

ATAPI ATACommandExecute
AtaReadFormatCapacities
AtaModeSense6
AtaInquiry
AtaRead10
AtaWrite10
AtaReadCapacity
AtaRequestSense

In this layer, Read and Write
commands from the file system
are converted into ATAPI
commands and passed to lower
layers.

Mass storage MassStorageClassExecute
CBWStageExecute
DataInStageExecute
DataOutStageExecute
CSWStageExecute

In this layer, ATAPI commands
and the addresses for writing
and reading data are received
from the ATAPI layer and bulk
transfers of CBW, data, and
CSW are performed.

Communication CommunicationClassExecute
COMReadExecute
COMWriteExecute
GetLineCodingExecute
SetLineCodingExecute
SetControlLineStateExecute

In this layer, the USB device
control requests are received
from the communication
interface layer and class
command is executed (control
transfer is performed).
The writing or reading requests
are received from the
communication interface layer
and bulk transfers are
performed.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 59

Jan. 10, 2013

Layer Function Description

Hub HubClassInit
GetHubStatusExecute
SetPortFeatureExecute
ClearPortFeatureExecute
GetPortStatusExecute
WaitHubChange
RsetHubPort
ReadHubStatus

In this layer, executes the hub
class commands to control the
hub device.
Saves the received data by the
interrupt-in transfer.

USB host driver ControlProcess
DescriptorInitGet
AddressSet
DescriptorGet
DescriptorConfigGet
DescriptorConfigAllGet
ConfigurationSet
GetHubDescriptor
DeviceStatusGet
ConfigurationSet
GetHubStatus
SetPortFeature
ClearPortFeature
GetPortStatus
MaxLUNGet
SetLineCoding
GetLineCoding
SetControlLineState
BulkTransExecute
BulkOutProcess
BulkInProcess
UsbhdInit

In this layer, enumeration or
class command are executed by
using control transfer.
The writing or reading requests
are received from the mass
storage class layer and the
communication layer and bulk
transfer is performed.
Executed the interrupt-in transfer
when a hub device is connected.
The host driver is initialized by
using the PCI bridge driver.

PCI bridge driver PciInit
PciConfigRead
PciConfigWrite

In this layer, the OHCI host
bridge is accessed via the PCI
bridge.

Memory module UsbhdMemInit
EDInit
GTDInit
UsbMemoryInit
EdDescriptorCreate
GtdDescriptorCreate
AllocateED
AllocateGTD
EdDescriptorFree
GtdDescriptorFree

In this layer, ED and TD memory
areas are allocated.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 60

Jan. 10, 2013

13. Interrupts

This section provides a diagram indicating the correlation between functions when an interrupt occurs,
describes the function specifications and operations related to the interrupt.

13.1 Correlation Between Functions When an Interrupt Occurs
A diagram indicating the correlation between functions when an interrupt occurs is shown below. When the
USB device is connected, the RootHubStatusChange event occurs (the root hub detects the change in the port
status) or when the operation of the TD is completed, WritebackDoneHead event occurs, this interrupt notifies
those events to the CPU.

UsbConnect

CPU

InterruptTask

USB device

connected

Indicates that an interrupt is
generated.

Indicates a function.

Indicates the dependency
relationship between
functions

PCI bridge
 connection

ReadHubStatus

OHCI

RootHubStatusChange
Event

TD operation

completed

WritebackDoneHead
Event

Figure 21. Correlation Between Functions When an Interrupt Occurs

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 61

Jan. 10, 2013

13.2 Description of Functions
The following shows the function names and processing details.

Function Description

InterruptTask This function is called by the INTUSBH0 interrupt from the
CPU.
This function is used to read the interrupt register
(HcInterruptStatus register) of the OHCI.
If a USB device is connected (RootHubStatusChange bit
equals to 1’b), the UsbConnect function is executed.
If a TD’s operation is completed (WritebackDoneHead bit
equals to 1’b), this function checks the contents of the TD
by reading HccaDoneHead register on the OHCI.
If that TD is interrupt-in transfer one, the ReadHubStatus
function is executed.
If that TD is but for interrupt-in transfer one, the
write_back_done flag is set.
Note that interrupt masking for RootHubStatusChange bit
and WritebackDoneHead bit must be disabled in the
OHCI, PCI, and CPU in order to report interrupts.

