NEC
Application Note

78F0714

8-Bit Single-Chip Microcontroller

Permanent Magnet Synchronous Motor Control

LPD78F0714

Document No. U19166EE1VOANOO
Date published February 2008
© NEC Electronics 2008

Printed in Germany

Legal Notes

U The information in this document is current as of November,
2007. The information is subject to change without notice. For
actual design-in, refer to the latest publications of NEC
Electronics data sheets or data books, etc., for the most up-to-
date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please
check with an NEC Electronics sales representative for
availability and additional information.

. No part of this document may be copied or reproduced in any form
or by any means without the prior written consent of NEC
Electronics. NEC Electronics assumes no responsibility for any
errors that may appear in this document.

. NEC Electronics does not assume any liability for infringement of
patents, copyrights or other intellectual property rights of third
parties by or arising from the use of NEC Electronics products listed
in this document or any other liability arising from the use of such
products. No license, express, implied or otherwise, is granted under
any patents, copyrights or other intellectual property rights of NEC
Electronics or others.

. Descriptions of circuits, software and other related information in this
document are provided for illustrative purposes in semiconductor
product operation and application examples. The incorporation of
these circuits, software and information in the design of a customer's
equipment shall be done under the full responsibility of the customer.
NEC Electronics assumes no responsibility for any losses incurred
by customers or third parties arising from the use of these circuits,
software and information.

. While NEC Electronics endeavors to enhance the quality, reliability
and safety of NEC Electronics products, customers agree and
acknowledge that the possibility of defects thereof cannot be
eliminated entirely. To minimize risks of damage to property or injury
(including death) to persons arising from defects in NEC Electronics
products, customers must incorporate sufficient safety measures in
their design, such as redundancy, fire-containment and anti-failure
features.

. NEC Electronics products are classified into the following three
quality grades: "Standard", "Special" and "Specific".

e The "Specific" quality grade applies only to NEC Electronics
products developed based on a customer-designated "quality
assurance program" for a specific application. The recommended
applications of an NEC Electronics product depend on its quality
grade, as indicated below. Customers must check the quality grade
of each NEC Electronics product before using it in a particular
application.

"Standard": Computers, office equipment, communications
equipment, test and measurement equipment, audio and visual
equipment, home electronic appliances, machine tools, personal
electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships,
etc.), traffic control systems, anti-disaster systems, anti-crime

Application Note U19166EE1VOANOO

systems, safety equipment and medical equipment (not specifically
designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters,
nuclear reactor control systems, life support systems and medical
equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise
expressly specified in NEC Electronics data sheets or data books, etc. If
customers wish to use NEC Electronics products in applications not intended by
NEC Electronics, they must contact an NEC Electronics sales representative in
advance to determine NEC Electronics' willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics
Corporation and also includes its majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured
by or for NEC Electronics (as defined above).

Application Note U19166EE1VOANOO 3

[America]

NEC Electronics America, Inc.

2880 Scott Blvd.

Santa Clara, CA 95050-2554,

U.S.A.
Tel: 408 5886000
http://www.am.necel.com/

Regional Information

Some information contained in this document may vary from country to country. Before
using any NEC product in your application, please contact the NEC office in your country

to obtain a list of authorized representatives anddistributors. They will verify:

Device availability
Ordering information
Product release schedule

Availability of related technical literature
Development environment specifications (for example, specifications for

third-party tools and components, host computers, power plugs, AC

supply voltages, and so forth)
. Network requirements

In addition, trademarks, registered trademarks, export restrictions, and otherlegal

issues may also vary from country to country.

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668, Japan
Tel: 044 4355111
http://www.necel.com/

[Europe]

Arcadiastrasse 10

40472 Disseldorf, Germany
Tel: 0211 65030

http://www.eu.necel.com/

United Kingdom Branch

Cygnus House, Sunrise Parkway

Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908 691133

Succursale Francgaise
9, rue Paul Dautier, B.P. 52

78142 Velizy-Villacoublay Cédex

France
Tel: 01 30675800

Tyskland Filial

Taby Centrum
Entrance S (7th floor)
18322 Taby, Sweden
Tel: 08 6387200

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, ltaly
Tel: 02 667541

Branch The Netherlands
Steijgerweg 6

5616 HS Eindhoven,

The Netherlands

Tel: 040 2654010

Application Note U19166EE1VOANOO

NEC Electronics (Europe) GmbH

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27
ZhiChunlLu Haidian District,
Beijing 100083, P.R.China

Tel: 010 82351155
http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.
Room 2511-2512, Bank of China
Tower,

200 Yincheng Road Central,
Pudong New Area,

Shanghai 200120, P.R. China
Tel: 021 58885400
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
12/F., Cityplaza 4,

12 Taikoo Wan Road, Hong Kong
Tel: 2886 9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R.O.C.

Tel: 02 27192377

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,

#12-08 Novena Square,

Singapore 307684

Tel: 6253 8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku, Seoul,
135-080, Korea Tel: 02-558-3737
http://www.kr.necel.com/

Table of Contents

Chapter 1 Introduction 6
Chapter2 Working System ... 7
2.1 System Feature e e 7
2.2 Development TOOIs e e 7

2.2.1 In-Circuit Emulator e 7

2.2.2 Integrated Development Environment 8
23 SoUrCE GO o e e 8

2.31 DoOWNIoads s 8

2.3.2 File StruCtUre 8
Chapter 3 PMSM Motor Fundamentals 10
3.1 Target Motor e 10
3.2 Sine PWM Digital Control 12
3.3 Synchronization with Hall Sensors i 14
3.4 Close Loop Control i e e e e e e 16
3.5 SystemM OVerVIEW e e e 18
Chapter4 GettingStarted ... 20
Chapter 5 Software Configuration....................................... 21
5.1 Control Registers it e e e e 21
5.2 Program Area Consumption i e e 22
Chapter6 SampleResult ... 23
Chapter7 SourceCode 25
741 Marco Definitions e 25
7.2 Global Variable Definitions e 25
7.3 Main Entry Program e e 26
7.4 System Initialization e 28
7.5 Main FUNCHIONS e e 31
7.6 Hall Sensor Signals Control i i i 32
7.7 Pl Controllero e e e 33

Application Note U19166EE1VOANOO 5

Chapter 1

Prerequisite

Note

Disclaimer

Introduction

This application note presents a 3-phase permanent magnet synchronous motor
control software developed for NEC 8-bit microcontroller uPD78F0714 with
sinusoidal waveform. The 78F0714 microcontroller facilitates a dedicated
peripheral for 3-phase motor control, enabling easier motor drive with AC
induction motors and/or permanent magnet DC/AC motors (BLDC/PMAC).

