RE NESAS Application Note

Renesas RX Family
Tracealyzer® for FreeRTOS Debugging

Introduction
FreeRTOS is an RTOS from Amazon Web Services and is based on a high-performance embedded kernel.

Percepio Tracealyzer® (hereafter called Tracealyzer®) is a convenient solution for visual trace diagnostics
for developers of RTOS- or Linux-based embedded software systems.

Tracealyzer® provides realtime monitoring in detail of the following information on the internal state of the
RTOS.

1. Use of RTOS system calls
2. Per-task and total CPU loads
3. Per-task and total heap usage

This application note describes procedures for checking FreeRTOS thread and object states (referred to as
resources) during the development of applications in the e? studio. The procedure for starting Tracealyzer®
is also explained.

Target Device
RX65N Group (R5F565NEHDFB)

Operating Environment

Target Board CK-RX65N

Integrated Development
Environment (IDE)

e? studio version 2023-01

Trace Tool Percepio Tracealyzer® v4.6.6
O] FreeRTOS 10.4.3
Toolchain CC-RX V3.05

USB-Serial Converter Pmod USBUART module (from Digilent, Inc.)

Note: Please download the e? studio, CC-RX, and Tracealyzer® in advance with reference to the
documents available at the following URLSs.

® e? studio Integrated Development Environment 2021-04 and e? studio v7.8 User's Manual: Quick Start
Guide site:

e2 studio 2021-04 and e? studio v7.8 User's Manual: Quick Start Guide

® RX Smart Configurator User's Guide: e? studio site:

RX Smart Configurator User's Guide: e2 studio

® Tracealyzer® for FreeRTOS User Manual site:

Tracealyzer® for FreeRTOS - User Manual

® Percepio Tracealyzer® download site:

Download Tracealyzer® - Percepio AB

R20AN0706EJ0101 Rev.1.01 Page 1 of 35
May.19.23 RENESAS

https://www.renesas.com/us/en/document/mat/e-studio-users-manual-quick-start-guide-rx-rl78-rh850-family?r=3300631
https://www.renesas.com/us/en/document/mat/rx-smart-configurator-users-guide-e-studio-rev140?r=1622686
https://percepio.com/docs/FreeRTOS/manual/index.html#Introduction___Welcome_to_Tracealyzer
https://percepio.com/downloadform/

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

Contents

1. INStalling TraCEAIYZEI®cciiueiiiiiieee ettt e e e e e e e e et e e e e e e e s e enabeee s 3
2. Creating a Project in the €2 StUAIOeeiiiiiiiiiiiiiiiie et e e s e e e e e e e e eaaes 3
3. Debugging with Tracealyzer® (through @ UART)coooiiiiiiiiiiiiiiceeeeeiieee e 4
3.1 Embedding Tracealyzer® for FreeRTOS into the ProjecCt..........ccceeiiiiiiiiiiiiie e 4
3.1.1 Copying the Tracealyzer® for FreeRTOS Source Code under the Tracealyzer® Installation Folder .. 4
3.1.2 RemoVviNg UNNECESSArY FOIUBIScooiiiiiiiiee ettt ettt e e et e e e e e e e eba e e eaeae e s 4
3.1.3 Creating Files for UART COMMUNICALIONSccciiiuiiiiiiee e e s iiiiiieeee e e e e s ssinteee e e e e s e sntnaee e e e e e s s snnnnnnneeeeeeanan 5
3.2 SettiNgS Of tNE PIOJECT ...ceiei i e e e e s s r e e e e e s s e e e e e e e e st nrraraaaeaen 13
3.2.1 Setting the UART to Output Data Monitored by TracealyZer®cccocvveeiiiiiiieiiiiiee e 13
3.3 Settings Of the COMPIIET ... et e et e e e st b e e e s st e e e s anbneeeeaae 17
3.3.1 Adding the Include Paths Required by Tracealyzer® through Compiler Settingsccccccevcvveeennns 17
3.4 SettingS Of FIEERTOS ...ttt e e e e e s et b bt e e e e e e e e e s bbbt e e e e e e e e e saanbabeeeaaaeanan 19
3.4.1 Modifying "portmacro.h” of the FIeERTOS KEINEIccieeiiiiiiiiiiiie e 19
3.4.2 Modifying the Hook Function to be Executed before the Startup of the FreeRTOS Kernel 20
3.4.3 Adding the Code for Starting Tracealyzer® to the main TasK............ccccuviiiereiiiciiiiiree e 21
3.4.4 BUIldING the PrOJECTeeiiiiiiiie ittt ettt e e e h e e e e sab e e e e s sabe e e e e aabe e e e s anbneeeeaaes 22
3.5 Connecting the Host PC and CK-RXB5N BOAIMccciiuiiiiiiiiiieeiiiiee ettt e s e 23
3.6 UsSINg the [RTOS RESOUICES] VIBWuiiiiiiiiieei ittt ettt ettt e e e e e e e ibbbe e e e e e e e e annbnbeeeaaaeaean 25
3.6.1 Displaying the [RTOS RESOUICES] VIBW.....cciiieiiiiiiiiiiiiie e e i e sttt e e e e e e s st r e e e e e s sesaanta e e e e e e e s snnraraeeeaaeaean 25
3.6.2 CONIEXE MEBINU ...ttt ettt et e e o4 e h bttt e e e e e o e bbb ettt e e e e e s abbbe e e e e e e e e e nnbnbeeeaeeeanan 25
OGRS = Lod 1 ST 11 o PR PRP TP 26
3.6.4 TADDEA PAGESeeieiitiiie i h et e e b e e e e b e e e e e e e e e baeeeeaae 28
3.7 Starting Debugging of a Project with TraCealyZer®c..coeiiuiiiiiiiiiiiiiiie e 29
3.7.1 Launching the Debugger on the €2 StUIO...........cc.ciiiiiiiiiieieccec e reereas 29
3.7.2 LaunChing TraCAIYZEI®uueiiiieei i ittt e e e e e et e e e e e e e e e e e e e e et e e aa e e e e aeessaastataeeeaeeeesanrntaneeaaeanan 30
3.7.3 EXECULING SOMWAIE ...veeiiiieiiiiiiieiee ettt e et e e e e e s e et e e e e e e e s e esaa e e e e e e e e s s senbeeeeaaeessantnrenneaaeanan 32
3.7.4 Display of Trace INFOrMALIONcooiiiiiiiiiiiie et e et e e s be e e s sabeeee s snbeeeeeaaes 33
R20ANO706EJ0101 Rev.1.01 Page 2 of 35

May.19.23 RENESAS

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

1. Installing Tracealyzer®

Install Tracealyzer® with reference to the Tracealyzer® for FreeRTOS User Manual.

2. Creating a Project in the e? studio
A project generation wizard is available in the e? studio to ease the generation of an RX project.

Install the e? studio and CC-RX with reference to the e2 studio 2021-04 and e? studio v7.8 User's Manual:
Quick Start Guide.

Create a CC-RX RTOS project with reference to section 2.2, Create an RTOS project, in the RX Smart
Configurator User's Guide: e? studio.

Enter the RTOS and target device information as follows in the wizard.

— RTOS: FreeRTOS (kernel only) *
— RTOS Version: 10.4.3-rx-1.0.5
— Target Board: CK-RX65N

e o X

New Renesas CC-RX Executable Project —
Select toclchain, device & debug settings

Toolchain Settings

Language: ®C CC++

Toolchain: Renesas CCRX ~

Toolchain Version: |v3.04.00 ~

Mapage Toolchains
RTOS: FreeRTOS (kernel only) A
RTOS Version: 10.4.3-m-1.0.5 ~
Manage RTOS Versions...

=Device Setfings Configurations

Target Board: | CK-RXE5N ~ | Create Hardware Debug Configuration

Uownload additienal boards... E2 Lite (RX) v

Target Device: | RSFSESMNEHxFB _
[Create Debug Configuration

Unlock Devices... :
RX Simulator ~

Endian: | Little ~

Project Type: | DEIE [[] Create Release Configuration

':?3' < Back Finish Cancel

Figure 2-1 Selecting RTOS and the Target Device

Note: * Selection of RTOS:
When "FreeRTOS (with 10T Libraries)" is selected, monitored data can be superimposed on a
network communications path (Ethernet). The usage of this method will be described in future
versions of this application note.
When "FreeRTOS (kernel only)" is used, one SCI channel (UART mode) is occupied for the
transmission of monitored data.

