Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M16C/62

Using the M16C/62 Timers in One-Shot Mode

1.0 Abstract

One-shots are commonly found in designs because they are useful for debouncing switches, "cleaning" up sensor inputs, and so on. The A timers on the M16C/62 can be configured as one-shots, reducing the need for external components. These one-shots have advantages over their hardware counterparts because they are not susceptible to RC drift, and the pulse widths can be varied under program control allowing for new applications such as fuel injection control and ignition control. The following article describes how to configure the M16C/62 A timers as one-shots, referred to as One-Shot Mode.

2.0 Introduction

The M16C/62 is a 16-bit MCU, based on the M16C CPU core, with features including 10-bit A/D, D/A, UARTS, timers, DMA, etc., and up to 256KB of user flash. The MCU has 5 Timer A's. All 5 timers can operate in One-Shot Mode.

Timer A has the following additional modes of operation:

- Event Counter Mode
- PWM Mode
- Timer Mode

Figure 1 illustrates the operation of timer A. The remainder of this document will focus on setting up timer A0 in One-Shot Mode using an external trigger.

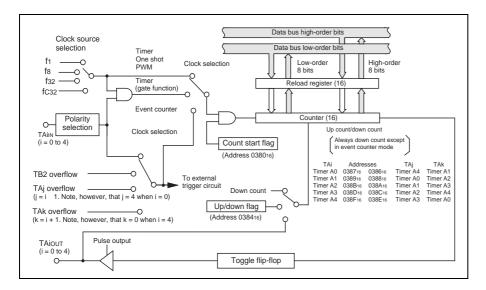


Figure 1 Bock Diagram of Timer A

3.0 One-Shot Mode Description

In One-Shot Mode, an event (internal or external trigger) causes the TAiout output pin to go high. The TAi register counts down using the selected clock source until the counter underflows (0000 to FFFFh). At this point, the TAiout pin goes low and the contents of the reload register are loaded back into the TAi register and the interrupt request bit is set. An interrupt will be accepted when all of the following conditions are met:

- interrupt enable flag (I flag) = "1"
- interrupt request bit = "1"
- interrupt priority level > IPL (Processor Interrupt Priority Level)

If at any time during countdown the count start flag is cleared, counting is stopped and the contents of the reload register are loaded back into the count register. The one-shot can be triggered (externally) by a signal on the TAiin pin or (internally) by the one-shot start flag or another timer output. If a trigger occurs while a count is in progress, the counter reloads the value in the reload counter and continues counting. Figure 2 and Figure 3 illustrate this.

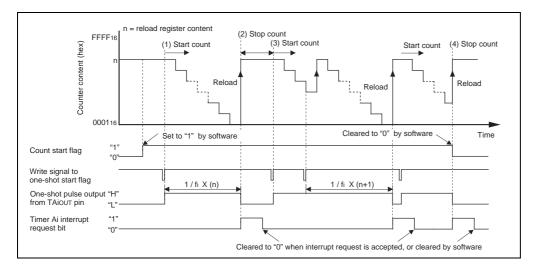


Figure 2 Oeration Timing of One-Shot Mode

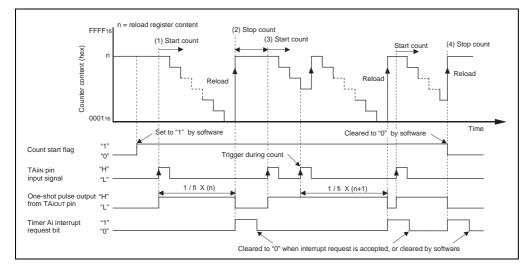
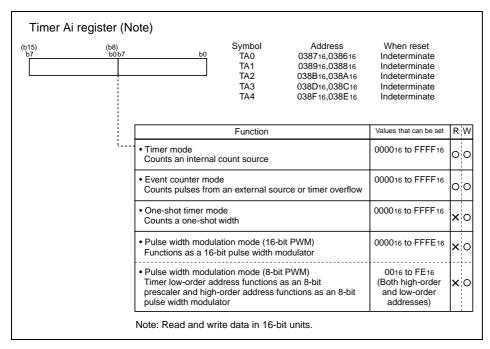


Figure 3 Operation Timing of One-Shot Mode, External Trigger Selected

4.0 Configuring One-Shot Mode

ENESAS

To configure a timer for One-Shot Mode:


