To our customers,

Old Company Name in Catalogs and Other Documents

On April 1\(^{st}\), 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1\(^{st}\), 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-terrorism systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
R8C/27 Group
Timer RC in Input Capture and Output Compare Functions

1. Abstract
This document describes a program for timer RC in the input capture and output compare functions.

2. Introduction
The application example described in this document applies to the following MCU and parameter(s):

- MCU : R8C/27 Group

This program can be used with other R8C/Tiny Series MCUs which have analogous special function registers (SFRs) as the R8C/27 Group. Check the manual for any additions and modifications to functions. Careful evaluation is recommended before using this application note.
3. **Application Example Description**

Timer RC is a 16-bit timer with four I/O pins.

Timer mode consists of two functions: Input capture and output compare. Both the input capture and output compare functions can be selected individually for each pin.

The input capture function measures the width or period of an external signal. An external signal input to the TRCIOj (j = A, B, C, or D) pin acts as a trigger for transferring the contents of the TRC register (counter) to the TRCGRj register (input capture). The input capture function, or any other mode or function, can be selected individually for each pin.

The output compare function detects matches (compare match) between the content of the TRC register (counter) and the content of the TRCGRj (j = A, B, C, or D) register. When the contents match, a given level is output from the TRCIOj pin. The output compare function, or any other mode or function, can be selected individually for each pin.

The setting conditions for this program are as follows:

- **Input capture input pin**: TRCIOA
- **Output compare output pins**: TRCIOB and TRCIOD
- **TRCGRC register function**: Buffer register of TRCGRA register
- **TRCGRD register function**: General register
- **Pin output enable**: TRCIOB and TRCIOD pin output enabled; TRCIOA and TRCIOC pin output disabled
- **Pulse output forced cutoff input**: Disabled
- **TRCIOB output level**: Initial output “L”
- **TRCIOD output level**: Initial output “L”
- **TRCIOA pin digital filter**: Function is used; Clock is set as count source.
- **Count source**: f1
- **TRC counter clear**: Clear disabled (free-running operation)
- **TRCGRA control**: Input capture to TRCGRA at both edges
- **TRCGRB control**: “H” output at TRCGRB compare match
- **TRCGRD control**: “H” output at TRCGRD compare match
- **Interrupt enable**: Interrupt by bits IMFA and OVF enabled; Interrupt by bits IMFB and IMFD disabled

- **TRCGRB compare value**: 20000 (40 MHz × f2 (FRA2) × f1 (TCK0 to TCK2) × 20000 = 1 ms)
 Compare match when 1 ms elapses after the TRC count starts
- **TRCGRD compare value**: 40000 (40 MHz × f2 (FRA2) × f1 (TCK0 to TCK2) × 40000 = 2 ms)
 Compare match when 2 ms elapses after the TRC count starts

Figure 3.1 shows an Operating Example of Input Capture Function and Figure 3.2 shows an Operating Example of Output Compare Function.
The above applies under the following conditions:
• Bits TCK2 to TCK0 in the TRCCR1 register are set to 101b (TRCCLK input for the count source).
• Bits IOA2 to IOA0 in the TRCIORA register are set to 101b (input capture at the falling edge of the TRCIOA input).
• The BFC bit in the TRCMR register is set to 1 (the TRCGRC register functions as a buffer register of the TRCGRA register).

Figure 3.1 Operating Example of Input Capture Function
The above applies under the following conditions:
- Bits BFC and BFD in the TRCMR register are set to 0 (registers TRCGRC and TRCGRD do not operate buffers).
- Bits EA, EB, and EC in the TRCOCR register are set to 0 (TRCIOA, TRCIOB, and TRCIOC output enabled).
- The CCLR bit in the TRCCR1 register is set to 0 (the TRC register is set to 0000h at the TRCGRA compare match).
- In the TRCCR1 register, bits TOA and TOB are set to 0 ("L" initial output until compare match) and the TOC bit is set to 1 ("H" initial output until compare match).
- Bits IOA2 to IOA0 in the TRCOCR0 register are set to 011b (TRCIOA output inverted at TRCGRA compare match).
- Bits IOB2 to IOB0 in the TRCOCR0 register are set to 010b ("H" TRCIOB output at TRCGRB compare match).
- Bits IOC2 to IOC2 in the TRCOCR1 register are set to 001b ("L" TRCIOC output at TRCGRC compare match).