R20AN0706EJ0101 Rev.1.01 Page 3 of 35
May.19.23 RENESAS

https://percepio.com/docs/FreeRTOS/manual/index.html#Introduction___Welcome_to_Tracealyzer
https://www.renesas.com/us/en/document/mat/e-studio-users-manual-quick-start-guide-rx-rl78-rh850-family?r=3300631
https://www.renesas.com/us/en/document/mat/e-studio-users-manual-quick-start-guide-rx-rl78-rh850-family?r=3300631
https://www.renesas.com/us/en/document/mat/rx-smart-configurator-users-guide-e-studio-rev140?r=1622686
https://www.renesas.com/us/en/document/mat/rx-smart-configurator-users-guide-e-studio-rev140?r=1622686

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

3. Debugging with Tracealyzer® (through a UART)

This section describes how to use Tracealyzer® through a UART.

3.1 Embedding Tracealyzer® for FreeRTOS into the Project

3.1.1 Copying the Tracealyzer® for FreeRTOS Source Code under the Tracealyzer®

Installation Folder

Copy the Program Files\Percepio\Tracealyzer 4\FreeRTOS\TraceRecorder folder to the workspace folder
"src" by using the File Explorer of Windows.

<« v <« Percepio » Tracealyzer4 » FreeRTOS v | D Search FreeRTOS
docs " MName Date modified Type Size
ESP-IDF_FreeRTOS |_ TraceRecorder File folder I
> FreeRTOS @ demo_freertos.psf Tracealyzer Trace 10,245 KB
licenses
Linux
locales
< M <« Smart_Configurator_Example » src »
v Smart_Configurator_Exz ™ Mame N Type Size
-settings ﬁ Smart_Configurator_Example.c C File 1 KB
7 src I TraceRecorder File folder I
FreeRTOS smc_gen File folder
frtos_config frtos_startup File folder
frtos_skeleton frtos_skeleton File folder
frtos_config File folder
frtos_startup
FreeRTOS File folder
smc_gen
TraceRecorder
Figure 3-1 Copying the Folder
3.1.2 Removing Unnecessary Folders
Remove all sub-folders in the workspace folder "src/TraceRecorder/streamports”.
<« v o < src » TraceRecorder » streamports v O Search streamports
frtos_config) MName Date medified Type Size
- I
frtos_skeleton AFR_WIFI_LOCAL File folder
frios_startup ARM_ITM File folder
smc_gen File File folder
TraceRecorder Jlink_RTT File folder
config RingBuffer File folder
5TM32_USB_CDC File folder
extras
elud TCPIP File folder
neuee TCPIP_Win32 File folder
ST XMOS_xScope File folder
.. "
Figure 3-2 Folders for Removal
R20ANO706EJO0101 Rev.1.01 Page 4 of 35

May.19.23

RENESAS

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

3.1.3 Creating Files for UART Communications

Use the Project Explorer of the e? studio to create the "Renesas_RX_UART" folder under the "streamports"”
folder and then create the "config" and "include" folders in the "Renesas_ RX_UART" folder. In these folders,

trcStreamPort.h", "trcStreamPortConfig.h", and

create empty files with the names "trcStreamPort.c",
"Readme-Streamport.txt" as shown below.

v = Smart_Configurator_Example [HardwareDebug] ~
il Includes
w & src
[= FreeRTOS
[= frtos_config
= frtos_skeleton
[= frtos_startup
[smc_gen
w [= TraceRecorder
= config
= extras

[= include
w [streamports

w = Renesas_RX_UART
w = config
trcStreamPortConfig.h
w = include
[£] trcStreamPort.c
trcStreamPort.h
|| Readme-Streamport.txt

Figure 3-3 Creating Folders and Files

Copy the following code to "trcStreamPort.c".

#include <string.h>

#include "trcRecorder.h"
#include "r sci rx if.h"
#include "r sci rx pinset.h"

#if (TRC_CFG_RECORDER MODE == TRC_RECORDER MODE_STREAMING)
#if (TRC_USE_TRACEALYZER RECORDER == 1)

static uint8 t string[1024];

static uint8 t sci buffer[1024];

static uint32 t sci current received size = 0;
static volatile uint32 t wait sending = 0;

extern sci_hdl t sci handle tracealyzer;
void sci_callback tracealyzer (void *arg);
traceResult xTraceStreamPortlInitialize (TraceStreamPortBuffer t* pxBuffer)

{
TRC ASSERT EQUAL SIZE (TraceStreamPortBuffer t,

TraceStreamPortUSBBuffers t);

R20AN0706EJ0101 Rev.1.01 Page 5 of 35
May.19.23 RENESAS

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

if (pxBuffer == 0)

{
return TRC FAIL;

}

return xTracelInternalEventBufferInitialize (pxBuffer->buffer,
sizeof (pxBuffer->buffer));
}

traceResult prvTraceUARTTransmit (void* pvData, uint32 t uiSize,
piBytesSent)
{

int32 t error code = -1;

while (1)

{

if (wait sending)

{

xTraceKernelPortDelay (1) ;

}

else

{

break;

if(uiSize < sizeof(string))

{

memcpy (string, pvData, uiSize);

if (SCI_SUCCESS == R _SCI Send(sci handle tracealyzer, string,
{

wait sending = 1;

*piBytesSent = uiSize;

error_code = 0;

}

return error code;

}

piBytesReceived)
{
if (sci current received size == uiSize)
{
memcpy (data, sci buffer, sci current received size);
*piBytesReceived = sci current received size;
sci current received size = 0;
}

return 0;

void sci callback tracealyzer (void *arg)

{
sci cb args t *p args;
p_args = (sci cb args t *)arg;

if (SCI_EVT RX CHAR == p args->event)
{

traceResult prvTraceUARTReceive (void* data, uint32 t uiSize, int32 t*

int32 t*

uiSize))

R20AN0706EJ0101 Rev.1.01
May.19.23 RENESAS

Page 6 of 35

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

R SCI Receive (p args->hdl,
if (sci _current received size ==
string terminator after "\n" */
{
sci current received size = 0;
}
else
{
sci current received size++;
}
}
else 1if(SCI_EVT TEI
{
wait sending = O;

}

p_args->event)

#endif
#endif

&sci buffer[sci current received size],
(sizeof (sci buffer) -

1);
-1 means

1)) /*

Copy the following code to "trcStreamPortConfig.h".

#ifndef TRC_STREAM PORT CONFIG H
#define TRC_STREAM PORT CONFIG H

#ifdef cplusplus
extern "C" {
#endif

* ok Kk ok ok ok

* Configuration Macro:
*

****/

#ifdef cplusplus
}
fendif

#endif /* TRC_STREAM PORT CONFIG H */

/***

TRC_CFG_STREAM PORT INTERNAL BUFFER SIZE

* Specifies the size of the internal buffer.
R R I b S db b db I b db Ib b S db I b SR Sb b db I b dR db b b db I b SR S b S SR b b db Sb b S IR I db Ib b S db b b dR Ib b S db I b SR Ib b b db I b db I b b I 4

#define TRC_CFG_STREAM PORT INTERNAL BUFFER SIZE 1024

Copy the following code to " trcStreamPort.h".

R20ANO706EJ0101 Rev.1.01
May.19.23

Page 7 of 35

RENESAS

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

#ifndef TRC_STREAM PORT H
#define TRC_STREAM PORT H

#include <trcTypes.h>
#include <trcStreamPortConfig.h>

#ifdef cplusplus
extern "C" {
#endif

typedef struct TraceStreamPortBuffer

{

uint8 t buffer[(TRC_CFG_STREAM PORT INTERNAL BUFFER SIZE) +
sizeof (TraceUnsignedBaseType t)];
} TraceStreamPortBuffer t;

traceResult prvTraceUARTReceive (void* data, uint32 t uiSize, int32 t*
piBytesReceived) ;

traceResult prvTraceUARTTransmit (void* pvData, uint32 t uiSize, int32 t*
piBytesSent) ;

/**
* @internal Stream port initialize callback.
*

* This function is called by the recorder as part of its initialization
phase.

