

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Document No. U19660EJ1V0AN00 (1st edition)
Date Published March 2009 N

Application Note

μPD78F0730

8-bit Single-Chip Microcontroller

USB-to-Serial Conversion Software

 2009

Application Note U19660EJ1V0AN 2

[MEMO]

Application Note U19660EJ1V0AN 3

MINICUBE is a registered trademark of NEC Electronics Corporation in Japan and Germany or a trademark in the

United States of America.

Windows and Windows Vista are registered trademarks or trademarks of Microsoft Corporation in the United States

and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

Other company names and product names described in this document are trademarks or registered trademarks of the

respective company.

Application Note U19660EJ1V0AN 4

The information in this document is current as of March, 2009. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

Application Note U19660EJ1V0AN 5

PREFACE

Readers This application note is intended for users who understand the features of the

μPD78F0730, and are going to develop application systems using this product.

Purpose This application note is intended to give users an understanding of the specifications

of the sample software provided for using the USB function controller incorporated in

the μPD78F0730.

Organization This application note is broadly divided into the following four sections:

• An overview of the μPD78F0730 USB function controller

• An overview of the USB standard

• The specifications for the sample software

• How to use the sample software

How to Read This Manual It is assumed that the readers of this application note have general knowledge in the

fields of electrical engineering, logic circuits, and microcontrollers.

• To learn about the hardware features and electrical specifications of the

μPD78F0730

→ See the separately provided μPD78F0730 Hardware User’s Manual.

• To learn about the instructions of the μPD78F0730

→ See the separately provided 78K/0 Series Instructions User’s Manual.

Conventions Data significance: Higher digits on the left and lower digits on the right

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Binary or decimal ... XXXX

 Hexadecimal ... 0xXXXX

Prefix indicating power of 2 (address space, memory capacity):

 K (kilo): 210 = 1,024

 M (mega): 220 = 1,0242

 G (giga): 230 = 1,0243

 T (tera): 240 = 1,0244

 P (peta): 250 = 1,0245

 E (exa): 260 = 1,0246

Application Note U19660EJ1V0AN 6

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

 • Documents Related to the μPD78F0730

Document Name Document No.

μPD78F0730 User’s Manual U19014E

μPD78F0730 USB-to-Serial Conversion Driver User’s Manual U19340E

78K/0 Series Instructions User’s Manual U12326E

 • Documents Related to Development Tools (User’s Manuals)

Document Name Document No.

Operation U17201E CC78K0 Ver. 3.70 C Compiler

Language U17200E

Operation U17199E

Language U17198E

RA78K0 Ver. 3.80 Assembler Package

Structured Assembly

Language

U17197E

Operation U18601E SM+ System Simulator

User Open Interface U18212E

SM78K Ver. 2.52 System Simulator Operation U16768E

PM plus Ver. 5.10 Project Manager U16569E

ID78K0-NS Ver. 2.70 Integrated Debugger Operation U17729E

ID78K0-QB Ver. 3.00 Integrated Debugger Operation U18492E

QB-780731 In-Circuit Emulator U17804E

QB-MINI2 On-Chip Debug Emulator with Programming Function U18371E

PG-FP5 Flash Memory Programmer U18865E

PG-FP4 Flash Memory Programmer U15260E

Application Note U19660EJ1V0AN 7

CONTENTS

CHAPTER 1 OVERVIEW..9
1.1 Overview ..9

1.1.1 Features of the USB function controller...9
1.1.2 Features of the sample software ...10
1.1.3 Files included in the sample software..10

1.2 Overview of the μPD78F0730...11

CHAPTER 2 OVERVIEW OF USB...12
2.1 Transfer Format ..12
2.2 Endpoints...13
2.3 Device Class..13
2.4 Requests..13

2.4.1 Types ..14
2.4.2 Format...15

2.5 Descriptor ..15
2.5.1 Types ..15
2.5.2 Format...16

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS...18
3.1 Overview ..18

3.1.1 Features ..18
3.1.2 System setup ..19
3.1.3 Processing flow ...20
3.1.4 Supported requests ...22
3.1.5 Descriptor settings...24

3.2 CPU Initialization Processing ..28
3.3 USB Control Processing ..29

3.3.1 USBF initialization processing ...30
3.3.2 USBF interrupt servicing (INTUSB0B)...33
3.3.3 USBF reception interrupt servicing (INTUSB1B) ...35
3.3.4 USB transmission data storage processing...36
3.3.5 USB data transmission..37

3.4 UART Control Processing..38
3.4.1 UART initialization processing...39
3.4.2 UART operation mode specification processing..40
3.4.3 UART reception interrupt servicing..42
3.4.4 UART reception error interrupt servicing ...42
3.4.5 UART data transmission ...43
3.4.6 UART operation mode...44

3.5 Bridge Processing Between the UART and USB...45
3.5.1 Storing the data received by the UART into the USB transmission buffer45
3.5.2 Transmitting the data in the USB reception FIFO from the UART...45
3.5.3 Main routine...46

3.6 Vendor Request Format ...47
3.6.1 LINE_CONTROL...47

Application Note U19660EJ1V0AN 8

3.6.2 SET_DTR_RTS...48
3.6.3 SET_XON_XOFF_CHR ..48
3.6.4 OPEN_CLOSE ..49
3.6.5 SET_ERR_CHR ..49

3.7 Function Specifications..50
3.7.1 Functions...50
3.7.2 Correlation of the functions..51
3.7.3 Function features...53

3.8 Data Structures..69

CHAPTER 4 DEVELOPMENT ENVIRONMENT...70
4.1 Used Products ...70

4.1.1 System components ..70
4.1.2 Program development ...71
4.1.3 Debugging ...71

4.2 Setting Up the Environment...72
4.2.1 Preparing the environment ..72
4.2.2 Preparing the host environment...73

4.3 On-Chip Debugging ..81
4.3.1 Generating a load module ...81
4.3.2 Loading and executing the load module ..81
4.3.3 Connecting the USB port (virtual COM port)..83
4.3.4 Connecting the RS-232C port..87
4.3.5 Checking the operation..88

4.4 Cautions ...93
4.4.1 Recommended communication speed...93
4.4.2 Causes of data loss ...93

CHAPTER 5 USING THE SAMPLE SOFTWARE..94
5.1 Overview ..94
5.2 Customizing the Sample Software ..94

5.2.1 Application section...94
5.2.2 Setting up the registers..95
5.2.3 Descriptor information..96
5.2.4 Setting up the virtual COM port host driver..96

APPENDIX A TARGET BOARD... 101
A.1 Overview ... 101
A.2 Circuit Example .. 102

Application Note U19660EJ1V0AN 9

CHAPTER 1 OVERVIEW

This application note describes the USB-to-serial conversion sample software created for the USB function

controller incorporated in the μPD78F0730 microcontroller.

This application note provides the following information:

• The specifications for the sample software

• Information about the environment used to develop an application program by using the sample software

• The reference information provided for using the sample software

This chapter provides an overview of the sample software and describes the microcontroller for which the sample

software can be used.

1.1 Overview

1.1.1 Features of the USB function controller

The USB function controller (USBF) incorporated in the μPD78F0730 has the following features:

• Conforms to the Universal Serial Bus Specification.

• Supports 12 Mbps (full speed) transfer.

• Incorporates transfer endpoints.

Table 1-1. Configuration of the Endpoints of the USB Function Controller Incorporated in the μPD78F0730

Endpoint Name FIFO Size (Bytes) Transfer Type Remark

Endpoint0 Read 64 Control transfer (IN) −

Endpoint0 Write 64 Control transfer (OUT) −

Endpoint1 64×2 Bulk transfer 1 (IN) Dual-buffer configuration

Endpoint2 64×2 Bulk transfer 1 (OUT) Dual-buffer configuration

• The internal or external clock can be selected (fUSB = 48 MHz)Note

 The clock signal generated by using the X1 oscillator (fX = 12 or 16 MHz) is multiplied by 4 or 3.

 An external input clock (fEXCLK = 12 or 16 MHz) is multiplied by 4 or 3.

Note The sample software selects the internal clock.

CHAPTER 1 OVERVIEW

Application Note U19660EJ1V0AN 10

1.1.2 Features of the sample software

The sample software has the features below. For details about the features and operations, see CHAPTER 3

SAMPLE SOFTWARE SPECIFICATIONS.

• Operates as a virtual COM port.

• Uses a dedicated host driver.

• Directly transmits the data received by the USB function controller from the UART.

• Directly transmits the data received by the UART from the USB function controller.

• The baud rate, stop bit, data length, and parity bit can be changed by using the terminal software.

• Operates as the vendor class and uses three endpoints (Control, Bulk In, and Bulk Out).

• Does not support suspending or resuming.

• Operates as a bus-powered device.

• Exclusively uses the following amounts of memory (excluding the vector table):

 ROM: About 4.2 KB

 RAM: About 0.3 KB

1.1.3 Files included in the sample software

The sample software includes the following files:

Table 1-2. Files Included in the Sample Software

Folder File Overview

main.c Initialization and main routine

usbf78k.c USBF initialization, interrupt servicing, bulk transfer, and control transfer

uart_ctrl.c UART communication control

usbf78k_vendor.c Vendor class processing

src

boot.asm Boot processing routines

errno.h Error code definitions

main.h main.c function prototype declarations

Types.h User-defined type declarations

uart_ctrl.h uart_ctrl.c function prototype declarations

usbf78k.h usbf78k.c function prototype declarations

usbf78k_desc.h Descriptor definitions

usbf78k_sfr.h Macro definitions for accessing the USB function controller registers

include

usbf78k_vendor.h usbf78k_vendor.c function prototype declarations

Remark In addition, the project-related files generated when creating a development environment by using the

USB-to-serial conversion host driver or PM+ (an integrated development tool made by NEC Electronics)

are also included. For details, see 4.2.2 Preparing the host environment.

CHAPTER 1 OVERVIEW

Application Note U19660EJ1V0AN 11

1.2 Overview of the μPD78F0730

This section describes the μPD78F0730, which is controlled by using the sample software.

The μPD78F0730 is an 8-bit single-chip microcontroller made by NEC Electronics. It has peripherals such as

ROM, RAM, timers, counters, a serial interface, an A/D converter, a D/A converter, a DMA controller, and a USB

function controller. For details, see the μPD78F0730 8-bit Single-Chip Microcontroller User’s Manual.

The μPD78F0730 has the following main features:

• Can execute instructions at high speeds (in 0.125 μs when it operates at 16 MHz based on the high-speed

system clock).

• General-purpose registers: 8 bits × 32 registers (8 bits × 8 registers × 4 banks)

• ROM and RAM capacities

Program Memory (ROM) Data Memory Item

Part Number Flash MemoryNote Internal High-Speed RAMNote Internal Expansion RAMNote

μ PD78F0730 16 KB 1 KB 2 KB

Note The capacity of the internal flash memory, internal high-speed RAM, and internal expansion RAM can be

changed using registers.

• Has a USB function controller (USBF).

• Has a single-power-supply flash memory.

• Can perform self programming (boot swapping).

• Can perform on-chip debugging.

• Has a power-on-clear (POC) circuit and a low-voltage detector (LVI).

• Has a watchdog timer (that can operate based on the internal low-speed oscillation clock).

• Has 19 I/O ports (including two N-ch open drain ports).

• Has the following five timer channels:

• One 16-bit timer/event counter channel

• Two 8-bit timer/event counter channels

• One 8-bit timer channel

• One watchdog timer channel

• Has the following three serial interface channels:

• One UART channel

• One CSI channel

• One USB channel

Application Note U19660EJ1V0AN 12

CHAPTER 2 OVERVIEW OF USB

This chapter provides an overview of the USB standard, which the sample software conforms to.

USB (Universal Serial Bus) is an interface standard for connecting various peripherals to a host by using the same

type of connector. The USB interface is more flexible and easier to use than older interfaces in that it can connect up

to 127 devices by adding a branching point known as a hub, and supports the hot-plug feature, which enables devices

to be recognized by Plug & Play. The USB interface is provided in most current PCs and has become the standard for

connecting peripherals to a PC.

The USB standard is formulated and managed by the USB Implementers Forum (USB-IF). For details about the

USB standard, see the official USB-IF website (www.usb.org).

2.1 Transfer Format

Four types of transfer formats (interrupt, bulk, isochronous, and control) are defined in the USB standard. Table 2-1

shows the features of each transfer format.

Table 2-1. USB Transfer Format

Transfer Format

Item

Control Transfer Bulk Transfer Interrupt Transfer Isochronous Transfer

Feature Transfer format used

to exchange

information required

for controlling

peripheral devices

Transfer format used

to aperiodically

handle large

amounts of data

Periodic data

transfer format that

has a low band width

Transfer format used

for a real-time

transfer

High speed

480 Mbps

64 bytes 512 bytes 1 to 1,024 bytes 1 to 1,024 bytes

Full speed

12 Mbps

8, 16, 32, or 64

bytes

8, 16, 32, or 64

bytes

1 to 64 bytes 1 to 1,023 bytes

Specifiable packet

size

Low speed

1.5 Mbps

8 bytes − 1 to 8 bytes −

Transfer priority 3 3 2 1

CHAPTER 2 OVERVIEW OF USB

Application Note U19660EJ1V0AN 13

2.2 Endpoints

An endpoint is an information unit that is used by the host to specify a communicating device and is specified using

a number from 0 to 15 and a direction (IN or OUT). An endpoint must be provided for every data communication path

that is used for a peripheral device and cannot be shared by multiple communication pathsNote. For example, a device

that can write to and read from an SD card and print out documents must have a separate endpoint for each purpose.

Endpoint 0 is used to control transfers for any type of device.