The presented software library is written in standard C language and provides a
set of sample functions for sinusoidal waveform generation, the synchronization
mechanism and closed loop control of PMSM drive. The source code is
compatible with IAR (http://www.iar.com/) Embedded Workbench C/C++
compiler and debugger tools.

This software library can be taken as a demonstration tool together with NEC
Motor Control Starter Kit (MC-LVKIT) and a Maxon EC motor. By using the sine
wave generation and speed regulation algorithms provided in the library, user can
concentrate on the application development with a few parameter adaption.

A PMSM usually consists of a magnetic rotor and wound stator. The magnetic
rotor rotates as the magnetic field produced by the wound stator changes. Such
construction requires no brushes in between, producing greater efficiency and
power density. It provides high torque-to-inertia ratios and also reduces the
maintenance cost. A PMSM generates magnetic flux using permanent magnets
on the rotor, which generates torque most effectively when it is perpendicular to
flux generated by the stators. To maintain near-perpendicularity between stator
flux and rotor flux, a control method with position-speed feedback loop are
popularly used for controlling a PMSM.

The prerequisite for using this library is the basic knowledge of C programming,
AC motor drives and power inverter hardware. In-depth know-how of motor
control functions is only required for customizing existing modules and when
adding new ones for complete application development.

This control software only functions with NEC Library for Motor Control in the
preliminary version.

The demo control software described in this application note is used for
demostration purpose only. Please do not use it for any purpose beside
demostration and evaluation purpose.

Application Note U19166EE1VOANOO

Chapter 2 Working System

2.1 System Feature

e The motor control algorithm employs Pl closed-loop control. The
power switches are controlled by means of sinusoidal pulse width
modulation (PWM).

e The rotor position feedback hardware elements are Hall sensors.

e The motor is capable of rotating in both direction and has a speed
range from 500 rpm to 9000 rpm.

. Rotation direction, control profile, speed and current overshoot can
be controlled with help of NEC Motor Control Visualizing GUI.

2.2 Development Tools

2.2.1 In-Circuit Emulator

The user software can be downloaded to the target device with on-chip
debugging (OCD) emulator NEC 78KOMINI, a separately sold device, which
supports pseudo real-time RAM monitoring and C-Spy debugging.

Figure 2-1 NEC MINICUBE Connection

For more information about this OCD emulator, please refer to document
U17029EJ3VOUMOO.

Application Note U19166EE1VOANOO

Chapter 2

Working System

222

Note

2.3

2.3.1

2.3.2

Kernel Files

Integrated Development Environment

This library is compiled with C/C++ compilers and debuggers for NEC Electronics
78K0 of IAR Embedded Workbench 4.40 or higher version.

You can download the 4K limited free version of IAR Embedded Workbench to
compile the software library.

Source Code

Downloads

The source code of this control software can be downloaded on http://
www.eu.necel.com/docuweb/

File Structure

io78f0714.h

i

Hall.h] { Hall.c }

{ regulation.h] { regulation.c J

[
(oo
[
[

s | ey

definitions.h NecLib.h J [NecLib.c J
global .h init.h init.c
pmsm_main.c mainfunctions.h mainfunctions.c

i078f0714.h

. Microcontroller specific files, registers addresses
Ink78f0714.xcl

. Microcontroller specific files, segment definition
definitions.h

e Macro definitions
global.h

U Global variables definitions

Application Note U19166EE1VOANOO

Working System Chapter 2

Main Programs pmsm_main.c
. Entry program
init.h, init.c
. Hardware initializing functions
mainfunctions.h, mainfunctions.c

Sine waveform output function

ADC measured data storage function
Current overshoot precaution function
Software variables reset function

Control Programs Hall.h, Hall.c
. Interrupt sub-routines for hall sensor signal change
regulation.h, regulation.c
o Pl controller function
NecLib.h, NecLib.c
. NEC Library for Motor Control

Application Note U19166EE1VOANOO

10

Chapter 3

3.1

PMSM

Figure 3-1

PMSM and BLDC

PMSM Motor Fundamentals

This chapter will explain the basic process of developing a control software for
PMSM.

Target Motor

A PMSM rotates at a fixed speed in synchronization with the frequency of the
power source independent of the load, provided an adequate field current is
applied on the motor windings.

A 3-phase PMSM drive commutates the phase windings sinusoidally such that
the stator magnetic field is at 90 degrees to the PM rotor magnetic field, producing
a maximum torque on the rotor.

PM Motor Cross Section and Electromagnetism

By design, the basic architecture of a BLDC motor and a PMAC motor have no
intrinsic differences. A BLDC motor can normally be driven by alternating current
and PMAC motor by direct current. However, the windings are specially designed
to retain a trapezoid form of current for BLDC motor and a sinusoidal form for
PMAC motor.

BLDC motor PMAC motor
Phase Voltage and Phase Current |rectangular sinusoidal
Current Peak Value high low
Torque vyith commutation smooth
ripples
Noise high low
Core Power Loss high low
Switching Power Loss low in inverter high in inverter
Implementation simple relatively complicated

In a BLDC motor, only two windings carry current at any given time. This reduces
the winding utility by 33%. On the other hand, in a three-phase PMAC motor,
three-phase sinusoidal voltages are applied on all three windings and all three
windings carry current at all times. This will naturally increase switching loss in
inverter.

Application Note U19166EE1VOANOO

PMSM Motor Fundamentals Chapter 3

PMSM Model Stator voltage differential equations:

uﬂzﬂwiﬂ+Tﬂ

HB :RwiB-l_TB

HC = Rwic +TC

Ra, Rg, Rc are the resisitence in the stator
Stator and rotor flux linkages:

e T L S s

Yo =lpdatipistiprict¥a rotor

To T had gt hepi gt hania T e

Iyﬂ,mmr - Tﬂux -cosd

27
Tﬁ,m.ﬁar = Tﬂux 'COS(E_F?:I

4
gc,m.ﬁw 3 wﬂux 'EOS(E_'_?)

Laa, LB, Lcc are the stator inductances.

LAB, LAc, LBA! LBC7 LCA, LCB are the mutual inductances.

