

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Application Note

V850 SeriesTM

Peripheral Macro Driver

V850ES/Fx2 Microcontrollers,
V850ES/Sx2 Microcontrollers

Document No. U17330EE1V0AN00
Date Published October 2005

 NEC Electronics Corporation 2005
Printed in Germany

2 Application Note U17330EE1V0AN00

1

2

3

4

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,
and also in the transition period when the input level passes through the area between VIL (MAX) and
VIH (MIN).

HANDLING OF UNUSED INPUT PINS
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must
be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as
much as possible, and quickly dissipate it when it has occurred. Environmental control must be
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static
container, static shielding bag or conductive material. All test and measurement tools including work
benches and floors should be grounded. The operator should be grounded using a wrist strap.
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for
PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the
reset signal is received. A reset operation must be executed immediately after power-on for devices
with reset functions.

POWER ON/OFF SEQUENCE
In the case of a device that uses different power supplies for the internal operation and external
interface, as a rule, switch on the external power supply after switching on the internal power supply.
When switching the power supply off, as a rule, switch off the external power supply and then the
internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal
elements due to the passage of an abnormal current.
The correct power on/off sequence must be judged separately for each device and according to related
specifications governing the device.

INPUT OF SIGNAL DURING POWER OFF STATE
Do not input signals or an I/O pull-up power supply while the device is not powered. The current
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and
the abnormal current that passes in the device at this time may cause degradation of internal elements.
Input of signals during the power off state must be judged separately for each device and according to

related specifications governing the device.

NOTES FOR CMOS DEVICES

5

6

3 Application Note U17330EE1V0AN00

The information in this document is current as of October, 2005. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

All (other) product, brand, or trade names used in this pamphlet are the trademarks or
registered trademarks of their respective owners.
Product specifications are subject to change without notice. To ensure that you have
the latest product data, please contact your local NEC Electronics sales office.

4 Application Note U17330EE1V0AN00

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

Ordering information

Product release schedule

Availability of related technical literature

Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics America Inc.
Santa Clara, California
Tel: 408-588-6000

800-366-9782
Fax: 408-588-6130

800-729-9288

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 1101
Fax: 0211-65 03 1327

Sucursal en España
Madrid, Spain
Tel: 091- 504 27 87
Fax: 091- 504 28 60

Succursale Française
Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Singapore
Tel: 65-6253-8311
Fax: 65-6250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

Filiale Italiana
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

•

•

•

•

•

Table of Contents

Chapter 1 Overview . 11
1.1 Peripheral Macro Driver Software . 11
1.2 Supported Devices . 11

Chapter 2 Peripheral Macro Driver File Structure. 13

Chapter 3 API Description. 15
3.1 Overview Application Programming Interface . 15

3.1.1 Ports - Port Functions . 15
3.1.2 Ports - Bus Control Function. 16
3.1.3 Ports - Real-Time Output Function . 16
3.1.4 Interrupts - Interrupt/Exception Processing Function . 17
3.1.5 Interrupts - Key Interrupt Function . 17
3.1.6 Timers - 16-Bit Timer/Event Counter P. 18
3.1.7 Timers - 16-Bit Timer/Event Counter Q . 20
3.1.8 Timers - 16-Bit Interval Timer M . 22
3.1.9 Timers - Watch Timer Functions. 22
3.1.10 Timers - Functions of Watchdog Timer 2 . 22
3.1.11 Serial - Asynchronous Serial Interface A (UARTA) . 23
3.1.12 Serial - 3-Wire Variable-Length Serial I/O (CCSIB) . 23
3.1.13 Serial - I2C Bus. 24
3.1.14 Clock & Power - Clock Generation Function . 25
3.1.15 Clock & Power - Standby Function . 25
3.1.16 Clock & Power - Clock Monitor . 25
3.1.17 Clock & Power - Reset Function. 25
3.1.18 Clock & Power - Low-Voltage Detector . 26
3.1.19 Clock & Power - RAM Retention Voltage Detection Operation 26
3.1.20 Analog - A/D Converter. 26
3.1.21 Analog - D/A Converter. 27
3.1.22 Miscellaneous - DMA Controller . 27
3.1.23 Miscellaneous - On Chip Debug Interface . 27
3.1.24 Miscellaneous - CRC Function . 28
3.1.25 Miscellaneous - ROM Correction Function . 28

3.2 Detailed Application Programming Interface . 29
3.2.1 Ports - Port Functions . 29
3.2.2 Ports - Bus Control Function. 31
3.2.3 Ports - Real-Time Output Function . 34
3.2.4 Interrupts - Interrupt/Exception Processing Function . 35
3.2.5 Interrupts - Key Interrupt Function . 37
3.2.6 Timers - 16-Bit Timer/Event Counter P. 38
3.2.7 Timers - 16-Bit Timer/Event Counter Q . 46
3.2.8 Timers - 16-Bit Interval Timer M . 53
3.2.9 Timers - Watch Timer Functions. 54
3.2.10 Timers - Functions Of Watchdog Timer 2. 56
3.2.11 Serial - Asynchronous Serial Interface A (UARTA) . 58
3.2.12 Serial - 3-Wire Variable-Length Serial I/O (CCSIB) . 61
3.2.13 Serial - I²C Bus . 64
3.2.14 Clock & Power - Clock Generation Function . 69
3.2.15 Clock & Power - Standby Function . 71
3.2.16 Clock & Power - Clock Monitor . 72
3.2.17 Clock & Power - Reset Function. 72
3.2.18 Clock & Power - Low-Voltage Detector . 72
3.2.19 Clock & Power - RAM Retention Voltage Detection Operation 74
3.2.20 Analog - A/D Converter. 75
3.2.21 Analog - D/A Converter. 77
5 Application Note U17330EE1V0AN00

3.2.22 Miscellaneous - DMA Controller . 78
3.2.23 Miscellaneous - On Chip Debug Interface . 80
3.2.24 Miscellaneous - CRC Function . 80
3.2.25 Miscellaneous - ROM Correction Function . 81

Chapter 4 Demos . 83
4.1 Description . 83
6 Application Note U17330EE1V0AN00

List of Tables

Table 2-1: Main include files .. 13
Table 2-2: Macro include files (included in Macro.h) ... 14
Table 3-1: Timers - 16-Bit Timer/Event Counter P .. 18
Table 3-2: Timers - 16-Bit Timer/Event Counter Q .. 20
Table 4-1: Menu Structure ... 83
Table 4-2: External Test Hardware.. 84
7 Application Note U17330EE1V0AN00

8 Application Note U17330EE1V0AN00

Introduction

Readers This application note is intended for users who want make use of the an
Application Programming Interface (API) as known as the Peripheral Macro
Driver.

Purpose This application note presents the software application note of the
Peripheral Macro Driver.

Organization This system specification describes the following sections:

• Module structure

• Application Programming Interface

• Example code

Legend Symbols and notation are used as follows:

Weight in data notation : Left is high-order column, right is low order column

Active low notation : xxx (pin or signal name is over-scored) or
/xxx (slash before signal name)

Memory map address: : High order at high stage and low order at low stage

Note : Explanation of (Note) in the text

Caution : Information requiring particular attention

Remark : Supplementary explanation to the text

Numeric notation : Binary... XXXX or XXXB
 Decimal... XXXX

 Hexadecimal... XXXXH or 0x XXXX

Prefixes representing powers of 2 (address space, memory capacity)

 K (kilo): 210 = 1024

 M (mega): 220 = 10242 = 1,048,576

 G (giga): 230 = 10243 = 1,073,741,824
9 Application Note U17330EE1V0AN00

10 Application Note U17330EE1V0AN00

Chapter 1 Overview

NEC devices provide many different peripherals. The line concept of V850ES/Fx2 and V850ES/Sx2
Microcontrollers is to use the same peripheral macros for each specific device within or across these
lines. The configuration of each peripheral is done by manipulating bits and bytes in special function
registers (SFR’s). The names of the SFR’s are short abbreviations, less good to remember. A definition
file (header file) including all register and bit definitions is available for each specific device. A fast con-
figuration presuppose a good knowledge of the peripheral and all related registers.

The Peripheral Macro Driver represent an Application Programming Interface (API) between the hard-
ware level of a device and the user program. The term Peripheral Macro Driver and Application Pro-
gramming Interface is used with the same meaning inside this document.

This software provides simple parametrized function calls to initialize and utilize the peripherals. The
names of the functions and parameters include less abbreviations and are more-or-less self-explaining.
The clarity and transparency of the program source code is improved. There is no more need to set bits
and bytes in SFR’s with cryptic abbreviations.

The description of the correct calling of the APIs with parameters is subject of this manual.
The Peripheral Macro Driver is intended for Users who have a basic understanding of the peripheral.
This document is an extension to the User’s Manual. It do not replace the description in the User’s Man-
ual.

1.1 Peripheral Macro Driver Software

The Driver uses function-like C-language macro defines. The advantage is that no code is used if they
are unused. The disadvantage is that they need more code size compared to a function call in the case
huge macros are often called. If this disadvantage should be avoided, the defines should either be
included in tiny substitute functions, or the define should be replaced by a function definition.
Many macros are conditional of input parameters. Unused code definition inside the macro is removed
by the preprocessor and the optimizing compiler. E.g. an initialization function for a timer include only
the code which is necessary for this specific timer channel. Code for initializing the other timer channels
is removed.

The Peripheral Macro Driver is written in ANSI-C language and can be used with any compiler (e.g.
Green Hills or IAR). Mainly all APIs are grouped in header files for each peripheral. A device specific file
(“device.h”) summarize the including of all header files. It includes the Special Function Register (SFR)
header, the device specific and generic Peripheral Macro Driver header. The device specific Peripheral
Macro Driver header file is necessary for the generic file and define e.g. initialization macros for port
pins etc. The generic part include the only functions which should by called by the User directly. The
macros inside the device specific Peripheral Macro Driver header file should not be used.
The software package include a demo project for Green Hills and IAR software development environ-
ment.

1.2 Supported Devices

The Peripheral Macro Driver is written for the Devices of the V850ES/Fx2 and V850ES/Sx2 Microcon-
trollers. The generic macro headers can be reused for other devices if they have included the same
peripheral macros. The device specific macro header file must be adapted to a different device. The
easiest way to do it, is to copy the device specific macro header and replace or modify the relevant sec-
tions.
11 Application Note U17330EE1V0AN00

Chapter 1 Overview
The macros support the biggest device of each family. V850ES/FJ2 of the F-Line and V850ES/SJ2 of
the S-Line are fully supported. All smaller devices represent a subset of these devices. A smaller device
uses also a subset of all APIs.

Supported devices

Notes: 1. The macros do not check the availability of the peripherals in the specific device. E.g. I²C is
not supported in non “Y”-type devices.

2. Some peripherals are less present in smaller devices. E.g. the timer channels of a small
device is also reduced compared to the biggest devices of each family. The macros do not
check the maximum channel count.

3. Please check the User’s Manual for the availability and maximum count of each peripheral.

V850ES/Fx2 Microcontrollers

µPD70F3230(A)
µPD70F3231(A)
µPD70F3232(A)
µPD70F3233(A)

µPD70F3234(A)
µPD70F3235(A)
µPD70F3236(A)
µPD70F3237(A)

µPD70F3238(A)
µPD70F3239(A)

V850ES/Sx2 Microcontrollers

µPD70F3260(A)
µPD70F3260Y(A)
µPD70F3261(A)
µPD70F3261Y(A)
µPD70F32F61(A)
µPD70F32F61Y(A)
µPD70F3262(A)
µPD70F3262Y(A)
µPD70F3263(A)
µPD70F3263Y(A)
µPD70F32F63(A)
µPD70F32F63Y(A)
µPD70F3264(A)
µPD70F3264Y(A)
µPD70F32F64(A)
µPD70F32F64Y(A)
µPD70F3265(A)
µPD70F3265Y(A)
µPD70F3266(A)
µPD70F3266Y(A)
µPD70F32F66(A)
µPD70F32F66Y(A)
µPD70F3270(A)
µPD70F3270Y(A)

µPD70F3271(A)
µPD70F3271Y(A)
µPD70F32F71(A)
µPD70F32F71Y(A)
µPD70F3272(A)
µPD70F3272Y(A)
µPD70F3273(A)
µPD70F3273Y(A)
µPD70F32F73(A)
µPD70F32F73Y(A)
µPD70F3274(A)
µPD70F3274Y(A)
µPD70F32F74(A)
µPD70F32F74Y(A)
µPD70F3275(A)
µPD70F3275Y(A)
µPD70F3276(A)
µPD70F3276Y(A)
µPD70F32F76(A)
µPD70F32F76Y(A)
µPD70F3280(A)
µPD70F3280Y(A)
µPD70F3281(A)
µPD70F3281Y(A)

µPD70F32F81(A)
µPD70F32F81Y(A)
µPD70F3282(A)
µPD70F3282Y(A)
µPD70F3283(A)
µPD70F3283Y(A)
µPD70F32F83(A)
µPD70F32F83Y(A)
µPD70F3284(A)
µPD70F3284Y(A)
µPD70F32F84(A)
µPD70F32F84Y(A)
µPD70F3285(A)
µPD70F3285Y(A)
µPD70F3286(A)
µPD70F3286Y(A)
µPD70F32F86(A)
µPD70F32F86Y(A)
µPD70F3287(A)
µPD70F3287Y(A)
µPD70F3288(A)
µPD70F3288Y(A)
µPD70F32F88(A)
µPD70F32F88Y(A)
12 Application Note U17330EE1V0AN00

Chapter 2 Peripheral Macro Driver File Structure

Only one file should be included to use the peripheral macro driver within a project. This file is called
“Device.h” and include all necessary header files for the specific device. The selection of the device is
made in the same file by one define: “MCU_TYPE” should be set to one device string select able from a
given list. Is the specific microcontroller not defined in the list, it could be created by copying and modi-
fying from a given similar device.

Include files for all devices which define all standard and special SFRs can be downloaded from NECs
web page. These files (Dxxxxx.h, DxxxxxextIO.h) are included by the header file “Device.h”.

Table 2-1: Main include files

File name Description

Device.h Include file for User Application

Dxxxxx.h Device SFRs Definitions

DxxxxxextIO.h Device special SFRs Definitions (e.g. FCAN etc.)

Macro_Dxxxxx.h Device specific macro defines

Macro.h Generic macro defines
13 Application Note U17330EE1V0AN00

Chapter 2 Peripheral Macro Driver File Structure
The generic macro defines (Macro.h) are valid for all devices including the same peripheral hardware
macros. The specific macro defines like port settings etc., are included in a device specific macro
header file (Macro_Dxxxxx.h). Only both files together create the peripheral macro driver software.

Table 2-2: Macro include files (included in Macro.h)

File name User's Manual Chapter Group

Macro_Ports.h Port Functions Ports

Macro_Bus.h Bus Control Function Ports

Macro_RTO.h Real-Time Output Function Ports

Macro_Interrupt.h Interrupt/Exception Processing Function Interrupts

Macro_KeyInt.h Key Interrupt Function Interrupts

Macro_Timer_P.h 16-Bit Timer/Event Counter P Timers

Macro_Timer_Q.h 16-Bit Timer/Event Counter Q Timers

Macro_Timer_M.h 16-Bit Interval Timer M Timers

Macro_Watchtimer.h Watch Timer Functions Timers

Macro_Watchdog.h Functions Of Watchdog Timer 2 Timers

Macro_UART_A.h Asynchronous Serial Interface A (UARTA) Serial

Macro_CSI_B.h 3-Wire Variable-Length Serial I/O (CCSIB) Serial

Macro_IIC.h I²C Bus Serial

Macro_FCAN.h FCAN not supported Serial

Macro_IEBus.h IE-Bus not supported Serial

Macro_Clk_Pwr.h Clock Generation Function Clock & Power

Stand-by Function Clock & Power

Clock Monitor Clock & Power

Reset Function Clock & Power

Low-Voltage Detector Clock & Power

RAM Retention Voltage Detection Operation Clock & Power

Macro_AD.h A/D Converter Analog

Macro_DA.h D/A Converter Analog

Macro_DMA.h DMA Controller Miscellaneous

Macro_OCD.h On Chip Debug Interface Miscellaneous

Macro_CRC.h CRC Function Miscellaneous

Macro_ROMcorr.h ROM Correction Function Miscellaneous
14 Application Note U17330EE1V0AN00

Chapter 3 API Description

3.1 Overview Application Programming Interface

This document is not a replacement for the description in the User’s Manual of all the peripherals. It
should help the User to initialize and handle the peripherals. The User’s Manual is the basic description
for each peripheral. This document describe only the usage of the peripheral macro driver.