Figure 3.2 Operating Example of Output Compare Function

This sample program may include bit operations of unused functions for the SFR bit layout. Set these values according to the operating conditions of the user system.
3.1 Pins Used

Table 3.1 Pins Used and Their Function

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1_1/KI1/AN9/TRCIOA/TRCCLK</td>
<td>Input</td>
<td>Input capture input pin</td>
</tr>
<tr>
<td>P1_2/KI2/AN10/TRCIOB</td>
<td>Output</td>
<td>Output compare output pin</td>
</tr>
<tr>
<td>P5_4/TRCIOD</td>
<td>Output</td>
<td>Output compare output pin</td>
</tr>
</tbody>
</table>

![Diagram showing Pins Used]

3.2 Memory Usage

Table 3.2 Memory Usage

<table>
<thead>
<tr>
<th>Memory Usage</th>
<th>Size</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM</td>
<td>273 bytes</td>
<td>In main.c module</td>
</tr>
<tr>
<td>RAM</td>
<td>11 bytes</td>
<td>In main.c module</td>
</tr>
<tr>
<td>Maximum user stack usage</td>
<td>10 bytes</td>
<td>main function: 7 bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>timer_rc_init function: 3 bytes</td>
</tr>
<tr>
<td>Maximum interrupt stack usage</td>
<td>18 bytes</td>
<td>TRC_int function: 18 bytes</td>
</tr>
</tbody>
</table>

Memory usage varies depending on the C compiler version and the compile option. The above applies under the following conditions:

- C compiler: M16C/60, 30, 20, 10, Tiny, R8C/Tiny Series Compiler V.5.40 Release 00
- Compile option: -c -finfo; NOTE: -dir “$(CONFIGDIR)” -R8C

 NOTE: Unavailable in the R8C/Tiny-exclusive free version.
4. Setup

This section shows the initial setting procedures and values to perform the example described in 3. Application Example Description. Refer to the R8C/27 Group Hardware Manual for details on individual registers.

4.1 System Clock Setting

(1) Enable writing to registers CM0, CM1, OCD, FRA0, FRA1, and FRA2.

![Protect Register](image)

PRCR [Address 000Ah]

PRC0 PROTECT bit 0

Writing to registers CM0, CM1, OCD, FRA0, FRA1, and FRA2 enabled

(2) Start the low-speed on-chip oscillator.

![System Clock Control Register 1](image)

CM1 [Address 0007h]

CM14 Low-speed on-chip oscillator oscillation stop bit

Low-speed on-chip oscillator oscillates

(3) Set the division ratio of the high-speed on-chip oscillator clock.

![High-Speed On-Chip Oscillator Control Register 2](image)

FRA2 [Address 0025h]

FRA22 to FRA20 High-speed on-chip oscillator frequency switch bits

Divide-by-2 mode

(b7-b3) Reserved bits

Set to 0.

(4) Start the high-speed on-chip oscillator.

![High-Speed On-Chip Oscillator Control Register 0](image)

FRA0 [Address 0023h]

FRA00 High-speed on-chip oscillator enable bit

High-speed on-chip oscillator oscillates
(5) Wait until oscillation stabilizes.

(6) Select the high-speed on-chip oscillator.

(7) Set system clock division select bits 1.

(8) Set system clock division select bit 0.

(9) Disable writing to registers CM0, CM1, OCD, FRA0, FRA1, and FRA2.
4.2 Timer Mode (Input Capture and Output Compare Functions) Setting

(1) Set the port P1 direction register.

Port P1 Direction Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PD1</td>
<td>0</td>
</tr>
</tbody>
</table>

PD1 [Address 00E3h]

PD1_1 Port P1_1 direction bit
Input mode

(2) Set pin select register 3.

Pin Select Register 3

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

PINSR3 [Address 00F7h]

(52-50) Reserved bits
Set to 1.

TRCIOCSEL TRCIOC select bit
P5_3

TRCIODSEL TRCIOD select bit
P5_4

Set to 0.

(55) Reserved bit
(57-56) Nothing is assigned.

(3) Stop the TRC count.

Timer RC Mode Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRCMR [Address 0120h]

TSTART TRC count start bit
Count stops
(4) Set the timer RC interrupt control register (interrupt disabled).

Timer RC Interrupt Control Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **TRCIC [Address 0047h]**
 - ILVL2 to ILVL0: Interrupt priority level select bits 2 to 0
 - Level 0 (interrupt disabled)
- **IR**
 - Interrupt request bit
 - No interrupt request
- **(b7-b4)**
 - Nothing is assigned.
 - Set to 0.