Application Note U19166EE1VOANOO 11

Chapter 3

PMSM Motor Fundamentals

12

3.2 Sine PWM Digital Control

Figure 3-5

NEC 78F0714 8-bit micro-controller contains a 10-bit inverter control timer. This
timer consists of an 8-bit dead-time generation timer, and allows non-overlapping
active-level output, as in the figure depicted below.

TWouUDC

0

TWOBFCMO a2 a3

TWOCMO al N a2 N

TYWOBFCM1 b2 b3

TWOCM1 b1 ¥ b2 N

TWOBFCM2 c2 c3

TWOCM2 ¢l X c2 N

Deadtime _: __: _:__: N N

TWOTOO i |

TWOTO1 | |

TWOTO2 1 \
TWoTD3 ~ | == r
TWOTO4]]
™wotos || L

Inverter Timer Outputs

A sinusoidal waveform can be represented by a number of relative values
compared to the triangular carrier signal. The frequency of the sinusoidal
waveform is dependent of the number of relative values within a period. The ratio
of sine wave peak value to triangular wave peak value determines the output
waveform amplitude.

To gain a precise control of output waveform amplitude, the maximum of relative
value (resolution) should be as large as possible. But higher resolution will lead to
lower PWM frequency. Frequencies of lower than 20KHz can produce noises
within human audible threshold. On the other hand, the faster the PWM frequency
is, the less time the MCU will have to execute commands. To minimize acoustic
disturbance while having more time for program routines, 20KHz is usually
selected as PWM cycle.

The NEC micro-controller 78F0714 works with a 20MHz oscillator. The compare
counter maximum (half of the PWM cycle) is thus 20MHz / 20 KHz / 2 = 500.

Application Note U19166EE1VOANOO

PMSM Motor Fundamentals Chapter 3

Figure 3-6

Figure 3-7

The base frequency of a sine wave is dependent on the number of sampling

points. In other words, it depends on the size of the sine look-up table. Too few
sampling points will lead to a so-called staircase effect. The staircase effect will
cause excessive motor current distortion, which causes higher heat dissipation.
Superfluous sampling points consume precious memory in the micro-controller.

A good rule is to divide the PWM carrier frequency by the maximum desired sine
wave frequency. The nominal speed of the motor in case is around 10000 RPM,
corresponding to a sine wave frequency of 166.67Hz. The number of look-up table
sampling points is 120.

The generated PWMs are then transmitted to transistor switches of an inverter in
the control hardware. DC power will thus be converted to AC power at the required
frequency and amplitude.

" Virtual

MNeutral
Foint

- — /7

|

| |

| TO '_I-b— | | '_I-b—

L JOLEl— 05|
]]

GND

Half-bridge Circuits and Motor Connection

The inverter is composed of three equivalent half-bridge circuits. Only one side
of the half-bridge circuit, either the high side or the low side, should be switched
on at any given time. Otherwise the control hardware will be short-circuited. Dead-
time is then inserted to avoid such situation.

At the outputs of the half-bridge circuits, 120-degree-shifted three-phase
sinewave waveforms can be detected with a simple RC-circuit.

——FPhase A
—Fhase B
—~Fhase C

Line Voltage A-B

FPhase Valtage A

Phase Voltage B

Phase Voltage C

Sinusoidal Control Waveform and corresponding PWM Signals
The amplitude of the line-voltage is always less than that of the output waveform,

around 88.6% of the peak value. This effect is an intrinsic limitation of the sine
PWM control method.

Application Note U19166EE1VOANOO 13

Chapter 3 PMSM Motor Fundamentals

3.3 Synchronization with Hall Sensors

Determining Rotor Hall sensors are used to determine rotor position during operation. Using the built-
Position in Hall sensors in phase winding can simplify control logic and does not require
extra circuit to process the signals. Electricity carried through the phase winding
conductor will produce a magnetic field that varies with current, and such a Hall
sensor can be used to measure the current without interrupting the circuit.

Figure 3-8 Rotor Position and Hall Sensors Outputs

14 Application Note U19166EE1VOANOO

PMSM Motor Fundamentals

Chapter 3

By connecting Hall sensor signals to microcontroller interrupt input pins, the
interrupt request will be generated when the signals change. The corresponding
subroutine can thus estimate the rotor position according to turing direction and

update the output waveform angle accordingly.

Table 3-1 Section allocation by Hall sensor signals combination

Hall C Hall B Hall A Section
0 0 0 Invalid

0 0 1 1

0 1 0 3

0 1 1 2

1 0 0 5

1 0 1 6

1 1 0 4

1 1 1 Invalid

The sections are numbered according to the rotor position illustrated in Figure

3-5.

The relationship between Hall sensor signals and the desired control signal
waveform can be depicted in the figure below by resorting the section orders.

Hall A

HallB

HallC

0 60

120 180
1 I

i v

240 300 O

Phase Voltage A

Phase Voitage B

Phase Voltage C

60

vi

Figure 3-9 Motor Currents and Hall Sensor Signals rotating clockwise

Application Note U19166EE1VOANOO

15

Chapter 3

PMSM Motor Fundamentals

3.4

Introduction

Speed Measurement

Figure 3-10

16

Close Loop Control

Pl controller is a generic feedback controller commonly used to implement
closed-loop control. A Pl controller responds to an error created by subtracting
desired value from output quantity. Then it adjusts the controlled quantity to
achieve the desired system response. The controlled value can be any
measurable system quantity such as speed, torque or flux. The parameters of a
Pl controller can be adjusted empirically by tuning one or more gain values and
observing the change in system response. A digital Pl controller is executed at a
periodic sampling interval. It is assumed that the controller is executed frequently
enough so that the system is under proper control.

The proportional (P) contribution of the controller results from multiplying the error
by a P gain value. A larger error results in larger proportional contribution. This P
term contribution tends to reduce the overall error as time elapses. However, the
P term has less effect as the error approaches zero. Most systems with P term
only controller have a steady error and do not converge. Large P gain value
imposes a tight control on the output value but an excessively large proportional
gain will lead to process instability.

The integral (I) contribution of the controller is used to eliminate small steady error
but always brings along larger overshoot. Errors of the system are multiplied by |
gain value and accumulated over time into an error buffer. This error buffer forms
the | term output of the PI controller.

A closed-loop Pl speed controller requires actual motor speed for controller input
to eliminate the speed difference. The actual motor speed is in this software is
realized by computing the time elapsed between two consecutive Hall signal
changes.