3.1.1 Ports - Port Functions

API Short description Return

Port_Init (port, value, direction) Set value and direction -

Port_Pull-up (port, pull-up) Connect/Disconnect internal pull-up resistor -

Port_Direction (port, direction) Set port direction -

Port_Read (port) Read port port value

Port_Write (port, value) Write port -

Port_Pin_Read (port, pin) Read port pin pin level

Port_Pin_Write (port, pin, value) Write port pin -
15 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.1.2 Ports - Bus Control Function

3.1.3 Ports - Real-Time Output Function

API Short description Return

BUS_Init_bus_mode_global
(DA_bus_mode)

Set multiplexed mode (AD0-AD15, A16-An) or separate mode
(D0-D15, A0-An)

-

BUS_Init_mode_specific
(bus_width, chip_select)

Initialize bus width, DA bus and chip select port
 Initialize chip select port pin
 Set bus with for specific chip select.

-

BUS_Init_Waits(data_waits,addr_
setup_wait,addr_hold_wait,idle_s
tates,chip_select)

Initialise data wait states, address setup waits, address hold
waits and idle states

-

BUS_Init_Port_ASTB()
Only applicable if multiplexed bus mode is used
(BUS_Multiplexed_Mode)

-

BUS_Init_Address_Bus_A0_A15
(pattern)

Only applicable if separate bus mode is used
(BUS_Separate_Mode)

-

BUS_Init_Address_Bus_A16_An
(pattern)

Initialize address bus -

BUS_Init_Bus_AD0_AD7() Initialize Data bus 8 bit (BUS_Width_8_Bit) -

BUS_Init_Bus_AD0_AD15() Initialize Data bus 16 bit (BUS_Width_16_Bit) -

BUS_Init_Port_WR0() Initialize Write low strobe signal -

BUS_Init_Port_WR1() Initialize Write high strobe signal -

BUS_Init_Port_RD() Initialize Read strobe signal -

BUS_Init_Port_CLKOUT() Initialize Internal system clock output -

BUS_Init_Port_WAIT() Initialize External wait control -

BUS_Init_Port_HLDRQ() Initialize Bus hold control -

BUS_Init_Port_HLDAK() Initialize Bus hold control -

API Short description Return

RTO_Init (channels, pattern,
trigger_source, trigger_edge)

Initialize RTO; Trigger Timer is not initialized -

RTO_Enable()
Enable/Disable RTO -

RTO_Disable()

RTO_Write (channels, value) Write new value to RTO buffer -
16 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.1.4 Interrupts - Interrupt/Exception Processing Function

3.1.5 Interrupts - Key Interrupt Function

API Short description Return

Get_Interrupt_Request_Flag
(Interrupt name)

Returns value of interrupt request flag flag

Clear_Interrupt_Request_Flag
(Interrupt name)

Clears interrupt request flag -

Set_Interrupt_Trigger (Interrupt
name, trigger type)

Sets trigger for external interrupts: rising/falling edge or both
edges are possible

-

Set_Interrupt_Priority (Interrupt
name, priority)

Priority is set for any defined maskable interrupt. (Except NMI)

Caution: “priority” MUST be between 0 and 7!
-

Enable_Interrupt (Interrupt name)
Enable/Disable any defined maskable interrupt. -

Disable_Interrupt (Interrupt name)

Enable_All_Interrupts() Enable maskable interrupts global. -

Disable_All_Interrupts() Disable maskable interrupts global. -

API Short description Return

KeyInt_Init (pattern) Initialize key return unit. Pattern define used input pins -

KeyInt_Disable() Disable key return unit -
17 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.1.6 Timers - 16-Bit Timer/Event Counter P

Table 3-1: Timers - 16-Bit Timer/Event Counter P (1/2)

API Short description Return

TM_P_Interval_Mode_Init (timer, clock, interval_value,
interval_output)

Initialize the basic configuration of the timer
in the interval timer mode

-

TM_P_Interval_Mode_Phase_Init (timer, phase_value,
phase_output)

Init additionally phase value in the interval
mode.

-

TM_P_Interval_Mode_Write_Interval_Value (timer,
interval_value)

Update compare values in interval mode -

TM_P_Interval_Mode_Write_Phase_Value (timer,
phase_value)

Write phase value in the interval mode. -

TM_P_Ext_Evt_Cnt_Mode_Init (timer, input,
input_edge, event_count_value, event_count_output)

Initialize the basic configuration of the timer
in the external event count mode

-

TM_P_Ext_Evt_Cnt_Mode_Pre_Evt_Cnt_Init (timer,
pre_event_count_value, pre_event_count_output)

Init additionally pre event count value -

TM_P_Ext_Evt_Cnt_Mode_Write_Evt_Cnt_Value
(timer, event_count_value)

Update compare values in external event
count mode

-

TM_P_Ext_Evt_Cnt_Mode_Write_Pre_Evt_Cnt_Value
(timer, pre_event_count_value)

Write additionally pre event count value -

TM_P_Trg_Pulse_Mode_Init (timer, clock, input,
trigger_edge, cycle_value, cycle_output)

Initialize the basic configuration of the timer
in the trigger pulse mode

-

TM_P_Trg_Pulse_Mode_Duty_Init (timer, duty_value,
duty_output)

Init additionally duty cycle -

TM_P_Trg_Pulse_Mode_Write_Values (timer,
cycle_value, duty_value)

Update compare values in trigger pulse
mode

-

TM_P_Trg_Pulse_Mode_Write_Duty_Value (timer,
duty_value)

Write duty cycle value -

TM_P_Trg_Pulse_Mode_Write_SW_Trigger (timer)
Write sw trigger pulse as external trigger
input in trigger pulse mode

-

TM_P_One_Shot_Pulse_Mode_Init (timer, clock, input,
trigger_edge, cycle_value, cycle_output)

Initialize the basic configuration of the timer
in the one shot pulse mode

-

TM_P_One_Shot_Pulse_Mode_Delay_Init (timer,
delay_value, delay_output)

Init additionally delay time -

TM_P_One_Shot_Pulse_Mode_Write_Cycle_Value
(timer, cycle_value)

Update compare values in one shot pulse
mode

-

TM_P_One_Shot_Pulse_Mode_Write_Delay_Value
(timer, delay_value)

Write delay time -

TM_P_One_Shot_Pulse_Mode_Write_SW_Trigger
(timer)

Write sw trigger pulse as external trigger
input in one shot pulse mode

-

TM_P_PWM_Mode_Clk_Internal_Init (timer, clock,
cycle_value, cycle_output)

Initialize the basic configuration of the timer
in the pwm mode - Internal clock

-

TM_P_PWM_Mode_Clk_External_Init (timer, input,
input_edge, cycle_value, cycle_output)

Initialize the basic configuration of the timer
in the pwm mode - External clock

-

TM_P_PWM_Mode_PWM_Init (timer, pwm_value,
pwm_output)

Set PWM value -

TM_P_PWM_Mode_Write_Values (timer, cycle_value,
pwm_value)

Update compare values in PWM mode -

TM_P_PWM_Mode_Write_PWM_Value (timer,
pwm_value)

Set PWM value -
18 Application Note U17330EE1V0AN00

Chapter 3 API Description
TM_P_Free_Running_Mode_Clk_Internal_Init (timer,
clock)

Initialize the basic configuration of the timer
in the free running mode - Internal clock

-

TM_P_Free_Running_Mode_Clk_External_Init (timer,
input, input_edge)

Initialize the basic configuration of the timer
in the free running mode - External clock

-

TM_P_Free_Running_Mode_Compare_Init (timer,
cap_cmp_selection, cmp_value, output)

Init compare register -

TM_P_Free_Running_Mode_Capture_Init (timer,
cap_cmp_selection, input, input_edge)

Init capture register -

TM_P_Free_Running_Mode_Write_Compare (timer,
cap_cmp_selection, cmp_value)

Update compare values in free running
mode

-

TM_P_Pulse_Width_Measure_Mode_Init (timer, clock)
Initialize the basic configuration of the timer
in the pulse width measurement mode

-

TM_P_Pulse_Width_Measure_Mode_Capture_Init
(timer, cap_cmp_selection, input, input_edge)

Init additionally capture mode -

TM_P_Capture_Read (timer, cap_cmp_selection) Read capture value 16-bit

TM_P_Overflow_Read (timer) Read overrun flag flag

TM_P_Counter_Read (timer) Read timer counter value 16-bit

TM_P_Enable (timer)
Enable/Disable timer -

TM_P_Disable (timer)

TM_P_Input_Special (special_input, special_input_set) Special inputs; Device specific -

TM_P_Sync_Mode (timer, sync_mode) Sync mode; Device specific -

Table 3-1: Timers - 16-Bit Timer/Event Counter P (2/2)

API Short description Return
19 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.1.7 Timers - 16-Bit Timer/Event Counter Q

Table 3-2: Timers - 16-Bit Timer/Event Counter Q (1/2)

API Short description Return

TM_Q_Interval_Mode_Init (timer, clock, interval_value,
interval_output)

Initialize the basic configuration of the timer
in the interval timer mode

-

TM_Q_Interval_Mode_Phase_Init (timer,
phase_selection, phase_value, phase_output)

Init additionally phase value in the interval
mode.

-

TM_Q_Interval_Mode_Write_Interval_Value (timer,
interval_value)

Update compare values in interval mode -

TM_Q_Interval_Mode_Write_Phase_Value (timer,
phase_selection, phase_value)

Write phase value in the interval mode. -

TM_Q_Ext_Evt_Cnt_Mode_Init (timer, input,
input_edge, event_count_value, event_count_output)

Initialize the basic configuration of the timer
in the external event count mode

-

TM_Q_Ext_Evt_Cnt_Mode_Pre_Evt_Cnt_Init (timer,
pre_event_selection, pre_event_count_value,
pre_event_count_output)

Init additionally pre event count value -

TM_Q_Ext_Evt_Cnt_Mode_Write_Evt_Cnt_Value
(timer, event_count_value)

update compare values in external event
count mode

-

TM_Q_Ext_Evt_Cnt_Mode_Write_Pre_Evt_Cnt_Value
(timer, pre_event_selection, pre_event_count_value)

Write pre event count value -

TM_Q_Trg_Pulse_Mode_Init (timer, clock, input,
trigger_edge, cycle_value, cycle_output)

Initialize the basic configuration of the timer
in the trigger pulse mode

-

TM_Q_Trg_Pulse_Mode_Duty_Init (timer,
duty_selection, duty_value, duty_output, duty1_value)

Init additionally duty cycle -

TM_Q_Trg_Pulse_Mode_Write_Values (timer,
cycle_value, duty1_value, duty2_value, duty3_value)

Update compare values in trigger pulse
mode

-

TM_Q_Trg_Pulse_Mode_Write_Duty_Value (timer,
duty_selection, duty_value, duty1_value)

Write duty cycle -

TM_Q_Trg_Pulse_Mode_Write_SW_Trigger (timer)
Write sw trigger pulse as external trigger
input in trigger pulse mode

-

TM_Q_One_Shot_Pulse_Mode_Init (timer, clock, input,
trigger_edge, cycle_value, cycle_output)

Initialize the basic configuration of the timer
in the one shot pulse mode

-

TM_Q_One_Shot_Pulse_Mode_Delay_Init (timer,
delay_selection, delay_value, delay_output)

Init additionally delay time -

TM_Q_One_Shot_Pulse_Mode_Write_Cycle_Value
(timer, cycle_value)

Update compare values in one shot pulse
mode

-

TM_Q_One_Shot_Pulse_Mode_Write_Delay_Value
(timer, delay_selection, delay_value)

Write delay time -

TM_Q_One_Shot_Pulse_Mode_Write_SW_Trigger
(timer)

Write sw trigger pulse as external trigger
input in one shot pulse mode

-

TM_Q_PWM_Mode_Clk_Internal_Init (timer, clock,
cycle_value, cycle_output)

Initialize the basic configuration of the timer
in the pwm mode - Internal clock

-

TM_Q_PWM_Mode_Clk_External_Init (timer, input,
input_edge, cycle_value, cycle_output)

Initialize the basic configuration of the timer
in the pwm mode - External clock

-

TM_Q_PWM_Mode_PWM_Init (timer, pwm_selection,
pwm_value, pwm_output, pwm1_value)

Set PWM value -

TM_Q_PWM_Mode_Write_Values (timer, cycle_value,
pwm1_value, pwm2_value, pwm3_value)

Update cycle value and all PWM values -
20 Application Note U17330EE1V0AN00

Chapter 3 API Description
TM_Q_PWM_Mode_Write_PWM_Value (timer,
pwm_selection, pwm_value, pwm1_value)

Update compare values in PWM mode -

TM_Q_Free_Running_Mode_Clk_Internal_Init (timer,
clock)

Initialize the basic configuration of the timer
in the free running mode - Internal clock

-

TM_Q_Free_Running_Mode_Clk_External_Init (timer,
input, input_edge)

Initialize the basic configuration of the timer
in the free running mode - External clock

-

TM_Q_Free_Running_Mode_Compare_Init (timer,
cap_cmp_selection, cmp_value, output)

Init compare register -

TM_Q_Free_Running_Mode_Capture_Init (timer,
cap_cmp_selection, input, input_edge)

Init capture register -

TM_Q_Free_Running_Mode_Write_Compare (timer,
cap_cmp_selection, cmp_value)

Update compare values in free running
mode

-

TM_Q_Pulse_Width_Measure_Mode_Init (timer, clock)
Initialize the basic configuration of the timer
in the pulse width measurement mode

-

TM_Q_Pulse_Width_Measure_Mode_Capture_Init
(timer, cap_cmp_selection, input, input_edge)

Init additionally capture mode -

TM_Q_Capture_Read (timer, cap_cmp_selection) Read capture value 16-bit

TM_Q_Overflow_Read (timer) Read overrun flag flag

TM_Q_Counter_Read (timer) read timer counter value 16-bit

TM_Q_Enable (timer)
Enable / Disable timer -

TM_Q_Disable (timer)

TM_Q_Input_Special (special_input, special_input_set) Special inputs; Device specific -

TM_Q_Sync_Mode (timer, sync_mode) Sync mode; Device specific -

Table 3-2: Timers - 16-Bit Timer/Event Counter Q (2/2)

API Short description Return
21 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.1.8 Timers - 16-Bit Interval Timer M

3.1.9 Timers - Watch Timer Functions

3.1.10 Timers - Functions of Watchdog Timer 2

API Short description Return

TM_M_Interval_Mode_Init (clock, interval_value) Initialization (Interval mode) -

TM_M_Enable() Enable/start timer -

TM_M_Disable() Disable/stop timer -

TM_M_Set_Interval (interval_value) Modify interval time -

API Short description Return

Watch timer_Init (clock_source,
clock_watch, clock_interval)

Clock initialization of watch timer and watch interval timer.No
start of timers

-

Watch timer_Enable() Enable/Disable Watch timer register; Does not enable clock
supply to watch timer.

-
Watch timer_Disable()

Watch timer_Enable_Clk_Supply() Enable/Disable Watch timer and Watch interval timer clock
supply. Watch timer need additional enable/disable. Watch
interval timer directly start/stop.