- 1. Load the Timer Ai register, TAi (which also loads the reload register) with the count source.
- 2. Load the Timer Mode register, TAiMR:
 - Select One-Shot Mode: bits TMOD0 = 0, TMOD1 = 1.
 - Set the MR0 bit = 1 for output on the TAiOUT pin, clear for no output.
 - Clear the MR1 bit for a falling edge external trigger on the TAiIN pin, or set it for rising edge.
 - Clear the MR2 bit to use the 'count start flag' as a trigger, or set it for external trigger.
 - Clear the MR3 bit One-Shot Mode.
 - Select the clock source (f1, f/8, f/32, or fc/32): bits TCK0,TCK1 register.
- 3. Load the Timer Interrupt Control register (TAiIC) with an interrupt priority level, (ILVL) (load with zero if interrupts are not required).
- 4. Enable interrupts if required (set the I flag).
- 5. Set the 'start count' flag bit, TAiS in the 'Count Start Flag' register, TABSR.
- 6. Set the one-shot start flag bit, TAiOS in the 'one-shot start flag register', ONSF. Note that if the one-shot start flag is selected as the trigger, the TAiOUT pin will immediately go high.

It is not necessary to perform these steps in the order listed, but an initial value should be loaded into the TAi register before the 'start count' flag is set. Also, the priority level should not be modified when there is a possibility of an interrupt occurring.

The required registers are shown in Figure 4 through Figure 8.

	ode registe	Symbol	Address = 0 to 4) 039616 to 039A16	When reset 0016	
	l l l l	Bit symbol	Bit name	Function	RW
		TMOD0	Operation mode select bit	b1 b0	00
	i i i	TMOD1	Operation mode select bit	1 0 : One-shot timer mode	00
		MR0	Pulse output function select bit	0 : Pulse is not output (TA io∪⊤ pin is a normal port pin) 1 : Pulse is output (Note 1) (TAi o∪⊤ pin is a pulse output pin)	00
		MR1	External trigger select bit (Note 2)	0 : Falling edge of TAi IN pin's input signal (Note 3) 1 : Rising edge of TAi IN pin's input signal (Note 3)	00
			Trigger select bit	0 : One-shot start flag is valid 1 : Selected by event/trigger select register	00
· · · · · · · · · · · · · · · · · · ·			0 (Must always be "0" in one-shot timer mode)		00
			Count source select bit	b706 00:f1 01:f8	00
i		TCK1	Count source select bit	0 1 18 1 0 : f32 1 1 : fC32	00
	I	Note 2: Valid o and 03	nly when the TAim pin is sel	port register and port direction register are inva ected by the event/trigger select bit (address 0 elected, this bit can be "1" or "0". on register to "0".	

Figure 4 Timer Ai Mode Register in One-Shot Timer Mode

Figure 5 Timer Ai Register

b7 b6 b5 b4 b3 b2 b1 b0	Symbol Address TABSR 0380 ₁₆		When reset 00 ₁₆		
	Bit Symbol	Bit Name	Function	R	W
· · · · · · · · · · · · · · · · · · ·	TA0S	Timer A0 count start flag		0	0
	TA1S	Timer A1 count start flag	0 : Counting stops 1 : Counting starts	0	0
	TA2S	Timer A2 count start flag	1. Obuilting starts	0	0
	TA3S	Timer A3 count start flag		0	0
	TA4S	Timer A4 count start flag		0	0
	TB0S	Timer B0 count start flag		0	С
	TB1S	Timer B1 count start flag		0	С
	TB2S	Timer B2 count start flag		0	С

Figure 6 Count Start Flag Register

b7 b6 b5 b4 b3 b2 b1 b0	Symbol ONSF	Address 0382 ₁₆	When reset 00X000002		
	Bit Symbol	Bit Name	Function	R	W
	TM0OS	Timer A0 one-shot start flag	1 : Timer start	0	0
	TM1OS	Timer A1 one-shot start flag	When read, the value is indeterminate	0	о
	TA2OS	Timer A2 one-shot start flag		0	0
· · · · · · · · · · · · · · · · · · ·	TA3OS	Timer A3 one-shot start flag		0	0
	TA4OS	Timer A4 one-shot start flag		0	0
	Nothing is assigned. Write "0" when writing to this bit. If read, the value is indeterminate.			-	-
	TA0TGL	Timer A0 event/trigger	 b1 b0 0 0: Input on TA0 IN is selected (Note) 0 1: TB2 overflow is selected 	0	0
	TA0TGH	select bit	1 0 : TA4 overflow is selected 1 1 : TA1 overflow is selected		0