Hall sensor C signal is connected to interrupt pin INTP5. Interrupt request will thus
be generated each time the Hall sensor C signal changes. 16-bit Timer Counter
01 is set to run at 78KHz and is read during this interrupt service. The timer counts
multiplying the Timer Counter 01 interval is the time elapsed since the last Hall
sensor signal change.

Conver Time o Mo
M

o 180° 0° 180° 0° 180° 0°
TherPerkd .47

e UMM LT

pe— n1 —p— n2 Lo na 3+ n4 Ly n5 Ly

Rotor / / /
Fosition o=

o0° 180° 0° 180° 0° 180° 0°

Hall C

Speed Measurement with Hall Sensor C Signal

Application Note U19166EE1VOANOO

PMSM Motor Fundamentals

Chapter 3

Pl Controller

Figure 3-11

Table 3-2

The digital PI controller is called at fixed time interval by checking the overflow

flag of a dedicated timer counter.

sall €

rIISI

J U= u-sin(®) —p@
/~

e e

Speed Measurement |«

sofi

Pl Speed Controller

Jat

K, |«

Pl Speed Controller Implementation

The speed difference is computed by subtracting actual motor speed from
setpoint. The difference will be multiplied by P-gain and I-gain factor. The sum of
the two gains will be normalized to duty cycle of the inverter timer to update the
output waveform amplitude.

The parameters of the Pl controller can be determined by using the Ziegler-

Nichols closed-loop tuning method.

Ziegler-Nichols closed-loop parameter tuning method

Y

Controller Type P-Gain Reset Time
P Controller 0,5 x K¢ -
Pl Controller 0,45 x K¢ Ko/ Te

K. is the critical value of P-gain factor, with which the P-only Controller results in
an ultimate periodic oscillation of output response.

T, is the period of the oscillation.

Application Note U19166EE1VOANOO

17

Chapter 3

PMSM Motor Fundamentals

18

3.5 System Overview

Figure 3-12

The sensorred control system presented in this application note has the following
implementation:

Yoe
[l] TOO ||-b— TO? ||-b— TO4 ||-b—
= A Load
Rectifier B ! EMS
C [
!
= H— — — mmw
g 7 TO1 ||+— TO3 ||+— TS ||+—
3 F ’ ; 133
5 | I |
£
O AAAAAA
[I
o Bpds
L 7 =)
Micro-Caontroller ==
Inverter Timer
Interrupt
Service Handle T
Sine Pyh Rotor Position
Generation Estimation
Po commans Pl Speed Speed
peen e pair Controller Calculation

Implementation of the control software

The setpoint of motor speed is specified with user input made on the NEC
Visualizing GUI for Motor Control.

The sine angle of the output waveform is updated on Hall sensor signal change
and the measured frequency fotor Will impose on the motor to keep it in
synchronization.

When the current in the motor overshoots the threshold value of the rectifier, an
interrupt request will be made to the microcontroller. The demo software will shut
off the MOSFET with a switch signal during the interrupt service.

Application Note U19166EE1VOANOO

PMSM Motor Fundamentals Chapter 3

The control system has the following states

Command Unconditional Change
command
Running State S .
2 Initialization
Transition State = Conditional Change
o Interrupt ! Exception
Halt State
MOSFET
FZ Commands shut off
Over-current /,
- StartfStop Protection .~
- Speed adjustment Y -
P
- PID parameter change "
= i RE232 INT -
L eftiRigth turn e BR23R T o] B
Inverter Timer INT Update
,,,,,,,,,,,,, £
) Woltags
Cperation Mode R Output
Start ;
System > - Speed Calculation __ADCINT i
Halt . - FID Control b Ml
Stop [————— Variahble
o \\
-
R » o~
Speed Contral INT -* - “. M. Hall Sensor INT
P Sy
Fd - - ~
P ., B
A N, W
~ s s LY
I - g
-~ - o
Pl Caontrol Fol L
Direction Sine Angle
Change

Figure 3-13 System States of the Control Software

When Stop command is sent to the control software, the motor will be stopped
even when the setpoint is not zero.

AD converter can be used to measure system variables such as motor shunt
current and phase currents. Such features are not implemented in the demo
software presented in this application note.

Application Note U19166EE1VOANOO 19

Chapter 4 Getting Started

To debug the user program, the NEC 78KOMINI in-circuit emulator (ICE) should
be connected with the micro board through the 2JP7 on-chip debugging
connector as shown in Figure .

"

-
e @i

SReS0%RY

Figure 4-1 MINICUBE Connection with NEC StarterKit for Motor Control

To debug software using desired working frequency, an external oscilltor must be
mounted on the ICE oscillator slot.

| ..lr#‘rr '1"""‘ ah.!hi
_ * g

Figure 4-2 External Oscillator Installation

20 Application Note U19166EE1VOANOO

Chapter 5

5.1

definitions.h

global.h

Software Configuration

This chapter will describe the possibilities of enabling / disabling some features
implemented in the demo control software.

Control Registers

Some features implemented in this demo control software can be enabled or
disabled by manipulating the macro definitions in header file definitions.h in the
sample source code.

The major control variables are defined in the header file global.h. Possible values
of the control variables are described below.

ENABLE_UART
This macro definition enables UART communication.

To reduce flash memory consumption, user can disable UART communication,
by commenting out the definition.

CLOSE_LOOP
This macro definition indicates the compiler include the close loop control code.

To exclude closed-loop control function, user can comment out the definition.

SENSORRED

This macro definition indicates the compiler include the close loop control code.
To exclude this code, comment out the definition.

norm_constant

This constant is used to calculate the motor actual speed from timer counts.

actual_count_min, actual_count_max

These two constants are used to limit the timer count value. Value exceeding the
limit will be ignored.

onoff

This flag stores information of system on / off state.

0 = system stopped, 1 = system set to start, 2 system running

disconnx

This flag indicates if the motor system is disconnected from visualizing module.
0 = normal, 1 = system disconnected

OverCurrent

This flag indicates if motor current overshoot occurred.

0 = normal, 1 = motor current oveshot

Application Note U19166EE1VOANOO 21

Chapter 5 Software Configuration

Motor_Dir

This flag indicates the motor rotation direction.

0 = anti-clockwise, 1 = clockwise

Loop_Sel

This flag indicates the motor drive control method.

