To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”:
 - Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”:
 - Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”:
 - Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
1. Abstract
 This document describes how to set up and use the timer RB in programmable waveform generation mode on the R8C/25 Group device.

2. Introduction
 The application example described in this document is applied to the following:

 • MCU: R8C/25 Group
 • XIN clock: 20 MHz

 This program can be used with other R8C/Tiny Series which have the same SFR (special function register) as the R8C/25 Group. Check the manual for any additions and modifications to functions. Careful evaluation is recommended before using this application note.
3. Applications

3.1 Timer RB

Timer RB is an 8-bit timer with an 8-bit prescaler. The prescaler and timer each consist of a reload register and counter. The reload register and counter are allocated at the same address (refer to Table 3.1 Programmable Waveform Generation Mode Specifications for access to the reload register and counter).

Timer RB has timer RB primary and timer RB secondary as reload registers.

The count source for timer RB is the operating clock that regulates the timing of timer operations such as counting and reloading.

Figure 3.1 shows a Block Diagram of Timer RB.

Timer RB has four operation modes listed as follows:

- **Timer mode:** The timer counts an internal count source (peripheral function clock or timer RA underflows).
- **Programmable waveform generation mode:** The timer outputs pulses of a given width successively.
- **Programmable one-shot generation mode:** The timer outputs a one-shot pulse.
- **Programmable wait one-shot generation mode:** The timer outputs a delayed one-shot pulse.

Figure 3.1 Block Diagram of Timer RB
3.2 Programmable Waveform Generation Mode

In programmable waveform generation mode, the signal output from the TRBO pin is inverted each time the counter underflows, while the values in registers TRBPR and TRBSC are counted alternately (refer to Table 3.1). Counting starts by counting the setting value in the TRBPR register. The TRBOCR register is unused in this mode.

Figure 3.2 shows the TRBCR Register in Programmable Waveform Generation Mode, and Figure 3.3 shows Registers TRBIOC and TRBMR in Programmable Waveform Generation Mode, Figure 3.4 shows Registers TRBPRE, TRBSC, and TRBPR in Programmable Waveform Generation Mode. Figure 3.5 shows an Operating Example of Timer RB in Programmable Waveform Generation Mode.

Table 3.1 Programmable Waveform Generation Mode Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count sources</td>
<td>f1, f2, f8, timer RA underflow</td>
</tr>
<tr>
<td>Count operations</td>
<td>• Decrement</td>
</tr>
<tr>
<td></td>
<td>• When the timer underflows, it reloads the contents of the primary reload and</td>
</tr>
<tr>
<td></td>
<td>secondary reload registers alternately before the count continues.</td>
</tr>
<tr>
<td>Width and period of</td>
<td>Primary period: ((n+1)(m+1)/fi)</td>
</tr>
<tr>
<td>output waveform</td>
<td>Secondary period: ((n+1)(p+1)/fi)</td>
</tr>
<tr>
<td></td>
<td>Period: ((n+1)((m+1)+(p+1))/fi)</td>
</tr>
<tr>
<td></td>
<td>fi: count source frequency</td>
</tr>
<tr>
<td></td>
<td>n: Value set in TRBPRE register</td>
</tr>
<tr>
<td></td>
<td>m: Value set in TRBPR register</td>
</tr>
<tr>
<td></td>
<td>p: Value set in TRBSC register</td>
</tr>
<tr>
<td>Count start condition</td>
<td>1 (count starts) is written to the TSTART bit in the TRBCR register.</td>
</tr>
<tr>
<td>Count stop conditions</td>
<td>• 0 (count stops) is written to the TSTART bit in the TRBCR register.</td>
</tr>
<tr>
<td></td>
<td>• 1 (count forcibly stops) is written to the TSTOP bit in the TRBCR register.</td>
</tr>
<tr>
<td>Interrupt request</td>
<td>• In half a cycle of the count source, after timer RB underflows during the</td>
</tr>
<tr>
<td>generation timing</td>
<td>secondary period (at the same time as the TRBO output change) [timer RB</td>
</tr>
<tr>
<td></td>
<td>interrupt]</td>
</tr>
<tr>
<td>TRBO pin function</td>
<td>Programmable output port or pulse output</td>
</tr>
<tr>
<td>INT0 pin function</td>
<td>Programmable I/O port or INT0 interrupt input</td>
</tr>
<tr>
<td>Read from timer</td>
<td>The count value can be read out by reading registers TRBPR and TRBPRE(1).</td>
</tr>
<tr>
<td>Write to timer</td>
<td>• When registers TRBPRE, TRBSC, and TRBPR are written while the count is</td>
</tr>
<tr>
<td></td>
<td>stopped, values are written to both the reload register and counter.</td>
</tr>
<tr>
<td></td>
<td>• When registers TRBPRE, TRBSC, and TRBPR are written to during count</td>
</tr>
<tr>
<td></td>
<td>operation, values are written to the reload registers only.(2)</td>
</tr>
<tr>
<td>Select functions</td>
<td>• Output level select function</td>
</tr>
<tr>
<td></td>
<td>The TOPL bit in the TRBIOC register selects the output level during primary</td>
</tr>
<tr>
<td></td>
<td>and secondary periods.</td>
</tr>
<tr>
<td></td>
<td>• TRBO pin output switch function</td>
</tr>
<tr>
<td></td>
<td>Timer RB pulse output or P3_1 latch output is selected by the TOCNT bit in</td>
</tr>
<tr>
<td></td>
<td>the TRBIOC register.(3)</td>
</tr>
</tbody>
</table>