Figure 7 One Shot Start Flag Register

Interrupt control register (Not	e 2)	-)	Address 0055 ₁₆ to	0 0059 ₁₆ When reset XXXXX000 ₂		
	Bit Symbol	Bit Name		Function	R	W
	ILVL0			^{b2 b1 b0} 0 0 0 : Level 0 (interrupt disabled) 0 0 1 : Level 1	0	0
	ILVL1	Interrupt priority level s bit	elect	0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4	0	0
	ILVL2			1 0 1 : Level 4 1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7	0	0
	IR	Interrupt request bit		0 : Interrupt not requested 1 : Interrupt requested	0	O Note 2
	assigned. vhen writing to these bits. The value is "0" if read.		-	-		
	for that regist	er. See precautions liste	d at end o	ly if it will not generate an interrupt req of the Interrupts chapter. (=0) Set (=1) cannot be accessed.	luest	

Figure 8 Interrupt Control Register

5.0 References

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

support_apl@renesas.com

Data Sheets

• M16C/62 datasheets, 62aeds.pdf

User's Manual

- M16C/62 User's Manual, 62eum.pdf
- M16C/60 and M16C/20 C Language Programming Manual, 6020EC.pdf
- Application Note: Writing Interrupt Handlers in C for the M16C
- NC30 Ver. 4.0 User's Manual, NC30UE.PDF

6.0 Software Code

Following is a program written for Renesas' NC30 compiler to illustrate how to set up One-Shot Mode on timer A0. It generates a 1ms pulse on TAiOUT, triggered by a rising edge on TA0in. The program was tested with 0.5ms pulses, at 250 Hz on TA0in. This program runs on the MSV1632/62 Starter Kit Board.

To get familiar with One-Shot Mode, try changing the pulse width, the clock source, or even switch to a different timer (e.g., TA1, etc.).

```
File Name: oneshot mode.c
*
     Content: Example program using Timer A0 in "One Shot Mode", external
*
            trigger. This program is written for the One Shot Mode application
*
            note. Produces a 1ms. pulse on TAOout (P7.0) triggered from a
            rising edge on TAOin (P7.1). This program works with the
            MSV1632/62 starter kit board.
    Compiled with NC30 ver. 3.20.00.
    All timing based on 16 Mhz Xtal
     Copyright, 2003 Renesas Technology Corporation, Inc.
*_____
     $Log:$
*_____*/
#include "sfr62.h"
#define TIME CONFIG 0x1e /* 00011110 value to load into timer mode register
                           |||||||| TMOD0, TMOD1: ONE-SHOT MODE SELECTED
                           ||||||____ MR0:
                                                PULSE OUTPUT

      ||||_____MR1:
      RISING EDGE OF TRIGGER

      |||_____MR2:
      EXTERNAL TRIGGER

      |||_____MR3:
      SET TO 0 IN TIMER MODE

                           ||_____ TCK0, TCK1: F DIVIDED BY 1 SELECTED */
#define CNTR IPL 0x00 // TA0 interrupt priority level
//prototypes
```

void init(void);

```
RENESAS
```

```
Name:
      main()
Parameters: none
Returns: nothing
Description: initializes variables, then does nothing.
void main (void)
{
 init();
 while (1); //one shot is now free running
}
Name: initial()
Parameters: none
Returns: nothing
Description: Timer TAO setup for One-Shot Mode
void init()
 {
            // 16000 divided by 16meg xtal, -> 1msec pulse width.
  ta0 = 16000;
/* the following procedure for writing an Interrupt Priority Level follows
  that as described in the M16C data sheets under 'Interrupts' */
  asm (" fclr i") ;
                      //turn off interrupts before modifying IPL
                   // use read-modify-write instruction to write IPL
  taOic &= CNTR IPL;
  taOmr = TIME CONFIG;
  _asm (" fset i");
  ta0s = 1; // start count bit
ta0os = 1; // start one-shot bit
 }
```

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.