To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
R8C/25 Group
Timer RE in Output Compare Mode

1. Abstract
 This document describes how to set up and use timer RE in output compare mode in the R8C/25 Group.

2. Introduction
 The application example described in this document is applied to the following MCU and parameter(s):

 • MCU: R8C/25 Group
 • XIN clock: 20 MHz

 This program can be used with other R8C/Tiny Series which have the same special function registers (SFRs) as the R8C/25 Group. Check the manual for any additions and modifications to functions. Careful evaluation is recommended before using this application note.
3. Descriptions of Applications

3.1 Timer RE

Timer RE has 4-bit and 8-bit counters. Timer RE has the following two modes:

- **Real-time clock mode** Generate a 1-second signal from \(fc4 \) and counts seconds, minutes, hours, and days of the week.
- **Output compare mode** Count a count source and detect compare matches.

3.2 Output Compare Mode

In output compare mode, the internal count source divided by 2 is counted using the 4-bit or 8-bit counter and the compare value match is detected with the 8-bit counter. Figure 3.1 shows a Block Diagram of Output Compare Mode and Table 3.1 lists the Output Compare Mode Specifications. Figures 3.2 to 3.6 show the Registers Associated with Output Compare Mode, and Figure 3.7 shows the Operation in Output Compare Mode.

Figure 3.1 Block Diagram of Output Compare Mode

![Block Diagram of Output Compare Mode](image-url)
Table 3.1 Output Compare Mode Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count sources</td>
<td>f4, f8, f32, fC4</td>
</tr>
</tbody>
</table>
| Count operations | • increment
 • When the 8-bit counter content matches the TREMIN register content, the value returns to 00h and the count continues. The count value is held while the count stops. |
| Count period | • When RCS2 = 0 (4-bit counter is not used)
 \[\frac{1}{fi} \times 2 \times (n+1) \]
 • When RCS2 = 1 (4-bit counter is used)
 \[\frac{1}{fi} \times 32 \times (n+1) \]
 fi: Frequency of count source
 n: Setting value of TREMIN register |
| Count start condition | 1 (count starts) is written to the TSTART bit in the TRECR1 register. |
| Count stop condition | 0 (count stops) is written to the TSTART bit in the TRECR1 register. |
| Interrupt request generation timing | When the 8-bit counter content matches the TREMIN register content. |
| TREO pin function | Select any one of the following:
 • Programmable I/O ports
 • Output f2, f4, or f8
 • Compare output |
| Read from timer | When reading the TRESEC register, the 8-bit counter value can be read.
When reading the TREMIN register, the compare value can be read. |
| Write to timer | Writing to the TRESEC register is disabled.
When bits TSTART and TCSTF in the TRECR1 register are set to 0 (timer stops), writing to the TREMIN register is enabled. |
| Select functions | • Select use of 4-bit counter
 • Compare output function
 Every time the 8-bit counter value matches the TREMIN register value, TREO output polarity is reversed. The TREO pin outputs “L” after reset is deasserted and the timer RE is reset by the TRERST bit in the TRECR1 register. The output level is held by setting the TSTART bit to 0 (count stops). |
Timer RE Counter Data Register

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Address</th>
<th>After Reset</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRESEC</td>
<td>0118h</td>
<td>00h</td>
<td>RW</td>
</tr>
</tbody>
</table>

8-bit counter data can be read.
Although timer RE stops counting, the count value is held.
The TRESEC register is set to 00h at compare match.

Figure 3.2 TRESEC Register in Output Compare Mode

Timer RE Compare Data Register

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Address</th>
<th>After Reset</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREMIN</td>
<td>0119h</td>
<td>00h</td>
<td>RW</td>
</tr>
</tbody>
</table>

8-bit compare data is stored.

Figure 3.3 TREMIN Register in Output Compare Mode
Timer RE Control Register 1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Address</th>
<th>After Reset</th>
<th>Bit Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRECR1</td>
<td>011Ch</td>
<td>00h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>After Reset 00h</td>
</tr>
</tbody>
</table>

Bit Symbols

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Address</th>
<th>After Reset</th>
<th>Function</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>b7</td>
<td>(b7)</td>
<td>00</td>
<td>0</td>
<td>Nothing assigned. If necessary, set to 0. When read, the content is 0.</td>
<td>—</td>
</tr>
<tr>
<td>b6</td>
<td>TCSTF</td>
<td></td>
<td>0</td>
<td>Timer RE count status flag</td>
<td>RO</td>
</tr>
<tr>
<td>b5</td>
<td>TOENA</td>
<td></td>
<td>0</td>
<td>TREQ pin output enable bit</td>
<td>RW</td>
</tr>
<tr>
<td>b4</td>
<td>INT</td>
<td></td>
<td>0</td>
<td>Interrupt request timing bit</td>
<td>RW</td>
</tr>
<tr>
<td>b3</td>
<td>TRERST</td>
<td></td>
<td>0</td>
<td>Timer RE reset bit</td>
<td>RW</td>
</tr>
<tr>
<td>b2</td>
<td>PM</td>
<td></td>
<td>0</td>
<td>A.M./P.M. bit</td>
<td>RW</td>
</tr>
<tr>
<td>b1</td>
<td>H12_H24</td>
<td></td>
<td>0</td>
<td>Operating mode select bit</td>
<td>RW</td>
</tr>
<tr>
<td>b0</td>
<td>TSTART</td>
<td></td>
<td>0</td>
<td>Timer RE count start bit</td>
<td>RW</td>
</tr>
</tbody>
</table>