*

@param[in] pxBuffer Buffer

@retval TRC_SUCCESS Success
/

traceResult xTraceStreamPortInitialize (TraceStreamPortBuffer t* pxBuffer);

*
*
* @retval TRC _FAIL Initialization failed
*
*

*

/

@brief Allocates data from the stream port.

@param[in] uiSize Allocation size
@param[out] ppvData Allocation data pointer

P T T

@retval TRC_FAIL Allocate failed

* @retval TRC_SUCCESS Success

*/

#define xTraceStreamPortAllocate (uiSize, ppvData) ((void)uiSize,
xTraceStaticBufferGet (ppvData))

/**

* @brief Commits data to the stream port, depending on the
implementation/configuration of the

* stream port this data might be directly written to the stream port
interface, buffered, or

* something else.

@param[in] pvData Data to commit
@param[in] uiSize Data to commit size
@param[out] piBytesCommitted Bytes committed

* ok ok

R20AN0706EJ0101 Rev.1.01 Page 8 of 35
May.19.23 RENESAS

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

*

* @retval TRC FAIL Commit failed
* @retval TRC SUCCESS Success
*/

#define xTraceStreamPortCommit xTraceInternalEventBufferPush

/**

* @brief Writes data through the stream port interface.
*

* (@param[in] pvData Data to write

* @param[in] uiSize Data to write size

* (@param[out] piBytesWritten Bytes written

*

* @retval TRC FAIL Write failed

* @retval TRC SUCCESS Success

*/

#define xTraceStreamPortWriteData prvTraceUARTTransmit
/**

* @brief Reads data through the stream port interface.
*

* @param[in] pvData Destination data buffer

* @param[in] uiSize Destination data buffer size

* (@param[out] piBytesRead Bytes read

*

* @retval TRC FAIL Read failed

* @retval TRC SUCCESS Success

*/

#define xTraceStreamPortReadData prvTraceUARTReceive

TRC_SUCCESS)

#define xTraceStreamPortOnDisable () (TRC_SUCCESS)
#define xTraceStreamPortOnTraceBegin() (TRC_SUCCESS)
#define xTraceStreamPortOnTraceEnd() (TRC_SUCCESS)

#ifdef cplusplus

}
#endif

#endif /* TRC_STREAM PORT H */

#define xTraceStreamPortOnEnable (uiStartOption) ((void) (uiStartOption),

Nothing need be written to "Readme-Streamport.txt".

R20AN0706EJ0101 Rev.1.01
May.19.23 RENESAS

Page 9 of 35

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

Add the following statement at the end of "FreeRTOSConfig.h".

#include "trcRecorder.h"

fdefine intgHIGHER PRICRITY

({ configMAX PRIORITIES - 3))

t configuration.

15 Project Explorer ¥ = B ||[h FreeRTOSCenfigh X
BES Y 8| o)
v Smart_Configurator_Example [Hardwar: .
> [t Includes -
w [sre
> [= FreeRTOS5

~ = frtos_config
» [h| FreeRTOSConfig.h
» [= frtos_skeleton
» [= frtos_startup
» [= smc_gen
» [= TraceRecorder
» [€ Smart_Configurator_Example.c
i,?;} Smart_Configurator_Examplescfg
%] Smart_Configurator_Example Hardwan
(7 Developer Assistance

MAC address configuration.

fdefine configMAC ADDRO Ox01
#define configMAC ADDR1 0Oxl2
fdefine configMAC ADDRZ Ox13
fdefine configMAC ADDR3 0Ox10
fdefine configMAC ADDR4 Ox15
#define configMal ADDRS Oxl1l

IP address configuration.
#define configIF_ADDRO
#define configIPF_ADDR1
#define configIP_ADDR2
#define configIPF_ADDR3

f* Netmask configuration.
#define configNET_MASKO
#define configNET_MASK1
#define configNET MASK2
#define configNET_MASK3

#* When the FIT configurator

the Smart Configurator is used, platform.h I

fdefine configINCLUDE PLATFORM H INSTEAD OF ICDEFINE H 1

#include "trcRecorder.h"

f#endif /* FREERTOS_CONFIG H */

Figure 3-4 Adding a Statement to "FreeRTOSConfig.h"

R20ANO706EJ0101 Rev.1.01
May.19.23

RENESAS

Page 10 of 35

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

Modify "trcConfig.h" as follows.

¢ Comment out the line starting with "#error ... ".
e Specify "TRC_HARDWARE_PORT_Renesas_RX600" for TRC_CFG_HARDWARE_PORT.

55 Project Explorer >

BE YV §
w (=% Smart_Configurator_Example [Hardw
> [t Includes
w [src
» [FreeRTOS

» = frtos_config
> [= frios_skeleton
> (= frios_startup
» [= smc_gen
v [= TraceRecorder
w [= config
> [h] treConfig.h
5> [h] trcKernelPortConfig.h
5> [h] treKernelPortSnapshotCon
> [h] trcKernelPortStreamingCo
> [h] treSnapshotConfig.h
> [h] treStreamingConfig.h
» [= extras
> (= include
» [streamports
> [trehssert.c
» [treCounter.c
» [trcDiagnostics.c
> [treEntryTable.c
> [trcError.c

= 8 || [FreeRTOSConfig.h

[B] treConfigh X

= Recorder for Tracealyzer
= #ifndef TRC CONFIG H

#define TRC_CONFIG_H

=~ #ifdef _ cplusplus
extern "C" {
#endif

lude of processcor header file[]

"Trace n

lease include

v4.6. 60

processor's header file h

® * @def TRC_CFG_HARDWARE PORT[]
#define TRC_CFG_HARDWARE PORT

TRC_HARDWARE_PORT_Renesas_RX600

® * @def TRC CFG_SCHEDULING ONLY[]
#define TRC CFG_SCHEDULING ONLY 0

® * @def TRC CFG_INCLUDE MEMMAN(

3 JENTS[]
#define

TRC_CFG_INCLUDE_MEMMANG EVENTS 1

@® % BHAef

idef TRC 1:]:":3_:}11::'JDE_'JSER_E".-'E}ITSD
#define

TRC_CFG_INCLUDE USER EVENTS 1

® * @def TRC CFG_INCLUDE ISR TRACING[]

#define TRC_CFG_INCLUDE ISR TRACING 1

Figure 3-5 Modifying "trcConfig.h"

R20ANO706EJ0101 Rev.1.01
May.19.23

RENESAS

Page 11 of 35

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

Modify "trcKernelPortConfig.h" as follows.

e Specify "TRC_RECORDER_MODE_STREAMING" for TRC_CFG_RECORDER_MODE.
e Specify "TRC_FREERTOS_VERSION_10_4 1" for TRC_CFG_FREERTOS_VERSION.

i Project Explorer

BES 7V 3 2

= Smart_Configurator_Bxample [Hardw —:
> [t Includes -

v [sre -

> [FreeRTOS -

5 (= frtos_config -
» = frios_skeleton

= B || [h FreeRTOSConfig.h

[treConfig.h [B] treKernelPortConfig.h 3

Traccalyzer v4.6.6[]

