Abstract

This document describes a method of transferring the result of memory data and memory data added together to any memory location using the DMAC II in the R32C/100 Series.

Products

MCUs: R32C/116 Group, R32C/117 Group, and R32C/118 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.
Contents

1. Specifications .. 3
2. Operation Confirmation Conditions ... 4
3. Reference Application Note ... 4
4. Hardware .. 4
4.1 Pin Used .. 4
5. Software .. 5
5.1 Operation Overview ... 5
5.2 Invariable Table .. 7
5.3 Structure/Union List ... 7
5.4 Variable Table ... 8
5.5 Flowcharts .. 8
5.5.1 Main Processing ... 8
5.5.2 DMAC II Initial Setting ... 9
6. Sample Code ... 10
7. Reference Documents ... 10
8. Website and Support ... 10
1. Specifications

When an INT0 interrupt request is generated, a data in memory + data in memory calculation transfer is performed.

Table 1.1 lists the Peripheral Functions and Their Applications. Figure 1.1 and Figure 1.2 show the Block Diagram and Bus Timing, respectively.

<table>
<thead>
<tr>
<th>Peripheral Function</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAC II</td>
<td>Data in memory + data in memory is transferred to memory (calculation transfer)</td>
</tr>
<tr>
<td>INT0 interrupt</td>
<td>Trigger for DMAC II</td>
</tr>
</tbody>
</table>

Figure 1.1 Block Diagram

Figure 1.2 Bus Timing
2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCU used</td>
<td>R5F64189DFD (R32C/118 Group)</td>
</tr>
</tbody>
</table>
| Operating frequencies | Main clock: 16 MHz
PLL clock: 100 MHz
Base clock: 50 MHz
CPU clock: 50 MHz
Peripheral bus clock: 25 MHz
Peripheral function clock source: 25 MHz |
| Operating voltage | 5 V |
| Integrated development environment | Renesas Electronics Corporation
High-performance Embedded Workshop Version 4.07 |
| C compiler | Renesas Electronics Corporation
R32C/100 Series C Compiler V.1.02 Release 01
Compile options
-D__STACKSIZE__=0X300 -D__ISTACKSIZE__=0X300
-DVECTOR_ADR=0xFFFFFBDC -c -finfo -dir "$(CONFIGDIR)"
(Default setting is used in the integrated development environment.) |
| Operating mode | Single-chip mode |
| Sample code version | Version 1.00 |
| Board used | Renesas Starter Kit for R32C/118 (product name: R0K564189S000BE) |

3. Reference Application Note

The application note associated with this application note is listed below. Refer to the following application note for additional information.

- R32C/100 Series Configuring PLL Mode (REJ05B1221-0100)

4. Hardware

4.1 Pin Used

Table 4.1 lists the Pin Used and Its Function.

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8_2/INT0</td>
<td>Input</td>
<td>DMAC II trigger (INT0 interrupt input)</td>
</tr>
</tbody>
</table>
5. Software

5.1 Operation Overview

When an interrupt request is generated with interrupt request level 7, a data in memory + data in memory calculation transfer is performed. In this application note, the INT0 interrupt is set to interrupt request level 7.

(1) DMAC II initial settings

Set the DMAC II index and DMAC II trigger. Also, set the INT0 pin and INT0 interrupt control register to use the INT0 interrupt as a trigger for DMAC II.

Settings for the DMAC II index are as follows:

- Transfer size: 8 bits
- Transfer type: Memory
- Source addressing: Increment
- Destination addressing: Fixed
- Calculation transfer: Used
- Transfer mode: Single transfer
- Transfer complete interrupt: Not used
- Chained transfer: Not used
- Transfer counter (COUNT): Five times
- Source address (SADR): Source address (400h)
- Operation address (OADR): Operation address (405h)
- Destination address (DADR): Destination address (1000h)

(2) When the INT0 interrupt is generated

When the INT0 interrupt is generated, data in memory specified by the source address (SADR) of the DMAC II index and data in the memory specified by the operation address (OADR) are added, and DMAC II transfers the calculated result to the address specified in the destination address (DADR). After the data is transferred, 1 is subtracted from the transfer counter (COUNT) and 1 is added to SADR and OADR. (1)

When COUNT becomes 0, even if the INT0 interrupt is generated, DMA II transfer is not performed.

Note:

1. When the transfer size is 8 bits. When the transfer size is 16 bits, 2 is added.

Figure 5.1 shows a DMA II Transfer Operation Example.
Figure 5.1 DMA II Transfer Operation Example

(1) At initialization

000000400h
000000405h
00000040Ch
00001000h

SADR, OADR, and COUNT are updated.

(2) At the first DMA II request (INT0 interrupt)

000000400h
000000405h
00000040Ch
00001000h

SADR, OADR, and COUNT are updated.

(3) At the second DMA II request (INT0 interrupt)

000000400h
000000405h
00000040Ch
00001000h

SADR, OADR, and COUNT are updated.

(4) At the fifth DMA II request (INT0 interrupt)

000000400h
000000405h
00000040Ch
00001000h

SADR, OADR, and COUNT are updated.