Function Descriptions

- **TRERST**: Timer RE reset bit
 - When setting this bit to 0, after setting it to 1, the following will occur.
 - Registers TRESEC, TREMIN, TREHR, TREWK, and TRECR2 are set to 00h.
 - Bits TCSTF, INT, PM, H12_H24, and TSTART in the TRECR1 register are set to 0.
 - The 8-bit counter is set to 00h and the 4-bit counter is set to 0h.

Figure 3.4 TRECR1 Register in Output Compare Mode

Timer RE Control Register 2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Address</th>
<th>After Reset</th>
<th>Bit Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRECR2</td>
<td>011Dh</td>
<td>00h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>After Reset 00h</td>
</tr>
</tbody>
</table>

Bit Symbols

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Address</th>
<th>After Reset</th>
<th>Function</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>b7</td>
<td>(b7)</td>
<td>00</td>
<td>0</td>
<td>Nothing assigned. If necessary, set to 0. When read, the content is 0.</td>
<td>—</td>
</tr>
<tr>
<td>b6</td>
<td>SEIE</td>
<td></td>
<td>0</td>
<td>Periodic interrupt triggered every second enable bit</td>
<td>RW</td>
</tr>
<tr>
<td>b5</td>
<td>MINE</td>
<td></td>
<td>0</td>
<td>Periodic interrupt triggered every minute enable bit</td>
<td>RW</td>
</tr>
<tr>
<td>b4</td>
<td>HRIE</td>
<td></td>
<td>0</td>
<td>Periodic interrupt triggered every hour enable bit</td>
<td>RW</td>
</tr>
<tr>
<td>b3</td>
<td>DYIE</td>
<td></td>
<td>0</td>
<td>Periodic interrupt triggered every day enable bit</td>
<td>RW</td>
</tr>
<tr>
<td>b2</td>
<td>WKIE</td>
<td></td>
<td>0</td>
<td>Periodic interrupt triggered every week enable bit</td>
<td>RW</td>
</tr>
<tr>
<td>b1</td>
<td>COMIE</td>
<td></td>
<td>0</td>
<td>Compare match interrupt enable bit</td>
<td>RW</td>
</tr>
<tr>
<td>b0</td>
<td></td>
<td></td>
<td>0</td>
<td>Disable compare match interrupt</td>
<td>RW</td>
</tr>
</tbody>
</table>

Figure 3.5 TRECR2 Register in Output Compare Mode
Timer RE Count Source Select Register

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Address</th>
<th>After Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRECSR</td>
<td>011Eh</td>
<td>00001000b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCS0</td>
<td>Count source select bits</td>
<td>0/1: f4, 0: f8, 1: f32, 11: fC4</td>
<td>RW</td>
</tr>
<tr>
<td>RCS1</td>
<td></td>
<td></td>
<td>RW</td>
</tr>
<tr>
<td>RCS2</td>
<td>4-bit counter select bit</td>
<td>0: Not used, 1: Used</td>
<td>RW</td>
</tr>
<tr>
<td>RCS3</td>
<td>Real-time clock mode select bit</td>
<td>Set to 0 in output compare mode</td>
<td>RW</td>
</tr>
<tr>
<td></td>
<td>(b4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCS5</td>
<td>Clock output select bits$^{(1)}$</td>
<td>0/1: f2, 0: f4, 1: f8, 11: Compare output</td>
<td>RW</td>
</tr>
<tr>
<td>RCS6</td>
<td></td>
<td></td>
<td>RW</td>
</tr>
</tbody>
</table>

NOTE:
1. Write to bits RCS5 to RCS6 when the TOENA bit in the TRECR1 register is set to 0 (disable clock output).

Figure 3.6 **TRECSR Register in Output Compare Mode**
Figure 3.7 Operation in Output Compare Mode

- **TREMIN register** setting value
- **TSTART bit** in **TRECR1 register**
- **TCSTF bit** in **TRECR1 register**
- **IR bit** in **TREIC register**
- **TREO output**

The above applies under the following conditions:
- **TOENA bit** in **TRECR1 register** = 1 (enable clock output)
- **COMIE bit** in **TRECR2 register** = 1 (enable compare match interrupt)
- RCS6 to RCS5 bits in **TRECSR register** = 11b (compare output)

Count starts
- **Matched**
- **Matched**
- **Matched**

Set to 1 by a program

Set to 0 by acknowledgement of interrupt request or a program

Output polarity is inverted when the compare matches
3.3 Notes on Timer RE

3.3.1 Starting and Stopping Count

Timer RE has the TSTART bit for instructing the count to start or stop, and the TCSTF bit which indicates count start or stop. Bits TSTART and TCSTF are in the TRECR1 register.