-
Watch timer_Disable_Clk_Supply()

Watch timer_Adjust() Reset watch timer register; Same as Disable + Enable -

Watch timer_Set_Prescaler (pres-
caler, divisor)

Optional prescaler if sub clock is not used as clock source;
Device specific

-

API Short description Return

WatchDog_Set (mode, clock) Init watchdog clock supply without starting -

WatchDog_Start () Start Watchdog -

WatchDog_Reset() Reset Watchdog -

WatchDog_Generate_Overflow() Generate Watchdog overflow -> Stop/NMI/Reset -
22 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.1.11 Serial - Asynchronous Serial Interface A (UARTA)

3.1.12 Serial - 3-Wire Variable-Length Serial I/O (CCSIB)

API Short description Return

UART_A_Init (channel, mode, direction, oscilla-
tor, baudrate, bit length, parity, stop bits)

Initialize UART channel -

UART_A_Disable (channel) Disable/stop channel -

UART_A_TxEnable (channel)
Enable / Disable transmission on channel -

UART_A_TxDisable (channel)

UART_A_RxEnable (channel)
Enable / Disable reception on channel -

UART_A_RxDisable (channel)

UART_A_Tx_Status_Read (channel) Read transfer status flag (transfer in progress) flag

UART_A_Rx_Overrun_Error_Read_Clear
(channel)

Read and clear overrun error status flag

UART_A_Rx_Parity_Error_Read_Clear (chan-
nel)

Read and clear parity error status flag

UART_A_Rx_Framing_Error_Read_Clear
(channel)

Read and clear framing error status flag

UART_A_Tx_Write_Byte (channel, value) Write byte to transmit data register -

UART_A_Rx_Read_Byte (channel) Read byte from receive data register value 8-bit

API Short description Return

CSI_B_Init (channel,
clock_source, relax_level,
active_edge, mode, direction, bit
length)

Initialize CSI -

CSI_B_Set_BRG (channel, pres-
caler, divisor)

Set baud rate generator -

CSI_B_Disable (channel) Reset to default values -

CSI_B_Stop (channel) Stop SIO (Re-initialization have to be made using CSI_B_Init -

CSI_B_Transfer_Clock_Output_E
nable (channel)

Enable / Disable transfer clock output -
CSI_B_Transfer_Clock_Output_
Disable (channel)

CSI_B_Write_16bit (channel,
value_16bit)

Write 16 bit value to transmission register -

CSI_B_Write_8bi t (channel,
value_8bit)

Write 8 bit value to transmission register -

CSI_B_Read_16bit (channel) Read 16 bit value from reception register 16-bit value

CSI_B_Read_8bit (channel) Read 8 bit value from reception register 8-bit value

CSI_B_Operation (channel) Read operating status flag

CSI_B_Overrun (channel) Read overrun error status flag
23 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.1.13 Serial - I2C Bus

API Short description Return

IIC_Init (channel, clock, filter) Basic initialization of I²C peripheral -

IIC_Enable (channel)
Enable/Disable IIC module and reset status registers -

IIC_Disable (channel)

IIC_Generate_Start (channel) Generate start condition -

IIC_Generate_Stop (channel) Generate stop condition -

IIC_Acknowledge_Enable (channel)
Enable/Disable acknowledgment of received data -

IIC_Acknowledge_Disable (channel)

IIC_Wait_and_Int_8th_clock (channel)
Control of wait and Interrupt request generation -

IIC_Wait_and_Int_9th_clock (channel)

IIC_Stop_Interrupt_Enable (channel) Enable/disable generation of interrupt request when stop
condition is detected

-
IIC_Stop_Interrupt_Disable (channel)

IIC_Cancel_Wait (channel) Wait cancellation control -

IIC_Exit_Communication (channel) Exit from communications -

IIC_Get_Status_Master (channel) Master device status flag

IIC_Get_Status_Arbitration (channel) Arbitration loss detection flag

IIC_Get_Status_Extension (channel) Detection of extension code reception flag

IIC_Get_Status_Addr_Match (chan-
nel)

Matching slave addresses detection flag

IIC_Get_Status_Direction (channel) Transmit/receive status detection flag

IIC_Get_Status_Acknowledge (chan-
nel)

Acknowledge detection flag

IIC_Get_Status_Start (channel) Start condition detection flag

IIC_Get_Status_Stop (channel) Stop condition detection flag

IIC_Get_Status_Start_Issued (chan-
nel)

Start issued/rejected flag

IIC_Get_Status_Bus (channel) IIC bus status (released/communication) flag

IIC_Start_If_No_Stop (channel)
Initial start enable trigger -

IIC_No_Start_If_No_Stop (channel)

IIC_Com_Reservation_Enable (chan-
nel)

Enable / Disable Communication Reservation Function -
IIC_Com_Reservation_Disable (chan-
nel)

IIC_Digital_Filter_Enable (channel)
Enable / Disable Digital Filter -

IIC_Digital_Filter_Disable (channel)

IIC_Get_Status_SDA_Level (channel)
Get current level of SDA/SCL line level 1-bit

IIC_Get_Status_SCL_Level (channel)

IIC_Write_Data (channel, value) Write data -

IIC_Read_Data (channel) Read data 8 / 16 bit

IIC_Set_Slave_Address (channel,
address)

Set slave address -
24 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.1.14 Clock & Power - Clock Generation Function

3.1.15 Clock & Power - Standby Function

3.1.16 Clock & Power - Clock Monitor

3.1.17 Clock & Power - Reset Function

API Short description Return

Clock_Set_CPU_Clock (clock,
main_feedback, sub_feedback,
main_operation)

Set clock for CPU -

Clock_Get_CPU_Clock_Status () Read Status of CPU clock (fCPU) Enum

Clock_Set_PLL (PLL_operation,
PLL_multiplier,
PLL_Lockup_Time)

Configure PLL; (Clock base for CPU and peripherals) -

Clock_Get_PLL_Status() Get Status of PLL flag

Clock_Output_Enable (clock)
Enable / Disable clock output -

Clock_Output_Disable()

Clock_Ring_Oscl_Enable()
Enable / Disable Ring-Oscillator -

Clock_Ring_Oscl_Disable()

API Short description Return

Standby_Enter (standby_mode,
release_condition)

Entering a stand-by mode (IDLE1, IDLE2, SW_STOP) -

Oscl_Stabil_Time_Set (ost) Set Stabilization Oscillation Time -

API Short description Return

Clock_Monitor_Enable() Enable Clock Monitor. Disabling not possible -> Reset -

API Short description Return

Reset_Get_Source() Get information about reset source value

Reset_Clear_Source() Clear information about reset source -
25 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.1.18 Clock & Power - Low-Voltage Detector

3.1.19 Clock & Power - RAM Retention Voltage Detection Operation

3.1.20 Analog - A/D Converter

API Short description Return

LVI_Init (operation, generation, level) Initialize Low Voltage Detector -

LVI_Disable() Set default values -

LVI_Get_Status() Status of voltage detection flag

API Short description Return

LVI_RAM_Get_Status() The flag indicates whether the internal RAM is valid or not. flag

LVI_RAM_Clear_Status() Clear the flag -

LVI_RAM_Set_Invalid() Emulate: RAM status flag set -

LVI_RAM_Set_Valid() Emulate: RAM status flag clear -

API Short description Return

AD_Init (mode, trigger_type,
trigger_edge, time)

Initialization of A/D converter;
(Timer not initialized as src. if trigger_type=AD_Timer_Trigger)

-

AD_Enable()
Enable / Disable A/D converter operation -

AD_Disable()

AD_Select_Channel (channel) Select channel for conversion result(s) -

AD_Get_Status() Get status (Idle, Operating) flag

AD_Get_Result_10bit(channel) Get 10 bit result 16-bit

AD_Get_Result_8bit(channel) Get 8 bit result 8-bit

AD_PowerFail_Init (selection,
value)

Initialize power-fail compare mode (Enabling must be done
separately)

-

AD_PowerFail_Enable()
Enable / Disable power-fail comparison -

AD_PowerFail_Disable()

AD_PowerFail_Set_Value (value) Set value for power-fail comparison -
26 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.1.21 Analog - D/A Converter

3.1.22 Miscellaneous - DMA Controller

3.1.23 Miscellaneous - On Chip Debug Interface

API Short description Return

DA_Init (channel, mode, value) Initialize DA converter -

DA_Enable (channel) Enable/Disable DA converter channel.
Do not (re)set port pin settings.

-
DA_Disable (channel)

DA_Write_Value (channel, value) Write value to DA converter. -

API Short description Return

DMA_Init (channel, src_address,
src_location, src_direction,
dest_address, dest_location,
dest_direction, count, data_size,
trigger_src)

Initialize DMA controller channel -

DMA_Enable (channel)
Enable/Disable DMA transfer -

DMA_Disable (channel)

DMA_Trigger_By_Software
(channel)

Enable and start DMA transfer by software -

DMA_Read_Status (channel) Read DMA status (finished / in progress) flag

DMA_Terminal_Count (channel) Read DMA status (finished / in progress) Same as above flag

DMA_Clear_Request (channel) Clear DMA transfer request -

API Short description Return

OCD_Enable()
Enable / Disable On_chip debugging -

OCD_Disable()
27 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.1.24 Miscellaneous - CRC Function

3.1.25 Miscellaneous - ROM Correction Function

API Short description Return

CRC_Init() Initialize CRC unit -

CRC_Write_Next (data) Write next 16-bit data for CRC calculation -

CRC_Read_Result() Read result of CRC calculation 16-bit

API Short description Return

ROM_Correction_Init (channel,
address)

Initialize Rom Correction Function -
28 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2 Detailed Application Programming Interface

3.2.1 Ports - Port Functions

(1) Parameters

(a) port

Valid port name. E.g. P0, P7L, PDL

(b) direction

A set bit level configures the port pin to input, while a zero set the pin for output.
The maximum valid bit number is defined by the port.
1 = Input (default)
0 = Output

(c) pull-up

A set bit level connect the port pin to the pull-up resistor, while a zero set the pin to default
0 = No pull-up resistor connected (default)
1 = Pull-up resistor connected

(d) pin

Any valid pin/bit of the port.

(e) value

Any 8-/16-bit value
The maximum valid bit number is defined by the port.
29 Application Note U17330EE1V0AN00

Chapter 3 API Description
(2) Function description

(a) Port_Init (port, value, direction)

Set value and direction of the port for each pin.

(b) Port_Pull-up (port, pull-up)

Connect/Disconnect internal pull-up resistor for each pin.

(c) Port_Direction (port, direction)

Set port direction for each pin.

(d) Port_Read (port)

Return: Port levels in case of input pins, or port register levels in case of output pins.
The width is dependent of the port width and port name.

(e) Port_Write (port, value)

Write port

(f) Port_Pin_Read (port, pin)

Return: Port level in case of input pins, or port register level in case of output pins.
The width is dependent of the port width and port name.

(g) Port_Pin_Write (port, pin, value)

Write port pin
30 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.2 Ports - Bus Control Function

(1) Parameters

(a) DA_bus_mode

Choose multiplexed or separate bus mode. (Value for EXIMC register)
Following settings are possible:

• BUS_Multiplexed_Mode

• BUS_Separate_Mode

(b) bus_width

Choose bus width. (Value for BSC register)
Following settings are possible:

• BUS_Width_8_Bit

• BUS_Width_16_Bit

(c) addr_setup_wait

Choose address setup wait setting. (Value for ASC register)
Following settings are possible:

• BUS_Addr_No_Setup_Wait

• BUS_Addr_Use_Setup_Wait

(d) addr_hold_wait)

Choose address hold wait setting. (Value for ASC register)
Following settings are possible:

• BUS_Addr_No_Hold_Wait

• BUS_Addr_Use_Hold_Wait

(e) idle_state

Choose idle wait setting. (Value for BCC register)
Following settings are possible:

• BUS_No_Idle_State

• BUS_Use_Idle_State

(f) data_waits

Choose data wait setting. (Value for DWC0/1 register)
Following settings are possible:
BUS_Data_Waits_0, BUS_Data_Waits_1, BUS_Data_Waits_2, BUS_Data_Waits_3,
BUS_Data_Waits_4, BUS_Data_Waits_5, BUS_Data_Waits_6, BUS_Data_Waits_7
31 Application Note U17330EE1V0AN00

Chapter 3 API Description
(2) Function description

(a) BUS_Init_bus_mode_global(DA_bus_mode)

Set multiplexed mode (AD0-AD15, A16-An) or separate mode (D0-D15, A0-An) for the ext. bus.
This setting is valid for the whole external area.
The initialization of the bus and control bins must be done separately.

(b) BUS_Init_mode_specific(bus_width,chip_select)

Initialize bus width, DA bus and chip select port.
Initialize chip select port pin.
Set bus with for specific chip select.

(c) BUS_Init_Waits(data_waits,addr_setup_wait,addr_hold_wait,idle_states,chip_select)

Initialise data wait states, address setup waits, address hold waits and idle states.
This setting is valid for only the chosen chip select signal.

(d) BUS_Init_Port_ASTB()

Initialize address strobe pin.
Only applicable if multiplexed bus mode is used (BUS_Multiplexed_Mode).
This configures the pin for this alternate function.

(e) BUS_Init_Address_Bus_A0_A15(pattern)

A set bit level configure the corresponding address pin as alternate function (address output).
Only applicable if separate bus mode is used (BUS_Separate_Mode)

(f) BUS_Init_Address_Bus_A16_An(pattern)

Initialize address bus
A set bit level configure the corresponding address pin as alternate function (address output).

(g) BUS_Init_Bus_AD0_AD7()

Initialize Data bus 8 bit (BUS_Width_8_Bit)
This configures the lower eight bit of the 16-bit bus for this alternate function. The upper eight bit
remain their previous setting (I/O port).

(h) BUS_Init_Bus_AD0_AD15()

Initialize Data bus 16 bit (BUS_Width_16_Bit).This configures the whole 16-bit bus for this alter-
nate function.

(i) BUS_Init_Port_WR0()

Initialize Write low strobe signal for output.

(j) BUS_Init_Port_WR1()

Initialize Write high strobe signal for output.

(k) BUS_Init_Port_RD()

Initialize Read strobe signal for output.
32 Application Note U17330EE1V0AN00

Chapter 3 API Description
(l) BUS_Init_Port_CLKOUT()

Initialize Internal system clock output. The clock signal can be used to supply external devices.

(m) BUS_Init_Port_WAIT()

Initialize External wait control. An external device could shortly hold the bus.

(n) BUS_Init_Port_HLDRQ()

Initialize Bus hold control. An external device can use the bus as master. This signal is a request
for mastering.

(o) BUS_Init_Port_HLDAK()

Initialize Bus hold control. An external device can use the bus as master. This signal is the
acknowledge to the request for mastering. The external device can now use the bus as master.
33 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.3 Ports - Real-Time Output Function

(1) Parameters

(a) trigger_source

Choose timer to trigger RTO.
Following settings are possible:

• RTO_2Bit_P5_4Bit_P4

• RTO_2Bit_P4_4Bit_P0

• RTO_6Bit_P0

• RTO_6Bit_P4

(b) trigger_edge

Choose trigger edge for RTO.
Following settings are possible:

• RTO_Edge_Falling

• RTO_Edge_Rising

(c) channels

Choose channel for data output.
Following settings are possible:

• RTO_2Bit_Channel, RTO_4Bit_Channel, RTO_6Bit_Channel

(d) pattern

A set bit level configure the corresponding pin as alternate function (RTO).

(2) Function description

(a) RTO_Init (channels, pattern, trigger_source, trigger_edge)

Initialize RTO; Trigger timer is not initialized. The timer interrupt request will trigger the copy from
the buffer register to the output port.
The “pattern” choose the port pins which should be used for this function. All other pins (low level
in “patter”) will remain their function.

(b) RTO_Enable() / RTO_Disable()

Enable/Disable RTO

(c) RTO_Write (channels, value)

Write new value to RTO buffer. The value is not directly transferred to the port. Only the trigger
timer will initiate a copy.
34 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.4 Interrupts - Interrupt/Exception Processing Function

(1) Parameters

(a) Interrupt name

The valid interrupt source names are device specific.

• e.g. V850ES/FJ2: INTLVI, INTP0, INTP1, INTP2, INTP3, INTP4, INTP5, INTP6, INTP7,
INTTQ0OV, INTTQ0CC0, INTTQ0CC1, INTTQ0CC2,..., INTC3REC, INTC3TRX

(b) trigger type

Following settings are possible:

• INT_NO_EDGE, INT_RISING_EDGE, INT_FALLING_EDGE, INT_BOTH_EDGES

(c) priority

The highest priority has the value 0. The lowest priority has the value 7.
In human neighbourhood the lowest value should be zero while the higher values are counting up.
Because of this, the following constants have a vice versa count direction.
Following settings are possible:

• INT_LEVEL_0=7, INT_LEVEL_1, INT_LEVEL_2, INT_LEVEL_3, INT_LEVEL_4,
INT_LEVEL_5, INT_LEVEL_6, INT_LEVEL_7=0

• INT_LOWEST (= INT_LEVEL0)

• INT_HIGHEST (= INT_LEVEL7)
35 Application Note U17330EE1V0AN00

Chapter 3 API Description
(2) Function description

(a) Get_Interrupt_Request_Flag (Interrupt name)

Return: Level of interrupt request flag
This macro can be used to poll an interrupt flag.