UsbConnect This function reads the port status register
(HcRhPortStatus register) of the OHCI and verifies the
USB device is connected to the root hub’s port.

ReadHubStatus Saves the received data by the interrupt-in transfer.

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 62

Jan. 10, 2013

13.3 Function Interfaces
The following shows the interface of this function.

Function InterruptTask

Parameter void
Parameter information 
Specifiable value 
Return value 
Return value usage 
Return value meaning 

Function UsbConnect

Parameter void

Parameter information 
Specifiable value 
Return value STATUS
Return value usage Used to judge whether execution of UsbConnect finished

successfully.
Return value meaning 0: Normal completion

Function ReadHubStatus

Parameter UsbDevInfo

Parameter information Driver structure (USB device information, Transfer information)
Specifiable value Other than NULL
Return value STATUS
Return value usage Used to judge whether execution of ReadHubStatus finished

successfully.
Return value meaning 0: Normal completion

Other than 0: Abnormal termination

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 63

Jan. 10, 2013

13.4 Interrupt Handling Operation
The operation when the interrupt is occurred shown below. When the USB device is connected, the
RootHubStatusChange event occurs (the root hub detects the change in the port status) or when the operation
of the TD is completed, WritebackDoneHead event occurs, this interrupt notifies those events to the CPU. The
CPU executes the interrupt task registered to the INTUSBH0 interrupt vector.
The interrupt register in the OHCI is read and if it can be confirmed that the port status has changed, the
UsbConnect function is executed.
The interrupt register in the OHCI is read and if it can be confirmed that WritebackDoneHead event has
occured, and then read HccaDoneHead register in the OHCI to check the completed TD.
If that TD is interrupt-in transfer one, the ReadHubStatus function is executed.
If that TD is but for interrupt-in transfer one, the write_back_done flag is set.

Figure 22. Interrupt Handling Operation

OHCI

UsbConnect

CPU

InterruptTask

Port status change

Notifies
INTUSBH0

Calles Interrupt

handler

PCI bridge

Notifies INTA

Write_back_done flag set to 1’b

Completed TD was
interrupt-in transfer

WritebackDoneHead
event

Port status
change event

WritebackDoneHead
Event
Read HccaDoneHead
registor

ReadHubStatus

Completed TD was
not interrupt-in transfer

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 64

Jan. 10, 2013

14. Data Structures

The data structures used by the USB host driver are shown below.

Structure Description

USBHD_DEV_INFO Enumeration end flag
Port number
USB device address
USB device address to assign new connected device
Maximum size of packets transferred on endpoint 0
Total size of descriptors returned by the Get Configuration descriptor
The number of interface
Configuration value
Number of endpoints on the interface (Interface: 0 to 2)
Interface class (Interface: 0 to 2)
Interface subclass (Interface: 0 to 2)
Interface protocol (Interface: 0 to 2)
Number of endpoint used for interrupt transfer (Interface: 0 to 2)
Attribute of endpoint used for interrupt transfer (Interface: 0 to 2)
Maximum size of packets transferred on endpoint used for interrupt transfer
(Interface: 0 to 2)
Interval of transfer on endpoint used for interrupt transfer (Interface: 0 to 2)
Number of endpoint used for bulk-in transfer (Interface: 0 to 2)
Attribute of endpoint used for bulk-in transfer (Interface: 0 to 2)
Maximum size of packets transferred on endpoint used for bulk-in transfer
(Interface: 0 to 2)
Number of endpoint used for bulk-out transfer (Interface: 0 to 2)
Attribute of endpoint used for bulk-out transfer (Interface: 0 to 2)
Maximum size of packets transferred on endpoint used for bulk-out transfer
(Interface: 0 to 2)
HCCA base address
DeviceStatus
Number of interface used for the mass storage class
Number of interface used for the communication class
Number of interface used for the data interface class
Number of interface used for the hub class
MaxLUN value
CBW tag
Start flag of the USB device applied to the communication class
Number of downstream ports of the hub device
Hub status change bitmap data got by interrupt-in transfer
Hub status
Port Status
Port change status
Address for device requests
Address of receive data in control transfer
Size of receive data in control transfer
Address of transmit data in control transfer
Size of transmit data in control transfer
Address of data for bulk transfer
Size of data for bulk-out transfer
Size of data for bulk-in transfer
Descriptor (ED, TD) information
CBW data address

