

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

M16C/26
Using UARTs in Asynchronous Mode

1.0 Abstract
The following article introduces and describes how to use the UART’s of the M16C/26 (M30262) Flash

microcontroller (MCU) for asynchronous communications. A sample program, using UART0 in asynchronous

mode, was written for the MSV30262-SKP connected to a PC using a serial cable. Data sent by the MSV30262

SKP board can be displayed in Hyperterminal application.

2.0 Introduction
The Renesas M30262 is a 16-bit MCU based on the M16C/60 series CPU core. The MCU features include up to

64KB of Flash ROM, 2KB of RAM, and 4KB of Virtual EEPROM. The peripheral set includes 10-bit A/D, Timers,

DMA, GPIO, and 3 UART’s. Any of the three UART’s (UART0, UART1, and UART2) can be used in

asynchronous mode and in synchronous mode. In addition, UART2 also supports I2C and SPI. The block

diagrams of the UARTs are shown in , and . Figure 1

Figure 1 UART0 Block Diagram

Figure 2 Figure 3

UART (Universal Asynchronous Receive/Transmit) is a common form of serial communications. Without

handshaking or flow control, will only require 2 lines, receive and transmit. If handshaking is needed, another

2 lines, CTS (Clear-To-Send) and RTS (Request-To-Send), are required.

The remainder of this document shows how to configure a UART, i.e. UART0, in asynchronous mode.

REU05B0055-0100Z June 2003 Page 1 of 12

M16C/26
Using UARTs in Asynchronous Mode

Figure 2 UART1 Block Diagram

Figure 3 UART2 Block Diagram

REU05B0055-0100Z June 2003 Page 2 of 12

M16C/26
Using UARTs in Asynchronous Mode

3.0 UART

3.1 Parameters

3.1

Parameters

The M16C/26 UART’s are programmable and so given parameters are necessary to be able to configure the

UART’s. These parameters, which are shown below, will vary from one application to another.

• Baud Rate - The baud rate is the speed at which the data is transmitted or received. Examples are 19.2Kbps,

9,600bps, 4,8bps, or 2,400bps. Higher speeds of 115Kbps and 57.6Kbps are available in some applications.

The baud rate is used to calculate the value for the bit rate generator. Use the equation below to calculate the

value for the UARTi Bit Rate Generator, UiBRG.

UiBRG = ((clock source / 16) / baud rate) – 1

Where clock source could be f1, f8, or f32. The clock source is selected from UARTi transmit/receive control

register 0, UiC0.

• Data Length - There are three data lengths to choose from: 7, 8, or 9 bits.

• Stop Bit - There are two options for Stop bits: 1 or 2.

• Parity Bit - There are three options: odd, even, or no parity.

• Transmission/Reception (Handshaking or Flow) Control - The available options are: CTS, RTS, or no

control. Having some form of transmission/reception control will minimize data errors because data is only sent

when one party is ready to receive.

3.2 Configuring the UART
The steps necessary to configure a UART are shown below. An example using these steps can be found in the

init_uart() routine of the sample program.

1. Initialize the UARTi transmit/receive mode register, UiMR, based on parameters discussed in section

.

2. Initialize UARTi transmit/receive control register 0, UiC0, based on baud rate and flow control.

3. Initialize UARTi bit rate generator, UiBRG, using the calculated value based on baud rate and clock source

selected in UiC0.

4. Initialize UART transmit/receive control register 2, UCON, based on flow control.

5. Initialize UARTi interrupt vector SiTIC for transmit and SiRIC for receive.

6. Enable transmit and receive using UARTi transmit control register 1, UiC1.

There are several registers used to configure the UART. To simplify the article, we are only going to show the

registers used for configuring UART0 (or UART1), which are shown in Figure 4 to Figure 6.

After initialization, you can start sending and receiving data.

REU05B0055-0100Z June 2003 Page 3 of 12

M16C/26
Using UARTs in Asynchronous Mode

Figure 4 UARTi (i = 0, 1, 2) Registers

REU05B0055-0100Z June 2003 Page 4 of 12

M16C/26
Using UARTs in Asynchronous Mode

Figure 5 UARTi (i = 0, 1) Registers

REU05B0055-0100Z June 2003 Page 5 of 12

M16C/26
Using UARTs in Asynchronous Mode

Figure 6 UARTi (i = 0, 1) Registers

REU05B0055-0100Z June 2003 Page 6 of 12

M16C/26
Using UARTs in Asynchronous Mode

4.0 UART Demo Program
The demo program was written to run on the MSV30262-SKP board with a null modem connected to the PC’s

RS-232C serial port. The Hyperterminal program (or any terminal program that can connect to the COM port) in

Windows™ is used to view the data sent by the M16C/26. Like our parameters to configure UART0, the

Hyperterminal must be configured to 19.2Kbps, one stop bit, no parity, and no flow control.

As soon as a connection is established, incrementing data, 0 to 9, is displayed on Hyperterminal window.