(5) Set the timer RC mode register.

Timer RC Mode Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **TRCMR [Address 0120h]**
 - PWMB: TRCIOB PWM mode select bit
 - Timer mode
 - PWMC: TRCIOC PWM mode select bit
 - Timer mode
 - PWMD: TRCID PWM mode select bit
 - Timer mode
 - PWM2: PWM2 mode select bit
 - Timer mode
 - BFC: TRCGRC register function select bit
 - Buffer register of TRCGRA register
 - BFD: TRCGRD register function select bit
 - General register
 - **(b6)**
 - Nothing is assigned.
 - Set to 0.
 - TSTART: TRC count start bit
 - Count stops
(6) Set timer RC control register 1.

![Timer RC Control Register 1 Diagram]

- **TRCCR1** [Address 0121h]
 - **TOA** TRCIOA output level select bit
 - Unavailable.
 - **TOB** TRCIOB output level select bit
 - Initial output “L”
 - **TOC** TRCIOC output level select bit
 - Unavailable.
 - **TOD** TRCIOD output level select bit
 - Initial output “L”
 - **TCK2 to TCK0** Count source select bits
 - f1 selected
 - **CCLR** TRD0 counter clear select bit
 - Clear disabled (free-running operation)

(7) Set timer RC I/O control register 0.

![Timer RC I/O Control Register 0 Diagram]

- **TRCIOR0** [Address 0124h]
 - **IOA1 and IOA0** TRCGRA control bits
 - Input capture to TRCGRA at both edges
 - **IOA2** TRCGRA mode select bit
 - Set to 1 in the input capture function.
 - **(53)** Reserved bit
 - Set to 1.
 - **IOB1 and IOB0** TRCGRB control bits
 - “H” output at TRCGRB compare match
 - **IOB2** TRCGRB mode select bit
 - Set to 0 in the output compare function.
 - **(57)** Nothing is assigned.
 - Set to 0.
(8) Set timer RC I/O control register 1.

Timer RC I/O Control Register 1

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TRCIOR1 [Address 0125h]

- **TRCGR0 control bits**
 - Available.
- **IOC2** TRCGR mode select bit
 - To select 1 (buffer register of TRCGR0 register) by the BFC bit in the TRCMR register, set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
- **IOC1 and IOC0** TRCGRD control bits
 - “H” output at TRCGRD compare match
- **IOD1 and IOD0** TRCGRD mode select bit
 - Set to 0 in the output compare function.
- **IOD2** Nothing is assigned.
 - Set to 0.

(9) Set timer RC control register 2.

Timer RC Control Register 2

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TRCCR [Address 0130h]

- **(b4-b0)** Nothing is assigned.
 - Set to 0.
- **CSEL** TRC count operation select bit
 - This bit is disabled in timer mode.
- **TCEG1 and TECG0** TRCTRG input edge select bits
 - These bits are disabled in timer mode.
(10) Set the timer RC digital filter function select register.

![Diagram of Timer RC Digital Filter Function Select Register]

- **TRCDF** [Address 0131h]
 - **DFA**: TRCIAA pin digital filter function select bit
 - Function used
 - **DFB**: TRCIBB pin digital filter function select bit
 - Function not used
 - **DFC**: TRCIOC pin digital filter function select bit
 - Function not used
 - **DFD**: TRCIOD pin digital filter function select bit
 - Function not used
 - **DFTRG**: TRCTRGT pin digital filter function select bit
 - Function not used
 - **Nothing is assigned.**
 - Set to 0.

- **DFCK1** and **DFCK0**: Digital filter function clock select bits
 - Count source (clock selected by bits TCK2 to TCK0 in the TRCCR1 register)

(11) Set the timer RC output master enable register.

![Diagram of Timer RC Output Master Enable Register]

- **TRCOER** [Address 0132h]
 - **EA**: TRCIAA output disable bit
 - This bit is disabled for use as input capture input
 - **EB**: TRCIBB output disable bit
 - Output enabled
 - **EC**: TRCIOC output disable bit
 - Output disabled (The TRCIOC pin is used as a programmable I/O port.)
 - **ED**: TRCIOD output disable bit
 - Output enabled
 - **PTO**: Pulse output forced cutoff signal input INT0 enable bit
 - Pulse output forced cutoff input disabled
 - **(b5)**
 - Nothing is assigned.
 - Set to 0.
(12) Set the timer RC counter.