During data communication, the host uses a USB device address, which specifies the device, and an endpoint (a

number and direction) to specify the communication destination in the device.

Peripheral devices have buffer memory that is a physical circuit to be used for the endpoint and functions as a FIFO

that absorbs the difference in speed of the USB and communication destination (such as memory).

Note An endpoint can be exclusively switched by using the alternative setting.

2.3 Device Class

Various device classes, such as the mass storage class (MSC), printer class, and human interface device class

(HID), are defined according to the functions of the peripheral devices connected via USB (the function devices). A

common host driver can be used if the connected devices conform to the standard specifications of the relevant device

class, which is defined by a protocol. A separate driver is not necessary for each device, enabling users to connect

any device and vendors to save labor hours for developing application programs.

2.4 Requests

For the USB standard, communication starts with the host issuing a command, known as a request, to all function

devices. A request includes data such as the direction and type of processing and address of the function device.

Each function device decodes the request, judges whether the request is addressed to it, and responds only if the

request is addressed to it.

CHAPTER 2 OVERVIEW OF USB

Application Note U19660EJ1V0AN 14

2.4.1 Types

There are three types of requests: standard requests, class requests, and vendor requests.

For details about requests that the sample software supports, see 3.1.4 Supported requests.

(1) Standard requests

Standard requests are used for all USB-compatible devices. A request is a standard request if the values of

bits 6 and 5 in the bmRequestType field are both 0. For details about the processing of standard requests, see

the Universal Serial Bus Specification Rev. 2.0.

Table 2-2. Standard Requests

Request Name Target Descriptor Overview

Device Reads the settings of the power supply (self or bus) and

remote wakeup.

GET_STATUS

Endpoint Reads the halt status.

Device Clears remote wakeup. CLEAR_FEATURE

Endpoint Cancels the halt status (DATA PID = 0).

Device Specifies remote wakeup or test mode. SET_FEATURE

Endpoint Specifies the halt status.

GET_DESCRIPTOR Device, configuration, string Reads the target descriptor.

SET_DESCRIPTOR Device, configuration, string Changes the target descriptor (optional).

GET_CONFIGURATION Device Reads the currently specified configuration values.

SET_CONFIGURATION Device Specifies the configuration values.

GET_INTERFACE Interface Reads the alternatively specified value among the

currently specified values of the target interface.

SET_INTERFACE Interface Specifies the alternatively specified value of the target

interface.

SET_ADDRESS Device Specifies the USB address.

SYNCH_FRAME Endpoint Reads frame-synchronous data.

(2) Class requests

Class requests are unique to the device class. Class requests can be supported by using a common host

driver. A request is a class request if the values of bits 6 and 5 in the bmRequestType field are 0 and 1,

respectively.

(3) Vendor requests

Vendor requests are requests that are uniquely defined by each vendor. To make vendor requests available for

use, the vendor must provide a host driver that supports the requests. A request is a vendor request if bits 6

and 5 in the bmRequestType field are 1 and 0, respectively.

CHAPTER 2 OVERVIEW OF USB

Application Note U19660EJ1V0AN 15

2.4.2 Format

USB requests have an 8-byte length and consist of the following fields:

Table 2-3. USB Request Format

Offset Field Description

bmRequestType Request attribute

Bit 7 Data transfer direction

Bits 6 and 5 Request type

0

Bits 4 to 0 Target descriptor

1 bRequest Request code

2 Lower

3

wValue

Higher

Any value used by the request

4 Lower

5

wIndex

Higher

Index or offset used by the request

6 Lower

7

wLength

Higher

Number of bytes transferred at the data stage (the

data length)

2.5 Descriptor

For the USB standard, a descriptor is information that is specific to a function device and is encoded in a specified

format. A function device transmits a descriptor in response to a request transmitted from the host.

2.5.1 Types

The following five types of descriptors are defined:

• Device descriptor

This descriptor exists in every device and includes basic information such as the supported USB specification

version, device class, protocol, maximum packet length that can be used when transferring data to endpoint 0,

vendor ID, and product ID.

This descriptor is transmitted in response to a GET_DESCRIPTOR_Device request.

• Configuration descriptor

At least one configuration descriptor exists in every device and includes information such as the device attribute

(power supply method) and power consumption.

This descriptor is transmitted in response to a GET_DESCRIPTOR_Configuration request.

• Interface descriptor

This descriptor is required for each interface and includes information such as the interface identification number,

interface class, and supported number of endpoints.

This descriptor is transmitted in response to a GET_DESCRIPTOR_Configuration request.

• Endpoint descriptor

This descriptor is required for each endpoint specified for an interface descriptor and defines the transfer type

(direction), maximum packet length that can be used for a transfer, and transfer interval. However, endpoint 0

does not have this descriptor.

This descriptor is transmitted in response to a GET_DESCRIPTOR_Configuration request.

CHAPTER 2 OVERVIEW OF USB

Application Note U19660EJ1V0AN 16

• String descriptor

This descriptor includes any character string.

This descriptor is transmitted in response to a GET_DESCRIPTOR_String request.

2.5.2 Format

The size and fields of each descriptor type vary as described below.

Remark The data sequence of each field is in little endian format.

Table 2-4. Device Descriptor Format

Field Size (Bytes) Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bcdUSB 2 USB specification release number

bDeviceClass 1 Class code

bDeviceSubClass 1 Subclass code

bDeviceProtocol 1 Protocol code

bMaxPacketSize0 1 Maximum packet size of endpoint 0

idVendor 2 Vendor ID

idProduct 2 Product ID

bcdDevice 2 Device release number

iManufacturer 1 Index to the string descriptor representing the manufacturer

iProduct 1 Index to the string descriptor representing the product

iSerialNumber 1 Index to the string descriptor representing the device production number

bNumConfigurations 1 Number of configurations

Remark Vendor ID: The identification number each company that develops a USB device acquires from USB-IF

 Product ID: The identification number each company assigns to a product after acquiring the vendor ID

Table 2-5. Configuration Descriptor Format

Field Size (Bytes) Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

wTotalLength 2 Total number of bytes of the configuration, interface, and endpoint descriptors

bNumInterfaces 1 Number of interfaces in this configuration

bConfigurationValue 1 Identification number of this configuration

iConfiguration 1 Index to the string descriptor specifying the source code for this configuration

bmAttributes 1 Features of this configuration

bMaxPower 1 Maximum current consumed in this configuration (in 2 μA units)

CHAPTER 2 OVERVIEW OF USB

Application Note U19660EJ1V0AN 17

Table 2-6. Interface Descriptor Format

Field Size (Bytes) Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bInterfaceNumber 1 Identification number of this interface

bAlternateSetting 1 Whether the alternative settings are specified for this interface

bNumEndpoints 1 Number of endpoints of this interface

bInterfaceClass 1 Class code

bInterfaceSubClass 1 Subclass code

bInterfaceProtocol 1 Protocol code

iInterface 1 Index to the string descriptor specifying the source code for this interface

Table 2-7. Endpoint Descriptor Format

Field Size (Bytes) Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bEndpointAddress 1 Transfer direction of this endpoint

Address of this endpoint

bmAttributes 1 Transfer type of this endpoint

wMaxPacketSize 2 Maximum packet size of this transfer

bInterval 1 Polling interval of this endpoint

Table 2-8. String Descriptor Format

Field Size (Bytes) Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bString Any Any data string

Application Note U19660EJ1V0AN 18

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

This chapter provides details about the features and processing of the USB-to-serial conversion sample software

for the μPD78F0730 and the specifications of the functions provided in the μPD78F0730.

3.1 Overview

3.1.1 Features

The sample software can perform the following processing:

(1) Initialization

This processing specifies the memory size and clock of the μPD78F0730. For details, see 3.2 CPU

Initialization Processing.

(2) USB control processing

This processing initializes the USBF, executes an interrupt handler, and performs data transmission and

reception. For details, see 3.3 USB Control Processing.

This processing also responds to USB requests to which the μPD78F0730 does not automatically respond.

For details, see 3.1.4 Supported requests.

(3) UART control processing

This processing initializes the UART, executes an interrupt handler, and performs data transmission and

reception. For details, see 3.4 UART Control Processing.

(4) Bridge processing between the UART and USB

During the processing to store the data received by the UART into the USB transmission buffer, the received

data that is read during the UART reception completion interrupt servicing is stored in the USB transmission

buffer.

During the processing to transmit the data in the USB reception FIFO from the UART, the data at the endpoint

for a bulk out transfer (reception) is read and transmitted from the UART.

For details, see 3.5 Bridge Processing Between the UART and USB.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 19

3.1.2 System setup

Figure 3-1 shows the setup and processing overview of a system that uses the sample software.

Figure 3-1. System Setup and Processing Overview

Target board on which the
μPD78F0730 is mounted

Host on the USB side
(virtual COM)

Host on the RS-232C side
(UART)

FIFO Internal buffer

One packet of the data received by USB is
copied to the internal buffer at a time.

 The data is written to the UART
transmission buffer byte by byte until
data of the received data size has
been transferred.

FIFO Internal buffer
(ring buffer)

The accumulated data at that point is
transmitted at a time as a packet.

USB side:
Data is transferred byte by byte.

 The data received by the UART
is stored in the internal buffer.

Executed exclusively

UART side:
Data is transferred in packet units.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 20

3.1.3 Processing flow

The processing shown in Figures 3-2 and 3-3 is performed by executing the sample software.

Figure 3-2. Processing Flow of the Sample Software (1)

Start

Initialization processing

USB reception interrupt

Interrupts are enabled.

USBF reception interrupt servicing

UART reception completion interrupt

UART6 reception interrupt servicing

USB data transmission processing

Processing to transmit the data in the
USB reception FIFO from the UART

Main routine

An interrupt occurs. An interrupt occurs.

 Processing that includes
data reception is
performed.

 Data reception is not
performed.

<1> When the initialization performed when the board is turned on ends, loop processing (within the main function

(main)) and interrupt servicing by using various interrupt signals start. After the host and target board are

connected via USB, data transmission and reception between the UART and USB starts.

<2> If data is received via USB, the USBF reception interrupt handler starts when a USB reception completion

interrupt occurs. This handler sets only the reception completion flag and cannot read data. After the

interrupt servicing ends, the function for transmitting the data in the USB reception FIFO from the UART

(usbf78k_usb_to_uart) is called within the main function (main) and USB reception and UART

transmission are performed.

<3> If data is received via UART, the UART reception completion interrupt handler starts when a UART reception

completion interrupt occurs. This handler reads the received data, calls the function for storing the data

received by the UART into the USB transmission buffer (usbf78k_uart_to_usb), and stores the data in

the internal buffer. The stored data is transmitted from USB by calling the function for transmitting USB data

to the ring buffer (usbf78k_send_txbuf) within the main function (main).

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 21

Figure 3-3. Processing Flow of the Sample Software (2)

USB host USBF USBF interrupt
handler

main (idle) UART interrupt
handler

UART UART host

Transmitting the data in the USB reception
FIFO from the UART

Automatic execution request

Firmware execution request

USBF reception
UART transmission

USBF transmission

UART reception

Storing the data received by the UART into
the USB transmission buffer

<1> Automatic execution request

 The hardware (the μPD78F0730) automatically responds to this request.

<2> Firmware execution request

 The firmware (the sample software) responds to this request when executing the USBF interrupt handler.

<3> Transmitting the data in the USB reception FIFO from the UART

 Reception is identified by executing the USBF interrupt handler and the data received via USB is transmitted

from the UART.

<4> Storing the data received by the UART into the USB transmission buffer

 The received data is stored in the buffer and transmitted from USB by executing the UART reception

completion interrupt handler.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 22

3.1.4 Supported requests

Table 3-1 shows the USB requests defined by the hardware (the μPD78F0730) and firmware (the sample

software).

Table 3-1. USB Request Processing

Codes Request Name

0 1 2 3 4 5 6 7

Processing

Standard request

GET_INTERFACE 0x81 0x0A 0x00 0x00 0xXX 0xXX 0x01 0x00 Automatic hardware response

GET_CONFIGURATION 0x80 0x08 0x00 0x00 0x00 0x00 0x01 0x00 Automatic hardware response

GET_DESCRIPTOR Device 0x80 0x06 0x00 0x01 0x00 0x00 0xXX 0xXX Automatic hardware response

GET_DESCRIPTOR

Configuration

0x80 0x06 0x00 0x02 0x00 0x00 0xXX 0xXX Automatic hardware response

GET_DESCRIPTOR String 0x80 0x06 0x00 0x03 0x00 0x00 0xXX 0xXX Firmware response

GET_STATUS Device 0x80 0x00 0x00 0x00 0x00 0x00 0x02 0x00 Automatic hardware response

GET_STATUS Interface 0x81 0x00 0x00 0x00 0xXX 0xXX 0x02 0x00 Automatic hardware STALL response

GET_STATUS Endpoint n 0x82 0x00 0x00 0x00 0xXX 0xXX 0x02 0x00 Automatic hardware response

CLEAR_FEATURE Device 0x00 0x01 0x01 0x00 0x00 0x00 0x00 0x00 Automatic hardware response

CLEAR_FEATURE Interface 0x01 0x01 0x00 0x00 0xXX 0xXX 0x00 0x00 Automatic hardware STALL response

CLEAR_FEATURE Endpoint n 0x02 0x01 0x00 0x00 0xXX 0xXX 0x00 0x00 Automatic hardware response

SET_DESCRIPTOR 0x00 0x07 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX Firmware STALL response

SET_FEATURE Device 0x00 0x03 0x01 0x00 0x00 0x00 0x00 0x00 Automatic hardware response

SET_FEATURE Interface 0x02 0x03 0xXX 0xXX 0xXX 0xXX 0x00 0x00 Automatic hardware STALL response

SET_FEATURE Endpoint n 0x02 0x03 0x00 0x00 0xXX 0xXX 0x00 0x00 Automatic hardware response

SET_INTERFACE 0x01 0x0B 0xXX 0xXX 0xXX 0xXX 0x00 0x00 Automatic hardware response

SET_CONFIGURATION 0x00 0x09 0xXX 0xXX 0x00 0x00 0x00 0x00 Automatic hardware response

SET_ADDRESS 0x00 0x05 0xXX 0xXX 0x00 0x00 0x00 0x00 Automatic hardware response

Vendor request

LINE_CONTROL 0x40 0x0B 0x00 0x00 0x00 0x00 0x06 0x00 Firmware response

SET_DTR_RTS 0x40 0x0B 0x00 0x00 0x00 0x00 0x02 0x00 Firmware response

SET_XON_XOFF_CHR 0x40 0x0B 0x00 0x00 0x00 0x00 0x03 0x00 Firmware response

OPEN_CLOSE 0x40 0x0B 0x00 0x00 0x00 0x00 0x02 0x00 Firmware response

SET_ERR_CHR 0x40 0x0B 0x00 0x00 0x00 0x00 0x03 0x00 Firmware response

Other requests Other than the above Firmware STALL response

Remark 0xXX: Undefined value

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 23

(1) Standard requests

The sample software performs the following response processing for requests to which the hardware (the

μPD78F0730) does not automatically respond.

