

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REG05B0027-0100/Rev.1.00 December 2008 Page 1 of 29

H8S Family
User Mode FLASH Programming Example

Introduction

One of the most useful features of microcontrollers which incorporate FLASH memory is their
ability to ‘self program’ their FLASH memory.

With Renesas H8 & H8S microcontrollers when this FLASH programming is occurring, the
application has to be executing from a memory source other than FLASH. Typically this is the
internal RAM of the device. With single chip devices such as the H8S/2612, it has to be internal
RAM. The processes of relocating and executing code from RAM can pose several problems, more
of which will be discussed later.

Aspects associated with FLASH programming are discussed in several application notes. Examples
of these are: App Notes REG05B0021-0100, REG05B0022-0100 and REG05B0023-0100.

It is recommended that these three application notes be read either in conjunction or prior to this
application note.

It is the aim of this Application Note to bring together all of the concepts discussed in the earlier
Application Notes into one simple example.

The Application Note will show how an H8S/2612 can reprogram an ADC value into a user defined
FLASH block in response to external interrupt.

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 2 of 29

Contents

USER MODE FLASH PROGRAMMING EXAMPLE ... 1

INTRODUCTION .. 1

CONTENTS .. 2

AN OVERVIEW OF FLASH PROGRAMMING.. 3

FLASH_DEMO HEW WORKSPACE & PROJECTS .. 6

‘EXAMPLEAPP’ MEMORY MAP... 7

‘EXAMPLEAPP’ LINKER SETTINGS ... 8

‘EXAMPLEAPP’ HARDWARE OVERVIEW.. 9

‘EXAMPLEAPP’ APPLICATION OVERVIEW... 9

‘EXAMPLEAPP’ CODE.. 11

POWERON RESET: ... 11

HARDWARE SETUP:.. 12

MAIN: .. 13

GLOBAL DECLARATIONS:.. 14

IRQ0 CODE: .. 14

ADC CODE: ... 17

_FERASE PROJECT ... 18

_FLASH_EARSE.C... 18

_FERASE.C LINKER SETTINGS ... 22

_FPROGRAM PROJECT... 23

FLASH_PROG.C .. 23

_FPROGRAM LINKER SETTINGS ... 27

SUMMARY ... 28

WEBSITE AND SUPPORT .. 28

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 3 of 29

An Overview of FLASH Programming
It was mentioned in the introduction of the application note that when the FLASH memory of an
H8S device is being erased or programmed, then the application code has to be executing from a
memory other than FLASH, typically RAM.

At first the solution to this ‘problem’ seems straightforward enough. At runtime copy the program
or erase routine from FLASH into RAM and call it via a function pointer. In many cases this
method will work but cannot be guaranteed. The reason being that any jumps within the code or to
subroutines may refer to absolute addresses. Therefore, the code may be executing correctly in
RAM and then jump back into the FLASH unexpectedly. This can be avoided by using only branch
statements that use offsets relative to the program counter but unfortunately with the current H8S
tools there is no way to force the output of position independent code exclusively utilising branches.

The solution to this problem is to link the code that must run from RAM to the actual RAM
addresses at build time. This can introduce further problems. The first is that of library routines. If
a RAM based function is part of a larger project then it may happily run from RAM but may feature
calls to library routines that are linked to FLASH addresses causing accesses to FLASH memory at
undesirable moments during execution. Even something as innocuous as the C statement below can
result in a library call.

i = 1 << some_variable;

Simply looking through the C source and avoiding calls to functions such as ‘printf’ is not enough
to guarantee that there are no library calls to FLASH based routines.

The second issue concerning copying functions from FLASH to RAM is that of constant data. If
the RAM routine makes reference to constant data, including items such as string literals, this can
cause the FLASH memory to be accessed.

A third consideration is how to get code that is linked to RAM into FLASH for storage at build time
and then back into RAM at runtime for execution.

A solution to these problems is to place the entire RAM based routines into completely separate
projects with all the code, variable and constant data linked to the RAM addresses. This eliminates
the problems of jumps back into FLASH for code, libraries and constant data. Getting this code
from the RAM addresses into the FLASH for storage at build time can be achieved by using the
‘motice_cl’ utility and method described in Application Note REG05B0021-0100.

This utility converts an S-record file into a constant ‘C’ array. For example, a FLASH erasing
function is built as a separate project and linked to RAM. The linker is configured so that it outputs
an S-record file for this project. This S-record is processed by ‘motice_cl’ which converts it into a
constant ‘C’ array which can be included into the Application project. As the array is constant data
it resides in the FLASH. When the erase routine is to be called by the Application the constant
array data is copied to the correct place in RAM and called by a function pointer. While the erase
routine is executing only RAM is accessed for program code and data as this is all the routine
knows about as it has been linked to RAM addresses in a separate project.

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 4 of 29

The above method relies on 3 things being known at runtime. These are:

1. The start address that the RAM code should be copied to from FLASH. This is achieved by
storing the constant data as part of a structure which contains the start address (put there by
‘motice_cl’ from the s-record) and the length of the data.

2. The size of the data to be copied to RAM so the copying routine knows how much data to move.
See the explanation above for how this is known.

3. If the RAM based code contains multiple functions, e.g. erase and delay routines, the start
addresses for these functions must be known so they can be correctly called via function
pointers. This can be achieved by loading these addresses into a ‘vector’ table starting at the
beginning of the RAM code area. Although the addresses of the functions may change, the
location of where the value and order of these are stored does not and is known by the
Application. All the Application must do is read the correct address and call the function via a
pointer.