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 65

Jan. 10, 2013

Structure Description

Address of data for mass storage
CSW data address
Address of data for the communication class
Address of parameter for the communication class
Address of parameter for the hub class
Buffer address for storing received data
Buffer address for storing data to transmit
Data size
Pointer to the FileInfo structure

USBHD_DESC_INFO Address of ED for control transfer
Address of TD for setup data
Address of TD for data stage
Address of TD for status stage
Address of dummy TD for control transfer
Address of ED for bulk-out transfer (Interface: 0 to 2)
Address of ED for bulk-in transfer (Interface: 0 to 2)
Address of TD for bulk-out transfer (Interface: 0 to 2)
Address of TD for bulk-in transfer (Interface: 0 to 2)
Address of dummy TD for bulk-out transfer (Interface: 0 to 2)
Address of dummy TD for bulk-in transfer (Interface: 0 to 2)
Address of ED for interrupt-in transfer (0 to 31)
Address of TD for interrupt-in transfer
Address of dummy TD for interrupt-in transfer

FILEINFO Logical block number
Data size
Data count
ATAPI command
Sector size
Sector number
Pointer to data to be written
Pointer to data to be read
Data pointer
File name
Mode

LINE_CODING_STRUCT Transfer speed (bps)
Stop bit
Parity
Data bit

ED For details about data, see Table 2 and Table 3.
TD For details about data, see Table 4 and Table 5.

Table 2. Overview of Endpoint Descriptor (ED) Format

 31 27 26 16 15 14 13 12 11 10 7 6 4 3 2 1 0

Word0  MPS F K S D EN FA

Word1 TD Queue Tail Pointer (TailP) 
Word2 TD Queue Head Pointer (HeadP) 0 C H
Word3 Next Endpoint Descriptor (NextED) 

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 66

Jan. 10, 2013

Table 3. Details of Endpoint Descriptor (ED) Format

Name Read/write from the
host controller

Description

MPS R Indicates the maximum number of bytes that can be sent or
received in one USB packet by the endpoint on the USB device.

F R 0: Isochronous transfer
1: Control/bulk/interrupt transfer

K R By setting this bit, control can be transferred to the next ED
without performing the communication specified for this endpoint.

S R 0: Full speed
1: Low speed

D R Direction of communication
00: Specified by the TD field
01: OUT
10: IN

EN R Number of the communication partner endpoint.
FA R Address of the communication partner USB device
C R/W This bit holds the final toggle information before the TD is retired.
H R/W This bit is set when the host controller wants to stop the

processing of this ED.
This bit is set if an error occurs during normal TD processing.

TailP R This bit holds the address of the last TD linked to this ED.
If TailP and HeadP are the same, there will be no TD for this ED
to process.

HeadP R/W First TD linked to this ED
This field is updated to the address of the next TD each time the
TD indicated by this field has finished processing.

NextED R Address of ED linked to this ED
Set to 0 if there is no ED to link.

Table 4. Overview of Transfer Descriptor (TD) Format

 31 28 27 26 25 24 23 21 20 19 18 17 4 3 0
Word0 CC EC T DI DP R 
Word1 Current Buffer Pointer (CBP)
Word0 Next TD (NextTD)
Word2 Buffer End (BE)

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 67

Jan. 10, 2013

Table 5. Details of Transfer Descriptor (TD) Format

Name Read/write from the
host controller

Description

CC R/W Indicates the status of the last transfer created from this TD
EC R/W This bit is incremented each time a transfer error occurs.

If a transfer error occurs when this bit is 2, the error type is
recorded to the CC bit and the TD is shifted to the Done queue.

T R/W Used to create and compare the PID of the data packet
(DATA0/DATA1).
This bit is updated each time transmission or reception is
completed successfully.