(a) GET_DESCRIPTOR_string

The host issues this request to acquire the string descriptor of a function device.

If this request is received, the sample software transmits the requested string descriptor to the host (by

performing a control read transfer).

(b) SET_DESCRIPTOR

The host issues this request to specify the descriptor of a function device.

If this request is received, the sample software returns a STALL response.

(2) Vendor requests

The sample software responds to the following five types of requests:

• LINE_CONTROL

• SET_DTR_RTS

• SET_XON_XOFF_CHR

• OPEN_CLOSE

• SET_ERR_CHR

For details about each request, see 3.6 Vendor Request Format.

(3) Undefined requests

If an undefined request is received, the sample software returns a STALL response.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 24

3.1.5 Descriptor settings

The settings of each descriptor specified by the sample software are shown below. These settings are included in

the header file usbf78k_desc.h.

(1) Device descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_device request.

The settings are stored in the UF0DDn registers (where n = 0 to 17) when the USB function controller is

initialized, because the hardware automatically responds to a GET_DESCRIPTOR_device request.

Table 3-2. Device Descriptor Settings

Field Size (Bytes) Specified

Value

Description

bLength 1 0x12 Descriptor size: 18 bytes

bDescriptorType 1 0x01 Descriptor type: device

bcdUSB 2 0x0200 USB specification release number: USB 2.0

bDeviceClass 1 0xFF Class code: vendor class

bDeviceSubClass 1 0x00 Subclass code: none

bDeviceProtocol 1 0x00 Protocol code: No unique protocol is used.

bMaxPacketSize0 1 0x40 Maximum packet size of endpoint 0: 64

idVendor 2 0x0409 Vendor ID: NEC

idProduct 2 0x01CD Product ID: μPD78F0730

bcdDevice 2 0x0001 Device release number: 1st version

iManufacturer 1 0x01 Index to the string descriptor representing the manufacturer: 1

iProduct 1 0x02 Index to the string descriptor representing the product: 2

iSerialNumber 1 0x03 Index to the string descriptor representing the device

production number: 3

bNumConfigurations 1 0x01 Number of configurations: 1

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 25

(2) Configuration descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.

The settings are stored in the UF0CIEn registers (where n = 0 to 255) when the USB function controller is

initialized, because the hardware automatically responds to a GET_DESCRIPTOR_configuration request.

Table 3-3. Configuration Descriptor Settings

Field Size (Bytes) Specified

Value

Description

bLength 1 0x09 Descriptor size: 9 bytes

bDescriptorType 1 0x02 Descriptor type: configuration

wTotalLength 2 0x0020 Total number of bytes of the configuration, interface, and

endpoint descriptors: 32 bytes

bNumInterfaces 1 0x01 Number of interfaces in this configuration: 1

bConfigurationValue 1 0x01 Identification number of this configuration: 1

iConfiguration 1 0x00 Index to the string descriptor specifying the source code for this

configuration: 0

bmAttributes 1 0x80 Features of this configuration: bus-powered, no remote wakeup

bMaxPower 1 0x32 Maximum current consumed in this configuration: 100 mA

(3) Interface descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.

The settings are stored in the UF0CIEn registers (where n = 0 to 255) when the USB function controller is

initialized, because the hardware automatically responds to a GET_DESCRIPTOR_configuration request.

Table 3-4. Interface Descriptor Settings for Interface 0

Field Size (Bytes) Specified

Value

Description

bLength 1 0x09 Descriptor size: 9 bytes

bDescriptorType 1 0x04 Descriptor type: interface

bInterfaceNumber 1 0x00 Identification number of this interface: 0

bAlternateSetting 1 0x00 Whether the alternative settings are specified for this interface:

no

bNumEndpoints 1 0x02 Number of endpoints of this interface: 2

bInterfaceClass 1 0xFF Class code: vendor class

bInterfaceSubClass 1 0x00 Subclass code: none

bInterfaceProtocol 1 0x00 Protocol code: No unique protocol is used.

iInterface 1 0x00 Index to the string descriptor specifying the source code for this

interface: 0

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 26

(4) Endpoint descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.

The settings are stored in the UF0CIEn registers (where n = 0 to 255) when the USB function controller is

initialized, because the hardware automatically responds to a GET_DESCRIPTOR_configuration request.

Two descriptor types are specified because the sample software uses two endpoints.

Table 3-5. Endpoint Descriptor Settings for Endpoint 2

Field Size (Bytes) Specified

Value

Description

bLength 1 0x07 Descriptor size: 7 bytes

bDescriptorType 1 0x05 Descriptor type: endpoint

bEndpointAddress 1 0x02 Transfer direction of this endpoint: OUT

Address of this endpoint: 2

bmAttributes 1 0x02 Transfer type of this endpoint: bulk

wMaxPacketSize 2 0x0040 Maximum packet size of this transfer: 64 bytes

bInterval 1 0x00 Polling interval of this endpoint: 0 ms

Table 3-6. Endpoint Descriptor Settings for Endpoint 1

Field Size (Bytes) Specified

Value

Description

bLength 1 0x07 Descriptor size: 7 bytes

bDescriptorType 1 0x05 Descriptor type: endpoint

bEndpointAddress 1 0x81 Transfer direction of this endpoint: IN

Address of this endpoint: 1

bmAttributes 1 0x02 Transfer type of this endpoint: bulk

wMaxPacketSize 2 0x0040 Maximum packet size of this transfer: 64 bytes

bInterval 1 0x00 Polling interval of this endpoint: 0 ms

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 27

(5) String descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_string request.

If a GET_DESCRIPTOR_string request is received, the sample software extracts the settings of this descriptor

from the header file usbf78k_desc.h and stores them into the UF0E0W register of the USB function controller.

Table 3-7. String Descriptor Settings

(a) String 0

Field Size (Bytes) Specified

Value

Description

bLength 1 0x04 Descriptor size: 4 bytes

bDescriptorType 1 0x03 Descriptor type: string

bString 2 0x09, 0x04 Language code: English (U.S.)

(b) String 1

Field Size (Bytes) Specified

Value

Description

bLengthNote 1 1 0x2A Descriptor size: 42 bytes

bDescriptorType 1 0x03 Descriptor type: string

bStringNote 2 40 − Vendor: NEC Electronics Corporation

Notes 1. The specified value depends on the size of the bString field.

 2. The vendor can freely set up the size and specified value of this field.

(c) String 2

Field Size (Bytes) Specified

Value

Description

bLengthNote 1 1 0x16 Descriptor size: 22 bytes

bDescriptorType 1 0x03 Descriptor type: string

bStringNote 2 12 − Product type: VirtualCom (virtual COM driver)

Notes 1. The specified value depends on the size of the bString field.

 2. The vendor can freely set up the size and specified value of this field.

(d) String 3

Field Size (Bytes) Specified

Value

Description

bLengthNote 1 1 0x16 Descriptor size: 22 bytes

bDescriptorType 1 0x03 Descriptor type: string

bStringNote 2 20 − Serial number: 0_98765432

Notes 1. The specified value depends on the size of the bString field.

 2. The vendor can freely set up the size and specified value of this field.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 28

3.2 CPU Initialization Processing

The settings necessary to use the μPD78F0730 are specified.

Figure 3-4. CPU Initialization Processing Flow

Start of CPU initialization processing

Setting up memory

Setting up the clocks

End of CPU initialization processing

(1) Setting up memory

The sizes of the ROM and internal expansion RAM are specified.

<1> 0xC4 is written to the IMS register. This sets the ROM size to 16 KB.

<2> 0x08 is written to the IXS register. This sets the RAM size to 3 KB (high speed: 1 KB, expansion: 2 KB).

(2) Setting up the clocks

The clock signal to supply to the high-speed system clock, CPU clock, and PLL is specified.

<1> 0x41 is written to the OSCCTL register.

<2> 0x00 is written to the MOC register.

<3> 0x01 is written to the OSTS register.

<4> 0x00 is written to the PCC register.

<5> 0x00 is written to the RCM register.

<6> 0x01 is written to the PLLC register.

<7> 0x05 is written to the MCM register.

<8> 0x03 is written to the PLLC register.

<9> 0x02 is written to the PLLC register.

If these settings are specified, the μPD78F0730 operates based on the internal high-speed oscillation clock

(fRH = 16 MHz) and the USB operation clock (fUSB) is set to 48 MHz.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 29

3.3 USB Control Processing

This processing initializes the USB function controller (USBF), executes an interrupt handler, and performs data

transmission and reception.

The sample software provides a simple driver to use the USBF incorporated in the μPD78F0730.

Caution A processing program for the USBF incorporated in the μPD78F0730 is provided, but it only

performs the minimum processing for the sample software. The use of the simple driver as a

general-purpose USB driver is not guaranteed.

• USBF initialization

This processing is called by the main routine and initializes the USBF incorporated in the μPD78F0730.

• USBF interrupt handler

This routine is dedicated to interrupt servicing and is called every time a USBF interrupt occurs.

Caution For this sample software, unnecessary interrupts are masked.

 The following interrupts are used for this sample software:

• The RSUSPD, BUSRST, SETRQ, and CPUDEC interrupts reported by INTUSB0B

• The BKO1DT interrupt reported by INTUSB1B

• General-purpose USB functions

USB data reception and transmission functions are provided as general-purpose functions for USB control

processing.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 30

3.3.1 USBF initialization processing

The settings necessary to use the USB function controller (USBF) are specified.

Figure 3-5. USBF Initialization Processing Flow

Start of USBF initialization processing

Supplying the clock signal to the USBF

Disabling pulling up the D+ signal

Setting the control endpoint to respond using the NAK character

End of USBF initialization processing

Initializing the request data register area

Specifying interface and endpoint information

Canceling the control endpoint to respond using the NAK character

Setting up the interrupt mask registers

Specifying pulling-up the D+ signal

Disabling the countermeasure for floating

Unmasking maskable interrupts

(1) Supplying the clock signal to the USBF

Supplying the clock signal to the USB function controller (USBF) is enabled.

• 1 is written to the UCKCNT bit of the UCKC register.

(2) Disabling pulling up the D+ signal

Reporting connection to the USB host or hub is disabled by disabling pulling up the D+ signal.

• 0 is written to the CONNECT bit of the UF0GPR register.

(3) Setting the control endpoint to respond using the NAK character

The control endpoint is set up so that it responds to any request by the NAK character, including automatically

executed requests.

• 1 is written to the EP0NKA bit of the UF0E0NA register.

This setting prevents the hardware from returning unintended data to requests that are automatically

responded to until the data to be used by these requests is added.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 31

(4) Initializing the request data register area

The descriptor data transmitted in response to a GET_DESCRIPTOR request is added to registers.

The data to add includes the device status, endpoint 0 status, device descriptor, configuration descriptor,

interface descriptor, and endpoint descriptor.

<1> 0x00 is written to the UF0DSTL register.

 This setting disables remote wakeup and operates the USB function controller as a bus-powered device.

<2> 0x00 is written to the UF0EnSL registers (where n = 0 to 2).

 This setting indicates that endpoint n operates normally.

<3> The total data length (number of bytes) of the required descriptor is written to the UF0DSCL register.

 This setting determines the range of the UF0CIEn registers (where n = 0 to 255).

<4> The device descriptor data is written to the UF0DDn registers (where n = 0 to 17).

<5> The data of the configuration, interface, and endpoint descriptors is written to the UF0CIEn registers

(where n = 0 to 255).

<6> 0x00 is written to the UF0MODC register.

 This setting enables automatic responses to GET_DESCRIPTOR_configuration requests.

(5) Specifying interface and endpoint information

Information such as the number of supported interfaces, whether the alternative setting is used, and the

relationship between the interfaces and endpoints is specified for registers.

<1> 0x00 is written to the UF0AIFN register.

 This setting enables only interface 0.

<2> 0x00 is written to the F0AAS register.

 This setting disables the alternative setting.

<3> 0x20 is written to the UF0E1IM and UF0E2IM registers.

 This setting links endpoints 1 and 2 to interface 0.

(6) Canceling the control endpoint to respond using the NAK character

The setting specifying that the control endpoint responds by using the NAK character is canceled when the

data for automatically executed requests has been added.