'+'| * Trace Recorder for

= #ifndef TRC_KERNEL PORT_CONFIG H
#define TRC_KERNEL PORT_ CONFIG_H

~#ifdef _ cplusplus
extern "C" {

1 #endif
> = frios_startup .
> (& sme_gen 21 @® * @def TRC_CFG_RECORDER_MODE[]
v & TraceRecorder #define TRC_CFG_RECORDER_MODE TRC_RECORDER_MODE_STREAMING
~ = config
> [1] treConfig.h @ » @def TRC_CFG_FREERTOS_VERSIOK
> [n] trcKemelPortConfig.h 59 #define TRC_CFG_FREERTOS_VERSION TRC_FREERTOS VERSION 10_4 1
> [H trcKernelPortSnapshotCon 60
» [h treKemelPortStreamingCo 62 @ * @def TRC CFG_INCLUDE EVENT_ GROUP_ EVENTS[]
> [B trcSnapshotConfig.h €9 #define TRC_CFG_INCLUDE_EVENT GROUP_EVENTS 1
> [h] trcStreamingConfig.h 70
> (= extras 2 @ * @def TRC_CFG CLUDE_TIMER T3
> @& include #define TRC_CFG_INCLUDE_TIMER_EVENTS 1
» (= streamports i
@® * @def TRC CFG INCLUDE PEND FUNC CALL EVENTS[]
5> [trefssert.c — — _ — _
#define TRC_CFG_INCLUDE_PEND FUNC_CALL EVENTS 1
» [treCounter.c - = — - - —
treDiagnostics.c :
’ % E gTbl ® * @def TRC_CFG_INCLUDE_STREAM BUFFER_EVENTS[]
> L treEntryTable.c 101 #define TRC_CFG_INCLUDE_STREAM BUFFER_EVENTS 1

5 [@l teeFrrore

Figure 3-6

Modifying "trcKernelPortConfig.h"

R20ANO706EJ0101 Rev.1.01
May.19.23

Page 12 of 35
RENESAS

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

3.2 Settings of the Project

3.2.1 Setting the UART to Output Data Monitored by Tracealyzer®
Use the Smart Configurator to add the FIT module for the SCI.

Open the [Software Component Selection] dialog box, enter "SCI" in the [Filter] textbox, select [SCI Driver],
and click on [Finish] as shown in Figure 3-7.

If the FIT module for the SCI does not appear even after "SCI" has been entered for [Filter], select
[Download the latest FIT drivers and middleware] and add the SCI module after having downloaded the
module.

M cHI LY
(5 Project Explorer X | (=] G 77 § = B | {& Smart_Configurator Exa.. X | [£) FreeRTOSCo & New Component O X
= . .
¥ = ?’“;’3::::'9“"“'-5‘”“" Software component configuration Software Component Selection !
'%:" Select component from those available in list
v (@ src
> @ FreeRTOS Co. 3 e |2 [© [H : Configure
> (= frtos_config
All
> (= frtos_skeleton Category
> (= frtos_startup type filter text Function Al v
> (& smc_gen
> = TraceRecorder v S.tartup . -
.c|_Smart Configurator Example.c Yie G_E"e"c r -
S} Smart_Configurator_Example.scfg ﬁ' r_bsp Compaglents Short Name Type Version
v & RIS 3 SCI Driver r_sci_nx Firmware Integr... 4.60
il FC.TOFS K:;OEIS # SCI/SSIF Asynchronous Mode Code Generator 1120
& e .- H# SCI/SCIFgJock Synchronous Mode Code Generator 1.120
w (= RTOS Object
& FreeRTOS_Ol
Show only latest version
Description
Dependency : r_bsp version(s) 7.20
Dependency : r_byteq version(s) 1.40, 1.50, 1.60, 1.%, 1.71, 1.80, 1.81, 1.82, 1.90, 2.00 |
This module allows any number of SCI channels on the MCU to run in full duplex Asynchronous
mode, single master Simple SPI mode, or master Synchiqnous mode simultaneously. The driver is J
Download the latest FIT drivers and middleware
Configure general settings...
- @ < Back Next >
Overview | Board | Clocks System| Components Pir = : Cancs}
= = ¥
Figure 3-7 Adding the FIT Module for the SCI
R20ANO706EJO0101 Rev.1.01 Page 13 of 35

May.19.23 RENESAS

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

To use PMODL1 of the CK-RX65N board, set up SCI channel 6.
Select [r_sci_rx] on the [Components] tabbed page and set [Include] for SCI channel 6.

: i P =
Software component configuration el -
Generate Code Generate Report
Compon... 23 7y |%, |2 [+ I Configure @
W Property Value
type filter text # Use circular buffer in ASYNC mode Unused I
v = Startup # Byte value to transmit while clocking in data in SS OxFF
v & Generic # Include software support for channel 0 Not
g\- r_bsp # Include software support for channel 1 Include
v Drivers_ # Include software support for channel 2 Not
& =, Communications # Include software support for channel 3 Not
- # Include software support for channel 4 Not
v Middiede ~ Include software support for channel 5 Not
4 2 Gassit # Include software support for channel 6 Include I
3 9 r_byted # Include software support for channel 7 Not
v (& RTOS - # Include software support for channel 8 Not
v G RTOS Kernel i Inc:uje so‘hthare support ior (tanne: ?n zot
Inrliude cafhuare ciinnart far Fhanne ~
& FreeRTOS_Kergel = s

Macro definition: SCI_CFG_CH6_INCLUDED
SPECIFY CHANNELS TO INCLUDE SOFTWARE SUPPORT FOR 1=included, 0=not

& FreeRTOS_Object

queues per channel (static mode only).
- * = port connector RSKRX11x

ponents | Pins | Interrupts

Overview | Board | Clocks 'System

NOTE: If using ASYNC mode, adjust BYTEQ_CFG_MAX_CTRL_BLKS in r_byteq_config.h to provide 2

Figure 3-8 Setting SCI Channel 6

Change the size of the transmission buffer for channel 6 from 80 bytes to 1024 bytes.

Software component configuration o <
Generate Code Generate Report
Compon... g3y g7 = o Configure @
-
L Property Value
type filter text # ASYNC mode TX queue buffer size for channel 2 80
v (= Startup # ASYNC mode TX queue buffer size for channel 3 80
~ E= Generic # ASYNC mode TX queue buffer size for channel 4 30
2' r_bsp # ASYNC mode TX queue buffer size for channel 5 80
v [= Drivers # ASYNC mode TX queue buffer size for channel & 1024
:' = Communications # ASYNC mode TX queue buffer size for channel 7 80
N g’ CEE T # ASYNC mode TX queue buffer size for channel 8 80
v = Middleware # ASYNC mode TX queue buffer size for channel 9 30
- = Generic # ASYNC mode TX queue buffer size for channel 10 80
. g' r_byteq # ASYNC mode TX queue buffer size for channel 11 80
v = K0S # ASYNC mode TX queue buffer size for channel 12 80
v (= RTOS Kernel # ASYNC mode RX queue buffer size for channel 0 80
& FreeRTDS Kernel #H ASVRIC mads BY anane hoffer civs far channal 1080
v (& RIOS Object Macro definition: SC|_CFG_CH6_TX_BUFSIZ
@ FreeRTOS Object SPECIFY ASYNC MODE TX QUEUE BUFFER SIZES (will not allocate if chan not enabled

Overview | Board | Clocks | System | Components | Pins| Interrupts

Figure 3-9 Modifying the Transmission Buffer for SCI Channel 6

R20ANO706EJO0101 Rev.1.01

May.19.23 RENESAS

Page 14 of 35

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

Enable transmission buffer empty interrupts from channel 6.

Software component configuration

Compon... pxg & | [0 [F I
W

type filter text

w = Startup
w [Generic
% r_bsp
~ [Drivers
w = Communications
‘,} r_sci_m
w = Middleware
w [= Generic
‘,} r_byteq
w [= RTOS
~ [= RTOS Kernel
& FreeRTOS_Kernel
w (= RTOS Object
& FreeRTOS_Object

Configure

% =]
Generate Code Generate Report

®

=l
-
[=]
=]
m
2

Transmit end interrupt

TH/RX FIFO for channel 7
TYIRY EIEA far rhannel 8

RSB ER SR

GROUPBLO (ERI, TEI} interrupt pricrity

ASYNC mode RX queue buffer size for channel 4
ASYNC mode RX queue buffer size for channel 3
ASYNC mode RX queue buffer size for channel &
ASYNC mode RX queue buffer size for channel 7
ASYMNC mode RX queue buffer size for channel 8
ASYMNC mode RX queue buffer size for channel 9
ASYMNC mode RX queue buffer size for channel 10
ASYNC mode RX queue buffer size for channel 11
ASYNC mode RX queue buffer size for channel 12

Value
80

80

80

80

80

80

80

80

80
Enable
3

Mot
Mt

Macro definition: SCI_CFG_TEI_INCLUDED

EMABLE TRAMSMIT END INTERRUPT (ASYNCHROMOUS)
This interrupt only occurs when the last bit of the last byte of data has been sent and the transmitter
has become idle. The interrupt calls the user's callback function specified in R_5Cl_Cpen(] and
passes it an SCI EVT TEl event. A typical use of this feature is to disable an external transceiver to

Owverview | Board | Clocks | System | Components | Pins| Interrupts

Figure 3-10 Setting Interrupts from SCI Channel 6

To use channel 6 as a UART without flow control, disable the flow control pins (RTS and CTS) and only

enable the transmission and reception pins (TxD and RxD).