0 = open-loop, 1 =closed-loop

SecureSel

This flag indicates if hardware over-current protection is used.
0 = disabled, 1 = enabled

SensorSel

This flag indicates the motor drive synchronization method.
0 = sensored control, 1 = sensorless control

BemfA_sel, BemfB_sel, BemfC_sel

These three flags determine which channel of the Back-EMF should be measured
by A/D-Converter.

0 = not selected, 1 = selected.
ovf
This flag indicates the number of times the timer overflows.

After the third time of timer overflow, the motor speed will be set to 0, and system
will be stopped.

5.2 Program Area Consumption

By changing the macro definitions in the header file definitions.h, program size
of the demo software varies as shown in the table below.

Table 5-1 Program size with different settings

ROM Area RAM Area
Close Loop with UART 3,820 bytes 446 bytes
Open Loop with UART 2,870 bytes 430 bytes
Close Loop without UART 2,787 bytes 248 bytes
Open Loop without UART 1,834 bytes 232 bytes

29 Application Note U19166EE1VOANOO

Chapter 6 Sample Result

This chapter will show some sample results using the control software described
in this application note.

-4 % Agilent Technologies

Figure 6-1 Phase Voltage, Current and Hall Sensor Signal at 1272 rpm (21.19Hz)

Figure 6-2 Phase Voltage, Current and Hall Sensor Signal at 7428 rpm (123.8Hz)

Channel 1 depicts the motor phase current.
Channel 2 depicts the phase control signal waveform.

Channel 4 is the Hall sensor signal of the correspondent phase.

Application Note U19166EE1VOANOO 23

Chapter 6 Sample Result

The figures below display the system dynamics of the in-use PI speed controller
under different circumstances.

3500

3000

2500

2000

24

2
1500 J /
1000 —HKp=30, Ki=0 |
}i]V ——Kp=70, Ki=D
55 ——Kp=10, 10|
ﬂ’ —e—Kp=150, Ki=0
0 ;
0 50 100 150 200 250 300 360 400 250 500

Figure 6-3 P-Gain-only Dynamic Performance with Kp varying from 0.03 to 0.146

3500

NE/AY

2000 { sl e
g M
1500 /f /‘ "
1000 ——Kp=70, Ki=ll —
H —m—Kp=70, Ki=9
500 ——kp=70, Ki=15 -
i 100 200 300 400 00 B00 700 /00

ms

Figure 6-4 Pl Controller Dynamic Performance with Ki varying from 0 to 0,015
Figure 6-3 displays the system response with proportional error control.

Figure 6-4 displays the system response under a Pl speed controller with different
settings of I-gain.

Application Note U19166EE1VOANOO

Chapter 7 Sour

ce Code

This chapter will list the source code of the demo control software described in
this application note.

7.1 Marco
#ifndef
#define
#include
#define
#define

#define

#define
#define

/* Regul

#define norm_constant
#define actual_count_min 213
#define actual_count_max

#endif

7.2 Global

Definitions

_ DEFINITIONS H
_ DEFINITIONS H

<io78£0714.h>
SENSORRED
ENABLE_UART
CLOSE_LOOP

CLEAR 0
SET 1

ator constants: */
2343750

15625

Variable Definitions

#ifndef _ GLOBAL H
#define _ GLOBAL H

#include
#include
#include
#include

unsigned

<1078£0714 .h>
<migration.h>
<intrinsics.h>
"definitions.h"

int MaxSpeed = 9540;

/* exchange variables for communication */
/* must be defined as unsigned integer */

unsigned
unsigned
unsigned

// state
unsigned
unsigned
unsigned
unsigned
unsigned

int motor rpm, reg Y, DeltaX;
int Kp, Ki;

int PWM_CYCLE, DUTY CYCLE, setpoint, deadtime;

variable

int onoff; // 0

int disconnx;
int OverCurrent, SecureSel;
int Motor Dir;
int Loop Sel;

/* control variables */

unsigned
unsigned
unsigned
unsigned
unsigned

int DCLevel = 249;
int phase A;

int steps;

char newspeed;
char ovf;

// 0:
// 0:

anti-clockwise, 1:
closed loop 1: open loop

// constant to norm the timer count
// minimum valid count value
// maximum valid count value

(11003 rpm)
(150 rpm)

// measured values
// controller parameters
// control variables

off, 1 = on, 2 = running

clockwise

// angle variable
// frequency variable

/* regulation variables */

Application Note U19166EE1VOANOO

25

Chapter 7 Source Code

unsigned int actual count = 0; // actual timer count value for speed
// (16 Bit = [0 ... 65535])
long Integrator;

/* motor position control variables */
unsigned char Motor_ Pos;
unsigned int PHASE A LEFTI[] {O, 0, 8130, 0, 49090, 0, 59330,
0, 28610, 0, 18370, O, 38850};
0
0

unsigned int PHASE A RIGHTI[] = {O, 0, 49090, 0, 8130, , 59330,
0, 28610, 0, 38850, . 18370};

#endif

7.3 Main Entry Program

/* pmsm_main.c */
#ipragma language = extended

#include "global.h"
#include "definitions.h"

#include "init.h"
#include "regulation.h"
#include "mainfunctions.h"

#ifdef ENABLE UART
#include "NecLib.h"
#endif

#ipragma constseg = OPTBYTE
__root const unsigned char option = 0x00;
#fpragma constseg = default

#pragma constseg = SECUID
__root const unsigned char secuid[] =

{0x00, O0xFF, OxFF,0xFF, 0xFF, 0XFF, 0xFF, 0xFF, 0xFF, 0OxFF, OxFF};
#ipragma constseg = default

#ipragma language = extended
void main (void)

{

DI(); // Disable all interrupts

/* uPD init */
init_Interrupt () ;
system_init () ;
var_init () ;

#ifdef ENABLE_UART
extern unsigned int* CommVarAddr [variable nol] ;

ClearAddresses () ;

CommVarAddr [RPM] = &motor_rpm;
CommVarAddr [REGY] = ® Y;
CommVarAddr [XD] = &DeltaX;
CommVarAddr [KP] = &Kp;
CommVarAddr [KI] = &Ki;
CommVarAddr [PWMCYCLE] = &PWM_CYCLE;
CommVarAddr [DUTYCYCLE] = &DUTY_CYCLE;
CommVarAddr [SETPOINT] = &setpoint;