• 0 is written to the EP0NKA bit of the UF0E0NA register.

 This setting resumes responding to all requests, including requests that are automatically responded to.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 32

(7) Setting up the interrupt mask registers

Masking is specified for each interrupt source indicated by the interrupt status register of the USB function

controller.

<1> 1 is written to all valid bits of the UF0ICn registers (where n = 0 to 4).

 This setting clears all interrupt sources.

<2> 1 is written to all valid bits of the UF0FIC0 and UF0FIC1 registers.

 This setting clears all transfer FIFOs.

<3> 0x07 is written to the UF0IM0 register.

 This setting masks interrupt sources indicated by the UF0IS0 register other than those of the RSUSPDM

and BUSRSTM interrupts.

<4> 0x7E is written to the UF0IM1 register.

 This setting masks interrupt sources indicated by the UF0IS1 register other than those of the CPUDEC

interrupt.

<5> 0x30 is written to the UF0IM2 register.

 This setting masks all interrupt sources indicated by the UF0IS2 register.

<6> 0x0E is written to the UF0IM3 register.

This setting masks interrupt sources indicated by the UF0IS3 register other than those of the BKO1DT

interrupt.

<7> 0x20 is written to the UF0IM4 register.

This setting masks all interrupt sources indicated by the UF0IS4 register.

(8) Specifying pulling-up the D+ signal

The D+ signal is pulled up so that the host recognizes that a device has been connected.

• 1 is written to the CONNECT bit of the UF0GPR register.

(9) Disabling the countermeasure for floating

The countermeasure for floating is disabled.

• 0x03 is written to the UF0BC register.

 This setting disables the countermeasure for floating and enables the USB buffer.

(10) Unmasking maskable interrupts

The interrupt sources INTUSB0 and INTUSB1 are unmasked.

• 0 is written to the USBMK0 and USBMK1 bits of the interrupt mask flag MK0L.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 33

3.3.2 USBF interrupt servicing (INTUSB0B)

The INTUSB0B interrupt handler services the RSUSPD, BUSRST, SETRQ, and CPUDEC interrupts.

Figure 3-6. INTUSB0B Interrupt Handler Processing Flow

Start of INTUSB0B interrupt servicing

RSUSPD interrupt?

The RSUSPD interrupt is cleared.

Yes

No

Is the processing suspended?

All USB interrupts are cleared.

Yes

No

BUSRST interrupt?

The BUSRST interrupt is cleared.
The bus reset interrupt flag is set.

Yes

The bulk endpoint FIFOs are
cleared.

No

SETRQ interrupt?

The SETRQ interrupt is cleared.

Yes

No

UF0SET.SETCON = 1?

The bus reset interrupt flag is cleared.

Yes

No

CPUDEC interrupt?

The port interrupt source is cleared.
The request data is read.
The request type is determined.

Yes

Request processing

No

End of INTUSB0B interrupt servicing

(1) RSUSPD interrupt servicing

If the RSUSPD bit of the UF0IS0 register is 1, an RSUSPD interrupt is judged to have occurred.

If an RSUSPD interrupt occurred, the following processing is performed:

• The interrupt source is cleared. (0 is written to the RSUSPDC bit of the UF0IC0 register.)

• Whether the processing is suspended or has resumed is determined.

(2) Suspend processing

If the RSUM bit of the UF0EPS1 register is 1, the processing is judged to have been suspended.

If the processing is suspended, all USB interrupt sources are cleared. This omits all subsequent INTUSB0B

interrupt servicing.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 34

(3) BUSRST interrupt servicing

If the BUSRST bit of the UF0IS0 register is 1, a BUSRST interrupt is judged to have occurred.

If a BUSRST interrupt occurred, the following processing is performed:

• The interrupt source is cleared. (0 is written to the BUSRST bit of the UF0IC0 register.)

• The bus reset interrupt flag (usbf78k_busrst_flg) is set to 1.

• The bulk endpoint FIFOs are cleared.

(4) Clearing the bulk endpoint FIFOs

The FIFO clearing function (usbf78k_clearFIFO) is called to clear all bulk endpoint FIFOs.

(5) SETRQ interrupt servicing

If the SETRQ bit of the UF0IS0 register is 1, an SETRQ interrupt is judged to have occurred.

If a SETRQ interrupt occurred, the following processing is performed:

• The interrupt source is cleared. (0 is written to the SETRQ bit of the UF0IC0 register.)

• A request that is automatically responded to (SET_XXXX) is processed.

(6) Processing an automatically responded request (SET_XXXX)

If the SETCON bit of the UF0SET register is 1, a SET_CONFIGURATION request is received and automatic

processing is judged to have been performed.

If automatic processing was performed, the bus reset interrupt flag (usbf78k_busrst_flg) is set to 0.

Caution To check whether a configured status has been entered, check the values of the UF0CNF

register.

(7) CPUDEC interrupt servicing

If the CPUDEC bit of the UF0IS1 register is 1, a CPUDEC interrupt is judged to have occurred.

If a CPUDEC interrupt occurred, the following processing is performed:

• The port interrupt source is cleared. (0 is written to the PORT bit of the UF0IC1 register.)

• The received data is read from the FIFOs and request data is created.

• Request processing

(8) Request processing

Whether the request is one to which the hardware does not automatically respond (a standard, class, or vendor

request) is determined and processing according to the type of request is executed.

Endpoint 0 is used for a control transfer. During the enumeration processing when a device is plugged in,

almost all standard device requests are automatically processed by the hardware. Here, the standard, class,

and vendor requests that are not automatically processed are processed.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 35

3.3.3 USBF reception interrupt servicing (INTUSB1B)

The INTUSB1B interrupt handler services the BKO1DT interrupt.

Figure 3-7. INTUSB1B Interrupt Handler Processing Flow

Start of INTUSB1B interrupt servicing

BKO1DT interrupt?

The BKO1DT interrupt is cleared.

Yes

No

End of INTUSB1B interrupt servicing

The data reception flag is set.

(1) Judging the BKO1DT interrupt

If the BKO1DT bit of the UF0IS3 register is 1, a BKO1DT interrupt is judged to have occurred.

(2) Clearing the BKO1DT interrupt

The interrupt source is cleared by writing 0 to the BKO1DTC bit of the UF0IC3 register.

(3) Setting the data reception flag

The data reception flag (usbf78k_rdata_flg) is set to 1.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 36

3.3.4 USB transmission data storage processing

The data to transmit to the USB device is stored into the transmission ring buffer.

Figure 3-8. USB Transmission Data Storage Processing Flow

 Start of USB transmission data storage

processing

g_full_flg ≠ 0?
Yes

No

g_full_flg is set to 1.

Is the buffer full?

Yes

The data is stored into the buffer.

The buffer pointer is updated.

End of USB transmission data storage
processing

No

(1) If the USB transmission data storage buffer has a vacancy (g_full_flg = 0)

The data is stored into the USB transmission data storage buffer and the buffer pointer is updated.

If the buffer is full after the data is stored, the buffer full flag (g_full_flg) is set to 1.

(2) If the USB transmission data storage buffer has no vacancy (g_full_flg ≠ 0)

USB transmission data storage processing ends without storing the data.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 37

3.3.5 USB data transmission

The data stored in the USB transmission ring buffer is transmitted to the USB host.

Figure 3-9. USB Data Transmission Flowchart

Start of USB data transmission

g_full_flg ≠ 0?

Data of the buffer size is
transmitted.

Yes

No

A NULL packet is transmitted.

Is the FIFO full?

Yes

No

Has a bus reset been received?

Last packet?

Yes

No

No

Yes

Is data in the buffer?

The data size is calculated.

Data of the calculated size is
transmitted.

No

Yes

End of USB data transmission

(1) If the transmission ring buffer has a vacancy (g_full_flg = 0)

The size of the data stored in the transmission ring buffer is calculated and data of that size is transmitted.

(2) If the transmission ring buffer has no vacancy (g_full_flg ≠ 0)

All the data stored in the transmission ring buffer is transmitted.

If the transmitted data is the last packet, a NULL packet is transmitted after the data is transmitted.

(3) Bus reset

Whether a bus reset has been received is judged only if the transmission ring buffer has no vacancy and the

transmission FIFO is full.

If the bus reset interrupt flag (usbf78k_busrst_flg) is 1, a bus reset is judged to have been received.

If a bus reset was received, USB data transmission ends without transmitting the data.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 38

3.4 UART Control Processing

This processing initializes the serial interface (UART6), executes an interrupt handler, and performs data

transmission and reception.

The sample software provides a simple driver to use the UART6 incorporated in the μPD78F0730.

Caution A processing program for the UART incorporated in the μPD78F0730 is provided, but it only

performs the minimum processing for the sample software. The use of the simple driver as a

general-purpose UART driver is not guaranteed.

• UART initialization

This processing is called by the main routine and initializes the UART6 incorporated in the μPD78F0730.

• UART interrupt handler

This routine is dedicated to interrupt servicing and is called every time a UART interrupt occurs.

Caution For this sample software, unnecessary interrupts are masked.

 The following two interrupts are used for this sample software:

• The reception completion interrupt reported by INTSR6

• The reception error interrupt reported by INTSRE6

• General-purpose UART functions

The UART data transmission functions and operation mode specification functions are provided as general-

purpose functions for the UART processing block.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 39

3.4.1 UART initialization processing

This processing specifies the initial values of the μPD78F0730 ports and the UART6 operation mode.

Figure 3-10. UART Initialization Processing Flow

Start of UART initialization processing

End of UART initialization processing

Setting up the ports

Specifying the initial value of the baud rate

Specifying the initial value of the stop bit

Specifying the initial value of the parity bit

Specifying the initial value of the data length

Setting up the UART operation mode

(1) Setting up the ports

The serial data I/O ports of the serial interface UART6 are set up.

(2) Specifying the initial value of the baud rate

The initial baud rate value is stored into the UART communication setting structure (UART_MODE_TBL).

(3) Specifying the initial value of the stop bit

The initial stop bit value is stored into the UART communication setting structure (UART_MODE_TBL).

(4) Specifying the initial value of the parity bit

The initial parity bit value is stored into the UART communication setting structure (UART_MODE_TBL).

(5) Specifying the initial value of the data length

The initial data length value is stored into the UART communication setting structure (UART_MODE_TBL).

(6) Setting up the UART operation mode

The UART operation mode specification function (uart78k_uartmode_set) is called to set up the UART6

registers.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 40

3.4.2 UART operation mode specification processing

This processing specifies the UART operation mode according to the value stored in the UART communication

setting structure (UART_MODE_TBL). The transfer speed, parity bit, data length, and stop bit are specified.

This processing is called during UART initialization processing or LINE_CONTROL request processing.

During UART initialization processing, the initially specified values are stored into the UART communication setting

structure (UART_MODE_TBL), and then the UART operation mode specification processing is called.

During LINE_CONTROL request processing, the value of the operation mode to be specified by the host is stored

into the UART communication setting structure (UART_MODE_TBL) and the UART operation mode is changed by

calling the UART operation mode specification processing.

Remark For details about the UART communication setting structure (UART_MODE_TBL) and the UART

specification values that can be used for the sample software, see 3.4.6 UART operation mode.

 For details about the LINE_CONTROL request, see 3.6.1 LINE_CONTROL.

Figure 3-11. UART Operation Mode Specification Processing Flow

Start of UART initialization processing

End of UART initialization processing

Setting up the ports

Specifying the initial value of the baud rate

Specifying the initial value of the stop bit

Specifying the initial value of the parity bit

Specifying the initial value of the data length

Setting up the UART operation mode

(1) Disabling transmission and reception

The POWER6, TXE6, and RXE6 bits of asynchronous serial interface operation mode register 6 (ASIM6) are

set to 0 to disable UART6 transmission and reception.

(2) Specifying the baud rate

The value specified for the baud rate is read from the UART communication setting structure, and then clock

selection register 6 (CKSR6) and baud rate generator control register 6 (BRGC6) are set up.

(3) Specifying the stop bit

The value specified for the stop bit is read from the UART communication setting structure and the SL6 bit of

asynchronous serial interface operation mode register 6 (ASIM6) is set up.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 41

(4) Specifying the parity bit

The value specified for the parity bit is read from the UART communication setting structure and the PS60 and

PS61 bits of asynchronous serial interface operation mode register 6 (ASIM6) are set up.

(5) Specifying the data length

The value specified for the data length is read from the UART communication setting structure and the CL6 bit

of asynchronous serial interface operation mode register 6 (ASIM6) is set up.

(6) Setting up the reception error interrupt signal

The generation of a reception completion interrupt is enabled for when an error occurs by setting the ISRM6 bit

of asynchronous serial interface operation mode register 6 (ASIM6) to 0.

(7) Enabling transmission and reception

The POWER6, TXE6, and RXE6 bits of asynchronous serial interface operation mode register 6 (ASIM6) are

set to 1 to enable UART6 transmission and reception.

(8) Enabling interrupts

The SRIF6 and SREIF6 interrupts are enabled by clearing the interrupt request flag and canceling masking.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 42

3.4.3 UART reception interrupt servicing

A vector is added so that UART data reception processing starts when a UART reception completion interrupt

occurs.

Figure 3-12. UART Reception Interrupt Servicing Flowchart

Start of UART reception interrupt servicing

End of UART reception interrupt servicing

Reading UART data

Storing the data received by the UART into the USB
transmission buffer

(1) Reading UART data

Data is read from the UART reception buffer register. This enables the reception of new data.

(2) Storing the data received by the UART into the USB transmission buffer

The read data is stored into the USB transmission ring buffer.

For details, see 3.5.1 Storing the data received by the UART into the USB transmission buffer.