Software component configuration

[+
A3
]

Components pxg 15y | [

wt
l

type filter text

w [= Startup
~ [Generic
% r_bsp
w | Drivers
~ = Communications
gv r_sci_n
~ = Middleware
~ = Generic
& rbyteq
w = RTOS
w [= RTOS Kernel
& FreeRTOS Kernel
v = RTOS Object
& FreeRTDS_Object

%l =]
Generate Code Generate Report
Configure (63
Property Value
~ @
Se
Se
Se
Se
~ @ sci6
"« SCK6 Pin [] Used
“w RXDE/SMISOE/55CLE Pin Used
“w TADG/SMOSIG/SSDAG Pin Used
“w CTS6#/RTS6%/556% Pin [Used
~@
~ I
Se
S

Overview | Board | Clocks | System | Compenents | Pins | Interrupts

Figure 3-11 Setting the Pins for SCI Channel 6

R20ANO706EJO0101 Rev.1.01

May.19.23

RENESAS

Page 15 of 35

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

Set the pin functions for SCI channel 6 on the [Pins] tabbed page.

Pin configuration

Hint : This button B will assign pin function to the default board pins if a board is selected.

%

Generate Code Generate Report

Don't Show Again 3¢

Hardware Resource 4 = 1% ¢% PinFunction 2 | "t} | | 23 el
Type filter text type filter text (* = any string, ? = any character) All v
' scio Enabled Function Assignment Pin Number Direction Re
. @ CTS6# 7 Not assigned 7 Not assigned None
a8 o £ RTS62 #_Not assigned 7 Not assigned None
Saace RXD6 # P01/TMCIO/RXD6/SMISO6/SSCL6/IRQI/AN119 ll 7 |
e SC J SCK6 7 Not assigned 7 Not assigned None
O SMISO6 7 Not assigned 7 Not assigned None
L2 @ SMOSI6 7 Not assigned # Notassigned None
: zg:; | @] SS6# # Not assigned 7 Not assigned None
@ SSCL6 # Not assigned 7 Notassigned None
: s O SSDA6 #_Not assigned 7 Not assigned None
e [@ mos 7 POO/TMRIO/TXD6/SMOSI6/SSDAG/IRQE/ANT1E |/ & 0
w SCI2
v ilfg 12C bus interface

Pin Function Pin Number

Overview | Board ClockSFSystem Componennterrupts

Figure 3-12 Setting the Pin Functions for SCI Channel 6

R20AN0706EJ0101 Rev.1.01
May.19.23 RENESAS

Page 16 of 35

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

3.3 Settings of the Compiler

3.3.1 Adding the Include Paths Required by Tracealyzer® through Compiler Settings

Right-click on the project name in the Project Explorer and select [Properties].

BS Y 8 = O {8 SmartCon

v =% Smart_Configurator Fvamnla (HarduwaraNah: mTI

> [mY Includes
v (2 src
» (= FreeRTOS
> & frtos_config
> (= frtos_skeleton
> (& frtos_startup
> (&= smc_gen
» (&= TraceRecorder
> [€] Smart_Configu
#5% Smart_Configurat
| Smart_Configurat

N
rad)
RS

2 Q

%

B®&

New

Go Into

Open in New Window

Show In

Copy

Paste

Close Rroject

Close Uyrelated Project

Build Targets
Index

Build Confjgurations

MISRA-C
C/C++ Project
Renesas C/C++
Run C/C++ Code Analysis
System Explorer

Command Prompt

Configure

11

>

Alt+Shift+W >

Ctrl+C

Delete

F2

F5

Ctrl+Alt+P

>

>

>

Properties

Alt+Enter

—

Figure 3-13 Project Properties

R20ANO706EJ0101 Rev.1.01
May.19.23

RENESAS

Page 17 of 35

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

Select [C/C++ Build] — [Settings] — [Tool Settings] — [Compiler] — [Source] and click on the [Add] button.

a Properties for Smart_Configurator_Example

l',',‘pe":it(-r text

Resource
Builders

v C/C++ Build

Stack Analysis

Tool Chain Editor
C/C++ General
Project Natures

Project References
Renesas QE

Settings

v i Common
é& CcPU
2 PI/PID
(2 Miscellaneous
v 85 Compiler
(22 Advanced
(= Object
2 List
v (2 Optimization
&E Advanced
(2 Output
B3 MICRA F Rula Charl

Include file directories (-include)

${TCINSTALL}/include
“${workspace_loc:/${ProjNamel‘s
"${workspacele
“4fWorkspace_|

"${workspace_loc:/${ProjName}/src/frtos_config}

"${workspace_loc:/${ProjName}/src/smc_gen/general}
"${workspace_loc:/${ProjName}/src/smc_gen/r_pincfg}"
“${workspace_loc:/${ProjName}/src/smc_gen/r_bsp}

"${workspace_loc:/${ProjName}/src/smc_gen/r_config}"

eeRTOS/Source/include}”
7$tProjName}/src/FreeRTOS/Source/portable/Renesas/RX600v2}"
loc:/${ProjName}/src/frtos_startup}”

Figure 3-14 Adding Paths

Add the following five paths.

"${workspace_loc:/${ProjName}/src/smc_gen/r_bsp/mcu/rx65n/register_access/ccrx}"

"${workspace_loc:/${ProjName}/src/TraceRecorder/config}"

"${workspace_loc:/${ProjName}/src/TraceRecorder/include}"

"${workspace_loc:/${ProjName}/src/TraceRecorder/streamports/Renesas_RX_ UART/config}"

"${workspace_loc:/${ProjName}/src/TraceRecorder/streamports/Renesas_RX_UART/include}"

Note:

The e? studio deletes "${workspace_loc:/${ProjName}/src/smc_gen/r_bsp/mcu/rx65n/register_access/ccrx}"
every time the Smart Configurator generates code. Be sure to specify the same path again after every round

of code generation.

R20ANO706EJO0101 Rev.1.01

May.19.23

RENESAS

Page 18 of 35

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

3.4 Settings of FreeRTOS

3.4.1 Modifying "portmacro.h" of the FreeRTOS Kernel
Modify "portmacro.h” of the FreeRTOS kernel to support calls from Tracealyzer®.

L Project Explocer X] T D Sven Contigurs < eSreanonio 1 WeSreamPorte ¢ DCSreanFon h Fesdre Streavoo m A AN - |
w 5 Smant Configunanor Lusmple 14 *Oe Interrust APL %0 8 2 Funes a . e v ks as Tast » > ~
&5 niludes) isple » .
v we Rdefine portEMADLE_INTERRWOTS() set_Spi((Joog) @)

Rifdef confighsstiny

FreeRTOS
il i sdefine pOrTASSERT_IF_INTERRUPT _PRIORITY_INVALID() configASSERT{ { get_ipl() <= conf LgMAX_SYSCALL_IN!

v @ Source #defise portOISABLE_INTERRLPTS() S0 et _1pl() < confighhX SYSCALL INTIRRPT PRICRITY) set_ipl(
& nchude s Selse
v s portable Sdefine portDISABLE_INTERRPTS() set_1pl((Jong) configrax SYSCALL INTERRLPT PRICRITY)

& MermMang Sondif
v 2 Rerwsss : A) , Lreiy o

v U oo | Bdefine portCRITICAL NESTING IN TCBD (1)

£ port_amar s =k
ponts

extern void viasskEnterCritical(vold);

n ponsacroh
ssedmatit extern void viaskExitCritical{ void);
' Sdefine portENTER_CRITICAL() viaskEnterdritical()
it 1 #define porteXIT_CRITICAL() visskExitCritical()
g Crousne.c
il event groepss * As ¢ » s Inte esti .
-t E 3 po N ¥ (PR _ISA() (USareType t) get 3(); set_fpi((long) configiaX SYsCALL
3 IS uSavedinterruotsy set isl((1)} unSavedinterruatit

8 queves

£ thean BuMers

Figure 3-15 portmacro.h

Modify the code under /* As this port allows interrupt nesting... */ as follows.