2 Application Note U19166EE1VOANOO

Source Code

Chapter 7
CommVarAddr [DEADTIME] = &deadtime;
CommVarAddr [ONOFF] = &onoff;
CommVarAddr [DISCONNX] = &disconnx;
CommVarAddr [OC] = &OverCurrent;
CommVarAddr [MOTORDIR] = &Motor Dir;
CommVarAddr [LOOP] = &Loop_ Sel;
CommVarAddr [SSD] = &SecureSel;
CommVarAddr [MAXSPEED] = &MaxSpeed;
SaveDefaultValue () ;
CommStart () ;
start_51; // transmission interval timer
#endif
#ifdef CLOSE_LOOP
start_50; // regulation interval timer
#endif
_EI(); // Enable all interrupts
while (1)
{
if (onoff)
{
if (onoff == 1) // system starts
{
Motor Pos = PO & OxO0E;
phase A = PHASE A LEFT [Motor Pos];
steps = 62; // reset frequency variable
system_start () ;
onoff = 2;
}
#ifdef CLOSE_LOOP
if (onoff == 2)
{
if ((!Loop_Sel) && TMIF50) PIRegulation() ;
}
#endif
1
else
{
system_stop () ; // setpoint changed, and =0, system stops
actual _count = 0;
motor rpm = 0;
Integrator = 0;
newspeed = 0;

}

if (newspeed > 1)
{
motor rpm =
steps
newspeed
ovE =

}

else if (newspeed
{

ovi++;

OVF00 = 0;

if (ovE > 2)

{

ovf = 0;

motor _rpm = 0;
)

if (setpoint

{
}

disconnx = 1;

}
}

#ifdef ENABLE UART

Application Note U19166EE1VOANOO

norm_constant / actual_count;
motor rpm / 10;

1;

0;

// normalize speed
// synchronization

== 1 && OVF00 == 1)

// after 3 * 78.125KHz * 65536 = 2,5s

// device error, shutdown system

27

Chapter 7

Source Code

28

if (disconnx)

{
}

if (TMIF51)

var_init () ;

TMIF51 = 0O;
CommUpdate () ;
1
#endif
}
}

7.4 System Initialization

/* init.c */
#include "init.h"
#include "definitions.h"

extern unsigned int deadtime;
extern unsigned int PWM_CYCLE;

/***/

[xxxx H/W pPD INIT *kkx [
/***/
void system init (void)
{

init PORT() ;

init_0sc() ;

init TWO () ;

init TMOO() ;

init AD() ;

init_50();

init_51();

init UARTO0O () ;

}

/**************************/

VAR LR System start *xkk [
/**************************/

void system start (void)
{
start TWO;
start_TMO0O;
//start_AD;
INTTWOUD on;

}

/*************************/

/**** System stop ****/
/*************************/

void system stop (void)
{

INTTWOUD_Off;

stop TWO;

stop_ TMOO;

stop AD;

}

/*************************/

[xEE* System stop *kkk [
/*************************/

void init_PORT (void)

{

// 76543210
EGP = OxOE; // 00001110
EGN = O0xOF; // 00001111
// | | | |_TOFF7 Secure shut off

Application Note U19166EE1VOANOO

Source Code Chapter 7

// | 1] Hall Ext. IRQ both edges

/*
Low voltage power module TRIP signal shuts off power to MOSFETs
It is active high and driven by P5.4

*/
PM5 = OxEF; /* P53 input for CRO1l */
P54 = CLEAR; /* Clear Trip Signal */

void init_0OSC(void)

{

// IMS - Internal Memory Size

// 7 65 43210
// | | | o] _|_|_|__ ROM3 ROM2 ROML1 ROMO
/7] 1 0 0 0 32KB Internal ROM
// |_|_|___ RAM2 RAM1 RAMO
// 1 1 0 1024 bytes interal high-speed RAM
IMS = 0xCS8; /* Memory size switching */
PCC = 0x00; /* Sets division ratio */
// MCM bit 7 6 5 4 3 2 10
// 000000GO0 |___ MCMO 0: Ring 0SC 1: X1
MCMO = 1; /* X1 as input clock */
1
/****************************/
/**** Inverter timer *kkKk [
/****************************/
void init_ TWO (void)
{
TWOM = 0;
TWOTRGS = 0;
TWOC = 0x01; // underflow every second time
TWOOC = 0;
TWOCM3 = PWM_CYCLE; /* buffer - PWM carrier frequency */
TWOCMO = 0; /* buffer - PWM duty phase A */
TWOCM1 = 0; /* buffer - PWM duty phase B */
TWOCM2 = 0; /* buffer - PWM duty phase C */
TWODTIME = deadtime; /* Dead time */
TWOBFCM4 = PWM_CYCLE/Z; /* ADC Trigger */
TWOBFCM3 = PWM_CYCLE; /* PWM carrier frequency */
TWOBFCM2 = 0; /* initiial PWM duty phase C */
TWOBFCM1 = 0; /* initiial PWM duty phase B */
TWOBFCMO = O0; /* initiial PWM duty phase A */
1
/*****************************/
/*%%% 16-bit timer 00 *kkk [
/*****************************/
void init_ TMOO (void)
{
CRCOO0 = 0x07; /* CRO1l compare register */
PRM0O01 = SET;
PRMO00 = CLEAR; /* Count clock 78.125 kHz */
ES001 = SET;
ES000 = SET; /* TI000 pin Both Edges */

}

/**************************/

/**x% 8-bit timer 50 ***%/
Jrr Rk kkkkkkkkkkkkkkkkkkkkk* [

void init 50 (void)

{

// TCL50 bit 7 6 54 3 21 0

// 00000 | | | _ TCL502 TCL501 TCL500

// 1 1 1 fx/8196 = 2.44 KHz
TCL50 = 0x07;

CR50 = 17; /* Tms */

}

/*****************************/

Application Note U19166EE1VOANOO 29

Chapter 7

Source Code

30

VAR LR 8

/********

-bit timer 51 *kkKk [
*********************/

void init_ 51 (void)