(b) Clear_Interrupt_Request_Flag (Interrupt name)

Clears interrupt request flag.
The interrupt source or the software can set the flag again to request an interrupt.

(c) Set_Interrupt_Trigger (Interrupt name, trigger type)
Sets trigger for external interrupts: rising/falling edge or both edges are possible

(d) Set_Interrupt_Priority (Interrupt name, priority)
Priority is set for any defined maskable interrupt. (Except NMI)

Caution: The value of “priority” must be between 0 and 7!

(e) Enable_Interrupt (Interrupt name) / Disable_Interrupt (Interrupt name)

Enable/Disable any defined maskable interrupt.

(f) Enable_All_Interrupts() / Disable_All_Interrupts()

Enable / Disable maskable interrupts global. The interrupt controller will be enabled or disabled.
The setting by Enable_Interrupt(...)/Disable_Interrupt(...) is unaffected by these macros. All other
macros for the interrupt controller can be made independently.It does not modify the interrupt con-
trol register of any maskable interrupt source.
The macro is equal to the “ei” or “di” assembly instruction.
36 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.5 Interrupts - Key Interrupt Function

(1) Parameters

(a) pattern

A set bit level configure the corresponding pin as alternate function (Key Interrupt pin).

(2) Function description

(a) KeyInt_Init (pattern)

Initialize key return unit. The corresponding pin to a high bit in the parameter “pattern” will be con-
figured to accept a falling edge. A falling edge will generate the INTKR interrupt request.
The interrupt must be enabled separately. See 3.1.4 on page 17 for details.

(b) KeyInt_Disable()

Disable key return unit.
Does not reset the port pin settings.
37 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.6 Timers - 16-Bit Timer/Event Counter P

(1) Parameters

(a) timer

Choose timer macro.

Caution: Device specific timer count.

• e.g. V850ES/FJ2: TM_P_0=0, TM_P_1=1, TM_P_2=2, TM_P_3=3

(b) clock_source

Choose clock source for timer.

Caution: Device and timer specific clock sources. Not all combinations are possible.

• e.g. V850ES/FJ2: TM_P_Clk_FXX, TM_P_Clk_FXX_2, TM_P_Clk_FXX_4, TM_P_Clk_FXX_8,
TM_P_Clk_FXX_16, TM_P_Clk_FXX_32, TM_P_Clk_FXX_64, TM_P_Clk_FXX_128,
TM_P_Clk_FXX_FXT, TM_P_Clk_Extern

(c) input_edge, ext_trigger_edge, trigger_edge

Choose valid edge of input.
Following settings are possible:

• TM_P_Input_No_Edge

• TM_P_Input_Falling_Edge

• TM_P_Input_Rising_Edge

• TM_P_Input_Both_Edges

(d) sync_mode

Synchronisation with another timer.

Caution: Device specific. Not all timer can be synchronized.

Following settings are possible:

• TM_P_No_Sync

• TM_P_Sync

(e) interval_output, phase_output, event_count_output, pre_event_count_output,
cycle_output, duty_output, delay_output, pwm_output, output

Choose if port pin should be configured as timer output.
Following settings are possible:

• TM_P_Output_No_Output

• TM_P_Output_Normal

• TM_P_Output_Inverted
38 Application Note U17330EE1V0AN00

Chapter 3 API Description
(f) cap_cmp_selection, phase_selection, pre_event_selection, duty_selection,
delay_selection, pwm_selection

Timer P include two capture or compare registers:

• TM_P_Cap_Cmp_0=0, TM_P_Cap_Cmp_1=1

(g) input

Choose if timer input pin should be used for counting, or capturing.

• TM_P_Input_No_Input, TM_P_Input_External_Input

(h) special_input_set

Instead of using an external device pin for capturing or counting, an internal signal can be used as
external timer input.

Caution: Device and timer specific.

• TM_P_Special_Input_Reset, TM_P_Special_Input_Set

(i) special_input

Instead of using an external device pin for capturing or counting, an internal signal can be used as
external timer input. The timer should be configured for external input.
Choose internal source.

Caution: Device and timer specific. This is an example for V850ES/FJ2.

• TM_P_INPUT_TMP00_CAN0_TSOUT

• TM_P_INPUT_TMP01_CAN1_TSOUT

• TM_P_INPUT_TMP01_TMM_INTTM0EQ

• TM_P_INPUT_TMP10_RXDA0

• TM_P_INPUT_TMP10_RXDA1

• TM_P_INPUT_TMP20_CAN2_TSOUT

• TM_P_INPUT_TMP21_CAN3_TSOUT

• TM_P_INPUT_TMP30_RXDA2

• TM_P_INPUT_TMP31_RXDA3
39 Application Note U17330EE1V0AN00

Chapter 3 API Description
(2) Function description

The interrupts for each channel must be enabled separately. See 3.1.4 on page 17 for details.

(a) TM_P_Interval_Mode_Init (timer, clock, interval_value, interval_output)

Initialize the basic configuration of the timer in the interval timer mode.

The timer count up starting at zero to the value of the interval value. Then the timer register is
reset, an interrupt request (INTTPnCC0) is set and if the output is enabled, the output (TOPn0)
toggles. The output toggle each time the interval value matches the timer.

(b) TM_P_Interval_Mode_Phase_Init (timer, phase_value, phase_output)

Init additionally phase value in the interval mode.
This is optional.

The interrupt request INTTPnCC1 is generated when the timer register matches the phase value.
The phase value must be smaller or equal than the interval value, otherwise it would never be
reached, because the interval value is the greatest value of the timer.
The output (TOPn1) toggle each time the phase value matches the timer.

(c) TM_P_Interval_Mode_Write_Interval_Value (timer, interval_value)

Update new compare values in interval mode.
The value is directly written to the compare registers (TPnCCR0) of the timer.

(d) TM_P_Interval_Mode_Write_Phase_Value (timer, phase_value)

Write new phase value in the interval mode.
The value is directly written to the compare registers (TPnCCR1) of the timer.

(e) TM_P_Ext_Evt_Cnt_Mode_Init (timer, input, input_edge, event_count_value,
event_count_output)

Initialize the basic configuration of the timer in the external event count mode.

Usually, this mode is used to count edges from an external device pin (input =
TM_P_Input_External_Input). The edge to count can be specified by “input_edge”. Positive, nega-
tive or both edges can be specified. (None is also possible, but less useful.)
The counter start at zero and count up to the “event_count_value”. Then the counter is reset, an
interrupt request (INTTPnCC0) is set and if the output is enabled, the output (TOPn0) toggles.
Often, the input pin TIPn0 is shared with the output pin TOPn0 in the devices. In this case, no out-
put can be generated while counting external signals.

(f) TM_P_Ext_Evt_Cnt_Mode_Pre_Evt_Cnt_Init (timer, pre_event_count_value,
pre_event_count_output)

Init additionally pre-event count value.
This is optional.

The interrupt request INTTP0CC1 is generated when the counter register matches the pre-event
count value.
The pre-event count value must be smaller or equal than the event count value, otherwise it would
never be reached, because the event count value is the greatest value of the counter.
The output (TOPn1) toggle each time the pre-event value matches the counter.
40 Application Note U17330EE1V0AN00

Chapter 3 API Description
(g) TM_P_Ext_Evt_Cnt_Mode_Write_Evt_Cnt_Value (timer, event_count_value)

Update compare values in external event count mode
The value is directly written to the compare registers (TPnCCR0) of the timer.

(h) TM_P_Ext_Evt_Cnt_Mode_Write_Pre_Evt_Cnt_Value (timer, pre_event_count_value)

Write additionally pre-event count value
The value is directly written to the compare register (TPnCCR1) of the timer.

(i) TM_P_Trg_Pulse_Mode_Init (timer, clock, input, trigger_edge, cycle_value,
cycle_output)

Initialize the basic configuration of the timer in the trigger pulse mode.

The timer count up by the “clock” source to the “cycle_value”. Then the timer is reset, an interrupt
request (INTTPnCC0) is set and if the output is enabled, the output (TOPn0) toggle. The timer run
free till an external valid edge is recognized. A valid edge reset the timer again to zero and toggle
the timer output (TOPn0). The timer output toggle either upon a match of the cycle value or a valid
input edge. (The cycle output TOPn0 is not the triggered pulse. See next macro.)
The width of the generated pulse (TOPn1) is defined by the duty value. The duty value is set by
the following macro.
If the timer should be triggered by software, set input = TM_P_Input_No_Input.
Often, the input pin TIPn0 is shared with the output pin TOPn0 in the devices. In this case, no out-
put can be generated while triggering by an external signal.

(j) TM_P_Trg_Pulse_Mode_Duty_Init (timer, duty_value, duty_output)

Init additionally duty cycle.

The width of the generated pulse (duty output - TOPn1) is defined by the duty value. The output
TOPn1 is set by a reset of the timer. This is either the case by reaching the cycle value, or recog-
nizing a valid input edge. The output is reset when the timer reaches the duty value.

(k) TM_P_Trg_Pulse_Mode_Write_Values (timer, cycle_value, duty_value)

Update compare values in trigger pulse mode.
The values are reloaded automatically when the previous cycle value resets the timer.

(l) TM_P_Trg_Pulse_Mode_Write_Duty_Value (timer, duty_value)

Write duty cycle value
The value is reloaded automatically when the cycle value resets the timer.

(m) TM_P_Trg_Pulse_Mode_Write_SW_Trigger (timer)

Write sw trigger pulse as external trigger input in trigger pulse mode.

The timer register is reset once and continue operating in the Trigger Pulse Mode. A pulse will be
generated if output (TOPn1) is enabled.
41 Application Note U17330EE1V0AN00

Chapter 3 API Description
(n) TM_P_One_Shot_Pulse_Mode_Init (timer, clock, input, trigger_edge, cycle_value,
cycle_output)

Initialize the basic configuration of the timer in the one shot pulse mode.

The timer count up by the “clock” source to the “cycle_value”. Then the timer is reset, an interrupt
request (INTTPnCC0) is set and if the output is enabled, the output (TOPn0) toggle. The timer wait
till an external valid edge is recognized. A valid edge start the timer and toggle the timer output
(TOPn0). The timer output toggle either upon a match of the cycle value or a valid input edge. (The
cycle output TOPn0 is not the triggered pulse. See next macro.)
The start of the generated delayed pulse (TOPn1) is defined by the delay value. The delay value is
set by the following macro.
If the timer should be triggered by software, set input = TM_P_Input_No_Input.
Often, the input pin TIPn0 is shared with the output pin TOPn0 in the devices. In this case, no out-
put can be generated while triggering by an external signal.

(o) TM_P_One_Shot_Pulse_Mode_Delay_Init (timer, delay_value, delay_output)

Init additionally delay time

The start of the generated delayed pulse (delay output, TOPn1) is defined by the delay value. The
output TOPn1 is reset by a reset of the timer. This is the case by reaching the cycle value. The out-
put is set when the timer reaches the delay value. After reaching the delay value, the timer con-
tinue counting till it reached the cycle value. Then it reset and wait for a next trigger edge.
While the timer count before he reached the cycle value, every valid input edge is ignored. The
external trigger is only processed while the timer wait after it reaches the cycle value.

(p) TM_P_One_Shot_Pulse_Mode_Write_Cycle_Value (timer, cycle_value)

Update compare value in one shot pulse mode
The value is directly written to the compare registers of the timer.

(q) TM_P_One_Shot_Pulse_Mode_Write_Delay_Value (timer, delay_value)

Write delay time
The value is directly written to the compare registers of the timer.

(r) TM_P_One_Shot_Pulse_Mode_Write_SW_Trigger (timer)

Write sw trigger pulse as external trigger input in one shot pulse mode
The timer is started in the Trigger Pulse Mode. A delayed pulse will be generated if delay output
TOPn1 is enabled.

(s) TM_P_PWM_Mode_Clk_Internal_Init (timer, clock, cycle_value, cycle_output)

Initialize the basic configuration of the timer in the PWM mode - Internal clock

The PWM is output on the TOPn1 pin. The cycle output TOPn0 toggle upon a match of the timer
and the cycle value.
This macro is used when an internal clock is used to supply the timer.
42 Application Note U17330EE1V0AN00

Chapter 3 API Description
(t) TM_P_PWM_Mode_Clk_External_Init (timer, input, input_edge, cycle_value,
cycle_output)

Initialize the basic configuration of the timer in the PWM mode - External clock

The PWM is output on the TOPn1 pin. The cycle output TOPn0 toggle upon a match of the timer
and the cycle value.
This macro is used when an external clock is used to supply the timer.
Often, the input pin TIPn0 is shared with the output pin TOPn0 in the devices. In this case, no out-
put can be generated while an external clock supply is used.

(u) TM_P_PWM_Mode_PWM_Init (timer, pwm_value, pwm_output)

Set PWM value and PWM output TOPn1.

(v) TM_P_PWM_Mode_Write_Values (timer, cycle_value, pwm_value)

Update cycle and width values in PWM mode.
The values are reloaded automatically when the previous cycle value resets the timer.

(w) TM_P_PWM_Mode_Write_PWM_Value (timer, pwm_value)

Set PWM value
The value is reloaded automatically when the previous cycle value resets the timer.

(x) TM_P_Free_Running_Mode_Clk_Internal_Init (timer, clock)

Initialize the basic configuration of the timer in the free running mode - Internal clock

The timer run free with the supplied clock. It is reset at 0xFFFF and generate an overflow interrupt
request INTTPnOV.

(y) TM_P_Free_Running_Mode_Clk_External_Init (timer, input, input_edge)

Initialize the basic configuration of the timer in the free running mode - External clock

The timer run free with the supplied clock. It is reset at 0xFFFF and generate an overflow interrupt
request INTTPnOV.

(z) TM_P_Free_Running_Mode_Compare_Init (timer, cap_cmp_selection, cmp_value, out-
put)

Init compare register.

One of the available capture/compare registers is configured as compare register. When the timer
matches the compare value (’cmp_value’), it generates an interrupt request INTTPnm for the cho-
sen register m. If output is enabled, it toggles the output pin TOPnm.
43 Application Note U17330EE1V0AN00

Chapter 3 API Description
(aa)TM_P_Free_Running_Mode_Capture_Init (timer, cap_cmp_selection, input,
input_edge)

Init capture register

One of the available capture/compare registers is configured as capture register. When a valid
edge is recognized at the timer input TIPnm, it generates an interrupt request INTTPnm for the
chosen register m. The current timer value is transferred to the capture register m. (The timer con-
tinue counting up.) The captured values can be read with the TM_P_Capture_Read (timer) macro.
If output is enabled, it toggles the output pin TOPnm.
Often, the input pin TIPn0 is shared with the output pin TOPn0 in the devices. In this case, no out-
put can be generated while an external trigger signal is used for capturing.

(ab)TM_P_Free_Running_Mode_Write_Compare (timer, cap_cmp_selection, cmp_value)

Update compare value in free running mode.
The compare value is directly reloaded to the compare register of the timer.

(ac)TM_P_Pulse_Width_Measure_Mode_Init (timer, clock)

Initialize the basic configuration of the timer in the pulse width measurement mode.

(ad)TM_P_Pulse_Width_Measure_Mode_Capture_Init (timer, cap_cmp_selection, input,
input_edge)

Init additionally capture mode.

One of the available capture/compare registers is configured as capture register. When a valid
edge is recognized at the timer input TIPnm, it generates an interrupt request INTTPnm for the
chosen register m. The current timer value is transferred to the capture register m and the timer
restarts at zero. The captured value can be read with the TM_P_Capture_Read (timer) macro.
If a special input should be used as input source, “input” should be “TM_P_Input_External_Input”
and the special input should be selected with the TM_P_Input_Special(...) macro.

Useful for pulse with measurement is configuring one register for capturing at rising edge, the
other for falling edge. The captured value in the register of the rising edge represents the time of
the low phase of the signal. The captured value in the register of the falling edge represents the
time of the high phase of the signal. The cycle of the signal can be calculated by adding both cap-
tured values.