/* As this port allows interrupt nesting... */
static int32 t set interrupt mask from isr(void);
static int32 t set interrupt mask from isr(void)
{
int32 t tmp = get ipl();
__Set_ipl((long) ConfigMAX_SYSCALL_INTERRUPT_PRIORITY) ;
return tmp;
}
#define portSET INTERRUPT MASK FROM ISR()
set interrupt mask from isr()
#define portCLEAR INTERRUPT MASK FROM ISR(uxSavedInterruptStatus)
set ipl((long) uxSavedInterruptStatus)

R20AN0706EJ0101 Rev.1.01 Page 19 of 35
May.19.23 RENESAS

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

3.4.2 Modifying the Hook Function to be Executed before the Startup of the FreeRTOS

Kernel

Add the code for initializing Tracealyzer® and the SCI to the hook function
(Processing_Before_Start_Kernel() in "freertos_start.c") to be executed before the FreeRTOS kernel is

[Project Explarer x B% Y 8 = B & SsnartConfigura [g] treStreamPortCo] treStreamPart.c €] treStreamParth [H portmacro.h B freertos start. x [= 8
v |25 Smart_Configurator_Example [HardwareDebug) ~
[l Includes taskDISABLE_INTERRUPTS();
v (2 sre e for(;5 5)
(= FreeRTOS o on e
(= frtos_config e Loop
= frtos_skeleton
~ (= frtos_startup } /* End of function vApplicationStackOverflowHook() */
€] freertos_object_init.c
] freertos_start.c ®* Function Name : Processing Before_Start_Kernel[]
= =void Processing_Before_Start_Kernel(voi
B freertos_starth d g_Before_Start_Kernel(void
reertos_start.
(= sme_gen BaseType_t ret;
(&= TraceRecorder
8 Smart_Configurator Example.c Jree— *% semaphore creation ****srEsrsssreseesiacs]
5 Smart_Configurator_ Example.scig
|2/ Smart_Configurator Example HardwareDebug.la,
“* mutex creation FEEEEI:
** Queues Creation FERRERRSEESERssEEseeseees
..... ** cvent groups creation TTTTREIIIIEITEErrIrE
............... xxx% nailbox creation FEXREREEEEESEXXEEELERXEEE
..... *+ memory poel creation *FFEEE
* USB RTOS Configuration **/
—#if (RTOS_USB_SUPPORT == 1)
usb_rtos_err_t err = ush_rtos_configuration();
if (UsbRtos_Success != err) v

Figure 3-16 freertos_start.c

R20ANO706EJ0101 Rev.1.01
May.19.23

Page 20 of 35
RENESAS

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

#include "r sci rx if.h"
#include "r sci rx pinset.h"

static sci cfg t my sci config;
sci hdl t sci handle tracealyzer;

extern void sci callback tracealyzer (void *arg);

void Processing Before Start Kernel (void)
{
BaseType t ret;

/* Create all other application tasks here */

/* Set up the configuration data structure for asynchronous (UART)
operation. */

my sci config.async.baud rate = 921600;

my sci config.async.clk src = SCI_CLK INT;

my sci config.async.data size = SCI_DATA 8BIT;
my sci config.async.parity en = SCI_PARITY OFF;
my sci config.async.parity type = SCI _EVEN PARITY;
my sci config.async.stop bits = SCI_STOPBITS 1;

my sci config.async.int priority = 15; /* disable 0 - low 1 - 15 high */
R SCI Open(SCI_CH6, SCI MODE ASYNC, &my sci config,
sci callback tracealyzer, &sci handle tracealyzer);

R SCI PinSet SCI6();

xTracelInitialize();

3.4.3 Adding the Code for Starting Tracealyzer® to the main Task

Add the line "xTraceEnable(TRC_START);" for starting Tracealyzer® to the main task
(Smart_Configurator Example.c).

» = frios_skeleton

» [= frtos_startup

» [= smc_gen

» [= TraceRecorder

> [£] Smart_Configurator_Example.c

"_é‘} Smart_Configurator_Example.scfg

%] Smart_Cenfigurator_Example HardwareDebug.laun
(7) Developer Assistance

extern void abort (veid);
#endif

1 Project Explorer = <‘§|> ? E = 8 1:0:? *Smart_Configurato... @ FreeRTOSConfig.h treConfig.h @ trcKernelPortConfi... @ Smart_Configurater_.. > = B8
~ 2% Smart_Configurator_Example [HardwareDebug] 3 ®* FILE : Smart_Configurator Example.cl]
> [l Includes 10 #include "Fre=RTCS.h"
v [src 11 #include "task.nh"
> = FreeRTOS 12 #include "r_smc_entry.h"
» [= frios_config 1
1 S #if BSP CFG CPLUSPLUS == 1

=~ void main_task (void *pvParamsters)
{

mTraceEnable (TRC

Create all other application tasks here #*/

while(l);

vTaskDelete (NULL) 7

Figure 3-17 main Task

R20AN0706EJ0101 Rev.1.01 Page 21 of 35
May.19.23 RENESAS

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

Setting the heap size of the project to at least 128 Kbytes is recommended when Tracealyzer® is to be used.

- _ (o] =
Software component configuration c =
Generate Code Generate Report
Compone... fug 5 = Configure €Y
L Property Value
type filter text w Configurations
v (= Startup # RI0S5 scheduler Preemptive
~ = Generic # Idle hook Enable
% r_bsp # Tick hook Enable
~ [= Drivers #
» = Communications #
- } rsci # The frequency of the RTOS tick interrupt (TickType_t) 1000
iz Middle;var; # The size of the stack used by the idle task (unsigned short) 140
v = Generic # The configTOTAL_HEAP_SIZE_N
i } r_byteq #
~ (= RTDS # The maximum permissible length of name 12
v (= RTOS Kernel # Use trace facility Enable
& FreeRTOS_Kemel # Use 16bit ticks [7] Disable
(= RTOS Obj t_ L [T N [i [Conalal~
~ jec
@ FreeRIOS Object Macro definition:configTOTAL_HEAP_SIZE_N
The total amount of RAM available in the FreeRTOS heap(Unit: Kbytes). The value is used for
calculating HEAP_SIZE(Bytes) in following expression:
(size_t) (configTOTAL_HEAP_SIZE_MN * 1024)

Overview | Board | Clocks | System | Components | Pins | Interrupts

Figure 3-18 Modifying the Heap Size

3.4.4 Building the Project

Right-click on the project and select [Build Project]. On completion of the build process, check that no errors
have occurred.

R20AN0706EJ0101 Rev.1.01 Page 22 of 35
May.19.23 RENESAS

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

3.5 Connecting the Host PC and CK-RX65N Board
Connect the host PC and CK-RX65N board through a Pmod USBUART module (from Digilent, Inc.).

RTS
RXD
TXD
CTS
GND
vCC

Figure 3-19 External Appearance and Pin Arrangement of the Pmod USBUART Module
(from Digilent, Inc.)

Connect pins 1 to 6 of the Pmod USBUART module to pins 1 to 6 in the top row of the Pmod1 connector on

the CK-RX65N board.
Pnig Pm 1
Fin 12 Pn T

Figure 3-20 Pmod1 Connector on the CK-RX65N Board

The following table lists the hardware settings for debugging.