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 5 of 29

‘ExampleApp’ Software Overview
All of the software for ‘ExampleApp’ was written using the Renesas Integrated Debugging
Environment (IDE), HEW. The version of HEW used was version 3.06. It should be noted that
any HEW version could be used.

As detailed in the previous section, one of the ways to avoid the problems associated with FLASH
programming is to place all of the RAM based routines into separate projects. This is the technique
that was used to develop this example.

Within HEW, three projects were created under one workspace. Table 1 details the projects created
within the workspace.

Name Comment
FLASH_Demo_HEW_3 Workspace to which projects are added.

_ferase Project that contains all code required to implement FLASH Erasing.

The S-Record generated by this file is converted using motice_cl1 to a
constant ‘C’ structure called ferase_converted.c

This file is added to the application project ExampleApp_HEW_3

_fprogram Project that contains all code required to implement FLASH Programming.

The S-Record generated by this file is converted using motice_cl1 to a
constant ‘C’ structure called fprogram_converted.c

This file is added to the application project ExampleApp_HEW_3

ExampleApp_HEW_3 Project that contains the files required for the application.

2 addition files are added to the project:

ferase_converted.c & fprogram_converted.c

These 2 files contain the erasing and programming execution code pre linked
to the RAM address from which they will execute. The application copies
this code from FLASH to RAM when User Mode FLASH programming is
required.

1Refer to Application Note REG05B0021-0100

Table 1.

A screen shot taken from HEW 3 is shown in figure 1 showing the Workspace and projects.

It is mentioned in table 1 that pre linked execution codes are copied from the FLASH memory to
internal RAM as and when required. To ensure that no data is corrupted when the code is copied up
to RAM, it is necessary to reserve an area of RAM. This is done via the linker settings.

Figure 2 and table 2 show the ‘ExampleApp’ memory map and linker settings.

H8S Family
User Mode FLASH Programming Example

FLASH_Demo HEW Workspace & Projects

Figure 1

REG05B0027-0100/Rev.1.00 December 2008 Page 6 of 29

H8S Family
User Mode FLASH Programming Example

‘ExampleApp’ Memory Map

REG05B0027-0100/Rev.1.00 December 2008 Page 7 of 29

Figure 2.

0x000000Vector Table

Application Code

Blank memory

FLASH Block 7

Blank memory

Reserved Area

Reserved RAM

RAM

I/O Registers

RAM

0x0003ff
0x000500

0x0050ff
0x005100

0x00dfff
0x00e000
0x00ffff
0x010000

0x01ffff

Application code
including the

constant data for
FLASH Erasing & FLASH

Programming

128k Bytes
FLASH

2 Bytes at address
0x00e000,0x00e001

These 2 bytes are
programmed with the ADC

value once an ADC
conversion has

occurred.

The rate at which the
TPU toggles the LED is

determined by the value
at this address.

8k Bytes

0xffe000 644 By
0xffe283
0xffe284

0xffefbf
0xffefc0

0xffffc0
0xffffff

0xffffbf

tes
4032 Bytes

RAM

64 Bytes

RAM

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 8 of 29

‘ExampleApp’ Linker Settings

Address Section Comment
DVECTTBL Stores addresses of Power-On Reset Vector and Manual Reset1 Vector 0x000000

DINTTBL Stores addresses of Interrupt Vector Table

PResetPRG Stores PowerOnReset() and ManualReset()1 code. 0x000500

PIntPRG Stores the default execution code for all Interrupt Service Routines.

The default function is the sleep() function.

P Program Code

C Constant Data

C$DSEC Address area for Initialised data section.

Stores ROM addresses, final addresses in ROM, and RAM addresses for initialised
data area sections

C$BSEC Address area for Non-Initialised data section.

Stores addresses and final addresses for Non-Initialised data area sections

0x000800

D Initialised Data

0xffe000 BRESERVED A User Defined Area.

This Area of RAM is reserved for the FLASH ‘Erase’ & ‘Program’ algorithms.
These execute from RAM.

B Non-Initialised Data 0xffe400

R Reserved area for Initialised Data.

Data is copied from D to R by _INITSCT

0xffed00 S Stack
1Not implemented on H8S/2612

Table 2

H8S Family
User Mode FLASH Programming Example

‘ExampleApp’ Hardware Overview

ExampleApp was developed using an EDK2612. Additional hardware requirements are a 10k pot,
connected to Port 4.0 (Analogue input 0), a 10k resistor and a switch connected to Port 1.4 (IRQ0).

Figure 3 shows the hardware required for the application. The shaded components are the ones,
which had to be added to EDK2612.

REG05B0027-0100/Rev.1.00 December 2008 Page 9 of 29

IRQ0 TPU1 – TIOCB1

H8S/2612

SCI2 ADC – AN0

330 Ω

Vcc

D1

SW1

Tx

10k Ω

Vcc

Vcc

Figure 3.

‘ExampleApp’ Application Overview

TPU1 is configured to toggle the Timer I/O pin. This provides a visual indication that the
application is running.

The ADC is configured to perform single AD Conversion on channel AN0.

SCI2 is configured to transmit data at 9600 Baud, 8 data bits, 1 stop bit, no parity.