(ae)TM_P_Capture_Read (timer, cap_cmp_selection)

Return: 16-bit value of captured timer value

(af) TM_P_Overflow_Read (timer)

Return: Overrun flag

(ag)TM_P_Counter_Read (timer)

Return: Current timer counter value

(ah)TM_P_Enable (timer) / TM_P_Disable (timer)

Enable/Disable timer.
Start/Stop timer.
44 Application Note U17330EE1V0AN00

Chapter 3 API Description
(ai) TM_P_Input_Special (special_input, special_input_set)

Special inputs; Device specific

Some timers in a device allow a special input for capturing or clock supply. The Timer is configured
to use an external signal. This external signal could be at a port pin or an internal redirected sig-
nal.
This mode is useful for baud rate measurements or similar purposes.
Please tale a look to the User’s Manual for informations about allowed combinations.

(aj) TM_P_Sync_Mode (timer, sync_mode)

Sync mode; Device specific

Some timers in a device allow a synchronization of two timers. One timer is the Master timer and
its clock supply and cycle time is copied to the second slave timer. The slave timer can use all of
its capture/compare registers while the master timer configures the clock supply and cycle time.
This is for example useful for synchronous multi-channel PWM outputs.
Please take a look to the User’s Manual for informations about allowed combinations.
45 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.7 Timers - 16-Bit Timer/Event Counter Q

(1) Parameters

(a) timer

Choose timer macro.

Caution: Device specific timer count.

• e.g. V850ES/FJ2: TM_Q_0=0, TM_Q_1=1, TM_Q_2=2

(b) clock_source

Choose clock source for timer.

Caution: Device and timer specific clock sources. Not all combinations are possible.

• e.g. V850ES/FJ2: TM_Q_Clk_FXX, TM_Q_Clk_FXX_2, TM_Q_Clk_FXX_4,
TM_Q_Clk_FXX_8, TM_Q_Clk_FXX_16, TM_Q_Clk_FXX_32, TM_Q_Clk_FXX_64,
TM_Q_Clk_FXX_128, TM_Q_Clk_Extern

(c) input_edge, ext_trigger_edge, trigger_edge

Choose valid edge of input.
Following settings are possible:

• TM_Q_Input_No_Edge

• TM_Q_Input_Falling_Edge

• TM_Q_Input_Rising_Edge

• TM_Q_Input_Both_Edges

(d) interval_output, phase_output, event_count_output, pre_event_count_output,
cycle_output, duty_output, delay_output, pwm_output, output

Choose if port pin should be configured as timer output.
Following settings are possible:

• TM_Q_Output_No_Output

• TM_Q_Output_Normal

• TM_Q_Output_Inverted

(e) cap_cmp_selection, phase_selection, pre_event_selection, duty_selection,
delay_selection, pwm_selection

Timer Q include four capture or compare registers.
Following constants can be used to choose one register:

• TM_Q_Cap_Cmp_0=0, TM_Q_Cap_Cmp_1=1, TM_Q_Cap_Cmp_2=2, TM_Q_Cap_Cmp_3=3

TM_Q_Cap_Cmp_0 often has a special purpose. It defines the cycle time for example in many
timer modes. Please take a look to the function description to confirm if register zero can be cho-
sen. TM_Q_Cap_Cmp_1 to TM_Q_Cap_Cmp_3 can usually be used freely.
46 Application Note U17330EE1V0AN00

Chapter 3 API Description
(f) input

Choose if timer input pin should be used for counting, or capturing.

• TM_Q_Input_No_Input, TM_Q_Input_External_Input

(g) sync_mode
Synchronisation with another timer.

Caution: Device specific. Not all timer can be synchronized.

Following settings are possible:

• TM_Q_No_Sync

• TM_Q_Sync

(2) Function description

(a) TM_Q_Interval_Mode_Init (timer, clock, interval_value, interval_output)

Initialize the basic configuration of the timer in the interval timer mode.

The timer count up starting at zero to the value of the interval value. Then the timer register is
reset, an interrupt request (INTTQnCC0) is set and if the output is enabled, the output (TOQn0)
toggles. The output toggle each time the interval value matches the timer.

(b) TM_Q_Interval_Mode_Phase_Init (timer, phase_selection, phase_value, phase_output)

Init additionally phase value in the interval mode.
This is optional.

While the first compare register (0) is used for the interval time, three compare registers are left for
the phase. “phase_selection” must be between TM_Q_Cap_Cmp_1 and TM_Q_Cap_Cmp_3
(m=1-3).
The interrupt request INTTQnCCm is generated when the timer register matches the phase value.
The phase value must be smaller or equal than the interval value, otherwise it would never be
reached, because the interval value is the greatest value of the timer.
The output (TOQnm) toggle each time the phase value matches the timer.

(c) TM_Q_Interval_Mode_Write_Interval_Value (timer, interval_value)

Update compare values in interval mode
The value is directly written to the compare registers (TQnCCR0) of the timer.

(d) TM_Q_Interval_Mode_Write_Phase_Value (timer, phase_selection, phase_value)

Write phase value in the interval mode.
The value is directly written to the compare registers (TQnCCRm) of the timer.

(e) TM_Q_Ext_Evt_Cnt_Mode_Init (timer, input, input_edge, event_count_value,
event_count_output)

Initialize the basic configuration of the timer in the external event count mode.

Usually, this mode is used to count edges from an external device pin
(input = TM_P_Input_External_Input). The edge to count can be specified by “input_edge”.
Positive, negative or both edges can be specified. (None is also possible, but less useful.)
47 Application Note U17330EE1V0AN00

Chapter 3 API Description
The counter start at zero and count up to the “event_count_value”. Then the counter is reset, an
interrupt request (INTTQnCC0) is set and if the output is enabled, the output (TOQn0) toggles.
Often, the input pin TIQn0 is shared with the output pin TOQn0 in the devices. In this case, no out-
put can be generated while counting external signals.

(f) TM_Q_Ext_Evt_Cnt_Mode_Pre_Evt_Cnt_Init (timer, pre_event_selection,
pre_event_count_value, pre_event_count_output)

Init additionally pre-event count value.
This is optional.

While the first compare register (0) is used for the event time, three compare registers are left for
the pre-event. The value of “pre_event_selection” should be between TM_Q_Cap_Cmp_1 and
TM_Q_Cap_Cmp_3 (m=1-3).
The interrupt request INTTQ0CCm is generated when the counter register matches the pre-event
count value.
The pre-event count values must be smaller or equal than the event count value, otherwise they
would never be reached, because the event count value is the greatest value of the counter.
The output (TOQnm) toggle each time the pre-event value matches the counter.

(g) TM_Q_Ext_Evt_Cnt_Mode_Write_Evt_Cnt_Value (timer, event_count_value)

Update compare values in external event count mode
The value is directly written to the compare registers of the timer.

(h) TM_Q_Ext_Evt_Cnt_Mode_Write_Pre_Evt_Cnt_Value (timer, pre_event_selection,
pre_event_count_value)

Write additionally pre-event count value
The value is directly written to the compare registers of the timer.

TM_Q_Cap_Cmp_0 (m=0) should not be used for “pre_event_selection”, because this register
define the event count value.

(i) TM_Q_Trg_Pulse_Mode_Init (timer, clock, input, trigger_edge, cycle_value,
cycle_output)

Initialize the basic configuration of the timer in the trigger pulse mode.

The timer count up by the “clock” source to the “cycle_value”. Then the timer is reset, an interrupt
request (INTTQnCC0) is set and if the output is enabled, the output (TOQn0) toggle. The timer run
free till an external valid edge is recognized. A valid edge reset the timer again to zero and toggle
the timer output (TOQn0). The timer output toggle either upon a match of the cycle value or a valid
input edge. (The cycle output TOQn0 is not the triggered pulse. See next macro.)
The width of the generated pulses (TOQnm) are defined by the duty values. The duty values are
set by the following macro.
If the timer should be triggered by software, set input = TM_Q_Input_No_Input.
Often, the input pin TIQn0 is shared with the output pin TOQn0 in the devices. In this case, no out-
put can be generated while triggering by an external signal.
48 Application Note U17330EE1V0AN00

Chapter 3 API Description
(j) TM_Q_Trg_Pulse_Mode_Duty_Init (timer, duty_selection, duty_value, duty_output,
duty1_value)

Init additionally duty cycle.

The width of the generated pulse (duty output - TOQnm) is defined by the duty value. The output
TOQnm is set by a reset of the timer. This is either the case by reaching the cycle value, or recog-
nizing a valid input edge. The output is reset when the timer reaches the duty value.

TM_Q_Cap_Cmp_0 (m=0) should not be used for “duty_selection”, because this register define
the cycle value.

(k) TM_Q_Trg_Pulse_Mode_Write_Values (timer, cycle_value, duty1_value, duty2_value,
duty3_value)

Update compare values in trigger pulse mode.
The values are reloaded automatically when the previous cycle value resets the timer.

(l) TM_Q_Trg_Pulse_Mode_Write_Duty_Value (timer, duty_selection, duty_value,
duty1_value)

Write duty cycle value
The value is reloaded automatically when the cycle value resets the timer.

TM_Q_Cap_Cmp_0 should not be used for “duty_selection”, because this register define the cycle
value.

(m) TM_Q_Trg_Pulse_Mode_Write_SW_Trigger (timer)

Write sw trigger pulse as external trigger input in trigger pulse mode.

The timer register is reset once and continue operating in the Trigger Pulse Mode. Pulses will be
generated if outputs (TOPnm) are enabled.

(n) TM_Q_One_Shot_Pulse_Mode_Init (timer, clock, input, trigger_edge, cycle_value,
cycle_output)

Initialize the basic configuration of the timer in the one shot pulse mode.

The timer count up by the “clock” source to the “cycle_value”. Then the timer is reset, an interrupt
request (INTTQnCC0) is set and if the output is enabled, the output (TOQn0) toggle. The timer
wait till an external valid edge is recognized. A valid edge start the timer and toggle the timer out-
put (TOQn0). The timer output toggle either upon a match of the cycle value or a valid input edge.
(The cycle output TOQn0 is not the triggered pulse. See next macro.)
The start of the generated delayed pulses (TOQnm) are defined by the delay values. The delay
values are set by the following macro.
If the timer should be triggered by software, set input = TM_P_Input_No_Input.
Often, the input pin TIQn0 is shared with the output pin TOQn0 in the devices. In this case, no out-
put can be generated while triggering by an external signal.
49 Application Note U17330EE1V0AN00

Chapter 3 API Description
(o) TM_Q_One_Shot_Pulse_Mode_Delay_Init (timer, delay_selection, delay_value,
delay_output)

Init additionally delay time.

The start of the generated delayed pulse (delay output, TOPnm) is defined by the delay value. The
output TOPnm is reset by a reset of the timer. This is the case by reaching the cycle value. The
output is set when the timer reaches the delay value. After reaching the delay value, the timer con-
tinue counting till it reached the cycle value. Then it reset and wait for a next trigger edge.
While the timer count before he reached the cycle value, every valid input edge is ignored. The
external trigger is only processed while the timer wait after it reaches the cycle value.

TM_Q_Cap_Cmp_0 (m=0) should not be used for “delay_selection”, because this register define
the cycle value.

(p) TM_Q_One_Shot_Pulse_Mode_Write_Cycle_Value (timer, cycle_value)

Update compare values in one shot pulse mode.
The value is directly written to the compare registers of the timer.

(q) TM_Q_One_Shot_Pulse_Mode_Write_Delay_Value (timer, delay_selection, delay_value)

Write delay time
The value is directly written to the compare registers of the timer.

(r) TM_Q_One_Shot_Pulse_Mode_Write_SW_Trigger (timer)

Write sw trigger pulse as external trigger input in one shot pulse mode
The timer is started in the Trigger Pulse Mode. A delayed pulses will be generated if delay output
TOQnm is enabled.

(s) TM_Q_PWM_Mode_Clk_Internal_Init (timer, clock, cycle_value, cycle_output)

Initialize the basic configuration of the timer in the PWM mode - Internal clock

The PWMs are output on the TOQnm pins. The cycle output TOPn0 toggle upon a match of the
timer and the cycle value.
This macro is used when an internal clock is used to supply the timer.

(t) TM_Q_PWM_Mode_Clk_External_Init (timer, input, input_edge, cycle_value,
cycle_output)

Initialize the basic configuration of the timer in the PWM mode - External clock

The PWMs are output on the TOQnm pins. The cycle output TOQn0 toggle upon a match of the
timer and the cycle value.
This macro is used when an external clock is used to supply the timer.
Often, the input pin TIQn0 is shared with the output pin TOQn0 in the devices. In this case, no out-
put can be generated while an external clock supply is used.

(u) TM_Q_PWM_Mode_PWM_Init (timer, pwm_selection, pwm_value, pwm_output,
pwm1_value)

Set PWM value and PWM output TOPnm.

TM_Q_Cap_Cmp_0 (m=0) should not be used for “pwm_selection”, because this register define
the cycle value.
50 Application Note U17330EE1V0AN00

Chapter 3 API Description
(v) TM_Q_PWM_Mode_Write_Values (timer, cycle_value, pwm1_value, pwm2_value,
pwm3_value)

Update cycle value and all PWM values
The values are reloaded automatically when the previous cycle value resets the timer.

(w) TM_Q_PWM_Mode_Write_PWM_Value (timer, pwm_selection, pwm_value,
pwm1_value)

The values are reloaded automatically when the previous cycle value resets the timer.
Update cycle and width values in PWM mode.

TM_Q_Cap_Cmp_0 should not be used for “pwm_selection”, because this register define the
cycle value.

(x) TM_Q_Free_Running_Mode_Clk_Internal_Init (timer, clock)

Initialize the basic configuration of the timer in the free running mode - Internal clock

The timer run free with the supplied clock. It is reset at 0xFFFF and generate an overflow interrupt
request INTTQnOV.

(y) TM_Q_Free_Running_Mode_Clk_External_Init (timer, input, input_edge)

Initialize the basic configuration of the timer in the free running mode - External clock

The timer run free with the supplied clock. It is reset at 0xFFFF and generate an overflow interrupt
request INTTQnOV.

(z) TM_Q_Free_Running_Mode_Compare_Init (timer, cap_cmp_selection, cmp_value, out-
put)

Init compare register.

One of the available capture/compare registers is configured as compare register. When the timer
matches the compare value (’cmp_value’), it generates an interrupt request INTTQnm for the cho-
sen register m. If output is enabled, it toggles the output pin TOQnm.

(aa)TM_Q_Free_Running_Mode_Capture_Init (timer, cap_cmp_selection, input,
input_edge)

Init capture register

One of the available capture/compare registers is configured as capture register. When a valid
edge is recognized at the timer input TIQnm, it generates an interrupt request INTTQnm for the
chosen register m. The current timer value is transferred to the capture register m. (The timer con-
tinue counting up.) The captured values can be read with the TM_Q_Capture_Read (timer) macro.
If output is enabled, it toggles the output pin TOQnm.
Often, the input pin TIQn0 is shared with the output pin TOQn0 in the devices. In this case, no out-
put can be generated while an external trigger signal is used for capturing.

(ab)TM_Q_Free_Running_Mode_Write_Compare (timer, cap_cmp_selection, cmp_value)

Update compare values in free running mode.
The compare value is directly reloaded to the compare register of the timer.
51 Application Note U17330EE1V0AN00

Chapter 3 API Description
(ac)TM_Q_Pulse_Width_Measure_Mode_Init (timer, clock)

Initialize the basic configuration of the timer in the pulse width measurement mode.

(ad)TM_Q_Pulse_Width_Measure_Mode_Capture_Init (timer, cap_cmp_selection, input,
input_edge)

Init additionally capture mode.

One of the available capture/compare registers is configured as capture register. When a valid
edge is recognized at the timer input TIQnm, it generates an interrupt request INTTPnm for the
chosen register m. The current timer value is transferred to the capture register m and the timer
restarts at zero. The captured value can be read with the TM_Q_Capture_Read (timer) macro.
If a special input should be used as input source, “input” should be “TM_Q_Input_External_Input”
and the special input should be selected with the TM_Q_Input_Special(...) macro.

