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“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 
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 APPLICATION NOTE
 

M16C/26 
Using UARTs in Asynchronous Mode 

1.0 Abstract 
The following article introduces and describes how to use the UART’s of the M16C/26 (M30262) Flash 

microcontroller (MCU) for asynchronous communications. A sample program, using UART0 in asynchronous 

mode, was written for the MSV30262-SKP connected to a PC using a serial cable. Data sent by the MSV30262 

SKP board can be displayed in Hyperterminal application. 

2.0 Introduction 
The Renesas M30262 is a 16-bit MCU based on the M16C/60 series CPU core.  The MCU features include up to 

64KB of Flash ROM, 2KB of RAM, and 4KB of Virtual EEPROM.  The peripheral set includes 10-bit A/D, Timers, 

DMA, GPIO, and 3 UART’s. Any of the three UART’s (UART0, UART1, and UART2) can be used in 

asynchronous mode and in synchronous mode.  In addition, UART2 also supports I2C and SPI. The block 

diagrams of the UARTs are shown in ,  and . Figure 1

Figure 1 UART0 Block Diagram 

Figure 2 Figure 3

UART (Universal Asynchronous Receive/Transmit) is a common form of serial communications. Without 

handshaking or flow control, will only require 2 lines, receive and transmit. If handshaking is needed, another 

2 lines, CTS (Clear-To-Send) and RTS (Request-To-Send), are required.  

The remainder of this document shows how to configure a UART, i.e. UART0, in asynchronous mode.    
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Figure 2 UART1 Block Diagram 

 

 
Figure 3 UART2 Block Diagram 
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3.0 UART  

3.1 Parameters 

3.1 

Parameters

The M16C/26 UART’s are programmable and so given parameters are necessary to be able to configure the 

UART’s.  These parameters, which are shown below, will vary from one application to another.  

• Baud Rate - The baud rate is the speed at which the data is transmitted or received. Examples are 19.2Kbps, 

9,600bps, 4,8bps, or 2,400bps.  Higher speeds of 115Kbps and 57.6Kbps are available in some applications.  

The baud rate is used to calculate the value for the bit rate generator. Use the equation below to calculate the 

value for the UARTi Bit Rate Generator, UiBRG.  

UiBRG = ((clock source / 16) / baud rate) – 1 

Where clock source could be f1, f8, or f32. The clock source is selected from UARTi transmit/receive control 

register 0, UiC0. 

• Data Length - There are three data lengths to choose from: 7, 8, or 9 bits.   

• Stop Bit - There are two options for Stop bits: 1 or 2.    

• Parity Bit - There are three options: odd, even, or no parity.   

• Transmission/Reception (Handshaking or Flow) Control - The available options are: CTS, RTS, or no 

control. Having some form of transmission/reception control will minimize data errors because data is only sent 

when one party is ready to receive.  

3.2 Configuring the UART 
The steps necessary to configure a UART are shown below. An example using these steps can be found in the 

init_uart() routine of the sample program. 

1. Initialize the UARTi transmit/receive mode register, UiMR, based on parameters discussed in section 

. 

2. Initialize UARTi transmit/receive control register 0, UiC0, based on baud rate and flow control. 

3. Initialize UARTi bit rate generator, UiBRG, using the calculated value based on baud rate and clock source 

selected in UiC0. 

4. Initialize UART transmit/receive control register 2, UCON, based on flow control. 

5. Initialize UARTi interrupt vector SiTIC for transmit and SiRIC for receive. 

6. Enable transmit and receive using UARTi transmit control register 1, UiC1. 

 

There are several registers used to configure the UART. To simplify the article, we are only going to show the 

registers used for configuring UART0 (or UART1), which are shown in Figure 4 to Figure 6. 

After initialization, you can start sending and receiving data. 
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Figure 4 UARTi (i = 0, 1, 2) Registers 
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Figure 5 UARTi (i = 0, 1) Registers 
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Figure 6 UARTi (i = 0, 1) Registers 
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4.0 UART Demo Program 
The demo program was written to run on the MSV30262-SKP board with a null modem connected to the PC’s 

RS-232C serial port. The Hyperterminal program (or any terminal program that can connect to the COM port) in 

Windows™ is used to view the data sent by the M16C/26. Like our parameters to configure UART0, the 

Hyperterminal must be configured to 19.2Kbps, one stop bit, no parity, and no flow control.  

As soon as a connection is established, incrementing data, 0 to 9, is displayed on Hyperterminal window. 

Pressing the ‘z’ key on the keyboard will stop the M16C/26 from sending data. Pressing any other key will 

resume data transmission. An interrupt is generated every time a character is received.  

The program was compiled using the KNC30 Compiler, which also came with the MSV30262-SKP. It can be 

modified to suit a user application.  

5.0 Conclusion 
Asynchronous mode offers simple communications using only two pins (when no handshaking is required). Due 

to this simple connectivity, it is easy to implement. Understanding the key parameters simplifies setup and 

usage.  