IRQ0 is configured to generate an interrupt on a falling edge.

When the H8S/2612 is powered and comes out of reset, the device is initialised and TPU1 will
toggle the LED D1. The application effectively now does nothing, sitting in a while(1) loop until
an IRQ0 interrupt is generated by the user pressing switch SW1.

H8S Family
User Mode FLASH Programming Example

When the CPU excepts the IRQ0 interrupt, the IRQ0 ISR (Interrupt Service Routine) is executed.
The IRQ0 ISR performs the following.
1. Start the ADC and when the ADC has completed, assign the ADC result (Channel AN0) to a variable.

2. Copy the FLASH Erase routine from FLASH memory to RAM.

3. Execute the FLASH Erase routine and erase the FLASH block.

4. If the FLASH erase is successful, copy the FLASH Programming routine to RAM.

5. Program the previously obtained ADC value into FLASH.

6. If the FLASH Program is successful set the TGR1B value equal to this new value. The rate at which the LED
toggles is controlled by the value in the TGR1B register. This provides a visual indication that the FLASH
memory has been programmed with a new value. In addition, the new value programmed into FLASH is
transmitted via the serial port at 9600 Baud. If SCI2 is connected to a PC application such as Hyper terminal, the
new value may be viewed.

7. If either FLASH Erase or FLASH Program is not successful, the TPU is stopped. This stops the LED toggling to
indicate an error condition.

IRQ0 Interrupt

PowerOn Reser

Initialise H8S/2612
peripherals required for

application

while(1);

Enable Interrupts

IRQ0 Interrupt

Start ADC

Copy FLASH Erase routines to RAM.
Erase FLASH block 7

Stop TPU.
RTE

Copy FLASH Program routines to RAM.
Program FLASH block 7 with ADC value

FLASH Program
successful?

FLASH Erase
successful?

ADC
Completed?

Stop TPU.
RTE

Set TPU Count Register equal to the value programmed into FLASH.
Transmit value programmed into FLASH via SCI2

RTE

Yes

Yes

Yes

No

No

No

Figure 4.Basic Program Flow.

REG05B0027-0100/Rev.1.00 December 2008 Page 10 of 29

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 11 of 29

‘ExampleApp’ Code

When the H8S/2612 is powered and comes out of reset the reset vector (address 0x000000) is read.
Code execution begins at this address.

After the SP has been initialised, the function PowerOn_Reset is executed.

PowerOn Reset:
// The compiler automatically generates code to set SP when #pragma entry is used
#pragma entry PowerON_Reset

// Ensure the Reset Code is positioned by the linker to the correct address
#pragma section ResetPRG

void PowerON_Reset(void)
{
 set_imask_ccr(1); // Mask all interrupts - Mode 0
 set_imask_exr(7); // Mask all interrupts - Mode 1

 HardwareSetup(); // Configure interrupt controller & I/O ports

 _INITSCT(); // Library function
 // Initialises & Non Initialised data Set up

 main(); // Main application

 sleep(); // Just incase we fall out of main();
}

The functions HardwareSetup() & main() are listed on pages 12 & 13 respectively.

The function _INITSCT() is a library function.

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 12 of 29

Hardware Setup:
void HardwareSetup(void)
{
 unsigned char P1DDRShadow;

 SYSCR.BIT.MACS = 0; // 0 - Non Saturating Calculation for MAC
 // 1 - Saturating Calculation for MAC

 SYSCR.BIT.INTM = 0; // 0 - Interrupt Mode 0
 // 1 - Setting Prohibited
 // 2 - Interrupt Mode 2
 // 3 - Setting Prohibited

 SYSCR.BIT.NMIEG = 0; // 0 - NMI on falling edge
 // 1 - NMI on rising edge

 SYSCR.BIT.RAME = 1; // 0 - On Chip RAM disabled
 // 1 - On Chip RAM enabled

 // Set Interrupt Priorities for INT MODE 2
 // Note: Not used in this application as we are using INT MODE 0

 INTC.IPRA.BIT._IRQ0 = 1; // IRQ0
 INTC.IPRA.BIT._IRQ1 = 1; // IRQ1
 INTC.IPRB.BIT._IRQ23 = 1; // IRQ2,IRQ3
 INTC.IPRB.BIT._IRQ45 = 1; // IRQ4,IRQ5
 INTC.IPRC.BIT._DTC = 1; // DTC
 INTC.IPRD.BIT._WDT = 1; // WDT
 INTC.IPRE.BIT._PBC = 1; // PBC
 INTC.IPRE.BIT._AD = 1; // A/D
 INTC.IPRF.BIT._TPU0 = 1; // TPU0
 INTC.IPRF.BIT._TPU1 = 1; // TPU1
 INTC.IPRG.BIT._TPU2 = 1; // TPU2
 INTC.IPRG.BIT._TPU3 = 1; // TPU3
 INTC.IPRH.BIT._TPU4 = 1; // TPU4
 INTC.IPRH.BIT._TPU5 = 1; // TPU5
 INTC.IPRJ.BIT._SCI0 = 1; // SCI0
 INTC.IPRK.BIT._SCI1 = 1; // SCI1
 INTC.IPRK.BIT._SCI2 = 1; // SCI2
 INTC.IPRM.BIT._HCAN = 1; // HCAN
 INTC.IPRM.BIT._MMT = 1; // MMT

 // Enable IRQ0
 INTC.IER.BIT.IRQ0E = 1;