Useful for pulse with measurement is configuring one register for capturing at rising edge, another
for falling edge. The captured value in the register of the rising edge represents the time of the low
phase of the signal. The captured value in the register of the falling edge represents the time of the
high phase of the signal. The cycle of the signal can be calculated by adding both captured values.

(ae)TM_Q_Capture_Read (timer, cap_cmp_selection)

Return: 16-bit captured timer value

(af) TM_Q_Overflow_Read (timer)

Return: Overrun flag

(ag)TM_Q_Counter_Read (timer)

Return: Current 16-bit timer counter value

(ah)TM_Q_Enable (timer) / TM_Q_Disable (timer)

Enable / Disable timer
Start/Stop timer.

(ai) TM_Q_Input_Special (special_input, special_input_set)

Special inputs; Device specific

Some timers in a device allow a special input for capturing or clock supply. The Timer is configured
to use an external signal. This external signal could be at a port pin or an internal redirected sig-
nal.
This mode is useful for baud rate measurements or similar purposes.
Please tale a look to the User’s Manual for informations about allowed combinations.

(aj) TM_Q_Sync_Mode (timer, sync_mode)

Sync mode; Device specific

Some timers in a device allow a synchronization of two timers. One timer is the Master timer and
its clock supply and cycle time is copied to the second slave timer. The slave timer can use all of
its capture/compare registers while the master timer configures the clock supply and cycle time.
This is for example useful for synchronous multi-channel PWM outputs.
Please take a look to the User’s Manual for informations about allowed combinations.
52 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.8 Timers - 16-Bit Interval Timer M

(1) Parameters

(a) clock

Choose clock source for timer.

Caution: Device and timer specific clock sources. Not all combinations are possible.

• TM_M_Clk_FXX, TM_M_Clk_FXX_2, TM_M_Clk_FXX_4, TM_M_Clk_FXX_64,
TM_M_Clk_FXX_512, TM_M_Clk_WT, TM_M_Clk_FR_8, TM_M_Clk_FXT

(b) interval_value

Any 16-bit value as compare value for the counter.

(2) Function description

(a) TM_M_Interval_Mode_Init (clock, interval_value)

Initialization in interval mode.
The timer count up with the “clock” source till its value matches the interval value. Then the timer
restarts at zero and generates an interrupt request (INTTM0EQ0).

(b) TM_M_Enable()

Enable/start timer

(c) TM_M_Disable()

Disable/stop timer

(d) TM_M_Set_Interval (interval_value)

Modify interval time.
To set M clocks as the interval period, set M-1 as interval value.
The compare value is directly written to the compare register of the timer.
53 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.9 Timers - Watch Timer Functions

(1) Parameters

(a) clock_source

Clock source for Watch timer and Watch interval timer (fW)
Either a dedicated 32.768 kHz Crystal or the main clock divided by a prescaler can be used as
clock supply. The 32.768 kHz crystal has the advantage, that a accurate 2Hz overflow frequency
can be generated without a special requirement for the main clock.
(The setting of the prescaler is device specific.)
Following settings are possible:

• Watch timer_Clk_Source_Subclock

• Watch timer_Clk_Source_BRG

(b) clock_watch

Watch timer frequency
The clock source fW will be divided by a fixed value to generate the watch timer overflow.
Following settings are possible:

• Watch timer_Clk_fW_16384 = fW / 1638

• Watch timer_Clk_fW_8192 = fW / 8192

• Watch timer_Clk_fW_32 = fW / 32

• Watch timer_Clk_fW_16 = fW / 16

(c) clock_interval

Watch timer interval frequency
The clock source fW will be divided by a fixed value to generate the watch interval timer overflow.
Following settings are possible:

• Watch timer_Interval_Clk_fW_16 = fW / 16

• Watch timer_Interval_Clk_fW_32 = fW / 32

• Watch timer_Interval_Clk_fW_64 = fW / 64

• Watch timer_Interval_Clk_fW_128 = fW / 128

• Watch timer_Interval_Clk_fW_256 = fW / 256

• Watch timer_Interval_Clk_fW_512 = fW / 512

• Watch timer_Interval_Clk_fW_1024 = fW / 1024

• Watch timer_Interval_Clk_fW_2048 = fW / 2048
54 Application Note U17330EE1V0AN00

Chapter 3 API Description
(d) prescaler setting

The setting of the prescaler is device specific.
The main clock source fX will be divided by a fixed prescaler value and a divisor to generate the
clock source for the watch timer fW.
Following settings are possible:

• Watch timer_Clk_FXX = main clock

• Watch timer_Clk_FXX_2 = main clock / 2

• Watch timer_Clk_FXX_4 = main clock / 4

• Watch timer_Clk_FXX_8 = main clock / 8

(e) divisor

Any value between 1 and 256 (Value 0 = divider of 256).

(2) Function description

(a) Watch timer_Init (clock_source, clock_watch, clock_interval)

Clock initialization of watch timer and watch interval timer.
No start of timers.

(b) Watch timer_Enable() / Watch timer_Disable()

Enable/Disable Watch timer register;
Does not enable clock supply to watch timer.

(c) Watch timer_Enable_Clk_Supply() / Watch timer_Disable_Clk_Supply()

Enable/Disable Watch timer and Watch interval timer clock supply.
Watch timer need additional enable/disable.
Watch interval timer directly start/stop.

(d) Watch timer_Adjust()

Reset watch timer register; Same as Disable + Enable

(e) Watch timer_Set_Prescaler (prescaler, divisor)

Optional prescaler if subclock is not used as clock source.
Device specific
The main clock will be divided by a fixed prescaler value and a divisor between 1 and 256
(Value 0 = divider of 256).
The watch timer clock source fW is calculated as follows:
 fW = fX / (prescaler * divisor * 2) fX = main clock
55 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.10 Timers - Functions Of Watchdog Timer 2

(1) Parameters

(a) mode

Upon an overflow of the watchdog timer the system can perform following three operations:
The system can stop, generate an NMI (INTWDT2) or generate a system reset.

• WatchDog_Mode_Stop

• WatchDog_Mode_NMI

• WatchDog_Mode_Reset

(b) clock

Watchdog 2 clock sources are devices specific
This is an example for V850ES/Fx2:

• WatchDog_Clk_Stop No clock source

 Using ring oscillator 100 kHz (min.) 200 kHz (typ.) 400 kHz (max.)

• WatchDog_Clk_2_12_fR 212/fR 41.0 ms 20.5 ms 10.2 ms

• WatchDog_Clk_2_13_fr 213/fR 81.9 ms 41.0 ms 20.5 ms

• WatchDog_Clk_2_14_fr 214/fR 163.8 ms 81.9 ms 41.0 ms

• WatchDog_Clk_2_15_fr 215/fR 327.7 ms 163.8 ms 81.9 ms

• WatchDog_Clk_2_16_fr 216/fR 655.4 ms 327.7 ms 163.8 ms

• WatchDog_Clk_2_17_fr 217/fR 1,310.7 ms 655.4 ms 327.7 ms

• WatchDog_Clk_2_18_fr 218/fR 2,621.4 ms 1,310.7 ms 655.4 ms

• WatchDog_Clk_2_19_fr 219/fR 5,242.9 ms 2,621.5 ms 1,310.7 ms

 Using main clock XX=20 MHz fXX=16 MHz fXX=10 MHz

• WatchDog_Clk_2_16_fXX 218/fXX 13.1 ms 16.4 ms 26.2 ms

• WatchDog_Clk_2_17_fXX 219/fXX 26.2 ms 32.8 ms 52.4 ms

• WatchDog_Clk_2_28_fXX 220/fXX 52.4 ms 65.5 ms 104.9 ms

• WatchDog_Clk_2_29_fXX 221/fXX 104.9 ms 31.1 ms 209.7 ms

• WatchDog_Clk_2_20_fXX 222/fXX 209.7 ms 262.1 ms 419.4 ms

• WatchDog_Clk_2_21_fXX 223/fXX 419.4 ms 524.3 ms 838.9 ms

• WatchDog_Clk_2_22_fXX 224/fXX 838.9 ms 1,048.6 ms 1,677.7 ms

• WatchDog_Clk_2_23_fXX 225/fXX 1,677.7 ms 2,097.2 ms 3,355.4 ms
56 Application Note U17330EE1V0AN00

Chapter 3 API Description
(2) Function description

(a) WatchDog_Set (mode, clock)

Init watchdog clock supply without starting.
The “mode” define the action when the timer overflow.
The “clock” define the base clock which is used for counting.

(b) WatchDog_Start ()

Start Watchdog. It cannot be stopped. Only a reset will also reset and stop the watchdog timer.

(c) WatchDog_Reset()

Reset Watchdog timer register. This must be done periodically to avoid an overflow of the timer.

(d) WatchDog_Generate_Overflow()

Generate Watchdog overflow -> Stop / NMI / Reset
This macro generate a unnaturally overflow of the watchdog timer. The action which is performed
was defined by the “mode” parameter during initialization.
57 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.11 Serial - Asynchronous Serial Interface A (UARTA)

(1) Parameters

(a) mode

This setting define if you only want to send or receive bytes or both.

• UART_A_Transmission

• UART_A_Reception

• UART_A_Trans_Recept

(b) direction

This setting define the shift direction for the transmit register. A standard UART interface uses the
“UART_A_LSB_First “direction.

• UART_A_MSB_First

• UART_A_LSB_First

(c) parity

This setting define if a parity bit should be transmitted additionally to every byte and received bytes
checked by the parity bit.

• UART_A_No_Parity

• UART_A_Zero_Parity

• UART_A_Odd_Parity

• UART_A_Even_Parity

(d) bit length

• UART_A_Length_7

• UART_A_Length_8

(e) stop bits

• UART_A_Stop_1

• UART_A_Stop_2

(f) transmit_state

This returned status flag indicate the current internal state.

• UART_A_Tx_Inactive

• UART_A_Tx_Active

(g) error_state

This returned status flag indicate if the received byte was accepted correctly, or if a overrun/fram-
ing/parity error was detected.

• UART_A_Rx_No_Error

• UART_A_Rx_Error
58 Application Note U17330EE1V0AN00

Chapter 3 API Description
(h) System frequency

This setting is needed to set the correct divisors for the baud rate generator.
If a different system frequency is used, the macro must be modified.
Following standard system frequencies could be set:

• UART_A_SYS_10MHZ, UART_A_SYS_16MHZ, UART_A_SYS_20MHZ

(i) baudrates

The setting of the baudrates depend on the system frequency.
If a different baudrate is used, the macro must be modified.
Following standard baud rates could be set:

• UART_A_BR_EXT, UART_A_BR_300, UART_A_BR_600, UART_A_BR_1200,
UART_A_BR_2400, UART_A_BR_4800, UART_A_BR_9600, UART_A_BR_19200,
UART_A_BR_31250, UART_A_BR_38400, UART_A_BR_57600, UART_A_BR_115200

(2) Function description

(a) UART_A_Init (channel, mode, direction, oscillator, baudrate, bit length, parity, stop bits)

Initialize UART channel
The oscillator and baudrate parameters are used to set the correct values for the baud rate gener-
ator. If a different system frequency or non-standard baud rate is used, the macro must be modi-
fied.

(b) UART_A_Disable (channel)

Disable/stop UART channel. The operation of the whole UART macro channel stops. Current
transmissions are stopped.

(c) UART_A_TxEnable (channel) / UART_A_TxDisable (channel)

Enable / Disable transmission on channel.
The reception of bytes is independent of this setting.

(d) UART_A_RxEnable (channel) / UART_A_RxDisable (channel)

Enable / Disable reception on channel
The transmission of bytes is independent of this setting.

(e) UART_A_Tx_Status_Read (channel)

Read transfer status flag (transfer in progress)

(f) UART_A_Rx_Overrun_Error_Read_Clear (channel)

Return: flag
Read and clear overrun error status

(g) UART_A_Rx_Parity_Error_Read_Clear (channel)

Return: flag
Read and clear parity error status
59 Application Note U17330EE1V0AN00

Chapter 3 API Description
(h) UART_A_Rx_Framing_Error_Read_Clear (channel)

Return: flag
Read and clear framing error status

(i) UART_A_Tx_Write_Byte (channel, value)

Write byte to transmit data register

(j) UART_A_Rx_Read_Byte (channel)

Return: 8-bit read byte from receive data register
60 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.12 Serial - 3-Wire Variable-Length Serial I/O (CCSIB)

(1) Parameters

(a) clock_source

Device specific

• CSI_B_Clk_FXX_2, CSI_B_Clk_FXX_4, CSI_B_Clk_FXX_8, CSI_B_Clk_FXX_16,
CSI_B_Clk_FXX_32, CSI_B_Clk_FXX_64, CSI_B_Clk_BRG, CSI_B_Clk_TMP0,
CSI_B_Clk_FXX_128, CSI_B_Clk_External

(b) relax_level

This define the clock level if no transmission is made. The clock level could remain high or low.

• CSI_B_Clk_Level_High

• CSI_B_Clk_Level_Low

(c) active_edge

This define the clock edge which an external device or the V850 use for capturing the incoming
data.

• CSI_B_Clk_Edge_RISING

• CSI_B_Clk_Edge_FALLING

(d) mode

This define if transmission, reception or both should be used. Additionally, the single or continuous
transfer mode can be chosen.

• CSI_B_Mode_Single_Transmission

• CSI_B_Mode_Single_Reception

• CSI_B_Mode_Single_Trans_Recept

• CSI_B_Mode_Cont_Transmission

• CSI_B_Mode_Cont_Reception

• CSI_B_Mode_Cont_Trans_Recept

(e) direction

The direction of the bits can be configured.

• CSI_B_MSB_FIRST

• CSI_B_LSB_FIRST

(f) bit length

The bit length for transmission and reception can be configured between eight and sixteen bits.

• CSI_B_Bit_Length_8, CSI_B_Bit_Length_9, CSI_B_Bit_Length_10, CSI_B_Bit_Length_11,
CSI_B_Bit_Length_12, CSI_B_Bit_Length_13, CSI_B_Bit_Length_14, CSI_B_Bit_Length_15,
CSI_B_Bit_Length_16
61 Application Note U17330EE1V0AN00

Chapter 3 API Description
(g) transfer_status

Status flag for CSI operation

• CSI_B_Transfer_Inactive

• CSI_B_Transfer_Active

(h) overrun_error

Status flag for CSI operation

• CSI_B_Rx_Overrun_Inactive

• CSI_B_Rx_Overrun_Active

(i) Prescaler for baud rate generator (to be extended)
CSI_B_BRG_FXX, CSI_B_BRG_FXX_2, CSI_B_BRG_FXX_4, CSI_B_BRG_FXX_8

(2) Function description

(a) CSI_B_Init (channel, clock_source, relax_level, active_edge, mode, direction, bit
length)

Initialize Clocked Synchronous Interface
A shift register of “bit length” width is shifted out by a clock signal. The clock signal could be gener-
ated internally or externally. The transmitted data is shifted out on one device pin while the
received is shifted in the same register from another pin. Transmission and reception is done in
parallel.

(b) CSI_B_Set_BRG (channel, prescaler, divisor)

Set baud rate generator
Calculating the baud rate
 fBRG = prescaler / divisor / 2
 Set value of divisor from 1 to 255
 divisor = 256 if the value the divisor is 0.

(c) CSI_B_Disable (channel)

Reset CSI to default values. The whole macro stops operating. A current transmission/reception
will be terminated.

(d) CSI_B_Stop (channel)

Stop SIO (Re-initialization have to be made using CSI_B_Init
62 Application Note U17330EE1V0AN00

Chapter 3 API Description
(e) CSI_B_Transfer_Clock_Output_Enable (channel) /
CSI_B_Transfer_Clock_Output_Disable (channel)

Enable / Disable transfer clock output.
This macro controls starting of the transfer operation in the master mode.
If only reception is enabled in the single transfer mode, the reception operation is started when the
receive register is read. To read the last receive data, disable the output clock, read the last
receive data, and then disable starting the next reception operation.
Similarly, if only reception is enabled in the continuous transfer mode, starting the reception opera-
tion can be disabled after completion of reception of the last receive data, by disabling the output
clock one clock before reception of the last receive data is completed. After the last data is read,
reception is enabled by CSI_B_Transfer_Clock_Output_Enable(...) again and reading the recep-
tion register. In the slave reception mode, this macro also enables the internal operating clock, and
therefore, execute CSI_B_Transfer_Clock_Output_Enable(...).