Pressing the ‘z’ key on the keyboard will stop the M16C/26 from sending data. Pressing any other key will

resume data transmission. An interrupt is generated every time a character is received.

The program was compiled using the KNC30 Compiler, which also came with the MSV30262-SKP. It can be

modified to suit a user application.

5.0 Conclusion
Asynchronous mode offers simple communications using only two pins (when no handshaking is required). Due

to this simple connectivity, it is easy to implement. Understanding the key parameters simplifies setup and

usage.

6.0 Reference

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

support_apl@renesas.com

Data Sheets

• M16C/26 datasheets, M30262eds.pdf

User’s Manual

• M16C/20/60 C Language Programming Manual, 6020c.pdf

• M16C/20/60 Software Manual, 6020software.pdf

• Interrupt Handler App Note, M16C26_Interrupt_Handlers_in_C.doc

• MSV30262-SKP Users Manual, Users_Manual_MSV30262.pdf

REU05B0055-0100Z June 2003 Page 7 of 12

M16C/26
Using UARTs in Asynchronous Mode

7.0 Software Code

/***
* File Name: main_uart.c
*
* Content: This program communicates from the M16C/26 to a terminal
* program via UART0 and RS232. UART0 configuration is:
* 19200 baud rate, 8-bit data, 1 stop bit, no parity, no flow control.
*
* This program was written to run on the MSV30262 Board.
* To see the data sent, use Hyperterminal configured as mentioned
* above and connect a null modem cable between P1 and the PC's
* com port.
*
* An incrementing data (0 to 9) is sent to the Hyperterminal window.
* To stop receiving data, press z on the keyboard. To resume, press
* any key.
*
* Version: 1.0
* Date: 05-09-03
*
* Copyright 2003 Renesas Technology America, Inc.
* All rights reserved
*===
* $Log:$
===/
/* Include files */
#include "..\common\sfr262.h" // include M16C/26 header file

/* Setup interrupt routine for UART0 receive. This must also be setup in the
 vector table in SECT30_UART.INC */

#pragma INTERRUPT U0rec_ISR
void U0rec_ISR (void);

/* Function Prototypes */
void text_write (_far char * msg_string);
void mcu_init(void);
void uart_init(void);

/* Global variables */
char U0_in; // declare UART0 recieve variable

/* String constants used for screen output **********************************/
const char cmd_clr_scr[] = {27,'[','2','J',0};
const char cmd_cur_home[] = {27,'[','H',0};

/***
Name: Main
Parameters: none
Returns: none
Description: This is the main program
***/

REU05B0055-0100Z June 2003 Page 8 of 12

M16C/26
Using UARTs in Asynchronous Mode

main() {
 int count; // declare count variable
 int convert; // declare ASCII variable
 unsigned int delay; // declare delay variable
 int i; // declare string pointer variable

 mcu_init(); // MCU initialization
 uart_init(); // UART initialization

/* Text to be displayed at the beginning of the program output
 to the terminal window (\r\n = carriage return & linefeed) */

 text_write(cmd_clr_scr); // clear screen
 text_write(cmd_cur_home); // home cursor
 text_write("Renesas Technology America, Inc. \r\n");
 text_write("Renesas MSV30262-SKP UART demo. \r\n");
 text_write("Press z to stop, any key to continue. \r\n");

/************** MAIN PROGRAM LOOP ***********************/
 while (1){

// setup program loop to count from 0 to 9, stop when "z" is received

 while (U0_in != 'z'){ // count as long as "z" wasn't pressed
 text_write("\r\n"); // send carrige return and line feed

 for (count=0;(count<=9)&&(U0_in!='z');count ++){ // count 0 to 9
 convert = count + 0x30; // convert count data to ASCII
 while(ti_u0c1 == 0); // wait for previous transmission to complete
 u0tb = convert; // put ASCII data in transmit buffer
 p7_0 = 1; // turn off red LED
 p7_2 = ~p7_2; // blink run LED D5
 for (delay=0x3fff; delay>0; delay--); // Count Delay
 }
 }
 asm("NOP"); // Do nothing while stopped
 } // (after "z" is pressed)
}
/***
Name: UART0 Receive Interrupt Routine
Parameters: none
Returns: none
Description: Interrupt routine for UART0 receive
 Reads character received from keyboard and stores U0_in variable
***/
void U0rec_ISR(void){
 while(ri_u0c1 == 0); // make sure receive is complete
 U0_in = u0rb; // read in received data
 if (U0_in == 'z'){ // If "z" was entered do the following:
 while(ti_u0c1 == 0); // wait for previous transmission to complete
 u0tb = 'z'; // echo "z" to screen
 p7_2 = 1; // turn off green LED
 p7_0 = 0; // turn on red LED
 }
}

REU05B0055-0100Z June 2003 Page 9 of 12

M16C/26
Using UARTs in Asynchronous Mode

/***
Name: text_write
Parameters: msg_string -> the text string to output
Returns: none
Description: The following sends a text string to the terminal program
***/
void text_write (_far char * msg_string)
{
 char i;

 for (i=0; msg_string[i]; i++){ // This loop reads in the text string and
 while(ti_u0c1 == 0); // puts it in the UART 0 transmit buffer
 u0tb = msg_string[i];
 }
}