 // Set IRQ0 sense control
 INTC.ISCR.BIT.IRQ0SC = 1; // 00: Interrupt request generated at low level
 // 01: Interrupt request generated at falling edge
 // 10: Interrupt request generated at rising edge
 // 11: Interrupt request generated at both
 // falling and rising edges

 // It is not possible to do bit manipulation on Port 'DDR' Registers
 // Therefore, use a 'Shadow' register
 P1DDRShadow = P1.DDR; // Assign DDR value to Shadow
 P1DDRShadow &= ~0x10; // Perform bit manipulation - Set Bit 4 to 0, Input
 P1.DDR = P1DDRShadow; // Set DDR value equal to Shadow
}

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 13 of 29

The function main() performs function calls that enable and initialise the 3 peripherals that are
required in this application. These are the:

• ADC
• SCI
• TPU

Main:
void main(void)
{
 // All peripherals on H8S devices (except DMAC / DTC) are disabled by default.
 // Therefore the peripherals have to be enabled by taking them
 // out of Module Stop Mode
 Enable_ADC();
 Enable_SCI(2);
 Enable_TPU();

 // Initialise the Peripherals that will be used for the application
 Init_ADC();
 Init_SCI2(BAUD(9600L));
 Init_TPU1();

 Start_TPU(1); // Toggles LED

 set_imask_ccr(0); // Enable interrupts

 while(1);
}

Once the 3 peripherals are enabled and initialised the application sits in a while(1) loop. Nothing
else will happen until an IRQ0 is generated. The IRQ0 is enabled as part of the initialisation of the
interrupt controller in function HardwareSetup().

It is response to the IRQ0 interrupt that erases and programs a single block of the FLASH memory.

When an IRQ0 occurs, the following occurs:

1. Start the ADC and when the ADC has completed, read the ADC result.

2. Copy the FLASH ‘Erase’ routine from ROM to FLASH

3. Execute the FLASH ‘Erase’ routine and erase the FLASH block

4. If the FLASH ‘Erase’ is successful, copy the FLASH ‘Program’ routine to FLASH

5. Program the previously obtained ADC value into FLASH

6. If the FLASH ‘Program’ is successful set the TGR1B value equal to this new value. The rate at
which the LED toggles is controlled by the value in the TGR1B register. In addition, the new
value programmed into FLASH is transmitted via the serial port at 9600 Baud.

7. If either the FLASH ‘Erase’ or FLASH ‘Program’ are not successful stop the TPU. This stops
the LED toggling to indicate an error condition.

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 14 of 29

Global declarations:

#pragma section RESERVED
 unsigned char ProgEraseArray[0x3ff]; // Reserved area to which
#pragma section // FLASH Erase & FLASH Program
 // code will be copied to.

extern const struct rom_data ferase; // FLASH Erase code
extern const struct rom_data fprogram; // FLASH Program code

//union definition that allows access to short to char data types
union {
 unsigned char c[2]; // c[1] = lsb
 unsigned short s; // c[0] = msb
}c2s;

union char_rd_datum_union {
 unsigned char c[FLASH_LINE_SIZE];
 unsigned short s[FLASH_LINE_SIZE / 2];
}Prog_Data;

// Function Pointers
// These are used to call the functions required for
// FLASH Erasing and FLASH Programming
void (*ptr2_Init_ERASE_delay)(void);
unsigned char (*ptr2_Function_Erase)(unsigned char);

void (*ptr2_Init_PROG_delay)(void);
unsigned char (*ptr2_Function_PROG)(unsigned long, union char_rd_datum_union*);

IRQ0 Code:
#pragma interrupt(_INT_IRQ0)
void _INT_IRQ0(void)
{
 char Buffer[4];
 unsigned char Index;
 unsigned char Erase_Status = 0;
 unsigned char Prog_Status = 0;
 unsigned short *s_ptr;
 unsigned char *c_ptr;

 // read the ADC data and assign it to the variable c2s.s
 c2s.s = Read_ADC_Value() & 0xFFC0;

 // Before the FLASH can be written to, it has to be in an erased state.
 // When the FLASH is being Erased or Programmed, code operation HAS to be
 // external to the FLASH, i.e. from internal or external RAM.
 // As the H8S/2612 is a single chip device, it is internal RAM!
 // Copy the required routines from ROM to RAM

// memcpy(To Destination, From Source, Length of data);
 memcpy(&ProgEraseArray[0], &ferase.data[0], ferase.data_length);

 // Initialise the TPU.
 // The Erase & Program routines require accurate timing pulses
 // The TPU generates these.

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 15 of 29

 // Initialise the function pointer
 ptr2_Init_ERASE_delay = (void*)INIT_ERASE_DT; // Function address specified in main.h
 // Function Call
 ptr2_Init_ERASE_delay();

 // Initialise the function pointer
 ptr2_Function_Erase = (void*)ERASE_FUNC; // Function address specified in main.h

 // Function Call
 // The Parameter specifies which Block is to be erased
 // In this case BLOCK 7, Address 0x00E000;
 Erase_Status = ptr2_Function_Erase(7);

 if(Erase_Status == ERASE_PASS)
 {
 // FLASH Block has erased successfully
 // The FLASH is programmed 128 bytes at a time
 // In this application we are only programming the first 2 bytes
 // Therefore fill the entire 128 bytes with 0xff
 for(Index=0; Index<128; Index++)
 {
 Prog_Data.c[Index] = 0xff;
 }

 // Fill elements 0 & 1 of the array with the required data
 Prog_Data.s[0] = c2s.s;

 // Copy the required routines from ROM to RAM
 // memcpy(To Destination, From Source, Length of data);
 memcpy(&ProgEraseArray[0], &fprogram.data[0], fprogram.data_length);

 // Initialise the TPU.
 // The Erase & Program routines require acuurate timing pulses
 // The TPU generates these.