(f) CSI_B_Write_16bit (channel, value_16bit)

Write 16 bit value to transmission register

(g) CSI_B_Write_8bi t (channel, value_8bit)

Write 8 bit value to transmission register

(h) CSI_B_Read_16bit (channel)

Return: Read 16 bit value from reception register

(i) CSI_B_Read_8bit (channel)

Return: Read 8 bit value from reception register

(j) CSI_B_Operation (channel)

Return: flag transfer_status
Read operating status

(k) CSI_B_Overrun (channel)

Return: flag overrun_error
Read overrun error status
63 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.13 Serial - I²C Bus

(1) Parameters

(a) clock

The clock is generated by a prescaler and a choose-able divider. Some total divisions could be
achieved by different register settings. This is the reason that some clock constants appear more
than one time. Please read the User’s Manual for further details.
Device specific;

• IIC_Clk_LowSpeed_FXX_44, IIC_Clk_LowSpeed_FXX_88, IIC_Clk_LowSpeed_FXX_132,
IIC_Clk_LowSpeed_FXX_176, IIC_Clk_LowSpeed_FXX_220, IIC_Clk_LowSpeed_FXX_86,
IIC_Clk_LowSpeed_FXX_172, IIC_Clk_LowSpeed_FXX_258, IIC_Clk_LowSpeed_FXX_344,
IIC_Clk_LowSpeed_FXX_86_2, IIC_Clk_LowSpeed_FXX_66,
IIC_Clk_LowSpeed_FXX_132_2, IIC_Clk_LowSpeed_FXX_198, IIC_Clk_HighSpeed_FXX_24,
IIC_Clk_HighSpeed_FXX_48, IIC_Clk_HighSpeed_FXX_72, IIC_Clk_HighSpeed_FXX_96,
IIC_Clk_HighSpeed_FXX_24_2, IIC_Clk_HighSpeed_FXX_18, IIC_Clk_HighSpeed_FXX_36,
IIC_Clk_HighSpeed_FXX_54, IIC_Clk_HighSpeed_FXX_24_3,
IIC_Clk_HighSpeed_FXX_24_4, IIC_Clk_HighSpeed_FXX_36_2,
IIC_Clk_HighSpeed_FXX_48_2, IIC_Clk_HighSpeed_FXX_60, IIC_Clk_HighSpeed_FXX_12

(b) filter

The digital filter can only be used in high speed mode.

• IIC_Filter_On

• IIC_Filter_Off

(c) Master device status

Returned status flag of master device status. If this I²C macro generated successfully a start con-
dition, this bit will be set. It is reset when this device is a slave or in stand-by mode.

• IIC_Master_Status

• IIC_Slave_Status

(d) Arbitration loss detection

Returned status flag of arbitration loss

• IIC_Arbitration_Loss

• IIC_Arbitration_Ok

(e) Detection of extension code reception

Returned status flag indicate if an extension code was received.

• IIC_Extension_Code_Receiced

• IIC_No_Extension_Code

(f) Matching addresses detection

Returned status flag indicate, if the set slave address for the V850 was detected.

• IIC_Address_Match

• IIC_No_Address_Match
64 Application Note U17330EE1V0AN00

Chapter 3 API Description
(g) Transmit/receive status detection

Returned status flag indicate the current transfer direction. After a generated start condition it is
set. It changes the status after transmitting the slave address. If the slave address was even, it is
in the transmission status. If the slave address was odd it is in the reception status.

• IIC_Transmission_Status

• IIC_Reception_Status

(h) Acknowledge detection

Returned status flag. It is set when the slave device acknowledged the received data.

• IIC_Ack_Detected

• IIC_Ack_Not_Detected

(i) Start condition detection

Returned status flag. If a start condition of regardless origin was detected before.

• IIC_Start_Detected

• IIC_Start_Not_Detected

(j) Stop condition detection

Returned status flag. If a stop condition of regardless origin was detected before.

• IIC_Stop_Detected

• IIC_Stop_Not_Detected

(k) Start issued/rejected

Returned status flag. If a start condition was tried to generate and cancelled.

• IIC_Start_Issued

• IIC_Start_Rejected

(l) IIC bus status

This returned flag indicate the current bus status.

• IIC_Bus_Released

• IIC_Bus_Communication
65 Application Note U17330EE1V0AN00

Chapter 3 API Description
(2) Function description

(a) IIC_Init (channel, clock, filter)

Basic initialization of I²C peripheral.
The I²C macro is enabled and the clock source will be chosen.
A digital filter can be used additionally only in the high speed clock mode.
The corresponding port pins are set for the alternate function.

(b) IIC_Enable (channel) / IIC_Disable (channel)

Enable I²C module or disable I²C module and reset status registers.

(c) IIC_Generate_Start (channel)

Generate a start condition.
Either a stop condition must be detected/generated before, or the IIC_Start_If_No_Stop (...) macro
must be used before.
A start condition could be rejected. Read status by IIC_Get_Status_Start_Issued(...) macro.

(d) IIC_Generate_Stop (channel)

Generate stop condition.

(e) IIC_Acknowledge_Enable (channel) / IIC_Acknowledge_Disable (channel)

Enable/Disable acknowledgment of received data.
This must be set/reset before the ninth clock will be generated.

(f) IIC_Wait_and_Int_8th_clock (channel) / IIC_Wait_and_Int_9th_clock (channel)

Control of wait and Interrupt request generation.
The I²C macro could wait after transmission of the data byte before or after the acknowledge bit.
If the transmission wait after the eighth bit, use the IIC_Cancel_Wait(...) macro to cancel the wait.
When the I²C macro enter the wait status, an interrupt could be generated.

(g) IIC_Stop_Interrupt_Enable (channel) / IIC_Stop_Interrupt_Disable (channel)

Enable/disable generation of interrupt request when stop condition is detected

(h) IIC_Cancel_Wait (channel)

Wait cancellation control.
Use it either to allow the next reception, or transmit the acknowledge bit after the eighth clock
cycle.

(i) IIC_Exit_Communication (channel)

Exit from current communications.

(j) IIC_Get_Status_Master (channel)

Return: flag IIC_Master_Status / IIC_Slave_Status
Returned status flag of master device status. If this I²C macro generated successfully a start con-
dition, this bit will be set. It is reset when this device is a slave or in stand-by mode.
66 Application Note U17330EE1V0AN00

Chapter 3 API Description
(k) IIC_Get_Status_Arbitration (channel)

Return flag IIC_Arbitration_Loss / IIC_Arbitration_Ok
Returned status flag of arbitration loss

(l) IIC_Get_Status_Extension (channel)

Return flag IIC_Extension_Code_Receiced / IIC_No_Extension_Code
Returned status flag indicate if an extension code was received.

(m) IIC_Get_Status_Addr_Match (channel)

Return flag IIC_Address_Match / IIC_No_Address_Match
Flag indicate, if the set slave address for the V850 was detected.

(n) IIC_Get_Status_Direction (channel)

Return flag IIC_Transmission_Status / IIC_Reception_Status
Flag indicate the current transfer direction. After a generated start condition it is set. It changes the
status after transmitting the slave address. If the slave address was even, it is in the transmission
status. If the slave address was odd it is in the reception status.

(o) IIC_Get_Status_Acknowledge (channel)

Return flag IIC_Ack_Detected / IIC_Ack_Not_Detected
It is set when the slave device acknowledged the received data.

(p) IIC_Get_Status_Start (channel)

Return flag IIC_Start_Detected / IIC_Start_Not_Detected
If a start condition of regardless origin was detected before.

(q) IIC_Get_Status_Stop (channel)

Return flag IIC_Stop_Detected / IIC_Stop_Not_Detected
If a stop condition of regardless origin was detected before.

(r) IIC_Get_Status_Start_Issued (channel)

Return flag IIC_Start_Issued / IIC_Start_Rejected
If a start condition was tried to generate and cancelled.

(s) IIC_Get_Status_Bus (channel)

Return flag IIC_Bus_Released / IIC_Bus_Communication
This returned flag indicate the current bus status.

(t) IIC_Start_If_No_Stop (channel) / IIC_No_Start_If_No_Stop (channel)

A stop condition must be detected/generated before a start condition can be generated.
By using the IIC_Start_If_No_Stop(...) macro, a start condition can directly be generated.
A start condition could be rejected if no stop condition was detected before. (Read status by
IIC_Get_Status_Start_Issued(...) macro.)
67 Application Note U17330EE1V0AN00

Chapter 3 API Description
(u) IIC_Com_Reservation_Enable (channel) / IIC_Com_Reservation_Disable (channel)

Enable / Disable Communication Reservation Function.
Enable communication reservation to wait till an stop condition is detected on the bus. A previous
set start condition takes directly place to reserve the bus.

(v) IIC_Digital_Filter_Enable (channel) / IIC_Digital_Filter_Disable (channel)

Enable / Disable Digital Filter.
Only in high speed mode.

(w) IIC_Get_Status_SDA_Level (channel) / IIC_Get_Status_SCL_Level (channel)

Get current level of SDA / SCL line

(x) IIC_Write_Data (channel, value)

Write data

(y) IIC_Read_Data (channel)

Read received data

(z) IIC_Set_Slave_Address (channel, address)

Set slave address. If this slave address is detected in non-master mode, an interrupt will be gener-
ated and the corresponding flag in the status register is set.
68 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.14 Clock & Power - Clock Generation Function

(1) Parameters

(a) clock

CPU clock dividers are device specific.

• CPU_Clk_FXX, CPU_Clk_FXX_2, CPU_Clk_FXX_4, CPU_Clk_FXX_8, CPU_Clk_FXX_16,
CPU_Clk_FXX_32, CPU_Clk_FXT

(b) main_feedback, sub_feedback

A feedback resistor could be connected to allow an oscillation for the main or subclock. They are
switched on by default (=1)

• 0 = off / disconnected / no oscillator used

• 1 = on / connected / oscillator used

(c) main_operation

The main oscillator can be switched on or off. This setting is only possible while operating on a dif-
ferent clock source.

• 0 = off

• 1 = on = default

(d) Clock status

Returned enum of current used CPU clock

• CLK_Main_Clock_Used

• CLK_Subclock_Used

• CLK_Ring_Oscl_Used

(e) PLL_Lockup_Time

Selection of PLL lockup time.
Device specific.

• PLL_Lockup_Time_2_12_fX = 212 / fX

• PLL_Lockup_Time_2_13_fX = 213 / fX

(f) PLL_Multiplier

CPU operation clock selection

• CLK_PLL_ClockThrough

• CLK_PLL_Used

(g) Status of PLL

Returned status of PLL.

• CLK_PLL_Locked

• CLK_PLL_Unlocked
69 Application Note U17330EE1V0AN00

Chapter 3 API Description
(2) Function description

(a) Clock_Set_CPU_Clock (clock, main_feedback, sub_feedback, main_operation)

Set clock for CPU and configure oscillators.
The clock define the prescaler for the CPU.
THe feedback resistors of the oscillators can be disconnected to disable oscillation of an unused
oscillator.
The main oscillator can be switched on or off. This setting is only possible while operating on a dif-
ferent clock source.

(b) Clock_Get_CPU_Clock_Status ()

Return enum CLK_Main_Clock_Used / CLK_Subclock_Used / CLK_Ring_Oscl_Used
Read Status of CPU clock (fCPU)

(c) Clock_Set_PLL (PLL_operation, PLL_multiplier, PLL_Lockup_Time)

Configure PLL. The PLL can be switched on and off by the PLL_operation parameter.
The PLL_multiplier parameter choose either the multiplied or direct oscillator clock.
Clock base for CPU and peripherals.

(d) Clock_Get_PLL_Status()

Return flag CLK_PLL_Locked / CLK_PLL_Unlocked
Get Status of PLL

(e) Clock_Output_Enable (clock) / Clock_Output_Disable()

Enable / Disable clock output on the device pin.
70 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.15 Clock & Power - Standby Function

(1) Parameters

(a) standby_mode

Following modes are possible:

• IDLE1

• SW_STOP1

• IDLE2

• SW_STOP2 (= SW_STOP1)

(b) release_condition

Sources which can cause a stand-by release

• Standby_Release_WDT2_NMI_Int

• Standby_Release_WDT2_NMI

• Standby_Release_WDT2_Int

• Standby_Release_WDT2

• Standby_Release_NMI_Int

• Standby_Release_NMI

• Standby_Release_Int

• Standby_Release_Reset_Only

(c) ost

The oscillation stabilization time is device specific.
 4 MHz 5 MHz

• OST_2_10_Fxx 210/fXX (0.256 ms 0.205 ms)

• OST_2_11_Fxx 211/fXX (0.512 ms 0.410 ms)

• OST_2_12_Fxx 212/fXX (1.024 ms 0.819 ms)

• OST_2_13_Fxx 213/fXX (2.048 ms 1.638 ms)

• OST_2_14_Fxx 214/fXX (4.096 ms 3.277 ms)

• OST_2_15_Fxx 215/fXX (8.192 ms 6.554 ms)

• OST_2_16_Fxx 216/fXX (16.38 ms 13.107 ms)

(2) Function description

(a) Standby_Enter (standby_mode, release_condition)

Entering a stand-by mode (IDLE1, IDLE2, SW_STOP). The condition which is needed to release
the stand-by mode can be specified.

(b) Oscl_Stabil_Time_Set (ost)

Set Stabilization Oscillation Time.
71 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.16 Clock & Power - Clock Monitor

(1) Function description

(a) Clock_Monitor_Enable()

Enable Clock Monitor. Disabling is not possible except by reset.

3.2.17 Clock & Power - Reset Function

(1) Parameters

(a) Reset source

• RESET_SRC_LVI = 0x01 Generation of reset signal from low voltage detector

• RESET_SRC_CLKMON = 0x02 Generation of reset signal from clock monitor

• RESET_SRC_WDT2 = 0x10 Generation of reset signal from watchdog timer 2

(2) Function description

(a) Reset_Get_Source()

Return flag RESET_SRC_LVI / RESET_SRC_CLKMON / RESET_SRC_WDT2
Get information about reset source.

(b) Reset_Clear_Source()

Clear information about reset source

3.2.18 Clock & Power - Low-Voltage Detector

(1) Parameters

(a) operation

• LVI_ON

• LVI_OFF

(b) generation

• LVI_GENERATE_INTERRUPT

• LVI_GENERATE_RESET

(c) level

LVI threshold voltage

• LVI_LEVEL_4_4_V = 4.4V threshold level

• LVI_LEVEL_4_2_V = 4.4V threshold level

(d) LVI status

• LVI_DETECTED

• LVI_NOT_DETECTED^
72 Application Note U17330EE1V0AN00

Chapter 3 API Description
(2) Function description

(a) LVI_Init (operation, generation, level)

Initialize Low Voltage Detector

(b) LVI_Disable()

Set default values and disable LVI.

(c) LVI_Get_Status()

Return LVI_NOT_DETECTED / LVI_DETECTED
Status of voltage detection
73 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.19 Clock & Power - RAM Retention Voltage Detection Operation

(1) Parameters

(a) RAM validation flag

• LVI_RAM_VALID

• LVI_RAM_INVALID

(2) Function description

(a) LVI_RAM_Get_Status()

Return LVI_RAM_VALID / LVI_RAM_INVALID
The flag indicates whether the internal RAM is valid or not. An invalid RAM content caused by too
low supply voltage could be indicated by this flag.