/***
Name: mcu_init
Parameters: None
Returns: None
Description: Initialization routine for the different MCU peripherals. See
 settings for details.
***/
void mcu_init(void) {

 /* LED initialization */
 pd7_0 = 1; // Change LED ports to outputs (connected to LEDs)
 pd7_1 = 1;
 pd7_2 = 1;

 p7 |= 0x7; // turn off LEDs

 /* unused pins - configure as outputs to decrease power consumption */
 pd6 |= 0x9F;
 pd7 |= 0xF8;
 pd8_0 |= 0x2F;

 prc2 = 1; // P9 is write protected - disable protection before writing to P9
 pd9 |= 0x0F;
 prc2 = 0; // Write protect P9

 pd10 |= 0x1F; // upper bits are switch inputs
}

/***
Name: uart_init
Parameters: None
Returns: None
Description: Uart0 initialization - 19200 baud, 8 data bits, 1 stop bit, no parity.
***/

REU05B0055-0100Z June 2003 Page 10 of 12

M16C/26
Using UARTs in Asynchronous Mode

void uart_init(void) {

 u0mr = 0x05; // UART0 transmit/receive mode register
 /*
 00000101; // 8-bit data, internal clock, 1 stop bit, no parity
 ||||||||______Serial I/O Mode select bit, SMD0
 |||||||_______Serial I/O Mode select bit, SMD1
 ||||||________Serial I/O Mode select bit, SMD2
 |||||_________Internal/External clock select bit, CKDIR
 ||||__________Stop bit length select bit, STPS
 |||___________Odd/even parity select bit, PRY
 ||____________Parity enable bit, PRYE
 |_____________Reserved, set to 0 */

 u0c0 = 0x10; // UART0 transmit/receive control register 1
 /*
 00010000; // f1 count source, CTS/RTS disabled, CMOS output
 ||||||||______BRG count source select bit, CLK0
 |||||||_______BRG count source select bit, CLK1
 ||||||________CTS/RTS function select bit, CRS
 |||||_________Transmit register empty flag, TXEPT
 ||||__________CTS/RTS disable bit, CRD
 |||___________Data output select bit, NCH
 ||____________CLK polarity select bit, CKPOL - set to 0 in UART mode
 |_____________Transfer format select bit, UFORM - set to 0 in UART mode
*/

 u0brg = 64; // set UART0 bit rate generator
 /*
 bit rate can be calculated by:
 bit rate = ((BRG count source / 16)/baud rate) - 1

 in this example: BRG count source = f1 (20MHz)
 baud rate = 19200
 bit rate = ((20MHz/16)/19200) - 1 = 64

 ** one has to remember that the value of BCLK does not affect BRG count source */

 ucon = 0x00; // UART transmit/receive control register 2
 /*
 00000000; // transmit irq not used
 ||||||||______UART0 transmit irq cause select bit, U0IRS
 |||||||_______UART1 transmit irq cause select bit, U1IRS
 ||||||________UART0 continuous receive mode enable bit, U0RRM - set to 0 in
UART mode
 |||||_________UART1 continuous receive mode enable bit, U1RRM - set
to 0 in UART mode
 ||||__________CLK/CLKS select bit 0, CLKMD0 - set to 0 in UART mode
 |||___________CLK/CLKS select bit 1, CLKMD1 - set to 0 in UART mode
 ||____________Separate CTS/RTS bit, RCSP
 |_____________Reserved, set to 0 */

REU05B0055-0100Z June 2003 Page 11 of 12

M16C/26
Using UARTs in Asynchronous Mode

 u0tb = u0rb; // clear UART0 receive buffer by reading
 u0tb = 0; // clear UART0 transmit buffer

 asm("FCLR I"); // disable irqs before setting irq registers
 s0ric = 0x04; // Enable UART0 receive interrupt, priority level 4
 asm("FSET I"); // Enable all interrupts

 u0c1 = 0x05; // UART0 transmit/receive control register 1
 /*
 00000000; // enable transmit and receive
 ||||||||______Transmit enable bit, TE
 |||||||_______Transmit buffer empty flag, TI
 ||||||________Receive enable bit, RE
 |||||_________Receive complete flag, RI
 ||||__________Reserved, set to 0
 |||___________Reserved, set to 0
 ||____________Reserved, set to 0
 |_____________Reserved, set to 0 */
}

REU05B0055-0100Z June 2003 Page 12 of 12

Keep safety first in your circuit designs!

• Renesas Technology Corporation puts the maximum effort into making semiconductor products

better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

• These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

• Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms,
or circuit application examples contained in these materials.

• All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

• When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

• Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake. Please
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor when considering the use of a product contained herein for any specific purposes, such as
apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

	Abstract
	Introduction
	UART
	Parameters
	Configuring the UART
	UART Demo Program
	Conclusion
	Reference
	Software Code