 // Initialise the function pointer
 ptr2_Init_PROG_delay = (void*)INIT_PROG_DT; // Function address specified
 // in main.h
 // Function Call
 ptr2_Init_PROG_delay();

 // Initialise the function pointer
 ptr2_Function_PROG = (void*)PROG_FUNC; // Function address specified in main.h
 // Function Call
 // We pass the address to be written to, in this case 0xe000
 // and the address of data to be programmed, in this case
 // the start address of the array prog_data[128];
 Prog_Status = ptr2_Function_PROG(0xe000, &Prog_Data);

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 16 of 29

 if(Prog_Status == PROG_PASS)
 {
 // Read the contents of the address that has just been programmed
 // Adjust the TGR of TPU controlling the LED

 // initialise the ptr to the correct address
 s_ptr = (unsigned short *)0xe000;
 // Timer TGR = the contents of address
 TPU1.TGRB = *s_ptr;

 // Convert the contents of the address to a string
 // Send the string out of the serial port, SCI2
 c_ptr = (unsigned char *)0xe000;
 sprintf(Buffer, "%d\n\r", *c_ptr++, *c_ptr);
 Send_String(Buffer);
 }
 else
 {
 Stop_TPU(1);
 }
 }
 else
 {
 Stop_TPU(1);
 }

 INTC.ISR.BIT.IRQ0F = 0; // Clear Interrupt Flag
}

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 17 of 29

ADC Code:
void Enable_ADC(void)
{
 MSTP.CRA.BIT._AD = 0; // Enable ADC - Clear BIT to 0
}

void Disable_ADC(void)
{
 MSTP.CRA.BIT._AD = 1; // Disable ADC - Set BIT to 1
}

void Init_ADC(void)
{
 AD.ADCSR.BIT.ADST = 0; // 0 - Stop ADC
 // 1 - Start ADC

 AD.ADCSR.BIT.ADIE = 0; // 0 - ADC End Interrupt Disabled
 // 1 - ADC End Interrupt Enabled

 AD.ADCSR.BIT.SCAN = 0; // 0 - Scan Mode Disabled
 // 1 - Scan Mode Enabled

 AD.ADCSR.BIT.CH = 0; // Channel 0 selected;

 AD.ADCR.BIT.TRGS = 0; // 00: A/D conversion start by software is enabled
 // 01: A/D conversion start by TPU conversion start
 // trigger is enabled
 // 10: Setting prohibited
 // 11: A/D conversion start by external trigger pin
 // (ADTRG) is enabled

 AD.ADCR.BIT.CKS = 2; // 134 State conversion time
}

unsigned short Read_ADC_Value(void)
{
 AD.ADCSR.BIT.ADST = 1; // Start ADC

 while(AD.ADCSR.BIT.ADF != 1); // Wait for end of ADC flag

 AD.ADCSR.BIT.ADF = 0; // Clear ADC flag

 return(AD.ADDRA);
}

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 18 of 29

_ferase Project

The code for the FLASH Erasing is developed as a separate project. The code and linker settings
are shown over the next couple of pages.

_flash_earse.c
#include "flash_header.h"

// prototypes
unsigned char init_erase_delay_timer (unsigned char);
void erase_delay (unsigned short d);
unsigned char erase_block_035_um (unsigned char block_num);

#pragma section CONSTANTS
const unsigned long eb_block_addr [NO_OF_FLASH_BLOCKS + 1] = {
 0x00000000L,
 0x00000400L,
 0x00000800L,
 0x00000c00L,
 0x00001000L,
 0x00008000L,
 0x0000c000L,
 0x0000e000L,
 0x00010000L,
 0x00018000L,
 0x00020000L}; /* max flash address + 1 */

const unsigned char EraseBlocks[8] = {
 0x01,
 0x02,
 0x04,
 0x08,
 0x10,
 0x20,
 0x40,
 0x80
};
#pragma section

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 19 of 29

#pragma section INIT_ERASE_DT
unsigned char init_erase_delay_timer (unsigned char x)
{
 // enable TPU in module top register
 MSTP.CRA.BIT._TPU = 0;

 FLASH_DELAY_TIMER_CH_TCR.BIT.CCLR = 1; // TCNT cleared by TGRA C/M, I/C
 FLASH_DELAY_TIMER_CH_TCR.BIT.CKEG = 0; // Count at rising edge
 FLASH_DELAY_TIMER_CH_TCR.BIT.TPSC = 2; // Timer pre-scaler = clk / 16

 FLASH_DELAY_TIMER_CH_TMDR.BIT.MD = 0; // Normal operation

 FLASH_DELAY_TIMER_CH_TIOR.BIT.IOB = 0; // Output disabled
 FLASH_DELAY_TIMER_CH_TIOR.BIT.IOA = 0; // Output disabled