(b) LVI_RAM_Clear_Status()

Clear the flag

(c) LVI_RAM_Set_Invalid()

Only for emulation: RAM status flag set

(d) LVI_RAM_Set_Valid()

Only for emulation: RAM status flag clear
74 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.20 Analog - A/D Converter

(1) Parameters

(a) time

Conversion time setting device specific
 A/D Conv. fXX=20MHz fXX=16MHz fXX=4MHz A/D Stabilization
 Time Time

• AD_Clk_31_fXX 31/fXX --- --- 7.75 µs 6/fXX

• AD_Clk_62_fXX 62/fXX 3.10 µs 3.88 µs 15.50 µs 31/fXX

• AD_Clk_93_fXX 93/fXX 4.65 µs 5.81 µs --- 47/fXX

• AD_Clk_124_fXX 124/fXX 6.20 µs 7.75 µs --- 50/fXX

• AD_Clk_155_fXX 155/fXX 7.75 µs 9.69 µs --- 50/fXX

• AD_Clk_186_fXX 186/fXX 9.30 µs 11.63 µs --- 50/fXX

• AD_Clk_217_fXX 217/fXX 10.85 µs 13.56 µs --- 50/fXX

• AD_Clk_248_fXX 248/fXX 12.40 µs 15.50 µs --- 50/fXX

• AD_Clk_279_fXX 279/fXX 13.95 µs --- --- 50/fXX

• AD_Clk_310_fXX 310/fXX 15.50 µs --- --- 50/fXX

• AD_Clk_341_fXX 341/fXX --- --- --- 50/fXX

• AD_Clk_372_fXX 372/fXX --- --- --- 50/fXX

• AD_Clk_403_fXX 403/fXX --- --- --- 50/fXX

• AD_Clk_434_fXX 434/fXX --- --- --- 50/fXX

• AD_Clk_465_fXX 465/fXX --- --- --- 50/fXX

• AD_Clk_496_fXX 496/fXX --- --- --- 50/fXX

(b) trigger_type

Trigger source for A/D converter

• AD_Software_Trigger

• AD_External_Trigger

• AD_Timer_Trigger_0

• AD_Timer_Trigger_1

(c) mode

Conversion mode

• AD_Continuous_Select_Mode

• AD_Continuous_Scan_Mode

• AD_One_Shot_Select_Mode

• AD_One_Shot_Scan_Mode
75 Application Note U17330EE1V0AN00

Chapter 3 API Description
(d) trigger_edge

Edge(s) to trigger next conversion.

• AD_Trigger_No_Edge

• AD_Trigger_Falling_Edge

• AD_Trigger_Rising_Edge

• AD_Trigger_Both_Edges

(e) status

Returned AD unit status

• AD_Converter_Idle

• AD_Converter_Operating

(f) selection

• AD_PowerFail_If_HigherOrEqual Interrupt (INTAD) when ADA0CRnH >= ADA0PFT

• AD_PowerFail_If_Lower Interrupt (INTAD) when ADA0CRnH < ADA0PFT

(g) channel

AD_CH0=0, AD_CH1, AD_CH2, AD_CH3, AD_CH4, AD_CH5, AD_CH6, AD_CH7, AD_CH8,
AD_CH9, AD_CH10, AD_CH11, AD_CH12, AD_CH13, AD_CH14, AD_CH15

(2) Function description

(a) AD_Init (mode, trigger_type, trigger_edge, time)

Initialization of A/D converter;
If trigger type is set for timer trigger, the timer must be configured separately.
Set trigger edge to no edge if external trigger is unused.

(b) AD_Enable() / AD_Disable()

Enable / Disable A/D converter operation

(c) AD_Select_Channel (channel)

Select channel for conversion result(s)

(d) AD_Get_Status()

Return AD_Converter_Idle / AD_Converter_Operating
Get status (Idle, Operating)

(e) AD_Get_Result_10bit (channel)

Get 10-bit result

(f) AD_Get_Result_8bit (channel)

Get 8-bit result
76 Application Note U17330EE1V0AN00

Chapter 3 API Description
(g) AD_PowerFail_Init (selection, value)

Initialize power-fail compare mode.
Enabling must be done separately.

(h) AD_PowerFail_Enable() / AD_PowerFail_Disable()

Enable / Disable power-fail comparison.

(i) AD_PowerFail_Set_Value (value)
Set value for power-fail comparison.

3.2.21 Analog - D/A Converter

(1) Parameters

(a) channel

Device specific.

• DA_CH0=0, DA_CH1

(b) mode

In the normal mode, the written value is directly converted to an analog value.
In the real time mode, the analog conversion is triggered by a timer.

• DA_NORMAL_MODE

• DA_REAL_TIME_MODE

(c) value
Any eight bit value

(2) Function description

(a) DA_Init (channel, mode, value)

Initialize DA converter and port pins. The mode specify if the value should be immediately con-
verted, or if it should be triggered by a timer signal.

(b) DA_Enable (channel) / DA_Disable (channel)

Enable/Disable DA converter channel.
Do not (re)set port pin settings.

(c) DA_Write_Value (channel, value)

Write value to DA converter.
77 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.22 Miscellaneous - DMA Controller

(1) Parameters

(a) channel

Choose one of the available DMA channels.
The maximum channel number is device specific.

(b) src_address, dest_address

Source and destination address. The address could either be a SFR, in internal RAM or external
memory.

(c) src_location, dest_location

Specify if the address is in internal RAM or is it a SFR or in external memory.

• DMA_EXT_OR_IO

• DMA_IRAM

(d) src_direction, dest_direction

Specify if the source or destination address should be incremented, decremented or fixed after
each DMA transfer.

• DMA_INCREMENT

• DMA_DECREMENT

• DMA_FIXED

(e) count

The total count of transfers.
The value will be decreased by one by the macro to write the correct register value.

(f)
(g) data_size
Transfer data could either 8-bit or 16-bit.

• DMA_TRANSFER_16

• DMA_TRANSFER_8

(h) trigger_src

Device specific trigger source for DMA operation.
This is an example for sources of V850ES/FJ2:

• DMA_INT_DISABLE, DMA_INTLVI, DMA_INTP0, DMA_INTP1, DMA_INTP2, DMA_INTP3,
DMA_INTP4, DMA_INTP5, DMA_INTP6, DMA_INTP7, DMA_INTTQ0OV, DMA_INTTQ0CC0,
DMA_INTTQ0CC1, DMA_INTTQ0CC2, DMA_INTTQ0CC3, DMA_INTTP0OV,
DMA_INTTP0CC0, DMA_INTTP0CC1, DMA_INTTP1OV, DMA_INTTP1CC0,
DMA_INTTP1CC1, DMA_INTTP2OV, DMA_INTTP2CC0, DMA_INTTP2CC1,
DMA_INTTP3OV, DMA_INTTP3CC0, DMA_INTTP3CC1, DMA_INTTM0EQ, DMA_INTCB0R,
DMA_INTCB0T, DMA_INTCB1R, DMA_INTCB1T, DMA_INTUA0R, DMA_INTUA0T,
DMA_INTUA1R, DMA_INTUA1T, DMA_INTAD, DMA_INTC0ERR, DMA_INTC0WUP,
DMA_INTC0REC, DMA_INTC0TRX, DMA_INTKR, DMA_INTC2REC, DMA_INTX2TRX,
DMA_INTC3REC, DMA_INTC3TRX
78 Application Note U17330EE1V0AN00

Chapter 3 API Description
(i) DMA_Read_Status

Returned status of DMA operation

• DMA_FINISHED

• DMA_INPROGRESS

(2) Function description

(a) DMA_Init (channel, src_address, src_location, src_direction, dest_address,
dest_location, dest_direction, count, data_size, trigger_src)

Initialize DMA controller channel

(b) DMA_Enable (channel) / DMA_Disable (channel)

Enable/Disable DMA transfer

(c) DMA_Trigger_By_Software (channel)

Enable and start DMA transfer by software

(d) DMA_Read_Status (channel)

Return DMA_FINISHED / DMA_INPROGRESS
Read DMA status (finished / in progress)

(e) DMA_Terminal_Count (channel)

Return DMA_FINISHED / DMA_INPROGRESS
Read DMA status (finished / in progress) Same as above

(f) DMA_Clear_Request channel)

Clear DMA transfer request
79 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.23 Miscellaneous - On Chip Debug Interface

(1) Function description

(a) OCD_Enable() / OCD_Disable()

Enable / Disable On-chip debugging.
If the port pins for the on-chip debug interface should be used as port pins, or debugging should
be avoided, the OCD interface should be disabled.
To enable on-chip debugging, the OCD_Enable(...) macro should be used.

3.2.24 Miscellaneous - CRC Function

(1) Parameters

(a) data

Any 16-bit value

(2) Function description

(a) CRC_Init()

Initialize CRC unit. The result register will be reset to zero.

(b) CRC_Write_Next (data)

Write next 16-bit data for CRC calculation. The whole block to be marked with the CRC must be
continuously copied 16-bit by 16-bit to the CRC peripheral. The calculated CRC sum can be read
by the following macro.

(c) CRC_Read_Result()

Read result of CRC calculation
80 Application Note U17330EE1V0AN00

Chapter 3 API Description
3.2.25 Miscellaneous - ROM Correction Function

(1) Parameters

(a) channel

The count of ROM correction points is device specific.
E.g. V850ES/SJ2:

• ROMCorr_CH0=0, ROMCorr_CH1, ROMCorr_CH2, ROMCorr_CH3, ROMCorr_CH4,
ROMCorr_CH5, ROMCorr_CH6, ROMCorr_CH7

(b) address

If this address matches the program counter, a debug trap instruction (DBTRAP) will be executed.
Any internal ROM address.

(2) Function description

(a) ROM_Correction_Init (channel, address)

A debug trap instruction will be executed, if the given address matches the program counter. The
function which is called should have the possibility to react on this exception. It could launch cor-
rected code from any location or enter a user debug mode.
81 Application Note U17330EE1V0AN00

[MEMO]
82 Application Note U17330EE1V0AN00

Chapter 4 Demos

4.1 Description

For all macros is a demo code available. The code is in the same way organized in different files like the
header files of the Peripheral Macro Driver. The peripherals are grouped in the demo files. E.g. the
generic macro header file for the serial interface UART is called “Macro_UART_A.h” and the corre-
sponding test and demo code is included in the “Demo_Serial.c” file. The demo code for the CSI and
IIC interface is also present in this file.

The demo program source can be used as demo code for all APIs. Each demo part inside a file repre-
sent one full functional mode of the peripheral.That means, that for most possible modes of a peripheral
a complete demo including initialization, usage and termination is included.

The demo project uses the UART channel 0 for communication with the user. Using this interface and a
connected PC with a terminal program, each individual demo can be launched and reports can be
received back. A hardware transceiver driver for the RS232 interface should be connected to the
UART0 interface. This driver should convert the CMOS level to RS232 standard and vice versa.

UART setting: UART0, 38400 bps, 8 Bit, No parity, 1 Stop bit

After programming the demo code into the device, it starts sending the main menu via the UART inter-
face after reset. The menu is printed in the window of the terminal program on the connected PC. Now,
the user can choose one peripheral group for testing by key hit. A chosen peripheral group offer a dedi-
cated sub-menu where the user can choose the peripheral. Each peripheral offer at least one additional
sub-menu where a certain demo code can be launched.

Table 4-1: Menu Structure

Main menu 1st sub-menu 2nd sub-menu
3rd sub-menu

(optional)

Peripheral group Peripheral Test Test options
83 Application Note U17330EE1V0AN00

Chapter 4 Demos
Depending on the peripheral, the demos need additional external hardware or interaction of the user.
Which additional things are needed for the different demos is described within the demo projects. An
ICE is suitable for many tests. Instead of a real device, an ICE offer the possibility to step through the
code and look into or modify SFRs of the peripheral.t

All dedicated demo programs use interrupts. The interrupt service routine (ISR) for each interrupt set
only a flag or increase a variable and return from interrupt. The demo function in the main program poll
for this flag or analyse the variable count. This is a very simple way to use interrupts for the peripheral.
It is not intended to demonstrate the optimal use of interrupts, but it should demonstrate the way inter-
rupts are generated.

The source files for the demo programs include comments for better understanding and simple dia-
grams. E.g. the demo program for the PWM timer output indicate the expected signal at the corre-
sponding device pin.

Table 4-2: External Test Hardware

Group Peripheral test Optional or required tool

Ports Ports Logic tester (Voltmeter) / Oscilloscope

Bus External 8/16 bit memory

RTO Oscilloscope / Logic Analyser

Interrupts Interrupt -

Key Int -

Timers Timer_P Oscilloscope, Wave generator

Timer_Q Oscilloscope, Wave generator

Timer_M -

Watch timer -

Watchdog -

Serial UART_A RS232 transceiver

CSI_B Oscilloscope, Wave generator

IIC External EEPROM 24x02 or similar (Adress pins low level)

Clock & Power Clock & Power -

Analog Macro_AD -

Macro_DA Oscilloscope

Miscellaneous DMA -

OCD -

CRC -

ROMcorr -
84 Application Note U17330EE1V0AN00

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

Address

North America
NEC Electronics America Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Market Communication Dept.
Fax: +49(0)-211-6503-1344

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-6250-3583

Japan
NEC Semiconductor Technical Hotline

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 99.1

Name

Company

From:

Tel. FAX

Facsimile Message

Fax: +81- 44-435-9608

[MEMO]

	COVER
	Table of Contents
	Chapter 1 Overview
	1.1 Peripheral Macro Driver Software
	1.2 Supported Devices

	Chapter 2 Peripheral Macro Driver File Structure
	Table 2-1: Main include files
	Table 2-2: Macro include files (included in Macro.h)

	Chapter 3 API Description
	3.1 Overview Application Programming Interface
	3.1.1 Ports - Port Functions
	3.1.2 Ports - Bus Control Function
	3.1.3 Ports - Real-Time Output Function
	3.1.4 Interrupts - Interrupt/Exception Processing Function
	3.1.5 Interrupts - Key Interrupt Function
	3.1.6 Timers - 16-Bit Timer/Event Counter P
	Table 3-1: Timers - 16-Bit Timer/Event Counter P (1/2)

	3.1.7 Timers - 16-Bit Timer/Event Counter Q
	Table 3-2: Timers - 16-Bit Timer/Event Counter Q (1/2)

	3.1.8 Timers - 16-Bit Interval Timer M
	3.1.9 Timers - Watch Timer Functions
	3.1.10 Timers - Functions of Watchdog Timer 2
	3.1.11 Serial - Asynchronous Serial Interface A (UARTA)
	3.1.12 Serial - 3-Wire Variable-Length Serial I/O (CCSIB)
	3.1.13 Serial - I2C Bus
	3.1.14 Clock & Power - Clock Generation Function
	3.1.15 Clock & Power - Standby Function
	3.1.16 Clock & Power - Clock Monitor
	3.1.17 Clock & Power - Reset Function
	3.1.18 Clock & Power - Low-Voltage Detector
	3.1.19 Clock & Power - RAM Retention Voltage Detection Operation
	3.1.20 Analog - A/D Converter
	3.1.21 Analog - D/A Converter
	3.1.22 Miscellaneous - DMA Controller
	3.1.23 Miscellaneous - On Chip Debug Interface
	3.1.24 Miscellaneous - CRC Function
	3.1.25 Miscellaneous - ROM Correction Function

	3.2 Detailed Application Programming Interface
	3.2.1 Ports - Port Functions
	3.2.2 Ports - Bus Control Function
	3.2.3 Ports - Real-Time Output Function
	3.2.4 Interrupts - Interrupt/Exception Processing Function
	3.2.5 Interrupts - Key Interrupt Function
	3.2.6 Timers - 16-Bit Timer/Event Counter P
	3.2.7 Timers - 16-Bit Timer/Event Counter Q
	3.2.8 Timers - 16-Bit Interval Timer M
	3.2.9 Timers - Watch Timer Functions
	3.2.10 Timers - Functions Of Watchdog Timer 2
	3.2.11 Serial - Asynchronous Serial Interface A (UARTA)
	3.2.12 Serial - 3-Wire Variable-Length Serial I/O (CCSIB)
	3.2.13 Serial - I·C Bus
	3.2.14 Clock & Power - Clock Generation Function
	3.2.15 Clock & Power - Standby Function
	3.2.16 Clock & Power - Clock Monitor
	3.2.17 Clock & Power - Reset Function
	3.2.18 Clock & Power - Low-Voltage Detector
	3.2.19 Clock & Power - RAM Retention Voltage Detection Operation
	3.2.20 Analog - A/D Converter
	3.2.21 Analog - D/A Converter
	3.2.22 Miscellaneous - DMA Controller
	3.2.23 Miscellaneous - On Chip Debug Interface
	3.2.24 Miscellaneous - CRC Function
	3.2.25 Miscellaneous - ROM Correction Function

	Chapter 4 Demos
	4.1 Description
	Table 4-1: Menu Structure
	Table 4-2: External Test Hardware