![Timer RC Counter Diagram]

- **TRC** [Address 0127h to 0126h]
- Initialization
- 0 (0x0000) setting

(13) Set timer RC general register A.

![Timer RC General Register A Diagram]

- **TRCGRA** [Address 0129h to 0128h]
- Initialization
- 0xFFFF setting

(14) Set timer RC general register B.

![Timer RC General Register B Diagram]

- **TRCGRB** [Address 012Bh to 012Ah]
- Initialization
- 0xFFFF setting
- The compare value with the TRC register (counter) is stored
- 20000 – 1 (0x4E1F) setting

(15) Set timer RC general register C.

![Timer RC General Register C Diagram]

- **TRCGRC** [Address 012Dh to 012Ch]
- Initialization
- 0xFFFF setting
(16) Set timer RC general register D.

Timer RC General Register D

<table>
<thead>
<tr>
<th>b15</th>
<th>b14</th>
<th>b13</th>
<th>b12</th>
<th>b11</th>
<th>b10</th>
<th>b9</th>
<th>b8</th>
<th>b7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

TRCGRD [Address 012Fh to 012Eh]

The compare value with the TRC register (counter) is stored

$40000 - 1$ (0x9C3F) setting

(17) Set the timer RC interrupt enable register.

Timer RC Interrupt Enable Register

<table>
<thead>
<tr>
<th>b7</th>
<th>p0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

TRCIER [Address 0122h]

IMIEA Input capture/compare match interrupt enable bit A
- Interrupt (IMIA) by IMFA bit enabled

IMIEB Input capture/compare match interrupt enable bit B
- Interrupt (IMIB) by IMFB bit disabled

IMIEC Input capture/compare match interrupt enable bit C
- Interrupt (IMIC) by IMFC bit disabled

IMIED Input capture/compare match interrupt enable bit D
- Interrupt (IMID) by IMFD bit disabled

(b6-b4) Nothing is assigned.
- Set to 0.

OVIE Overflow interrupt enable bit
- Interrupt (OVI) by OVF bit enabled
(18) Set the timer RC status register.

![Timer RC Status Register Diagram]

- **IMFA**: Input capture/compare match flag A
 - Set to 0.
- **IMFB**: Input capture/compare match flag B
 - Set to 0.
- **IMFC**: Input capture/compare match flag C
 - Set to 0.
- **IMFD**: Input capture/compare match flag D
 - Set to 0.
- **OVF**: Overflow flag
 - Set to 0.

(19) Set the timer RC interrupt control register.

![Timer RC Interrupt Control Register Diagram]

- **ILVL2 to ILVL0**: Interrupt priority level select bits 2 to 0
 - Level 7
- **IR**: Interrupt request bit
 - No interrupt request
- **OVF**: Overflow flag
 - Set to 0.

(20) Start the TRC count.

![Timer RC Mode Register Diagram]

- **TSTART**: TRC count start bit
 - Count starts
5. Flowchart

5.1 Main Function

5.1.1 Main Function 1

```
main()
asm("FCLR I")
prc0 ← 1
asm("FSET I")
1
fra00 ← 1
Repeat
(i <= 255)
i++;
fr01 ← 1
cm16 ← 0
cm17 ← 0
cm06 ← 0
prc0 ← 0
Timer RC SFR initial setting processing
    timer_rc_init()
asm("FSET I")
```

Disable interrupts
Disable system control register protect
Start the low-speed on-chip oscillator
High-speed on-chip oscillator clock: Divide-by-2 mode
Start the high-speed on-chip oscillator
Wait until oscillation stabilizes
Select the high-speed on-chip oscillator
No system clock division
Enable CM16 and CM17
Enable system control register protect
Timer RC associated SFR initial setting processing
 (input capture and output compare functions)
Enable interrupts
5.1.2 Main Function 2

1

f_capture = 1?

Yes

Check the capture

No

ovf_cnt = 0?