Timer RE starts counting and the TCSTF bit is set to 1 (count starts) when the TSTART bit is set to 1 (count starts). It takes up to two cycles of the count source until the TCSTF bit is set to 1 after setting the TSTART bit to 1. During this time, do not access registers associated with timer RE other than the TCSTF bit.

Also, timer RE stops counting when setting the TSTART bit to 0 (count stops) and the TCSTF bit is set to 0 (count stops). It takes the time for up to two cycles of the count source until the TCSTF bit is set to 0 after setting the TSTART bit to 0. During this time, do not access registers associated with timer RE other than the TCSTF bit.

NOTE:
1. Registers associated with timer RE: TRESEC, TREMIN, TREHR, TREWK, TRECR1, TRECR2, and TRECSR.

3.3.2 Register Setting

Write to the following registers or bits when timer RE is stopped:

- Registers TRESEC, TREMIN, TREHR, TREWK, and TRECR2
- Bits H12_H24, PM, and INT in TRECR1 register
- Bits RCS0 to RCS3 in TRECSR register

Timer RE is stopped when bits TSTART and TCSTF in the TRECR1 register are set to 0 (timer RE stopped).

Also, set all above-mentioned registers and bits (immediately before timer RE count starts) before setting the TRECR2 register.
4. Program Outline

Every time a compare match is detected, the TREO output polarity is reversed. The output width for “H” period and “L” period is set to 100 μs.

\[100 \mu s = 20 \text{ MHz} \times 8 \times (\text{4-bit counter is not used}) \times (\text{TREMIN} + 1) = 50 \text{ ns} \times 8 \times 2 \times 125\]

Figure 4.1 shows an Assigned Pin.

![Assigned Pin Diagram]

Figure 4.1 Assigned Pin

4.1 Function Table

<table>
<thead>
<tr>
<th>Declaration</th>
<th>void timer_re_init (void)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline</td>
<td>Timer RE associated SFR initial setting</td>
</tr>
<tr>
<td>Argument</td>
<td>Argument name</td>
</tr>
<tr>
<td>Variable used (global)</td>
<td>Variable name</td>
</tr>
<tr>
<td>Returned value</td>
<td>Type</td>
</tr>
<tr>
<td>Function</td>
<td>Timer RE associated SFR register settings are initialized.</td>
</tr>
</tbody>
</table>
4.2 Flow Chart

4.2.1 Main Function

```
main()

asm("FCLR I")

prc0 ← 1

cm13 ← 1

cm15 ← 1

cm05 ← 0

while(i <= 255) i++

ocd2 ← 0

cm16 ← 0

cm17 ← 0

cm06 ← 0

prc0 ← 0

Timer RE associated SFR initial setting handling

timer_re_init()
```

Interrupt disabled

System control register protect disabled

XIN-XOUT pin

XIN-XOUT drive capacity select: Set High

Main clock oscillates

Wait until oscillation stabilizes

Select main clock

Main clock: No division

Main clock division: CM16, CM17 enabled

System control register protect

Timer RE associated SFR initial setting handling (output compare mode setting)
4.2.2 Timer RE Associated SFR Initial Setting

```
timer_re_init()
tstart_trecr1 ← 0

No
tcstf_trecr1 = 0?
    Yes
        treic ← 0x00

    No
        treic ← 0x00

    Yes
        timer_re_operation_stops

    No
        Timer RE operation stops

    Yes
        Timer RE interrupt disabled

        Timer RE register and control circuit reset

        Count source: Select f8
        4-bit counter: Not used
        Set to 0 in output compare mode
        Clock output: Select compare output

        Count period: Set 100 ms (50 ns x 8 x 2 x 125 = 100 ms)

    No
        toena_trecr1 ← 1

    Yes
        TREO pin: Select clock output enable

        Timer RE operation starts
```

return
5. Sample Programming Code

A sample program can be downloaded from the Renesas Technology website.
To download, click “Application Notes” in the left-hand side menu on the R8C/Tiny Series page.

6. Reference Documents

Hardware Manual
R8C/25 Group Hardware Manual
The latest version can be downloaded from the Renesas Technology website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Technology website.
Website and Support

Renesas Technology website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

<table>
<thead>
<tr>
<th>REVISION HISTORY</th>
<th>R8C/25 Group Timer RE in Output Compare Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev.</td>
<td>Date</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>Dec 01, 2006</td>
</tr>
<tr>
<td>1.10</td>
<td>Feb 29, 2008</td>
</tr>
</tbody>
</table>
Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2008. Renesas Technology Corp., All rights reserved. Printed in Japan.