Table 3-1 Jumper Settings

Jumper Setting Function
J15 Open E20B normal debugging mode
J16 Close pins 1 and 2 Debugger is enabled.
R20ANO706EJ0101 Rev.1.01 Page 23 of 35

May.19.23 RENESAS

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

Connect the USB connector on the Pmod module and the USB connector for use in debugging on the CK-
RX65N board to the host PC.

Figure 3-21 Connections between the Host PC and CK-RX65N Board

Supplementary Information:
This system occupies the RX65N MCU's SCI channel 6, which is connected to the PMOD module.

Configuration of this system is based on "Custom Streaming" as described at the destination of the link
below to the Tracealyzer® document.

According to the Tracealyzer® document, the rate of monitoring data generation in the MCU and output of
the data by Tracealyzer® is from 20 to 200 Kbytes/s.

The Pmod USBUART module introduced in this application note can support a bit rate of 921600 bps (=
112.5 Kbytes/s), so the monitored data may be incomplete when the system is using a complex
configuration of tasks.

In such a case, consider a faster interface (such as Ethernet) for output of the monitored data.

Refer to the following Tracealyzer® document as well as this application note.

Percepio Tracealyzer® Documentation

R20AN0706EJ0101 Rev.1.01 Page 24 of 35
May.19.23 RENESAS

https://percepio.com/docs/FreeRTOS/manual/index.html#Creating_and_Loading_Traces___Percepio_Trace_Recorder___FreeRTOS___Streaming_Mode___Custom_Streaming

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

3.6 Using the [RTOS Resources] View

The e? studio has an RTOS resource view function that displays the state of FreeRTOS resources. The
following is a description of the procedure for using the [RTOS Resources] view.

3.6.1 Displaying the [RTOS Resources] View

The [RTOS Resources] view is only available while the debugger is running. Start the debugger and then
select [Renesas Views] — [Partner OS] — [RTOS Resources]. After the [Select OS] dialog box is displayed,
select "FreeRTOS" as shown in Figure 3-22. The [RTOS Resources] view will appear as shown in Figure

3-23.

?\-:' RTOS Resources
Select 05

0% FreeRTOS

[_] Mever show display the Select 05 at download.

oK

Figure 3-22 Selecting the OS

9\3 RTOS Resources §3

Stack | Task Queue | Timer

No. TaskName Base/ActualPriority State EventObject TotalTickCount DeltaTickCount
1 Blinky Thread 11 BLOCKED None -(-%) -(-%)
2 |IDLE 0/0 READY None -(-%) -(-%)
3 TmrSvc 3/3 SUSPENDED None -(-%) -(-%)
4
5

Figure 3-23

3.6.2 Context Menu

[RTOS Resources] View

Display the context menu by right-clicking on the mouse with the cursor in the [RTOS Resources] view.

=]

9,

Real-time Refresh Column
Real-time Refresh Interval

Stack Setting
Update information
Jump to source
Save File

Select OS

>

Figure 3-24 Context Menu

R20ANO706EJ0101 Rev.1.01
May.19.23

RENESAS

Page 25 of 35

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

Explanation:

Real-time Refresh Column:
Enables or disables real-time updating of information displayed in the individual columns (tabbed pages).
This is grayed out and not selectable while the program is running.

Real-time Refresh Interval:

Specifies the interval for real-time updating of the display. The specifiable values are in the range from
500 ms to 10000 ms.

This is grayed out and not selectable while the program is running.

Stack Setting:
Enables or disables loading of the stack data and specifies the threshold for the stack warning function.
This is grayed out and not selectable while the program is running.

Update information:
Updates the displayed information.

Jump to source:

Opens an editor view displaying the source code of the task/thread or handler. Double-clicking on a
task/thread or a handler also opens an editor view.

This is grayed out and not selectable while the program is running.

Save File:
Saves the data on the currently selected tabbed page in a text file (*.txt).
This is grayed out and not selectable while the program is running.

Select OS:
Opens the [Select OS] dialog box.
This is grayed out and not selectable while the program is running.

3.6.3 Stack Setting
This is for enabling the loading of stack data and setting the stack threshold.

1. Open the context menu and select [Stack Setting].
2. To load stack data to the [RTOS Resources] view, check the [Enable loading Stack data] checkbox in

the [Stack Setting] dialog box. If this option is not enabled, stack data will not be loaded in the next
debugging session.

) Stack Setting X

Enable loading Stack data
Stack Threshold (%) 1 80.00

4

OK Cancel

Figure 3-25 Enabling Loading of Stack Data

R20AN0706EJ0101 Rev.1.01 Page 26 of 35
May.19.23 RENESAS

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

3. Adesired threshold value can be set in the [Stack Threshold (%)] textbox. Click on [OK] to save the
setting.

88 Stack Setting X

[v] Enable loading Stack data
Stack Threshold (%) [’ 30.00

4>

OK Cancel

Figure 3-26 Setting the Stack Threshold

4. Run the target project and then suspend it to load the stack data. The stack threshold warning will pop
up if the set threshold is reached.

5. There are two types of popup warning: [Stack Threshold Warning] (with a list of the threads that have
used stack space up to the specified threshold) and [Stack Overflow Warning] (with a list of threads
that have used 100% of the stack).

Stack Threshold Warning X Stack Overflow Warning x

Blinky Thread (No.1) A Blinky Thread (No.1) A

IDLE (No.2) IDLE (No.2)

Tmr Svc (No.3) v | [Tmr Svc (No.3) v
Click here to view Stack tab Click here to view Stack tab

Figure 3-27 [Stack Threshold Warning] Popup (Left) and [Stack Overflow Warning] Popup (Right)

R20AN0706EJ0101 Rev.1.01 Page 27 of 35
May.19.23 RENESAS

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

3.6.4 Tabbed Pages
Table 3-2 lists the items displayed on the individual tabbed pages.

Table 3-2 Contents of Individual Tabbed Pages

Name of the Tabbed
Page in the [RTOS

Name of Displayed
Information and

Resources] View Selection Information to be Displayed
Stack No. Row index
TaskName Name assigned to the task upon creation
StartOfStack Address of the beginning of the stack
EndOfStack Address of the end of the stack
TopOfStack Address of the top of the stack area when the contents of the
stack were saved; that is, the address of the last location to
which writing had proceeded
StackSize(bytes) Total stack size
StackUsageSize Maximum amount of stack usage in bytes
StackUsageRatio Percentage of maximum usage relative to the total stack size
Task No. Row index
TaskName Name assigned to the task upon creation
Base/ActualPriority |Base priority used by the priority inheritance mechanism and
actual priority used by the task
State State of the task: “RUNNING”, “READY”, “BLOCKED”, or
“SUSPENDED”
EventObject Name of the queue that has caused blocking of the task
TotalTickCount Total number of ticks until the task becomes active
DeltaTickCount Number of ticks until the task becomes active after a previous
suspension event
Queue No. Row index
Name(Type) Name assigned to the queue upon registration and its type
(Queue, Semaphore, or Mutex)
Address Address of the queue handle
MaxLength Maximum number of items that can be stored in the queue
ltemSize Size per item in the queue (in bytes)
CurrentLength Number of items currently stored in the queue
#WaitingTx Number of tasks blocked while waiting for transmission to the
gueue
#WaitingRx Number of tasks blocked while waiting for reception from the
gqueue
Timer No. Row index
Name Current period of the timer (in system ticks)
Period Enabling or disabling of automatic reloading.
On: Automatic reloading is enabled. The timer is reset each
time the timer period expires.
Off: Automatic reloading is disabled. The timer does nothing
when the timer period expires.
CallbackFn Address and name of the callback function to be executed
each time the timer period expires.
TimerID Numeric ID (in hexadecimal) assigned to the timer when it was

created

R20ANO706EJO0101 Rev.1.01

May.19.23

Page 28 of 35
RENESAS

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

3.7 Starting Debugging of a Project with Tracealyzer®
3.7.1 Launching the Debugger on the e? studio

Select the [Run] menu — [Debug Configurations] — [Debugger] tabbed page — [Connection Settings]

tabbed page and set [Power Target From The Emulator] to "No".