3.4.4 UART reception error interrupt servicing

If an error occurs during UART reception, the received data that caused the error is discarded.

Figure 3-13. UART Reception Interrupt Servicing Flowchart

Start of UART reception error interrupt servicing

Reading the error status

End of UART reception error interrupt servicing

Reading UART data

(1) Reading the error status

The reception error status register is read. This clears the error flag.

(2) Reading UART data (reading and then discarding)

Data is read from the UART reception buffer register. This enables the reception of new data.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 43

3.4.5 UART data transmission

Data of the size specified by the UART is transmitted.

Figure 3-14. UART Data Transmission Flowchart

Start of UART data transmission

Transmission data length > 0?

Writing data to the transmission buffer
register

Yes

No

End of UART data transmission

Updating the pointer

Is the transmission buffer register empty?

Yes

No

(1) Checking the transmission data length

Data is transmitted until there is none left.

(2) Checking the transmission buffer register

The system waits until there is a vacancy in the UART transmission buffer register.

(3) Transmitting data

Transmission data is written to the UART transmission buffer register in 1-byte units.

(4) Updating the pointer

The transmission data pointer and the transmission data length are updated.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 44

3.4.6 UART operation mode

The values that can be specified for the UART operation mode settings of the sample software are limited. Table 3-

8 shows the values that can be specified for the sample software.

Table 3-8. UART Specification Values

Setting Value Remark

2400 bps −

4800 bps −

9600 bps Initial value

19200 bps −

38400 bps −

57600 bps −

76800 bps −

115200 bps −

Transfer speed

Other than the above 9,600 bps is specified.

None Initial value

Odd numbers −

Even numbers −

(Space) There is no corresponding feature on the host driver side.

Parity bit

Other than the above No parity is specified.

7 bits −

8 bits Initial value

Data length

Other than the above 8 bits are specified.

1 bit Initial value

2 bits −

Stop bit

Other than the above 1 bit is specified.

The UART operation mode settings are retained in the UART communication setting structure

(UART_MODE_TBL). The UART communication setting structure (UART_MODE_TBL) is defined as follows:

List 3-1. UART Communication Setting Structure (UART_MODE_TBL)

typedef struct UART_MODE_TBL{

 UINT8 DTERate[4]; /* transfer rate(bps) */

 UINT8 STOPBIT; /* length of the stop bit - 0:1bit 2:2bits */

 UINT8 PARITYType; /* parity bit - 0:None 1:Odd 2:Even 4:Space */

 UINT8 DATABits; /* data size (number of the bits:7 or 8) */

} UART_MODE_TBL , *PUART_MODE_TBL;

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 45

3.5 Bridge Processing Between the UART and USB

Data is transferred between the UART and USB.

3.5.1 Storing the data received by the UART into the USB transmission buffer

This processing is called by UART reception completion interrupt servicing.

During this processing, the data received by the UART is stored into the USB transmission ring buffer.

For details about UART reception completion interrupt servicing, see 3.4.3 UART reception interrupt servicing.

For details about the transmission of data in the transmission ring buffer, see 3.3.5 USB data transmission.

For details about USB transmission data storage processing, see 3.3.4 USB transmission data storage

processing.

Figure 3-15. Flowchart of Storing the Data Received by the UART into the USB Transmission Buffer

 Start of storing the data received by the UART into the USB

transmission buffer

End of storing the data received by the UART into the USB
transmission buffer

Storing the USB transmission data

3.5.2 Transmitting the data in the USB reception FIFO from the UART

During this processing, the data at the endpoint (FIFO) for a bulk out transfer (reception) is read and transmitted

from the UART.

During USB data reception, the data in the FIFO is read and stored into the reception data storage buffer.

During UART data transmission, the data in the reception data storage buffer is transmitted from the UART byte by

byte. For details, see 3.4.5 UART data transmission.

Figure 3-16. Flowchart of Transmitting the Data in the USB Reception FIFO from the UART

 Start of transmitting the data in the USB reception FIFO from

the UART

End of transmitting the data in the USB reception FIFO from
the UART

USB data reception

UART data transmission

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 46

3.5.3 Main routine

During the main routine, the data received by the USB function controller (USBF) is transmitted to the serial

interface (UART6) and the data received by the serial interface is transmitted to the USB function controller.

Figure 3-17. Main Routine Processing Flow

Start of the main routine

CPU initialization processing

Disabling interrupts

USB data transmission
(for the ring buffer)

USBF initialization processing

UART initialization processing

Enabling Interrupts

Is the USB data
reception flag set?

Yes

No

Clearing the USB data reception flag

Transmitting the data in the USB reception FIFO
from the UART

(1) USB data transmission

The function for transmitting USB data to the ring buffer (usbf78k_send_txbuf) is called to transmit the data

stored in the USB transmission ring buffer to the USB host.

(2) Identification of USB data reception

The data reception flag set by the sample software (usbf78k_rdata_flg) is monitored. If this flag is set to 1,

there is reception data in the USB function controller.

If there is reception data, the data reception flag (usbf78k_rdata_flg) is cleared (0) and the data in the USB

reception FIFO is transmitted from the UART.

(3) Transmitting the data in the USB reception FIFO from the UART

The function for transmitting the data in the USB reception FIFO from the UART (usbf78k_usb_to_uart) is

called to transmit the data in the USB reception FIFO from the UART.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 47

3.6 Vendor Request Format

The sample software can perform processing to respond to the five types of requests below.

This section describes the format of each vendor request.

3.6.1 LINE_CONTROL

This request is used by the host to report the settings of the baud rate, flow control, parity bit, and data size to the

device.

Table 3-9. LINE_CONTROL Request Format

(a) Request codes

Field Size Specified Value

bmRequestType 1 Request type: 0x40

bRequest 1 Request identifier: 0x00

wValue 2 Unused: 0x0000

wIndex 2 Unused: 0x0000

wLength 2 Data length: 0x0006 (the number of data stage bytes)

(b) Data

Field Size Specified Value

bRequest 1 Request identifier: 0x00 (LINE_CONTROL)

bBaud 4 Baud rateNote: 0x00000960 (2400 bps)

 0x000012c0 (4800 bps)

 0x00002580 (9600 bps)

 0x00004b00 (19200 bps)

 0x00009600 (38400 bps)

 0x0000e100 (57600 bps)

 0x00012c00 (76800 bps)

 0x0001c200 (115200 bps)

bParams 1 D7 and D6 (reserved): 00

D5 and D4 (flow control): 00 (none)

 01 (hardware (RTS or CTS))

 10 (software (Xon or Xoff))

D3 and D2 (parity): 00 (none)

 01 (even number)

 10 (odd number)

D1 (stop bit): 0 (1 bit)

 1 (2 bits)

D0 (data size): 0 (7 bits)

 1 (8 bits)

Note Any value can be specified for bBaud, but the baud rate at which the device actually operates

depends on the device.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 48

3.6.2 SET_DTR_RTS

This request is used by the host to report the enabling or disabling of the DTR or RTS settings.

Table 3-10. SET_DTR_RTS Request Format

(a) Request codes

Field Size Specified Value

bmRequestType 1 Request type: 0x40

bRequest 1 Request identifier: 0x00

wValue 2 Unused: 0x0000

wIndex 2 Unused: 0x0000

wLength 2 Data length: 0x0002 (the number of data stage bytes)

(b) Data

Field Size Specified Value

bRequest 1 Request identifier: 0x01 (SET_DTR_RTS)

bParams 1 D7 to D2 (Reserved): 000000

D1 (DTR): 0 (off)

 1 (on)

D0 (RTS): 0 (off)

 1 (on)

3.6.3 SET_XON_XOFF_CHR

This request is used by the host to report the Xon or Xoff character code settings.

Table 3-11. SET_XON_XOFF_CHR Request Format

(a) Request codes

Field Size Specified Value

bmRequestType 1 Request type: 0x40

bRequest 1 Request identifier: 0x00

wValue 2 Unused: 0x0000

wIndex 2 Unused: 0x0000

wLength 2 Data length: 0x0003 (the number of data stage bytes)

(b) Data

Field Size Specified Value

bRequest 1 Request identifier: 0x02 (SET_XON_XOFF_CHR)

XonChr 1 Xon character code

XoffChr 1 Xoff character code

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 49

3.6.4 OPEN_CLOSE

This request is used by the host to report whether ports are opened or closed.

Table 3-12. OPEN_CLOSE Request Format

(a) Request codes

Field Size Specified Value

bmRequestType 1 Request type: 0x40

bRequest 1 Request identifier: 0x00

wValue 2 Unused: 0x0000

wIndex 2 Unused: 0x0000

wLength 2 Data length: 0x0002 (the number of data stage bytes)

(b) Data

Field Size Specified Value

bRequest 1 Request identifier: 0x03 (OPEN_CLOSE)

bOpen 1 Port status: 0x00 (The port is closed.)

 0x01 (The port is opened.)

3.6.5 SET_ERR_CHR

This request is used by the host to report the settings of replacement character codes when an error occurs.

Table 3-13. SET_ERR_CHR Request Format

(a) Request codes

Field Size Specified Value

bmRequestType 1 Request type: 0x40

bRequest 1 Request identifier: 0x00

wValue 2 Unused: 0x0000

wIndex 2 Unused: 0x0000

wLength 2 Data length: 0x0003 (the number of data stage bytes)

(b) Data

Field Size Specified Value

bRequest 1 Request identifier: 0x04 (SET_ERR_CHR)

bOpen 1 Port status: 0x00 (Replacing ErrChr is disabled.)

 0x01 (Replacing ErrChr is enabled.)

ErrChr 1 Replacement character code if a parity error occurs

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 50

3.7 Function Specifications

This section describes the functions implemented in the sample software.

3.7.1 Functions

The functions of each source file included in the sample software are described below.

Table 3-14. Functions Implemented in the Sample Software

Source File Function Name Description

main Main routine main.c

cpu_init Initializes the CPU.

usbf78k_init Initializes the USB function controller.

usbf78k_standardreq Processes standard requests.

usbf78k_getdesc Processes GET_DESCRIPTOR requests.

usbf78k_data_send Transmits data to the USB host.

usbf78k_rdata_length Acquires the USB reception data length.

usbf78k_data_receive Receives data from the USB host.

usbf78k_clearFIFO Clears the endpoint (FIFO) data.

usbf78k_sendnullEP0 Issues a NULL packet for endpoint 0.

usbf78k_sendstallEP0 Performs a STALL response for endpoint 0.

usbf78k_put_txbuf Copies the data received by the UART into the dedicated buffer.

usbf78k_send_txbuf Calls the usbf78k_data_send function.

usbf78k_intusb0b Services an INTUSB0B interrupt.

usbf78k.c

usbf78k_intusb1b Services an INTUSB1B interrupt (by using a BULK or INTERRUPT

endpoint).

usbf78k_vendorreq Responds to a vendor-specific request.

usbf78k_line_control Responds to a LINE_CONTROL request.

usbf78k_set_dtr_rts Responds to a SET_DTR_RTS request by issuing NULL.

usbf78k_set_xon_xoff_chr Responds to a SET_XON_XOFF_CHR request by issuing NULL.

usbf78k_open_close Responds to an OPEN_CLOSE request by issuing NULL.

usbf78k_set_err_chr Responds to a SET_ERR_CHR request by issuing NULL.

usbf78k_usb_to_uart Transfers data from the USB host to UART.

usbf78k_vendor.c

usbf78k_uart_to_usb Transfers data from the UART to the USB host.

uart78k_init Initializes the serial interface UART6.

uart78k_data_send Calls the uart_send function.

uart78k_uartmode_set Responds to a SET_LINE_CODING request (and specifies the UART

parameters.)

uart_send Transmits data to the UART terminal.

uart_receive Receives data from the UART terminal (and responds to interrupts).

uart_ctrl.c

uart_receive_error Indicates a failure to receive data from the UART terminal (and

responds to interrupts).

boot.asm − Boot processing routine

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 51

3.7.2 Correlation of the functions

Some functions call other functions during the processing. The following figures show the correlation of the

functions.

Figure 3-18. Functions Called During USB Interrupt Servicing

usbf78k_intusb0b

usbf78k_clearFIFO

usbf78k_standardreq

usbf78k_sendstallEP0

usbf78k_getdesc

usbf78k_sendstallEP0

usbf78k_vendorreq

usbf78k_sendstallEP0

usbf78k_data_send

usbf78k_clearFIFO

usbf78k_sendstallEP0

usbf78k_line_control

usbf78k_set_dtr_rts

usbf78k_set_xon_xoff_chr

usbf78k_open_close

usbf78k_set_err_chr

usbf78k_sendnullEP0 usbf78k_intusb1b

usbf78k_sendstallEP0

uart78k_uartmode_set

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 52

Figure 3-19. Functions Called During UART Interrupt Servicing

uart_receive

usbf78k_uart_to_usb

usbf78k_put_txbuf

uart_receive_error

Figure 3-20. Functions Called in the Main Routine

main

usbf78k_send_txbuf

usbf78k_data_send

usbf78k_usb_to_uart

usbf78k_data_receive

uart78k_data_send

uart_send

cpu_init

usbf78k_init

uart78k_init

uart78k_uartmode_set

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 53

3.7.3 Function features

This section describes the features of the functions implemented in the sample software.

(1) Function description format

The functions are described in the following format.

Function name

[Overview]

An overview of the function is provided.

[C description format]

The format in which the function is written in C is provided.

[Parameters]

The parameters (arguments) of the function are described.

Parameter Description

Parameter type and name Parameter summary

[Return values]

The values returned by the function are described.