6.0 Reference 

Renesas Technology Corporation Semiconductor Home Page 

http://www.renesas.com 

 

E-mail Support 

support_apl@renesas.com 

 

Data Sheets 

• M16C/26 datasheets, M30262eds.pdf 

 

User’s Manual 

• M16C/20/60 C Language Programming Manual, 6020c.pdf 

• M16C/20/60 Software Manual, 6020software.pdf 

• Interrupt Handler App Note, M16C26_Interrupt_Handlers_in_C.doc 

• MSV30262-SKP Users Manual, Users_Manual_MSV30262.pdf 
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7.0 Software Code 
 
/***************************************************************************** 
* File Name:  main_uart.c                                          
*                                                                   
* Content: This program communicates from the M16C/26 to a terminal 
*     program via UART0 and RS232.  UART0 configuration is:  
*   19200 baud rate, 8-bit data, 1 stop bit, no parity, no flow control.  
* 
*     This program was written to run on the MSV30262 Board. 
*   To see the data sent, use Hyperterminal configured as mentioned 
*   above and connect a null modem cable between P1 and the PC's 
*   com port.  
* 
*   An incrementing data (0 to 9) is sent to the Hyperterminal window. 
*   To stop receiving data, press z on the keyboard. To resume, press 
*    any key. 
* 
* Version:  1.0 
*   Date:   05-09-03 
*                  
* Copyright 2003 Renesas Technology America, Inc.                            
* All rights reserved                                             
*============================================================================= 
* $Log:$ 
*===========================================================================*/ 
/* Include files */ 
#include "..\common\sfr262.h"   //  include M16C/26 header file 
 
/* Setup interrupt routine for UART0 receive. This must also be setup in the  
   vector table in SECT30_UART.INC */ 
 
#pragma INTERRUPT U0rec_ISR 
void U0rec_ISR (void); 
 
/* Function Prototypes */ 
void text_write (_far char * msg_string); 
void mcu_init(void); 
void uart_init(void); 
 
/*  Global variables */ 
char U0_in;    // declare UART0 recieve variable 
 
/* String constants used for screen output **********************************/ 
const char cmd_clr_scr[] = {27,'[','2','J',0}; 
const char cmd_cur_home[] = {27,'[','H',0}; 
 
/***************************************************************************** 
Name:       Main     
Parameters:  none                    
Returns:     none    
Description: This is the main program     
*****************************************************************************/ 
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main() { 
 int count;  // declare count variable 
 int convert;  // declare ASCII variable 
 unsigned int delay; // declare delay variable 
 int i;   // declare string pointer variable 
 
 mcu_init();  // MCU initialization 
 uart_init();  // UART initialization 
 
/* Text to be displayed at the beginning of the program output 
   to the terminal window (\r\n = carriage return & linefeed) */ 
 
 text_write(cmd_clr_scr);   // clear screen 
 text_write(cmd_cur_home);   // home cursor 
 text_write("Renesas Technology America, Inc. \r\n");     
 text_write("Renesas MSV30262-SKP UART demo. \r\n");     
 text_write("Press z to stop, any key to continue. \r\n"); 
  
/************** MAIN PROGRAM LOOP ***********************/ 
  while (1){ 
    
// setup program loop to count from 0 to 9, stop when "z" is received 
 
 while (U0_in != 'z'){   // count as long as "z" wasn't pressed 
  text_write("\r\n");  // send carrige return and line feed 
 
  for (count=0;(count<=9)&&(U0_in!='z');count ++){ // count 0 to 9 
    convert = count + 0x30;  // convert count data to ASCII 
   while(ti_u0c1 == 0);   // wait for previous transmission to complete  
    u0tb = convert;   // put ASCII data in transmit buffer 
   p7_0 = 1;  // turn off red LED 
   p7_2 = ~p7_2;             // blink run LED D5 
   for (delay=0x3fff; delay>0; delay--); // Count Delay 
  } 
 } 
 asm("NOP");    // Do nothing while stopped 
  }      //  (after "z" is pressed) 
} 
/***************************************************************************** 
Name:    UART0 Receive Interrupt Routine        
Parameters:  none                    
Returns:     none    
Description: Interrupt routine for UART0 receive 
  Reads character received from keyboard and stores U0_in variable     
*****************************************************************************/ 
void U0rec_ISR(void){ 
 while(ri_u0c1 == 0);    // make sure receive is complete 
 U0_in = u0rb;         // read in received data 
 if (U0_in == 'z'){  // If "z" was entered do the following: 
  while(ti_u0c1 == 0);  //   wait for previous transmission to complete  
  u0tb = 'z';  //   echo "z" to screen 
  p7_2 = 1;  // turn off green LED 
  p7_0 = 0;  // turn on red LED 
 }  
}        
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/***************************************************************************** 
Name:        text_write         
Parameters:  msg_string -> the text string to output                     
Returns:     none    
Description: The following sends a text string to the terminal program      
*****************************************************************************/ 
void text_write ( _far char * msg_string) 
{ 
 char i; 
 
 for (i=0; msg_string[i]; i++){ // This loop reads in the text string and  
  while(ti_u0c1 == 0);   //  puts it in the UART 0 transmit buffer  
  u0tb = msg_string[i]; 
 } 
} 
 