{
// TCL51 bit 7 6 5 4 3 2 1 0
// 0ooo0o00o0 | || TCL512 TCL511 TCL501
// 1 1 0 fx/8196 = 2.44 KHz
TCL51 = 0x06;
CR51 = 12; /* 5ms */
}
/*********************/
VAR LS UARTOO0 *kkKk [
/*********************/
void init UARTOO (void)
{
PM10 = SET; // FLMDO
PM13 = SET;
PM14 = CLEAR;
P14 = SET;
BRGCO0O0 0x56; /* 115200 */
// ASIMOO bit 7 6 54 3 2 1 0
// T O O O
// [|| | | | |__sLoo 0: 1 stop bit
// T CL0O 1: 8 data bits
// 1]] PS001 PS000
// (. RXE0O 1: enable reception
// | TXEO0O 1: enable transmission
// | POWERO0O
//ASIM = O0xXE5;
PS001 = CLEAR;
PS000 = CLEAR;
CLOO = SET; /* 8-bit */
SLOO = CLEAR;
TXEOO = SET;
RXEOO = SET;
POWEROO = SET;
STIF00 = CLEAR;
SRIF00 = CLEAR;
SRMKO0O = CLEAR; /* Enables receive interrupt */
}
/*************************/
VAl A Interrupts *kkx [
/*************************/
void init_ Interrupt (void)
{
// interrupt definition
IFOL = 0x00; // INT request
IFOH = 0x00; // INT request
IF1L = 0x00; // INT request
IF1H = 0x00; // INT request
// 7 65 43210
MKOL = OxE1l; // 11100001
MKOH = OxFD; // 11111101
MK1L = 0x87; // 10000111
MK1H = OxEF; // 11101110
/* EXT 1,2,3 enabled, INTPO (TOFF) enabled */
/* TWO enabled */
/* TX, RX, RXE, TMOl enabled */
/* ADIF enabled */
PROL = OxFF; // INT low priority
PROH = OxFD; // INT low priority
PR1L = OxXFF; // INT low priority
PR1H = OxFF; // INT low priority
}
Application Note U19166EE1VOANOO

Source Code

Chapter 7

7.5 Main Functions

/* mainfunctions.c */
#include "mainfunctions.h"
#include "definitions.h"

// motor drive variables
extern unsigned int motor rpm, reg Y, DeltaX;

extern unsigned int Kp, Ki, Kd, PWM_CYCLE, DUTY CYCLE, setpoint, deadtime;

extern unsigned int DCLevel;
extern unsigned int phase A;
extern unsigned int steps;
extern unsigned char Motor Pos;

// control variables

extern unsigned int onoff;

extern unsigned int disconnx;

extern unsigned int OverCurrent;

extern unsigned int Motor Dir;

extern unsigned int Loop_Sel;

extern unsigned int SecureSel;

extern unsigned int SensorSel, BemfA sel, BemfB_sel, BemfC sel;

// sine angle variables
unsigned char phA, phase B, phase C;

// sinusoidal signal generating signal

const unsigned char SinTable[] = {0x00, 0x0D, 0x19, 0x25, 0x32, O0x3E, O0x4A,

0x56, 0x61, 0x6D, 0x78, 0x82, 0x8C, 0x96, O0xA0, O0xA9, 0xB2, O0xBA, 0xCl,
0xC8, O0xCF, 0xD5, OxDA, OxDF, O0xE3, OxE7, OxXEA, OxEC, OxEE, OXxEF, OXEF};
/***/
/** Reload Inverter with new values -> ISR: TWOexception *x/
/***/
#pragma vector=INTTWOUD_vect
interrupt void INTTWOUD_ exception (void)
{
phA = phase A>>9;
if (Motor Dir)
{
phase C = phA + 40;
phase B = phA + 80;
}
else
{
phase C = phA + 80;
phase B = phA + 40;
}
// BFCM3_value = PWM Cycle;
TWOBFCM3 = PWM_CYCLE;
if (phase C >= 120) phase C -=120;
if (phase C < 30)
TWOBFCM2 = DCLevel + ((DUTY_CYCLE * SinTable[phase C]) >> 8);
else if (phase C < 60)
TWOBFCM2 = DCLevel + ((DUTY_CYCLE * SinTable[60-phase C]) >> 8);
else if (phase C < 90)
TWOBFCM2 = DCLevel - ((DUTY_CYCLE * SinTable[phase C-60]) >> 8);
else
TWOBFCM2 = DCLevel - ((DUTY_CYCLE * SinTable[l20-phase _C]) >> 8);

if (phase B >= 120) phase B -=120;
if (phase B < 30)

TWOBFCM1 = DCLevel + ((DUTY_CYCLE * SinTable[phase B]) >> 8);
else if (phase B < 60)

TWOBFCM1 = DCLevel + ((DUTY_CYCLE * SinTable[60-phase B]) >> 8);

Application Note U19166EE1VOANOO

31

Chapter 7

Source Code

32

else if (phase B < 90)

TWOBFCM1 = DCLevel - ((DUTY_CYCLE * SinTable[phase B-60]) >> 8);
else

TWOBFCM1 = DCLevel

((DUTY_CYCLE * SinTable[120-phase B]) >> 8);

if (phA < 30)

TWOBFCMO = DCLevel + ((DUTY _CYCLE * SinTable[phA]) >> 8);
else if (phA < 60)

TWOBFCMO = DCLevel + ((DUTY _CYCLE * SinTable[60-phA]) >> 8);
else if (phA < 90)

TWOBFCMO = DCLevel - ((DUTY _CYCLE * SinTable[phA-60]) >> 8);
else
TWOBFCMO = DCLevel - ((DUTY CYCLE * SinTable[120-phA]) >> 8);

phase A += steps;
if (phase A >= 61440) phase A -= 61440;

}

/***/

/** ISR: Over-current Signal *% /

/** Function: Trigger safety shutdown *% /
/***/

#pragma vector=INTPO_vect
interrupt void INTPO_exception (void)

{

if (SecureSel)

{

P54 = SET; // set P54 -> TRIP high (@ 40-pin Ribbon connector)
OverCurrent = SET;

}

/***/

/** Communication Variable Initialization *%/
/***/

void var init ()

{

motor_ rpm = 0; // RPM,

reg Y = 0; // REGY
DeltaX = 0; // XD,

Kp = 50; // KpP,

Ki = 1; // KI,
PWM_CYCLE = 500; // PWMCYCLE,
DUTY CYCLE = O; // DUTYCYCLE,
setpoint = 0; // SETPOINT,
deadtime = 0; // DTIME
onoff = 0;

disconnx = 0;

OverCurrent = 0;

Motor Dir = 0;

Loop_Sel = 0;

SecureSel = 1;