DI R Specifies the timing at which an interrupt will occur when TD
processing is complete.
0: Interrupt occurs as soon as processing is complete
1: Interrupt occurs at the end of the frame following

completion of TD processing
111: Interrupt does not occur

DP R Specifies the transfer direction and PID
00: SETUP To endpoint
01: OUT To endpoint
10: IN From endpoint

R R An error occurs if the last packet created from this TD is a short
packet.
If this bit is set to 1, the error is ignored.

CBP R/W Indicates the buffer area for transferring data to and from
endpoints
Always indicates the address of the buffer area that should be
accessed next.
If this bit is set to 0, it indicates that data of size 0 is specified to
be transferred or that transfer is complete.

NextTD R/W Pointer the next TD
BE R Last address of the buffer area

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 68

Jan. 10, 2013

15. Reference Documents

- Hardware manual

V850E2/ML4 Hardware User's Manual [R01UH0262EJ]
(Download the latest revision from the Renesas Electronics website.)

- Software manual

V850E2M Architecture User's Manual [R01US0001EJ]
(Download the latest revision from the Renesas Electronics website.)

- Universal Serial Bus Revision 2.0 specification

- OpenHCI Open Host Controller Interface specification for USB Release 1.0a

- Universal Serial Bus Mass Storage Class Bulk-Only Transport Revision 1.0

- Universal Serial Bus Class Definitions for Communications Devices Revision 1.2

- Universal Serial Bus Class Subclass Specification for PSTN Devices s Revision 1.2

 USB Host Software

R01AN1217EJ0102 Rev.1.02 Page 69

Jan. 10, 2013

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

A-1

Revision Record

Rev. Date
Description

Page Summary
1.00 Jun. 22, 2012 — First edition issued
1.01 Sep. 14, 2012 — Implements M3S-TFAT-Tiny (Renesas original FAT File System)
1.02 Jan. 10, 2013 — Hub class added (Multiple device control)

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes
on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under
General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each
other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins

are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are
not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are
not guaranteed from the moment when power is supplied until the power reaches the level at which
resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator) during
a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover,
when switching to a clock signal produced with an external resonator (or by an external oscillator)
while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the

change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different part numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different part numbers, implement a system-evaluation test for each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 2.0

	1. Preface
	1.1 Specifications
	1.2 Features Used
	1.3 Applicable Conditions
	1.4 Related Application Note

	2. Correlation Between Functions
	3. Initialization
	3.1 Correlation Between Initialization Functions
	3.2 Description of Functions
	3.3 Function Interfaces
	3.4 Initialization Operation

	4. Control Transfer
	4.1 Correlation Between Control Transfer Functions
	4.2 Description of Functions
	4.3 Function Interfaces
	4.4 Control Transfer Operation

	5. Interrupt-in Transfer
	5.1 Correlation Between Interrupt-In Transfer Functions
	5.2 Description of Functions
	5.3 Function Interfaces
	5.4 Interrupt-In Transfer Operation

	6. Bulk Transfer (Mass Storage Class)
	6.1 Correlation Between Bulk Transfer Functions
	6.2 Description of Functions
	6.3 Function Interfaces
	6.4 Read/Write Operation

	7. Bulk Transfer (Communication Class)
	7.1 Correlation Between Bulk Transfer Functions
	7.2 Description of Functions
	7.3 Function Interfaces

	8. Creation of Descriptors
	8.1 Correlation Between Descriptor Creation Functions
	8.2 Description of Functions
	8.3 Function Interfaces
	8.4 ED/TD Acquisition Operation
	8.5 ED/TD Setting Operation

	9. Application (Mass Storage Class)
	9.1 Application Correlation
	9.2 Description of Functions
	9.3 Function Interfaces
	9.4 Application Operation

	10. Application (Communication Class)
	10.1 Application Correlation
	10.2 Description of Functions
	10.3 Function Interfaces
	10.4 Application Operation

	11. Hub Class Driver
	11.1 Description of Functions
	11.2 Function Interfaces

	12. Hierarchical Structure
	12.1 Hierarchical Structure
	12.2 Description of Hierarchy

	13. Interrupts
	13.1 Correlation Between Functions When an Interrupt Occurs
	13.2 Description of Functions
	13.3 Function Interfaces
	13.4 Interrupt Handling Operation

	14. Data Structures
	15. Reference Documents
	Website and Support
	Revision Record
	General Precautions in the Handling of MPU/MCU Products