Symbol Description

Return value type and name Return value summary

[Description]

The feature of the function is described.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 54

(2) Functions for the main processing

main

[Overview]

Main processing

[C description format]

void main(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called first when the sample software is executed.

This function executes initialization by calling the CPU initialization function (cpu_init), the USBF initialization

function (usbf78k_init), and then the UART initialization function (uart78k_init).

Next, this function calls the following functions during its loop:

• Function for transmitting USB data to the ring buffer (usbf78k_send_txbuf) (transmits data from USB)

• Function for transmitting the data in the USB reception FIFO from the UART (usbf78k_usb_to_uart)

(transmits the data received by USB from the UART)

cpu_init

[Overview]

Initializes the CPU.

[C description format]

void cpu_init(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called during the main processing.

This function specifies the settings required for using the μPD78F0730, such as the memory sizes and clock

frequency.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 55

(3) Functions for the USB function controller

usbf78k_init

[Overview]

Initializes the USB function controller.

[C description format]

void usbf78k_usbf_init(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called during the main processing.

This function specifies the settings required for using the USB function controller, such as allocating and

specifying the data area, and masking interrupt requests.

usbf78k_intusb0b

[Overview]

Executes the INTUSB0B interrupt handler.

[C description format]

void usbf78k_intusb0b(void)

[Parameters]

None

[Return values]

None

[Description]

This function is executed when an INTUSB0B interrupt occurs.

If the interrupt source is RSUSPD, BUSRST, SETRQ, or CPUDEC, this function executes processing

corresponding to each request.

If the interrupt source is CPUDEC, the request data (8 bytes) is retrieved and decoded. The request type is

determined based on the result of decoding, and then the corresponding function is called to perform response

processing.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 56

usbf78k_intusb1b

[Overview]

Executes the INTUSB1B interrupt handler.

[C description format]

void usbf78k_intusb1b(void)

[Parameters]

None

[Return values]

None

[Description]

This function is executed when an INTUSB1B interrupt occurs.

If the interrupt source is BKO1DT, the data reception flag (usbf78k_rdata_flg) is set to 1.

usbf78k_data_send

[Overview]

Transmits USB data.

[C description format]

INT32 usbf78k_data_send(UINT8 *data, INT32 len, INT8 ep)

[Parameters]

Parameter Description

UINT8 *data Transmission data buffer pointer

INT32 len Transmission data length

INT8 ep Data transmission endpoint number

[Return values]

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

[Description]

This function stores the data stored in the transmission data buffer into the FIFO for the specified endpoint, byte

by byte.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 57

usbf78k_rdata_length

[Overview]

Acquires the USB reception data length.

[C description format]

void usbf78k_rdata_length(INT32 *len , INT8 ep)

[Parameters]

Parameter Description

INT32 *len Address pointer for storing the reception data length

INT8 ep Data reception endpoint number

[Return values]

None

[Description]

This function reads the reception data length of the specified endpoint.

usbf78k_data_receive

[Overview]

Receives USB data.

[C description format]

INT32 usbf78k_data_receive(UINT8 *data, INT32 len, INT8 ep)

Parameter Description

UINT8 *data Reception data buffer pointer

INT32 len Reception data length

INT8 ep Data reception endpoint number

[Return values]

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

[Description]

This function reads data from the FIFO for the specified endpoint byte by byte and stores the data into the

reception data buffer.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 58

usbf78k_clearFIFO

[Overview]

Clears FIFOs.

[C description format]

void usbf78k_clearFIFO(INT8 ep)

[Parameters]

Parameter Description

INT8 ep Endpoint number

[Return values]

None

[Description]

This function clears all FIFOs of the specified endpoint.

usbf78k_sendnullEP0

[Overview]

Transmits a NULL packet for endpoint 0.

[C description format]

void usbf78k_sendnullEP0(void)

[Parameters]

None

[Return values]

None

[Description]

This function clears the FIFO for endpoint 0 and transmits a NULL packet from the USB function controller by

setting the bit that indicates the end of data to 1.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 59

usbf78k_sendstallEP0

[Overview]

Performs a STALL response for endpoint 0.

[C description format]

void usbf78k_sendstallEP0(void)

[Parameters]

None

[Return values]

None

[Description]

This function makes the USB function controller perform a STALL response by setting the bit that indicates the

use of STALL handshaking to 1.

usbf78k_standardreq

[Overview]

Processes standard requests to which the USB function controller does not automatically respond.

[C description format]

void usbf78k_standardreq(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called during USB interrupt servicing (INTUSB0B).

If a GET_DESCRIPTOR request is decoded, this function calls the GET_DESCRIPTOR request processing

function (usbf78k_getdesc). For other requests, this function calls the function for processing STALL

responses for endpoint 0 (usbf78k_sendstallEP0).

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 60

usbf78k_getdesc

[Overview]

Processes GET_DESCRIPTOR requests.

[C description format]

void usbf78k_getdesc(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called during the processing of standard requests to which the USB function controller does not

automatically respond.

If a decoded request requests a string descriptor, this function calls the USB data transmission function

(usbf78k_data_send) and transmits a string descriptor from endpoint 0. If a decoded request requests any

other descriptor, this function calls the function for processing STALL responses for endpoint 0

(usbf78k_sendstallEP0).

usbf78k_put_txbuf

[Overview]

Stores data into the transmission buffer.

[C description format]

void usbf78k_put_txbuf(UINT8 *data)

[Parameters]

Parameter Description

UINT8 *data Pointer of the data to be stored

[Return values]

None

[Description]

This function is called by the function for storing the data received by the UART into the USB transmission buffer

(usbf78k_uart_to_usb).

This function stores the data received by the UART into the USB transmission ring buffer.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 61

usbf78k_send_txbuf

[Overview]

Transmits USB data (for the ring buffer).

[C description format]

INT32 usbf78k_send_txbuf(void)

[Parameters]

None

[Return values]

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

[Description]

This function transmits the data stored in the USB transmission ring buffer to the USB host.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 62

(4) Functions for processing vendor requests and for communication between the UART and USB

usbf78k_vendorreq

[Overview]

Processes vendor requests.

[C description format]

void usbf78k_vendorreq(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called by the INTUSB0B interrupt handler function (usbf78k_intusb0b) when request data is

received.

This function determines the type of vendor request and executes the corresponding processing.

usbf78k_line_contrl

[Overview]

Processes LINE_CONTROL requests.

[C description format]

void usbf78k_line_contrl(void)

[Parameters]

None

[Return values]

None

[Description]

This function stores UART operation specification parameters specified at the LINE_CONTROL request data

stage into the UART communication setting structure (UART_MODE_TBL).

This function calls the UART operation mode specification function (uart78k_uartmode_set) to change the

UART operation mode.

When the operation mode has been changed, this function calls the function for processing NULL responses for

endpoint 0 (usbf78k_sendnullEP0) to issue a NULL response.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 63

usbf78k_set_dtr_rts

[Overview]

Processes SET_DTR_RTS requests.

[C description format]

void usbf78k_set_dtr_rts(void)

[Parameters]

None

[Return values]

None

[Description]

This function calls the function for processing NULL responses for endpoint 0 (usbf78k_sendnullEP0).

This function responds normally and then ends because it is not used by the sample software.

usbf78k_set_xon_xoff_chr

[Overview]

Processes SET_XON_XOFF_CHR requests.

[C description format]

void usbf78k_set_xon_xoff_chr(void)

[Parameters]

None

[Return values]

None

[Description]

This function calls the function for processing NULL responses for endpoint 0 (usbf78k_sendnullEP0).

This function responds normally and then ends because it is not used by the sample software.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 64

usbf78k_open_close

[Overview]

Processes OPEN_CLOSE requests.

[C description format]

void usbf78k_open_close(void)

[Parameters]

None

[Return values]

None

[Description]

This function calls the function for processing NULL responses for endpoint 0 (usbf78k_sendnullEP0).

This function responds normally and then ends because it is not used by the sample software.

usbf78k_set_err_chr

[Overview]

Processes SET_ERR_CHR requests.

[C description format]

void usbf78k_set_err_chr(void)

[Parameters]

None

[Return values]

None

[Description]

This function calls the function for processing NULL responses for endpoint 0 (usbf78k_sendnullEP0).

This function responds normally and then ends because it is not used by the sample software.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 65

usbf78k_usb_to_uart

[Overview]

Transmits the data in the USB reception FIFO from the UART.

[C description format]

void usbf78k_usb_to_uart(UINT8 len)

[Parameters]

Symbol Description

UINT8 len Data length

[Return values]

None

[Description]

This function is called during the main processing.

This function calls the USB data reception function (usbf78k_data_receive) and stores the received data into

a buffer.

This function calls the UART data transmission function (uart78k_data_send) and transmits the data stored in

the buffer from the UART.

usbf78k_uart_to_usb

[Overview]

Stores the data received by the UART into the USB transmission buffer.

[C description format]

void usbf78k_uart_to_usb(UINT8 *data)

[Parameters]

Symbol Description

UINT8 *data Reception data buffer pointer

[Return values]

None

[Description]

This function is called by the UART reception completion interrupt handler function (uart_receive).

This function calls the function for storing data into the transmission buffer (usbf78k_put_txbuf) and stores the

data received by the UART into the USB transmission data buffer (which is a ring buffer).

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 66

(5) UART functions

uart78k_init

[Overview]

Specifies the default settings for UART communication by initializing the UART.

[C description format]

void uart78k_init(void)

[Parameters]

None

[Return values]

None

[Description]

This function adds UART communication settings such as for the ports, baud rate, STOP bit, parity bit, and data

length to a structure.

This function calls the UART operation mode specification function (uart78k_uartmode_set) to start the

UART.

uart78k_uartmode_set

[Overview]

Specifies the UART operation mode.

[C description format]

void uart78k_uartmode_set(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called by the UART communication default setup function (uart78k_init) and LINE_CONTROL

request function (usbf78k_line_contrl).

This function stops the UART and sets up registers according to the UART communication settings saved in the

structure.

Next, this function starts the UART and enables UART interrupts.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 67

uart78k_data_send

[Overview]

Transmits UART data.

[C description format]

void uart78k_data_send(UINT8 *buffer, UINT32 size)

[Parameters]

Symbol Description

UINT8 *buffer Data buffer pointer

UINT32 size Data size

[Return values]

None

[Description]

This function calls the UART transmission function (uart_send) to execute UART transmission.

uart_send

[Overview]

Transmits UART data.

[C description format]

void uart_send(UINT8 *sendString, UINT32 len)

[Parameters]

Symbol Description

UINT8 *sendString Transmission data buffer pointer

UINT32 len Data length

[Return values]

None

[Description]

This function transmits every byte if the data length is 1 or more.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 68

uart_receive

[Overview]

Executes the UART reception completion interrupt handler.

[C description format]

__interrupt void uart_receive(void)

[Parameters]

None

[Return values]

None

[Description]

This function reads the data received by the UART and then calls the function for storing the data received by the

UART into the USB transmission buffer (usbf78k_uart_to_usb) to store the data received by the UART into

the USB transmission buffer.

uart_receive_error

[Overview]

Executes the UART reception error interrupt handler.

[C description format]

__interrupt void uart_receive_error(void)

[Parameters]

None

[Return values]

None

[Description]

This function clears error flags and then reads (and discards) the received data.

CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS

Application Note U19660EJ1V0AN 69

3.8 Data Structures

The sample software uses the following structures:

(1) USB device request structure

This structure is defined in the usbf78k.h file.

The global variable UsbSetup_Data in the program is an instance of this structure.

/*--

 * SETUP DATA structure

 --/

typedef struct {

 UINT8 RequstType; /* bmRequestType */

 UINT8 Request; /* bRequest */

 UINT16 Value; /* wValue */

 UINT16 Index; /* wIndex */

 UINT16 Length; /* wLength */

 UINT8* Data; /* index to Data */

} Usb_Setup_st;

/*--

 * global variable

 --/

extern Usb_Setup_st UsbSetup_Data;

(2) UART communication setting structure

This structure is defined in the usbf78k_vendor.h file.

typedef struct _UART_MODE_TBL{

 UINT8 DTERate[4]; /* transfer rate(bps) */

 UINT8 STOPBIT; /* length of the stop bit - 0:1bit (1:1.5bits) 2:2bits */

 UINT8 PARITYType; /* parity bit - 0:None 1:Odd 2:Even (3:Mark) 4:Space */

 UINT8 DATABits; /* data size (number of the bits:5,6,7,8,16) */

} UART_MODE_TBL , *PUART_MODE_TBL;

Application Note U19660EJ1V0AN 70

CHAPTER 4 DEVELOPMENT ENVIRONMENT

This chapter provides an example of creating an environment for developing an application program that uses the

USB-to-serial conversion sample software for the μPD78F0730 and the procedure for debugging the application.

4.1 Used Products

This section describes the used hardware and software tool products.

4.1.1 System components

Figure 4-1 shows the components used in a system that uses the sample software.

Figure 4-1. Example of the System Components (During Debugging)

USB (virtual COM) RS-232C (UART)

Target board on which the
μPD78F0730 is mounted

Host Host

USB
MINICUBE®2
+ 78K0-OCD board

Target cable

Host
(for debugging)

PM+ (integrated development tool)
ID78K0-QB (debugger)
RA78K0 (assembler)
CC78K0 (compiler)
DF780731 (device file)
Sample software

Software

Remarks 1. Debugging can also be performed using only one host by connecting the USB (virtual COM) port

and RS-232C (UART) port to the host for debugging.