/***************************************************************************** 
Name:  mcu_init    
Parameters: None      
Returns: None 
Description: Initialization routine for the different MCU peripherals. See  
             settings for details. 
*****************************************************************************/ 
void mcu_init(void) { 
 
 
   /* LED initialization */ 
   pd7_0 = 1;  // Change LED ports to outputs (connected to LEDs) 
   pd7_1 = 1; 
   pd7_2 = 1; 
 
   p7 |= 0x7;   // turn off LEDs  
 
   /* unused pins - configure as outputs to decrease power consumption */ 
   pd6 |= 0x9F; 
   pd7 |= 0xF8; 
   pd8_0 |= 0x2F;  
    
   prc2 = 1;  // P9 is write protected - disable protection before writing to P9 
   pd9 |= 0x0F; 
   prc2 = 0;  // Write protect P9 
 
   pd10 |= 0x1F; // upper bits are switch inputs 
} 
 
/***************************************************************************** 
Name:  uart_init    
Parameters: None      
Returns: None 
Description: Uart0 initialization - 19200 baud, 8 data bits, 1 stop bit, no parity. 
*****************************************************************************/ 
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void uart_init(void) { 
 
   u0mr = 0x05;  // UART0 transmit/receive mode register 
   /* 
    00000101;  // 8-bit data, internal clock, 1 stop bit, no parity 
    ||||||||______Serial I/O Mode select bit, SMD0 
       |||||||_______Serial I/O Mode select bit, SMD1 
       ||||||________Serial I/O Mode select bit, SMD2 
      |||||_________Internal/External clock select bit, CKDIR 
       ||||__________Stop bit length select bit, STPS 
       |||___________Odd/even parity select bit, PRY 
       ||____________Parity enable bit, PRYE 
      |_____________Reserved, set to 0 */ 
 
   u0c0 = 0x10;   // UART0 transmit/receive control register 1 
   /* 
    00010000;  // f1 count source, CTS/RTS disabled, CMOS output   
    ||||||||______BRG count source select bit, CLK0 
       |||||||_______BRG count source select bit, CLK1 
       ||||||________CTS/RTS function select bit, CRS 
      |||||_________Transmit register empty flag, TXEPT 
       ||||__________CTS/RTS disable bit, CRD 
       |||___________Data output select bit, NCH 
       ||____________CLK polarity select bit, CKPOL  - set to 0 in UART mode 
      |_____________Transfer format select bit, UFORM  - set to 0 in UART mode 
*/ 
 
 u0brg = 64;   // set UART0 bit rate generator 
   /* 
      bit rate can be calculated by: 
      bit rate = ((BRG count source / 16)/baud rate) - 1 
 
    in this example: BRG count source = f1 (20MHz) 
         baud rate = 19200 
         bit rate = ((20MHz/16)/19200) - 1 = 64  
 
     ** one has to remember that the value of BCLK does not affect BRG count source */ 
  
   ucon = 0x00;   // UART transmit/receive control register 2 
   /* 
    00000000;  // transmit irq not used 
    ||||||||______UART0 transmit irq cause select bit, U0IRS 
       |||||||_______UART1 transmit irq cause select bit, U1IRS 
       ||||||________UART0 continuous receive mode enable bit, U0RRM - set to 0 in 
UART mode 
      |||||_________UART1 continuous receive mode enable bit, U1RRM - set 
to 0 in UART mode 
       ||||__________CLK/CLKS select bit 0, CLKMD0 - set to 0 in UART mode 
       |||___________CLK/CLKS select bit 1, CLKMD1 - set to 0 in UART mode 
       ||____________Separate CTS/RTS bit, RCSP 
      |_____________Reserved, set to 0 */ 
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   u0tb = u0rb;  // clear UART0 receive buffer by reading 
   u0tb = 0;  // clear UART0 transmit buffer 
 
     asm("FCLR I");  // disable irqs before setting irq registers 
 s0ric = 0x04;  // Enable UART0 receive interrupt, priority level 4  
 asm("FSET I");  // Enable all interrupts 
 
   u0c1 = 0x05;   // UART0 transmit/receive control register 1 
   /* 
    00000000;  // enable transmit and receive  
    ||||||||______Transmit enable bit, TE 
       |||||||_______Transmit buffer empty flag, TI 
       ||||||________Receive enable bit, RE 
      |||||_________Receive complete flag, RI 
       ||||__________Reserved, set to 0 
       |||___________Reserved, set to 0 
       ||____________Reserved, set to 0 
      |_____________Reserved, set to 0 */ 
}    
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better and more reliable, but there is always the possibility that trouble may occur with them. Trouble 
with semiconductors may lead to personal injury, fire or property damage. 
Remember to give due consideration to safety when making your circuit designs, with appropriate 
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or 
(iii) prevention against any malfunction or mishap. 
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