Operated by the setting of the DMAC II index allocated in address 000000400h.

The first DMA II transfer is performed. Data in the memory specified by SADR and OADR are added, and DMAC II transfers the calculated result.

No further DMA II transfer by a trigger for DMAC II is performed when COUNT becomes 0000h.

The second DMA II transfer is performed.
5.2 Invariable Table

Table 5.1 lists the Invariables Used in the Sample Code.

<table>
<thead>
<tr>
<th>Invariable Name</th>
<th>Setting Value</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEST_ADDRESS</td>
<td>1000h</td>
<td>DMA II destination address</td>
</tr>
<tr>
<td>TRANS_COUNT</td>
<td>5</td>
<td>Number of DMA II transfers</td>
</tr>
</tbody>
</table>

5.3 Structure/Union List

Figure 5.2 shows the Structure/Union Used in the Sample Code.

```c
// DMAC II index
struct{
  union {
    struct{
      char size:1;  // Transfer size select bit
      char imm:1;  // Transfer source select bit
      char upds:1;  // Source addressing select bit
      char updd:1;  // Destination addressing select bit
      char oper:1;  // Calculation transfer select bit
      char brst:1;  // Burst transfer select bit
      char inte:1;  // Transfer complete interrupt select bit
      char chain:1;  // Chained transfer select bit
      char reserve:7;  //
      char mult:1;  // Multiple transfer select bit
    }mod_bit;
    unsigned short mod_word;
  }mod;
  unsigned short count;  // transfer counter
  unsigned char far *sadr;  // source address
  unsigned char far *oadr;  // operation address
  unsigned char far *dadr;  // destination address
}dm_index;
```

Figure 5.2 Structure/Union Used in the Sample Code

Set the starting address of the DMAC II index to the interrupt vector for the DMAC II triggerable peripheral interrupt source. In this application note, the INT0 interrupt is used as a trigger for DMAC II. Figure 5.3 shows a setting example of the asm function in a C language program.

```c
asm(".rvector 31, _dm_index");  // Define DMAC II Index (Software Interrupt Number 31)
```

Figure 5.3 Setting Example for the Starting Address of the DMAC II Index to the Interrupt Vector
5.4 Variable Table

Table 5.2 lists the Global Variables.

<table>
<thead>
<tr>
<th>Type</th>
<th>Variable Name</th>
<th>Contents</th>
<th>Function Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>static unsigned char</td>
<td>data[]</td>
<td>DMA II transfer source data (10h, 20h, 30h, 40h, and 50h)</td>
<td>DMACII_init</td>
</tr>
<tr>
<td>static unsigned char</td>
<td>cal_data[]</td>
<td>Data to be calculated for DMA II transfer (01h, 02h, 03h, 04h, and 05h)</td>
<td>DMACII_init</td>
</tr>
<tr>
<td>struct</td>
<td>dm_index</td>
<td>DMAC II index</td>
<td>DMACII_init</td>
</tr>
</tbody>
</table>

5.5 Flowcharts

5.5.1 Main Processing

Figure 5.4 shows the Main Processing.

![Diagram of Main Processing]

Figure 5.4 Main Processing
5.5.2 DMAC II Initial Setting

Figure 5.5 shows the DMAC II Initial Setting.

<table>
<thead>
<tr>
<th>DMACII_init</th>
<th>RIPL1 register ← 20h</th>
<th>RIPL2 register ← 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Set to interrupt request level 7 for DMA II transfer</td>
<td>FSIT bit = 0</td>
<td>DMAII bit = 1</td>
</tr>
<tr>
<td></td>
<td>: Interrupt request level 7 is used for DMA II transfer. (^{(1,2)})</td>
<td></td>
</tr>
<tr>
<td>(2) Set DMAC II index</td>
<td>MOD ← 0016h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIZE bit = 0 : 8 bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMM bit = 1 : Memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UPDS bit = 1 : Incrementing addressing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UPDD bit = 0 : Non-incrementing addressing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPER bit = 1 : Calculation transfer is used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRST bit = 0 : Single transfer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTE bit = 0 : Interrupt is not used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHAIN bit = 0 : Chained transfer is not used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MULT bit = 0 : Multiple transfer is not used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUNT ← TRANS_COUNT : Set the number of transfers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SADR ← : Set the starting address of the source address area.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OADR ← : Set the starting address of the calculation data area.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DADR ← DEST_ADDRESS : Set the destination address.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The DMA II transfer is not affected by the I flag or the IPL.
2. Simultaneous use of the fast interrupt and DMAC II is not available.

Figure 5.5 DMAC II Initial Setting
6. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents

R32C/118 Group User's Manual: Hardware Rev.1.10
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
R32C/100 Series C Compiler Package V.1.02
C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

8. Website and Support

Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
Revision History

R32C/100 Series

Using DMAC II to Transfer Calculated Data in Memory + Data in Memory

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Dec. 28, 2010</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our websites.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacturer, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, the control and malformation prevention, appropriate treatment for aging-degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics products" means any product developed or manufactured by or for Renesas Electronics.