 2. For a drawing and the ports of the target board, see 4.1.3 Debugging and APPENDIX A TARGET

BOARD.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 71

4.1.2 Program development

The following hardware and software are necessary to develop a system that uses the sample software:

Table 4-1. Example of the Components Used in a Program Development Environment

Components Product Example Remark

Hardware Host − A PC/ATTM-compatible PC using WindowsTM XP or

Windows VistaTM

Integrated development tool PM+ V6.30

Assembler RA78K0 W4.00

Software

Compiler CC78K0 W4.01

Device file DF780731 V1.10 (for the μPD78F0730)

Source files

Files

Include files

Sample software

4.1.3 Debugging

The following hardware and software are necessary to debug a system that uses the sample software:

Table 4-2. Example of the Components Used in a Debugging Environment

Components Product Example Remark

Host − A PC/AT-compatible PC using Windows XP or

Windows Vista

Target QB-78F0730-TBNote 1 A μPD78F0730-mounted board that has USB and

RS-232C (UART) interfaces

On-chip debugging emulator MINICUBE2

Hardware

Cables − A USB cable, RS-232C cable, etc.

Integrated development tool PM+ V6.30

Debugger ID78K0-QB V3.00

Software

Terminal − Note 2

USB-to-serial conversion host

driver

− Included with the sample software

Device file DF780731 V1.10 (for the μPD78F0730)

Source files

Include files

Files

Project file

Sample software

Note 3

Notes 1. An RS-232C interface must be connected to QB-78F0730-TB, because QB-78F0730-TB does not have

an RS-232C interface.

 2. A Windows terminal emulator, such as HyperTerminal (which is standard software provided in Windows),

can be used.

 3. A file that is used when creating a system using PM+ is included with the sample software.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 72

4.2 Setting Up the Environment

This section describes the preparations required for developing and debugging a system by using the products

described in 4.1 Used Products.

4.2.1 Preparing the environment

Connect the target board to MINICUBE2, and connect MINICUBE2 to the host for debugging.

For details about how to connect MINICUBE2, see the QB-MINI2 User’s Manual (U18371E).

Figure 4-2. Target Board Connections

Target board on which the
μPD78F0730 is mounted

USB
MINICUBE2
+ 78K0-OCD board

Target cable

Host
(for debugging)

The procedure when using QB-78F0730-TB as the target board is described below.

(1) Setting up the switches

Flip the mode selection switch and power supply switch of MINICUBE2 to position M2 (78K0 microcontroller)

and position 5 (supplying 5 V to the target system), respectively.

Caution Do not flip the MINCUBE2 switches while a USB cable is connected. Flip the switches after

removing the USB cable.

(2) Setting up the 78K0-OCD board

Mount a 20 MHz oscillator. (A 20 MHz oscillator is mounted by default.)

Connect the 78K0-OCD board to MINICUBE2.

(3) Connecting the target board

Connect QB-78F0730-TB to the 78K0-OCD board by using a 10-pin cable.

(4) Connecting via USB

Connect MINICUBE2 to the host for debugging.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 73

4.2.2 Preparing the host environment

Create a dedicated workspace on the host for debugging.

(1) Installing an integrated development tool

Install PM+. For details, see the PM+ User’s Manual.

(2) Installing a debugger

Install ID78K0-QB. For details, see the ID78K0-QB User’s Manual.

(3) Downloading the sample software

Store the complete set of sample software files into any directory without changing the folder structure.

Figure 4-3. Folder Structure of the Sample Software

Folder for storing the host driver for
USB-to-serial conversion

Folder for storing the include files

Folder for storing NEC compiler projects

Folder for storing source files

Any folder DRIVER

include

NEC_Project

src

Remark If the host for debugging is not the host for USB port connections, store the folder for storing the host

driver for USB-to-serial conversion in any directory on the host for USB port connections. Store the host

driver for the RS-232C ports in any directory on the host for RS-232C port connections.

 (4) Setting up the workspace

The procedure for using project files included with the sample software is described below.

<1> Start PM+, and then select Open Workspace in the File menu.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 74

<2> In the Open Workspace dialog box, specify the workspace file in the NEC_project folder, which is the

sample software installation directory.

(5) Installing a device file

The procedure for using a device file for the μPD78F0730 is described below.

<1> Select Project Settings in the PM+ Project menu.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 75

<2> In the Project Settings dialog box, click the Device Install button on the Project Information tab to

start the Device File Installer.

<3> In the Device File Installer dialog box, click the Install button to start the installation wizard.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 76

<4> In the Install Information File dialog box, click the Browse button.

<5> In the Open dialog box, open the directory in which the device file was stored, select the __CSETUP.INI

file, and then click the Open button.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 77

<6> In the Install Information File dialog box, click the Next button.

<7> In the NEC SOFTWARE LICENSE AGREEMENT dialog box, read the license agreement, and then click

the Agree button if you agree with the terms.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 78

<8> In the Install Directory dialog box, confirm that a path is displayed, and then click the Next button.

<9> In the Installation Start dialog box, click the Next button.

<10> A device file is installed to the project. This might take a while depending on the environment.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 79

<11> In the Installation Finished dialog box, click the Finish button.

(6) Setting up the building tool

The procedure for using CC78K0 as the building tool and ID78K0-QB as the debugging tool is described below.

<1> Select Project Settings in the PM+ Project menu.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 80

<2> In the Project Settings dialog box, click the Detail Setting… button on the Tool Version Settings tab.

<3> In the Tool Version Detail Setting dialog box, select the compiler version to use in the CC78K0 column

and the debugger version to use in the ID78K0-QB column.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 81

4.3 On-Chip Debugging

This section describes the procedure for debugging an application program that was developed using the

workspace described in 4.2 Setting Up the Environment.

For the μPD78F0730, a program can be written to its internal flash memory and the program operation can be

checked by directly executing the program by using a debugger (on-chip debugging).

4.3.1 Generating a load module

To write a program to the target device, use a C compiler to generate a load module by converting a file written in C

or assembly language.

For PM+, generate a load module by selecting Rebuild in the Build menu.

4.3.2 Loading and executing the load module

Execute the generated load module by writing (loading) it to the target.

(1) Writing the load module

The procedure for writing the load module to the μPD78F0730 on the target board by using PM+ is described

below.

<1> Start ID78K0-QB-EZ by selecting Debug in the Build menu.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 82

<2> In the Configuration dialog box, check the Main Clock setting, and then click the OK button.

(2) Executing the program

Click the button in the ID78K0-QB window or select Run Without Debugging in the Run menu.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 83

4.3.3 Connecting the USB port (virtual COM port)

Connect the USB port of the target board to the USB port of the host while the sample program is running.

Figure 4-4. Connecting the USB Port (Virtual COM Port)

USB (virtual COM) RS-232C (UART)

Target board on which the
μPD78F0730 is mounted

Host Host

USB
MINICUBE2
+ 78K0-OCD board

Target cable

Host
(for debugging)

Remark Debugging can also be performed using only one host by connecting the USB interface (virtual COM)

and RS-232C interface (UART) to the host for debugging.

(1) Installing a host driver

A USB-to-serial conversion host driver must be installed on the host.

The procedure for using the USB-to-serial conversion host driver included with the sample software is

described below.

<1> When the connection of the target board is recognized by the host, the Found New Hardware message is

displayed, and then the Found New Hardware Wizard starts.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 84

<2> On the first page of the Found New Hardware Wizard, select No, not this time, and then click the Next

button.

<3> On the next page, select Install from a list or specific location (Advanced) and then click the Next

button.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 85

<4> On the next page, select Search for the best driver in these locations, select Include this location in

the search, specify the host driver folder, and then click the Next button.

Remark Select a host driver that matches the OS on the host. For example, select win2k, which is in

the DRIVER folder, for a 32-bit version of Windows XP or select wlh_amd64, which is in the

DRIVER folder, for a 64-bit version of Windows XP.

<5> In the Hardware Installation dialog box, click the Continue Anyway button.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 86

<6> On the next page of the Found New Hardware Wizard, click the Finish button.

(2) Checking the device assignment

Open the Windows Device Manager. In the Ports (COM & LPT) category, make sure that NEC Electronics

Virtual COM Port is displayed and check the assigned COM port number.

Remark Device names and port numbers can be changed. For details, see 5.2 Customizing the Sample

Software.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 87

4.3.4 Connecting the RS-232C port

Connect the RS-232C port of the target board to the host.

Figure 4-5. Connecting the RS-232C Port

USB (virtual COM) RS-232C (UART)

Target board on which the
μPD78F0730 is mounted

Host Host

USB
MINICUBE2
+ 78K0-OCD board

Target cable

Host
(for debugging)

Remarks 1. Debugging can also be performed using only one host by connecting the USB (virtual COM) port

and RS-232C (UART) port to the host for debugging.

 2. QB-78F0730-TB does not have an RS-232C port. QB-78F0730-TB must be connected using a

circuit that converts the UART signal level (TTL or CMOS level) to the RS-232C signal level.

(1) Checking the device assignment

Open the Windows Device Manager. In the Ports (COM & LPT) category, check the COM port number

assigned to the RS-232C port.

The displayed name differs depending on the installed driver.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 88

4.3.5 Checking the operation

The operation of the sample software is checked by using terminal software on the host.

An example in which HyperTerminal, which is installed as standard Windows software, is used is provided below.

(1) Setting up HyperTerminal for the USB side

Set up the host port that is connected to the target board via USB.

<1> Start HyperTerminal by selecting Start, All Programs, Accessories, Communications, and then

HyperTerminal.

<2> In the Connection Description dialog box, enter USB Port in the Name field and then click the OK

button. Any icon can be selected.

<3> In the Connect To dialog box, select the virtual COM port number of the USB port for Connect using,

and then click the OK button.

 The virtual COM port number is displayed for NEC Electronics Virtual COM Port in the Device

Manager. For details about how to check this number, see 4.3.3 (2) Checking the device assignment.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 89

<4> In the dialog box displayed for the selected COM port, select a transfer speed (in bits per second) from

115200, 76800, 38400, 19200, 9600, 4800, and 2400 bps, and then click the OK button. Leave the other

items as they are set by default.

<5> The terminal window of the USB port side is created.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 90

(2) Setting up HyperTerminal for the RS-232C side

Set up the host port that is connected to the target board via RS-232C.

Remark A host can also be connected to the target board by using both USB and RS-232C.

<1> Start HyperTerminal by selecting Start, All Programs, Accessories, Communications, and then

HyperTerminal.

<2> In the Connection Description dialog box, enter Serial Port in the Name field and then click the OK

button. Any icon can be selected.

<3> In the Connect To dialog box, select the COM port number of the RS-232C port for Connect using, and

then click the OK button.

 The COM port number is displayed for the debugging port in the Device Manager. For details about how

to check this number, see 4.3.3 (2) Checking the device assignment.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 91

<4> In the dialog box displayed for the selected COM port, select a transfer speed (in bits per second), and

then click the OK button.

Caution Be sure to select the same transfer speed for the USB port and serial port.

<5> The terminal window of the serial port side is created.

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 92

(3) Checking communication

Check the communication status by entering alphabetic characters (1-byte characters) into HyperTerminal.

The transfer from the USB port to the serial port is normal if characters entered in the USB Port -

HyperTerminal window are displayed in the Serial Port - HyperTerminal window.

Figure 4-6. Checking the Transfer from the USB Port to the Serial Port

The transfer from the serial port to the USB port is normal if characters entered in the Serial Port -

HyperTerminal window are displayed in the USB Port - HyperTerminal window.

Figure 4-7. Checking the Transfer from the Serial Port to the USB Port

CHAPTER 4 DEVELOPMENT ENVIRONMENT

Application Note U19660EJ1V0AN 93

4.4 Cautions

When transmitting data from the serial port (RS-232C) to the USB port, some data might be lost depending on

conditions such as the communication speed and status of the host OS.

4.4.1 Recommended communication speed

Specify the communication speed in whichever of the following ranges corresponds to the host OS:

• Windows 2000: 38,400 bps or less

• Windows XP or Vista: 115,200 bps or less

If data is communicated at a speed that exceeds the corresponding range, data is more likely to be lost. Data is

also more likely to be lost if it is transferred from the USB port to the serial port and from the serial port to the USB

port at the same time.

4.4.2 Causes of data loss

Two FIFOs (two 64-byte FIFOs) are provided for the endpoints for bulk-in transfer (transmission) performed by the

USB function controller of the μPD78F0730. Each of these FIFOs stores data of one packet to be transmitted as the

USB packet. Therefore, for a transfer such as one that uses serial communication, in which the data sizes are not

fixed, the maximum size of data might not be buffered.

The sample software provides an internal buffer for buffering data. This ring buffer can store serially communicated

data of the maximum buffer size, regardless of the data transfer unit. (The buffer size is defined in the usbf78k.h file

and can be changed.)

(1) Delay in issuing requests

USB communication is performed in response to requests issued by the host. The sample software stores the

data received via serial communication into FIFOs and prepares to transfer the data to the USB host. However,

if the request issuance is delayed due to a processing load on the USB host OS, the next serially

communicated data is delivered before transfer to the USB port ends. If both the FIFOs and internal buffer fill

up in this way, the serially communicated data is read and discarded. Loss of data rarely happens during

transfer from the USB port to the serial port, because data can be transmitted from the μPD78F0730 to the

serial port at any time.

(2) Bidirectional communication

During bidirectional communication, the transmission of USB data might be delayed when USB data is

received, due to the structure of the sample software. The faster the communication speed, the more likely the

buffer of the sample software fills up during this period.

(3) UART reception error

Both when there is a delay in issuing a request and during bidirectional communication, serially received data

is read, discarded, and lost when the buffer fills up. If data is delayed at the serial port without reading and

discarding it, a UART reception error (overrun error) occurs and the data is lost. The sample software reads

and discards data to prevent UART reception errors from occurring. (Depending on the communication speed,

data might not be read and discarded in time and an error might occur.)