 FLASH_DELAY_TIMER_CH_TIER.BIT.TTGE = 0; // ADC start request disabled
 FLASH_DELAY_TIMER_CH_TIER.BIT.TCIEU = 0; // Underflow interrupt request disabled
 FLASH_DELAY_TIMER_CH_TIER.BIT.TCIEV = 0; // Overflow interrupt request disabled
 FLASH_DELAY_TIMER_CH_TIER.BIT.TGIEB = 0; // TGRB interrupt request disabled
 FLASH_DELAY_TIMER_CH_TIER.BIT.TGIEA = 0; // TGRA interrupt request enabled

 FLASH_DELAY_TIMER_CH_TCNT = 0;
 FLASH_DELAY_TIMER_CH_TGRA = 0;
 FLASH_DELAY_TIMER_CH_TGRA = 0;
 FLASH_DELAY_TIMER_CH_TGRB = 0;
 FLASH_DELAY_TIMER_CH_TGRB = 0;

 return 0;
}

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 20 of 29

#pragma section
#pragma section ERASE_FUNC
unsigned char erase_block_035_um (unsigned char block_num)
{
 unsigned char erase; // flag showing erase status - BLANK or NOT_BLANK
 unsigned char ax; // loop counter
 unsigned long attempts; // loop counter for erase attempts (0->MAX_ERASE_ATTEMPTS)
 read_datum *ul_v_read; // pointer for reading verify data
 unsigned char *uc_v_write; // pointer for writing to verify data area

 // check that block is not already erased
 erase = BLANK;
 for (attempts=eb_block_addr[block_num]; attempts<eb_block_addr[block_num + 1]; attempts++)
 {
 if (*(unsigned char *) attempts != 0xff)
 erase = NOT_BLANK;
 }

 if (erase == BLANK)
 return ERASE_PASS;
 else
 {
 // block needs erasing
 //
 // enable flash writes
 FLASH_SWE = 1;

 // wait tSSWE
 erase_delay (ONE_USEC);

 // set the correct EB bit in correct EBR register
 // this is usually device specific
 FLASH_EBR1 = 0;
 FLASH_EBR2 = 0;

 if (block_num < 8)
 {
 FLASH_EBR1 = EraseBlocks[block_num];
 }
 else
 {
 FLASH_EBR2 = EraseBlocks[block_num - 8];
 }

 // initialise the attempts counter
 attempts = 0;
 erase = NOT_BLANK;
 while ((attempts < MAX_ERASE_ATTEMPTS) && (erase == NOT_BLANK))
 {
 // increment the attempts counter
 attempts++;

 // enter erase mode
 FLASH_ESU = 1;

 // wait tSESU (100 us)
 erase_delay (ONE_HUNDRED_USEC);

 // start erasing
 FLASH_E = 1;

 // wait tSE
 erase_delay (TEN_MSEC);

 // stop erasing
 FLASH_E = 0;

 // wait tCE
 erase_delay (TEN_USEC);

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 21 of 29

 // exit erase mode
 FLASH_ESU = 0;

 // wait tCESU
 erase_delay (TEN_USEC);

 // enter erase verify mode
 FLASH_EV = 1;

 // wait tSEV
 erase_delay (TWENTY_USEC);

 // verify flash has been erased
 ul_v_read = (read_datum *) eb_block_addr [block_num];
 uc_v_write = (unsigned char *) eb_block_addr [block_num];

 erase = BLANK;
 while ((erase == BLANK) && (ul_v_read < (read_datum *) eb_block_addr
[block_num + 1]))
 {
 // this loop will exit either when one long word is not erased
 // or all addresses have been read as erased
 //
 // dummy write
 *uc_v_write = 0xff;

 // wait tSEVR
 erase_delay (TWO_USEC);

 if (*ul_v_read != BLANK_VALUE)
 {
 // this word is not erased yet
 erase = NOT_BLANK;
 }
 else
 {
 // advance to the next byte write address
 for (ax=0; ax<sizeof(read_datum); ax++)
 uc_v_write++;

 // advance to the next verify read address
 ul_v_read++;
 }
 }

 // exit erase verify mode
 FLASH_EV = 0;

 // wait tCEV
 erase_delay (FOUR_USEC);
 } // end of outer while loop

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 22 of 29

 // end either of erase attempts or block has been erased ok
 //
 // disable flash writes
 FLASH_SWE = 0;

 // wait tCSWE
 erase_delay (ONE_HUNDRED_USEC);

 // check if block has been erased ok
 if (erase == BLANK)
 {
 // successfully erased
 return ERASE_PASS;
 }
 else
 {
 // failed to erase this block
 return ERASE_FAIL;
 }
 }
}
#pragma section

#pragma section ERASE_DT
void erase_delay (unsigned short d)
{
 FLASH_DELAY_TIMER_CH_TSR.BIT.TGFA = 0;
 FLASH_DELAY_TIMER_CH_TGRA = d; // set compare value
 FLASH_DELAY_TIMER_CH_TCNT = 0; // clear TCNT to 0
 SET_FLASH_DELAY_TIMER_CH_CST; // start timer
 while(FLASH_DELAY_TIMER_CH_TSR.BIT.TGFA == 0); // wait until compare value is met
 CLEAR_FLASH_DELAY_TIMER_CH_CST; // stop timer
}
#pragma section

_ferase.c Linker Settings

Address Section Comment
0xFFE000 CCONSTANTS Constant data array containing the address of the FLASH blocks