£ Main %E Debugger| (@ Startup | [C] Common E Source

Debug hardware: E2 Lite (RX) ~ Target Device: | R3F365ME

GDB Settings Connection Settings Debug Tool Settings

w Clock
Main Clock Source HOCO v
Extal Frequency[MHz] 24
Operating Frequency [MHz] 120,000
Permit Clock Source Change On Writing Internal Flash Memory Yes v
+ Connection with Target Board
Emulataor (Auto)
Connection Type Fine v
ITag Clock Frequency[MHz] £.00
Fine Baud Rate[Mbps] 1.50 v
Hot Plug Mo v
~ Power
Power Target From The Emulator (MAX 200ma4) Mo v
Supply Voltage (V) 3.3
~ CPU Operating Mode
Register Setting Single Chip v
Mode pin Single-chip mode
Change startup bank Mo
Startup bank Bank 0

Figure 3-28 Modifying the Connection Settings

Select [Debug] from the [Run] menu to launch the debugger.

R20ANO706EJO0101 Rev.1.01

May.19.23

RENESAS

Page 29 of 35

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

3.7.2 Launching Tracealyzer®
Launch Tracealyzer®.

Click on [Recording Settings] in the Tracealyzer® window, select [PSF Streaming Settings], and make the

settings listed following the figure below.

= Percepio Tracealyzer - Window 1

File Trace \View Help

Welcome to Tracealyzer

Percepio Tracealyzer is a powerful tool for tracing and visualization of RTOS- and Linux-based
embedded software systems. More than 25 views offers amazing insight into the real-time behavior,
speeding up debugging, validation and performance optimization.

To enable tracing in your target system, follow the step-by-step guide provided in the User Manual

@ Getting Started @ User Manual

Percepio News

R ———————————————— |

- [m] x
P Feedback

Record a Trace

ﬁ- Recording Settings

© Record Streaming Trace
@ Read Snapshot Trace

Traces

Figure 3-29 Recording Settings

e Device: (User PC system port)
e Data bits: 8

e Data rate: 921600

e Handshake: None

e Parity: None

e Stop bits: One

Specify the COM port number that corresponds to the USB-serial converter chip on the Pmod module

connected to the CK-RX65N board.

R20AN0706EJ0101 Rev.1.01
May.19.23 RENESAS

Page 30 of 35

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

£} Settings - PSF Streaming Settings — O .

|Enter text to filter controlz X FaF Streaming Settings

Global Settines Target Connection: | SerialPart i

Project Settinas .
-l Settings Device
- futomatic Event Filtering Data bits
- Docking Settings
- Mavigation Bar Settings Data rate
.. BPI Settines
.. Performance Settines Handshake

- J-Link Settings
- BT-LINK Settings

Pl 't TN

Far ity Mone ~

Stop bits One ~

BF-F Streamine Settings

Performance settings
[] Force sinele threaded parsing

Help Il (0] 8 | Apply Cancel

Figure 3-30 Settings for [PSF Streaming Settings]

Next, select [Record Streaming Trace].

[Eh Percepic Tracealyzer - Window 1 - [m] X

File Tace View Help P Feedback

D —————

percepio’

Welcome to Tracealyzer Record a Trace

Percepio Tracealyzer is a powerful tool for tracing and visualization of RTOS- and Linux-based
embedded software systems. More than 25 views offers amazing insight into the real-time behavior, # Recording Settings
speeding up debugging, validation and performance optimization.

To enable tracing in your target system, follow the step-by-step guide provided in the User Manual. @ Record Streaming Trace

@ Getting Started 9 User Manual @ Read Snapshot Trace

Figure 3-31 Record Streaming Trace

R20AN0706EJ0101 Rev.1.01 Page 31 of 35
May.19.23 RENESAS

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

Select [Reconnect] and then [Start Session] to place Tracealyzer® in a state of waiting.

Live Stream O >
Wiew
| Reconnect | | Start Seszion | |30nnected | Open Trace
[] Dizable Live Visualization {Unlimited Tracing
GPU Load (%)
Statistics
Received ne Total Events 0 events
Data Rate 0Bz Event Rate 0 events/s
Duration N0:00:52

Figure 3-32 Placing Tracealyzer® in a State of Waiting

3.7.3 [Executing Software

Select [Resume] from the [Run] menu of the e? studio to run the software. Communications between the CK-
RX65N board and host PC (running Tracealyzer®) will begin and the Tracealyzer® window will display the

internal state of FreeRTOS.

R20ANO706EJO0101 Rev.1.01

May.19.23 RENESAS

Page 32 of 35

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

3.7.4 Display of Trace Information

Various modes of analysis are provided. For more information, see the [Help] tabbed page.

®

Fle Tace Find View Layout Views Bookmarks Window

::){=XoXO):

e

=]
H
L]
@
8
"
"

.
.
.

View CPUO

W e sk

T
[MAN TASK
B R eivine 0x00001G90

@ Q oo - Blsme
- 133
o x
Reconnect Stop Sessin | | T s tar ted|
CPU Load (X

In (s meye) 40000000
] I

Filter for e
View

fe View

Y r b .u-‘l\-»,- M"W P

A
|

VA

985 KB

WIKESE

000814

Total Events

Event Rate

29977 events.

2191 svents/s 0 (s ms us)

40000000

I ¢

(Mothing Selec

Combined
Filter Objects

& [Notice Channels
User Event Charrels

Enable All

Filter

cted)

ace View v

x

Disable All

Figure 3-33 Display of Trace Information

R20AN0706EJ0101 Rev.1.01

May.19.23

RENESAS

Page 33 of 35

Renesas RX Family Tracealyzer® for FreeRTOS Debugging

Website and Support
Visit the following URLSs to learn about key elements of the RX family, download components, and related

documentation, and get support.
RX Family Product Information WwWw.renesas.com/rx
RX Family Product Support Forum www.renesas.com/rx/forum

Renesas Support WWWw.renesas.com/support

R20ANO706EJO0101 Rev.1.01 Page 34 of 35

May.19.23 RENESAS

http://www.renesas.com/rx
https://www.renesas.com/rx/forum
https://www.renesas.com/support

Renesas RX Family

Tracealyzer® for FreeRTOS Debugging

Revision History

Description
Rev. Date Page Summary
1.00 Mar.25.23 - First release document
1.01 May.19.23 5,6,7 Modifying code in trcStreamPort.c

R20ANO706EJO0101 Rev.1.01

May.19.23

RENESAS

Page 35 of 35

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Viu (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

(Note2)

Corporate Headquarters

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
WWW.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Installing Tracealyzer®
	2. Creating a Project in the e2 studio
	3. Debugging with Tracealyzer® (through a UART)
	3.1 Embedding Tracealyzer® for FreeRTOS into the Project
	3.1.1 Copying the Tracealyzer® for FreeRTOS Source Code under the Tracealyzer® Installation Folder
	3.1.2 Removing Unnecessary Folders
	3.1.3 Creating Files for UART Communications

	3.2 Settings of the Project
	3.2.1 Setting the UART to Output Data Monitored by Tracealyzer®

	3.3 Settings of the Compiler
	3.3.1 Adding the Include Paths Required by Tracealyzer® through Compiler Settings

	3.4 Settings of FreeRTOS
	3.4.1 Modifying "portmacro.h" of the FreeRTOS Kernel
	3.4.2 Modifying the Hook Function to be Executed before the Startup of the FreeRTOS Kernel
	3.4.3 Adding the Code for Starting Tracealyzer® to the main Task
	3.4.4 Building the Project

	3.5 Connecting the Host PC and CK-RX65N Board
	3.6 Using the [RTOS Resources] View
	3.6.1 Displaying the [RTOS Resources] View
	3.6.2 Context Menu
	3.6.3 Stack Setting
	3.6.4 Tabbed Pages

	3.7 Starting Debugging of a Project with Tracealyzer®
	3.7.1 Launching the Debugger on the e2 studio
	3.7.2 Launching Tracealyzer®
	3.7.3 Executing Software
	3.7.4 Display of Trace Information

	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