Application Note U19660EJ1V0AN 94

CHAPTER 5 USING THE SAMPLE SOFTWARE

This chapter describes information that you should know when using the USB-to-serial conversion sample software

for the μPD78F0730.

5.1 Overview

The sample software can be used in the following two ways:

(1) Customizing the sample software

Rewrite the following sections of the sample software as required:

• The application section in the main.c file

• The values specified for the registers in the usbf78k_sfr.h file

• The descriptor information in the usbf78k_desc.h file

• The device names and provider information in the host driver for the virtual COM port (the INF file)

Remark For the list of files included in the sample software, see 1.1.3 Files included in the sample

software.

(2) Using functions

Call functions from within the application program as required. For details about the provided functions, see

3.7 Function Specifications.

5.2 Customizing the Sample Software

This section describes the sections to rewrite as required when using the sample software.

5.2.1 Application section

The main routine function (main) in the main.c file includes a simple example of processing using the sample

software. The existing initialization processing and interrupt servicing can be used by including the processing to

actually use for the application in this section.

CHAPTER 5 USING THE SAMPLE SOFTWARE

Application Note U19660EJ1V0AN 95

List 5-1. Main Routine

1 /*==
2 Main function
3 void main(void)
4
5 Arguments:
6 N/A
7 Return values:
8 N/A
9 Overview:
10 main routine.
11 ==*/
12 void main(void)
13 {
14 cpu_init();
15
16 #ifdef __IAR_SYSTEMS_ICC__
17 __disable_interrupt();
18 #else
19 DI();
20 #endif
21
22 usbf78k_init(); /* The initial setting of the USB Function
*/
23 uart78k_init(); /* The initial setting of the CDC device */
24
25 #ifdef __IAR_SYSTEMS_ICC__
26 __enable_interrupt();
27 #else
28 EI();
29 #endif
30
31 while (1) {
32 usbf78k_send_txbuf();
33
34 if (usbf78k_rdata_flg) {
35 usbf78k_rdata_flg = 0;
36 /* transfers to UART */
37 usbf78k_usb_to_uart(UF0BO1L);
38 }
39 }
40 }

5.2.2 Setting up the registers

The registers the sample software uses (writes to) and the values specified for them are defined in the

usbf78k_sfr.h file. By rewriting the values in this file according to the actual use for the application, the operation of the

target device can be specified by using the sample software.

(1) usbf78k_sfr.h file

This file includes the definitions of the USB function controller registers, the register bits used in various types

of processing, and the values specified for the bits. (For details, see 3.3.1 USBF initialization processing.)

CHAPTER 5 USING THE SAMPLE SOFTWARE

Application Note U19660EJ1V0AN 96

5.2.3 Descriptor information

Descriptor information is defined in the usbf78k_desc.h file. (For details, see 3.1.5 Descriptor settings.) To

specify the attributes of the target device by using the sample software, rewrite the values in this file according to the

application to actually use.

If the vendor ID and product ID of the device descriptor are rewritten, the vendor ID and product ID must also be

rewritten in the host driver to install when connecting the target device (the INF file). (For details, see 5.2.4 (3)

Changing the vendor and product IDs.)

Any information can be specified for the string descriptor, so rewrite it as required.

5.2.4 Setting up the virtual COM port host driver

The USB port (virtual COM port) driver can be customized as described below.

(1) Changing the COM port number

When the connection of a USB device is recognized by the host, the host automatically assigns the COM port

number of the device, but the number can be changed to any number. To change the COM port number by

using the host, perform the following procedure:

<1> Open the Windows Device Manager and display the items in the Ports (COM & LPT) category.

<2> Select NEC Electronics Virtual COM Port (COMn) (where n is a number assigned by the host) to

display its properties.

CHAPTER 5 USING THE SAMPLE SOFTWARE

Application Note U19660EJ1V0AN 97

<3> Click the Advanced button on the Port Settings tab.

<4> In the Advanced Settings for COMn dialog box (where n is a number assigned by the host), select any

port number from the drop-down list for COM Port Number.

Remarks 1. Make sure not to select a port number that is used for a different device.

 2. Immediately after applying this change, the new port number becomes valid but might not be

reflected in the Device Manager.

CHAPTER 5 USING THE SAMPLE SOFTWARE

Application Note U19660EJ1V0AN 98

(2) Changing properties

Some information, such as the attributes of the device used by the Windows Device Manager, can be changed.

The information that can be changed is shown below.

(a) The device name (devices)

(b) The device name, manufacturer name, and version (device properties)

<1>

<1>

<2>

<1>

<2>

<3>

CHAPTER 5 USING THE SAMPLE SOFTWARE

Application Note U19660EJ1V0AN 99

Because this information is displayed based on the information included in the host driver (the INF file), it can be

changed by rewriting the INF file. The sections in the INF file, which correspond to the numbers in the example on the

previous page, are shown below.

List 5-2. INF File (necelusbvcom.inf) (1/2)

1 ;/*++
2 ;
3 ;Copyright (c) NEC Electronics co. All rights Reserved
4 ;
5 ;Module Name:
6 ;
7 ; NECELUSBVCOM.INF
8 ;
9 ;Abstract:
10 ; NEC Electronics Virtual COM Port Driver for Windows 2000/Xp
11 ;
12 ;--*/
13 [Version]
14 Signature="$Windows NT$"
15 Class=Ports
16 ClassGuid = {4d36e978-e325-11ce-bfc1-08002be10318}
17 Provider=%MfgName%
18 DriverVer=05/10/2007,2.0.2.5 <3>
19
20 [SourceDisksNames]
21 1=%disk1.desc%
22
23 [SourceDisksFiles]
24 NECELUSBDV.sys=1
25 NECELVCOM.sys=1
26
27 [Manufacturer]
28 %MfgName%=SECTION_0
29
30 [SECTION_0]
31 %USB\VID_0409&PID_01CD.DeviceDesc%=NECELUSBDV_V2.Dev, USB\VID_0409&PID_01CD
32
33 [DestinationDirs]
34 NECELUSBDV_COPYFILES = 10,System32\Drivers
35
36 [NECELUSBDV_V2.Dev.NT]
37 CopyFiles=NECELUSBDV_COPYFILES
38 AddReg=NECELUSBDV.AddReg
39
40 [NECELUSBDV.AddReg]
41 HKR,,PortSubClass,1,01
42 HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"
43
44 [NECELUSBDV_COPYFILES]
45 NECELUSBDV.sys
46 NECELVCOM.sys
47
48 [NECELUSBDV_V2.Dev.NT.HW]
49 AddReg=NECELUSBDV_Common.Dev.NT.HW.AddReg, NECELUSBDV_V2.Dev.NT.HW.AddReg
50
51 [NECELUSBDV_Common.Dev.NT.HW.AddReg]
52 HKR,,"UpperFilters",0x00010000,"NECELVCOM_FILTER"
53 HKR,,"EndPointCaps",0x00010001,4
54 HKR,,"DebugLevel",0x00010001,3

CHAPTER 5 USING THE SAMPLE SOFTWARE

Application Note U19660EJ1V0AN 100

List 5-2. INF File (necelusbvcom.inf) (2/2)

55 HKR,,"RawDump",0x00010001,0
56
57 [NECELUSBDV_V2.Dev.NT.HW.AddReg]
58 HKR,,"CtlPollPeriod",0x00010001,0
59 HKR,,"RxPollPeriod",0x00010001,0
60 HKR,,"RxReqSize",0x00010001,512
61 HKR,,"EP1_SegmentSize",0x00010001,512
62
63 [NECELUSBDV_V2.Dev.NT.Services]
64 Addservice = NECELUSBDV,2,NECELUSBDV.AddService
65 Addservice = NECELVCOM_FILTER,,NECELVCOM_FILTER.AddService
66
67 [NECELUSBDV.AddService]
68 DisplayName = %NECELVCOM_USB.SvcDesc%
69 ServiceType = 1
70 StartType = 3
71 ErrorControl = 1
72 ServiceBinary = %12%\NECELUSBDV.sys
73 LoadOrderGroup = Base
74
75 [NECELVCOM_FILTER.AddService]
76 DisplayName = %NECELVCOM_FILTER.SvcDesc%
77 ServiceType = 1
78 StartType = 3
79 ErrorControl = 1
80 ServiceBinary = %12%\NECELVCOM.sys
81 LoadOrderGroup = PNP Filter
82
83 [Strings]
84 MfgName="NEC Electronics Co." <2>
85 disk1.desc="NEC Electronics virtual COM port driver install disk"
86 USB\VID_0409&PID_01CD.DeviceDesc="NEC Electronics Virtual COM Port" <1>
87 NECELVCOM_USB.SvcDesc="NECEL USBLIB"
88 NECELVCOM_FILTER.SvcDesc="Virtual COM Port for NECEL USB"

(3) Changing the vendor and product IDs

If the vendor and product IDs in the device descriptor are changed, the same changes must be specified in the

host driver (the INF file).

Include the vendor and product IDs in the INF file in the following format on line 31 in List 5-2.

Vendor ID: Represented by four digits in hexadecimal format following “VID_”

Product ID: Represented by four digits in hexadecimal format following “PID_”

Application Note U19660EJ1V0AN 101

APPENDIX A TARGET BOARD

This chapter describes the target board.

A.1 Overview

This sample software transmits the data received by the USB function controller directly from the UART or transmits

the data received by the UART directly from the USB function controller.

To perform these operations, a target board that has a USB port and a UART port is required. The UART I/O

signals of the μPD78F0730 must be connected to the host by converting the signal level and using the RS-232C

interface, because the UART I/O signals cannot be directly connected to the host.

Figure A-1. Target Board Connections

USB (virtual COM) RS-232C (UART)

Target board on which the
μPD78F0730 is mounted

Host Host

APPENDIX A TARGET BOARD

Application Note U19660EJ1V0AN 102

A.2 Circuit Example

A circuit configuration example of the USB and RS-232C sections of a target board is shown below.

Figure A-2. Circuit Configuration Example of the USB and RS-232C Sections

D+

1.5 kΩ
±5%

D–

27 Ω ±5%

27 Ω ±5%

USBPUC

USBBP

USBM

μ PD78F0730

P13/TxD6

P14/RxD6

TTL/CMOS
level

Level
converter

RS-232C
level

TxD

RxD

RS-232C
connector

VBUS

GND

VBUS
USB

connector

0.47 μ F

USBREG

Caution The circuit example and circuit constants are only examples. When actually creating a target

board, determine the circuit and circuit constants based on thorough evaluation.

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/

Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G0706

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	PREFACE
	CHAPTER 1 OVERVIEW
	1.1 Overview
	1.1.1 Features of the USB function controller
	1.1.2 Features of the sample software
	1.1.3 Files included in the sample software

	1.2 Overview of the uPD78F0730

	CHAPTER 2 OVERVIEW OF USB
	2.1 Transfer Format
	2.2 Endpoints
	2.3 Device Class
	2.4 Requests
	2.4.1 Types
	2.4.2 Format

	2.5 Descriptor
	2.5.1 Types
	2.5.2 Format

	CHAPTER 3 SAMPLE SOFTWARE SPECIFICATIONS
	3.1 Overview
	3.1.1 Features
	3.1.2 System setup
	3.1.3 Processing flow
	3.1.4 Supported requests
	3.1.5 Descriptor settings

	3.2 CPU Initialization Processing
	3.3 USB Control Processing
	3.3.1 USBF initialization processing
	3.3.2 USBF interrupt servicing (INTUSB0B)
	3.3.3 USBF reception interrupt servicing (INTUSB1B)
	3.3.4 USB transmission data storage processing
	3.3.5 USB data transmission

	3.4 UART Control Processing
	3.4.1 UART initialization processing
	3.4.2 UART operation mode specification processing
	3.4.3 UART reception interrupt servicing
	3.4.4 UART reception error interrupt servicing
	3.4.5 UART data transmission
	3.4.6 UART operation mode

	3.5 Bridge Processing Between the UART and USB
	3.5.1 Storing the data received by the UART into the USB transmission buffer
	3.5.2 Transmitting the data in the USB reception FIFO from the UART
	3.5.3 Main routine

	3.6 Vendor Request Format
	3.6.1 LINE_CONTROL
	3.6.2 SET_DTR_RTS
	3.6.3 SET_XON_XOFF_CHR
	3.6.4 OPEN_CLOSE
	3.6.5 SET_ERR_CHR

	3.7 Function Specifications
	3.7.1 Functions
	3.7.2 Correlation of the functions
	3.7.3 Function features

	3.8 Data Structures

	CHAPTER 4 DEVELOPMENT ENVIRONMENT
	4.1 Used Products
	4.1.1 System components
	4.1.2 Program development
	4.1.3 Debugging

	4.2 Setting Up the Environment
	4.2.1 Preparing the environment
	4.2.2 Preparing the host environment

	4.3 On-Chip Debugging
	4.3.1 Generating a load module
	4.3.2 Loading and executing the load module
	4.3.3 Connecting the USB port (virtual COM port)
	4.3.4 Connecting the RS-232C port
	4.3.5 Checking the operation

	4.4 Cautions
	4.4.1 Recommended communication speed
	4.4.2 Causes of data loss

	CHAPTER 5 USING THE SAMPLE SOFTWARE
	5.1 Overview
	5.2 Customizing the Sample Software
	5.2.1 Application section
	5.2.2 Setting up the registers
	5.2.3 Descriptor information
	5.2.4 Setting up the virtual COM port host driver

	APPENDIX A TARGET BOARD
	A.1 Overview
	A.2 Circuit Example