Yes

Check the overflow

No

measurement_value ← general_register − buffer_register

ovf_cnt ← 0

Clear the overflow counter

f_capture ← 0

Clear the capture flag

measurement_value ← 0x00010000 * ovf_cnt − buffer_register + general_register

Calculate the measurement value
5.2 Timer RC Associated SFR Initial Setting Processing

5.2.1 Timer RC Associated SFR Initial Setting Processing 1

- **timer_rc_init()**
- \(\text{pd1} \leftarrow \text{pd1} \& 0x{\text{FD}} \)
- \(\text{pinsr3} \leftarrow 0x{\text{27}} \)
- \(\text{tstart_trcmr} \leftarrow 0 \)
- \(\text{trccic} \leftarrow 0x{\text{00}} \)
- \(\text{trcmr} \leftarrow 0x{\text{18}} \)
- \(\text{trccr1} \leftarrow 0x{\text{00}} \)
- \(\text{trccr0} \leftarrow 0x{\text{2E}} \)
- \(\text{trcior1} \leftarrow 0x{\text{24}} \)
- \(\text{trccr2} \leftarrow 0x{\text{00}} \)
- \(\text{trcdf} \leftarrow 0x{\text{C1}} \)
- \(\text{trcoer} \leftarrow 0x{\text{05}} \)

P1_1 (TRCIOA) pin: Set to an input port

TRCIOC pin: P5_3

TRCIOB pin: Initial output “L”

TRCIOD pin: Initial output “L”

Count source: Select f1

TRC interrupt: Interrupt level 0 (interrupt disabled)

Operate the TRCGRC register as a buffer register of the TRCGRA register

Operate the TRCGRD register as a general register

TRC counter: Disable clear (free-running operation)

TRCIOA input: Input capture to TRCGRA at both edges

Output “H” at the TRCGRB compare match

To select 1 (buffer register of TRCGRA register) by the BFC bit in the TRCMR register, set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

Output “H” at the TRCGRD compare match

Initialization

TRCIOA pin: Digital filter function used

Digital filter function clock: Select the count source

TRCIOA pin: Disable output

TRCIOB pin: Enable output

TRCIOC pin: Disable output

TRCIOD pin: Enable output

Disable the pulse output forced cutoff input
5.2.2 Timer RC Associated SER Initial Setting Processing 2

- \(\text{trc} \leftarrow 0x0000 \)
- \(\text{trcgra} \leftarrow 0xFFFF \)
- \(\text{trcgb} \leftarrow 20000 - 1 \)
- \(\text{trcgc} \leftarrow 0xFFFF \)
- \(\text{trcgrd} \leftarrow 40000 - 1 \)
- \(\text{trcir} \leftarrow 0x81 \)
- \(\text{trcsr} \leftarrow 0x00 \)
- \(\text{trcic} \leftarrow 0x07 \)
- \(\text{tstart}_{\text{trc}} \leftarrow 1 \)

Return

- Initialize the TRC register count value to 0x0000.
- Initialize the TRCGRA register count value to 0xFFFF.
- Count period: Set to 1 ms \((25 \text{ ns} \times f_2 (\text{FRA2}) \times f_1 (\text{TCK0 to TCK2}) \times 20000 = 1 \text{ ms})\)
- Initialize the TRCGRC register count value to 0xFFFF.
- Count period: Set to 2 ms \((25 \text{ ns} \times f_2 (\text{FRA2}) \times f_1 (\text{TCK0 to TCK2}) \times 40000 = 2 \text{ ms})\)
- Enable interrupt (IMIA) by the IMFA bit
- Disable interrupt (IMIB) by the IMFB bit
- Disable interrupt (IMIC) by the IMFC bit
- Disable interrupt (IMID) by the IMFD bit
- Enable interrupt (OV1) by the OVF bit
- Initialize the timer RC status flag

TRC interrupt: Interrupt priority level 7

Start the TRC count
5.3 Timer RC Interrupt Handling

```
TRC_int()

imfa_trcsr = 1?
  Yes

imfa_trcsr ← 0

general_register ← trcgra

buffer_register ← trcgrc

f_capture ← 1

ovf_trcsr = 1?
  Yes

ovf_trcsr ← 0

ovf_cnt++

No

Any input capture signal to the TRCIOA pin detected?

Clear input capture flag A

Read the TRCGRA register

Read the TRCGRC register

Set the capture flag

Overflow?

Clear the overflow flag

Increment the overflow counter

return
```
6. **Sample Programming Code**

A sample program can be downloaded from the Renesas Technology website.
To download, click “Application Notes” in the left-hand side menu of the R8C/Tiny Series page.

7. **Reference Documents**

Hardware Manual
R8C/27 Group Hardware Manual
The latest version can be downloaded from the Renesas Technology website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Technology website.
Renesas Technology website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>June 29, 2007</td>
<td>First Edition issued</td>
</tr>
</tbody>
</table>

Volume and Support

R8C/27 Group
Timer RC in Input Capture and Output Compare Functions
Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed on Renesas' website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guarantees regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.