7.6 Hall Sensor Signals Control

/* hall.c */
#include "hall.h"
#include "definitions.h"

extern unsigned char newspeed;
extern unsigned char Motor Pos;
extern unsigned int Motor Dir;
extern unsigned int phase A;

extern unsigned int PHASE A LEFT[];
extern unsigned int PHASE A RIGHT[];
extern unsigned int actual count;

unsigned int last hall time = 0; // Count value (n-1) from TMOO

Application Note U19166EE1VOANOO

Source Code

Chapter 7

#pragma vector=INTTMOl vect

interrupt void INTTMO1l_ exception (void)

{

this hall time

CRO1;

if (this hall time <= last_hall time)

actual_ count

else

actual_ count

last_hall time

0x10000 - last _hall time + this hall time;
this hall time - last _hall time;

this hall time;

// Count value

//Speed_Meassurment ()

if ((actual_count > actual count min) && (actual_ count<actual count max))
newspeed++;

#ifdef SENSORRED

/***/

Ext ISR Detect Hall A *k kK [
Jrrkkkkkkkkkkkkkkkkkkhkkhkkhkkkkkkhkkkkkkkkkk* /

/****

#pragma vector=INTP1l vect
interrupt void INTP1l exception (void)

{

Motor Pos = PO & OxOE;
if (Motor_Dir) phase A = PHASE A RIGHT [Motor_ Pos];

else

phase A

PHASE A LEFT [Motor_ Pos];

/***/

Ext ISR Detect Hall B kK [
Jrrkkkkkkkkkkkkkkkkkkhkkhkkhkkkkkkhkkkkkkkkk k% /

/****

#pragma vector=INTP2 vect
interrupt void INTP2 exception (void)

{

Motor Pos = PO & OxOE;
if (Motor_Dir) phase A = PHASE A RIGHT [Motor_ Pos];
phase A = PHASE A LEFT [Motor_ Pos];

else

/***/

Ext ISR Detect Hall C *kkKk [
/***/

/****

#pragma vector=INTP3_ vect
interrupt void INTP3_ exception (void)

{

Motor Pos = PO & OxOE;
if (Motor_Dir) phase A = PHASE A RIGHT [Motor_ Pos];
phase A = PHASE A LEFT [Motor_ Pos];

else

#endif

7.7 Pl Controller

/* regulation.c */
#include <io078£f0714.h>
#include "regulation.h"

#include

extern
extern
extern
extern
extern
extern

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int
int
int
int
int
int

"definitions.h"

setpoint;
motor rpm;
Kp;

Ki;

reg Y;
DeltaX;

Application Note U19166EE1VOANOO

33

Chapter 7 Source Code

extern unsigned int PWM_CYCLE;
extern unsigned int DUTY CYCLE;
extern long Integrator;

#ifdef CLOSE_LOOP

/* local variables */
static long lbuf; // local long type calculation buffer

int ERR; // speed error

long Yp; // Y proportional part
long Yi; // Y integral part

int Ytotal; // Y result

/* value range limits */

#define Yp max 9768960 // +9540 * 1024
#define Yp min -9768960 // -9540 * 1024
#define Yi max 9768960 // +9540 * 1024
#define Yi min -9768960 // -9540 * 1024
#define Integrator max 9768960 // +9540 * 1024
#define Integrator_min -9768960
#define Y max 9540
#define Y min 0
void PIRegulation(void)
{
TMIF50 = O;
/* PI Regulator
Range of values:
setpoint = 0%...+100% = (integer) = 0...+9540
motor rpm = 0%...+100% = (integer) = 600...+9540
ERR = -100%...+100% = (integer) = -9540...0...+9540
Kp = -100%...+100% = (integer) = -1024...0...+1024
Ki = -100%...+100% = (integer) = -1024...0...+1024
*/
// calculate ERR
ERR = setpoint - motor_ rpm;
DeltaX = ERR;
// 1if (ERR < 0) DUTY CYCLE--;
// 1if (ERR > 0) DUTY_ CYCLE++;
// calculate Yp and limit
// calculate Yp = ERR * Kp;
lbuf = ERR;
1lbuf *= Kp;
// limit Yp
if (lbuf > Yp max) lbuf = Yp max;
else if (lbuf < Yp min) lbuf = Yp min;
Yp = 1lbuf;
// calculate Yi and limit
// calculate Yi(t) = ERR * Ki * t;
lbuf = ERR;
lbuf *= Ki;
// limit Yi
if (lbuf > Yi max) lbuf = Yi max;
else if (lbuf < Yi min) lbuf = Yi min;
Integrator = (Integrator + lbuf);
if (Integrator > Integrator max) Integrator = Integrator max;
else if (Integrator < Integrator min) Integrator = Integrator min;
Yi = Integrator;

// calculate Y and limit */

34 Application Note U19166EE1VOANOO

Source Code

Chapter 7

lbuf = Yp + Yi;
Ytotal = lbuf >> 10; // normalizing by divide by 1024

Ytotal = reg Y + Ytotal;

// limit Y

if (Ytotal > Y max) Ytotal = Y max;
else if (Ytotal < Y min) Ytotal = Y min;
reg Y = Ytotal;

lbuf = reg Y;

//1lbuf = (lbuf * PWM CYCLE / Y max) >> 1;
lbuf = (lbuf * PWM _CYCLE / 8200) >> 1;

// limit DUTY_ CYCLE
if (1buf > PWM_CYCLE/2) 1lbuf = PWM_CYCLE/2;
else if (lbuf < 0) 1lbuf = 0;

DUTY_CYCLE = lbuf;

}

#endif

Application Note U19166EE1VOANOO

(2710)

35

	1 Introduction
	2 Working System
	2.1 System Feature
	2.2 Development Tools
	2.2.1 In-Circuit Emulator
	2.2.2 Integrated Development Environment

	2.3 Source Code
	2.3.1 Downloads
	2.3.2 File Structure

	3 PMSM Motor Fundamentals
	3.1 Target Motor
	3.2 Sine PWM Digital Control
	3.3 Synchronization with Hall Sensors
	3.4 Close Loop Control
	3.5 System Overview

	4 Getting Started
	5 Software Configuration
	5.1 Control Registers
	5.2 Program Area Consumption

	6 Sample Result
	7 Source Code
	7.1 Marco Definitions
	7.2 Global Variable Definitions
	7.3 Main Entry Program
	7.4 System Initialization
	7.5 Main Functions
	7.6 Hall Sensor Signals Control
	7.7 PI Controller