0xFFE400 PINIT_ERASE_DT Initialisation code for TPU

0xFFE0A0 PERASE_DT TPU routines

0xFFE0D0 PERASE_FUNC FLASH Erasing routine

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 23 of 29

_fprogram Project

The code for the FLASH Programming is developed as a separate project. The code and linker
settings are shown over the next couple of pages.

flash_prog.c
#include "flash_header.h"
//#include "command.h"

// function prototypes
unsigned char init_prog_delay_timer (unsigned long, union char_rd_datum_union *);
void prog_delay (unsigned short d);
unsigned char prog_flash_line_128 (unsigned long t_address, union char_rd_datum_union *p_data);

#pragma section INIT_PROG_DT
unsigned char init_prog_delay_timer (unsigned long x, union char_rd_datum_union * y)
{
 // enable TPU in module stop register
 MSTP.CRA.BIT._TPU = 0;

 FLASH_DELAY_TIMER_CH_TCR.BIT.CCLR = 1; // TCNT cleared by TGRA C/M, I/C
 FLASH_DELAY_TIMER_CH_TCR.BIT.CKEG = 0; // Count at rising edge
 FLASH_DELAY_TIMER_CH_TCR.BIT.TPSC = 2; // Timer pre-scaler = clk / 16

 FLASH_DELAY_TIMER_CH_TMDR.BIT.MD = 0; // Normal operation

 FLASH_DELAY_TIMER_CH_TIOR.BIT.IOB = 0; // Output disabled
 FLASH_DELAY_TIMER_CH_TIOR.BIT.IOA = 0; // Output disabled

 FLASH_DELAY_TIMER_CH_TIER.BIT.TTGE = 0; // ADC start request disabled
 FLASH_DELAY_TIMER_CH_TIER.BIT.TCIEU = 0; // Underflow interrupt request disabled
 FLASH_DELAY_TIMER_CH_TIER.BIT.TCIEV = 0; // Overflow interrupt request disabled
 FLASH_DELAY_TIMER_CH_TIER.BIT.TGIEB = 0; // TGRB interrupt request disabled
 FLASH_DELAY_TIMER_CH_TIER.BIT.TGIEA = 0; // TGRA interrupt request enabled

 FLASH_DELAY_TIMER_CH_TCNT = 0;
 FLASH_DELAY_TIMER_CH_TGRA = 0;
 FLASH_DELAY_TIMER_CH_TGRB = 0;

 return 0;
}
#pragma section

#pragma section PROG_DT
void prog_delay (unsigned short d)
{
 FLASH_DELAY_TIMER_CH_TSR.BIT.TGFA = 0;
 FLASH_DELAY_TIMER_CH_TGRA = d; // set compare value
 FLASH_DELAY_TIMER_CH_TCNT = 0; // clear TCNT to 0
 SET_FLASH_DELAY_TIMER_CH_CST; // start timer
 while(FLASH_DELAY_TIMER_CH_TSR.BIT.TGFA == 0); // wait until compare value is met
 CLEAR_FLASH_DELAY_TIMER_CH_CST; // stop timer
}
#pragma section
#pragma section PROG_FUNC
unsigned char prog_flash_line_128 (unsigned long t_address, union char_rd_datum_union *p_data)
{
 // function to program one 128 byte flash line
 // t_address is the start address for the flash line to be programmed
 // data to be prgrammed should be passed to this function in the form of a
 // 'char_rd_datum_union' union pointer
 // data must be written to the flash in byte units

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 24 of 29

 unsigned short n_prog_count; // loop counter for programming attempts
 //(0->MAX_PROG_COUNT)
 unsigned short d; // variable used for various loop counts
 unsigned char m; // flag to indicate if re-programming required
 //(1=yes 0=no)
 unsigned char ax; // loop counter for incrementing 'uc_v_write_address' ptr
 unsigned char *dest_address; // pointer for writing to flash
 unsigned char *uc_v_write_address; // pointer for writing to address to be verified
 read_datum *ul_v_read_address; // pointer for reading verify address
 union char_rd_datum_union additional_prog_data, re_program_data; // storage on stack

 // validate address
 if ((t_address % FLASH_LINE_SIZE) != 0)
 {
 return(PROG_FAIL);
 }

// if ((t_address > (LAST_USER_FLASH_ADDR - FLASH_LINE_SIZE - 1)))
// {
// return(PROG_FAIL);
// }

 // enable flash writes
 FLASH_SWE = 1;

 // wait tSSWE
 prog_delay(ONE_USEC);

 // copy data from program data area to reprogram data area
 for (d=0; d<FLASH_LINE_SIZE; d++)
 {
 re_program_data.c[d] = p_data->c[d];
 }

 // program the data in FLASH_LINE_SIZE byte chunks
 for (n_prog_count=0; n_prog_count<MAX_PROG_COUNT; n_prog_count++)
 {
 // clear reprogram required flag
 m = 0;

 // copy data from reprogram data area into the flash with byte access
 dest_address = (unsigned char *) t_address;
 for (d=0; d<FLASH_LINE_SIZE; d++)
 {
 *dest_address++ = re_program_data.c[d];
 }

 // apply the write pulse
 // note that this is specified as a sub-routine call in the hw manual
 // flowchart but is part of this single function here
 //
 // if code size is a problem then placing this code in a sub-routine may be
 // beneficial
 //

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 25 of 29

 // enter program setup
 FLASH_PSU = 1;

 // wait tSPSU
 prog_delay (FIFTY_USEC);

 // start programming pulse
 FLASH_P = 1;

 if (n_prog_count < 6)
 prog_delay (THIRTY_USEC);
 else
 prog_delay (TWO_HUNDRED_USEC);

 // stop programming
 FLASH_P = 0;

 // wait tCP
 prog_delay (FIVE_USEC);

 // exit program setup
 FLASH_PSU = 0;

 // wait tCPSU
 prog_delay (FIVE_USEC);

 // verify the data via read_datum size reads
 uc_v_write_address = (unsigned char *) t_address;
 ul_v_read_address = (read_datum *) t_address;

 // enter program verify mode
 FLASH_PV = 1;

 // wait tSPV
 prog_delay (FOUR_USEC);

 // read data in read_datum size chunks
 // verify loop
 for (d=0; d<(FLASH_LINE_SIZE / sizeof(read_datum)); d++)
 {
 // dummy write of H'FF to verify address
 *uc_v_write_address = 0xff;

 // wait tSPVR
 prog_delay (TWO_USEC);

 // increment this pointer to get to next verify address
 for (ax=0; ax<sizeof(read_datum); ax++)
 uc_v_write_address++;

 // read verify data
 // check with the original data
 if (*ul_v_read_address != p_data->u[d])
 {
 // 1 or more bits failed to program
 //
 // set the reprogram required flag
 m = 1;
 }

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 26 of 29

 // check if we need to calculate additional programming data
 if (n_prog_count < 6)
 {
 // calculate additional programming data
 // simple ORing of the reprog and verify data
 additional_prog_data.u[d] = re_program_data.u[d] |
*ul_v_read_address;
 }

 // calculate reprog data
 re_program_data.u[d] = p_data->u[d] | ~(p_data->u[d] | *ul_v_read_address);

 // increment the verify read pointer
 ul_v_read_address++;
 } // end of verify loop

 // exit program verify mode
 FLASH_PV = 0;

 // wait tCPV
 prog_delay (TWO_USEC);

 // check if additional programming is required
 if (n_prog_count < 6)
 {
 // perform additional programming
 //
 // copy data from additional programming area to flash memory
 dest_address = (unsigned char *) t_address;
 for (d=0; d<FLASH_LINE_SIZE; d++)
 {
 *dest_address++ = additional_prog_data.c[d];
 }

 // enter program setup
 FLASH_PSU = 1;

 // wait SPSU
 prog_delay (FIFTY_USEC);

 // start programming pulse
 FLASH_P = 1;

 // wait tSP
 prog_delay (TEN_USEC);

 // stop programming
 FLASH_P = 0;

 // wait
 prog_delay (FIVE_USEC);

 // exit program setup
 FLASH_PSU = 0;

 // wait tCPSU
 prog_delay (FIVE_USEC);
 }

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 27 of 29

 // check if flash line has successfully been programmed
 if (m == 0)
 {
 // program verified ok
 //
 // disable flash writes
 FLASH_SWE = 0;

 // wait tCSWE
 prog_delay (ONE_HUNDRED_USEC);

 // end of successful programming
 return (PROG_PASS);
 }

 } // end of for loop (n<MAX_PROG_COUNT) at this point we have made MAX_PROG_COUNT prog
attempts

 // failed to program after MAX_PROG_COUNT attempts
 // disable flash writes
 FLASH_SWE = 0;

 // wait tCSWE
 prog_delay (ONE_HUNDRED_USEC);

 // end of failed programming
 return (PROG_FAIL);
}
#pragma section

_fprogram Linker Settings

Address Section Comment
0xFFE000 PINIT_PROG_DT Initialisation code for TPU

0xFFE05A PPROG_DT TPU routines

0xFFE080 PPROG_FUNC FLASH Programming routine

H8S Family
User Mode FLASH Programming Example

REG05B0027-0100/Rev.1.00 December 2008 Page 28 of 29

Summary

It has been the aim of this application note to demonstrate via a simple example how it is possible to
implement User Mode Flash Programming on a Renesas H8 microcontroller.

Even though the example was written for the H8S/2612, all of the code and concepts can be easily
ported to other members of the H8 family.

Accompanying this application note there are 3 file downloads, each containing a HEW workspace.

Please choose the correct download for the version of HEW you are using.

Please note that HEW workspaces are only upwardly compatible, i.e. a HEW 1.3 workspace can be
opened (and updated) to a HEW 2 or HEW 3 workspace, but a HEW 3 workspace can not be
opened in HEW 1.3 or HEW 2

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

H8S Family
User Mode FLASH Programming Example

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2008. Renesas Technology Corp., All rights reserved.

REG05B0027-0100/Rev.1.00 December 2008 Page 29 of 29

	An Overview of FLASH Programming
	FLASH_Demo HEW Workspace & Projects
	‘ExampleApp’ Memory Map
	‘ExampleApp’ Linker Settings
	‘ExampleApp’ Hardware Overview
	‘ExampleApp’ Application Overview
	‘ExampleApp’ Code
	PowerOn Reset:
	Hardware Setup:
	Main:
	Global declarations:
	IRQ0 Code:
	ADC Code:

	_ferase Project
	_flash_earse.c
	_ferase.c Linker Settings

	_fprogram Project
	flash_prog.c
	_fprogram Linker Settings

	Summary