NOTES:

1. Even when counting the secondary period, the TRBPR register may be read.
2. The set values are reflected in the waveform output beginning with the following primary period after writing to the TRBPR register.
3. The value written to the TOCNT bit is enabled by the following.
 • When count starts.
 • When a timer RB interrupt request is generated.
 The contents after the TOCNT bit is changed are reflected from the output of the following primary period.
Timer RB Control Register

<table>
<thead>
<tr>
<th>Bit Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSTART</td>
<td>Timer RB count start bit(1)</td>
<td>0 : Count stops 1 : Count starts</td>
<td>RW</td>
</tr>
<tr>
<td>TCSTF</td>
<td>Timer RB count status flag(1)</td>
<td>0 : Count stops 1 : During count(3)</td>
<td>RO</td>
</tr>
<tr>
<td>TSTOP</td>
<td>Timer RB count forcible stop bit(1, 2)</td>
<td>When this bit is set to 1, the count is forcibly stopped. When read, its content is 0.</td>
<td>RW</td>
</tr>
<tr>
<td>(b7-b3)</td>
<td>Nothing is assigned. If necessary, set to 0. When read, the content is 0.</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTES:

1. Refer to 3.3 Notes on Timer RB.
2. When the TSTOP bit is set to 1, registers TRBPRE, TRBSC, TRBPR, and bits TSTART and TCSTF, and the TOSSTF bit in the TRBOCR register are set to values after a reset.
3. Indicates that count operation is in progress in timer mode or programmable waveform mode. In programmable one-shot generation mode or programmable wait one-shot generation mode, indicates that a one-shot pulse trigger has been acknowledged.

Figure 3.2 TRBCR Register in Programmable Waveform Generation Mode
Timer RB I/O Control Register

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Address</th>
<th>After Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRBIOC</td>
<td>010Ah</td>
<td>00h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit Symbol</th>
<th>Bit Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRBIOC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | Timer RB output level select bit | 0: Outputs “H” for primary period
| | | Outputs “L” for secondary period
| | | Outputs “L” when the timer is stopped
| | | 1: Outputs “H” for primary period
| | | Outputs “H” for secondary period
| | | Outputs “H” when the timer is stopped |

Timer RB Mode Register

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Address</th>
<th>After Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRBMR</td>
<td>010Bh</td>
<td>00h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit Symbol</th>
<th>Bit Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRBMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timer RB operating mode select bits(^{(1)})</td>
<td>01: Programmable waveform generation mode</td>
</tr>
<tr>
<td></td>
<td>TMOD0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TMOD1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RW</td>
</tr>
<tr>
<td></td>
<td>TWRC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCK0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCK1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TKOUT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RW</td>
</tr>
</tbody>
</table>

NOTES:
1. Change bits TMOD1 and TMOD0; TCK1 and TCK0; and TKOUT when both the TSTART and TCSTF bits in the TRBCR register set to 0 (count stops).

Figure 3.3 Registers TRBIOC and TRBMR in Programmable Waveform Generation Mode
Timer RB Prescaler Register\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Address</th>
<th>After Reset</th>
<th>Function</th>
<th>Setting Range</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRBPRE</td>
<td>010Ch</td>
<td>FFh</td>
<td>Counts an internal count source or timer RA underflow s</td>
<td>00h to FFh</td>
<td>RW</td>
</tr>
</tbody>
</table>

NOTE:
1. When the TSTOP bit in the TRBCR register is set to 1, the TRBPRE register is set to FFh.

Timer RB Secondary Register\(^{(3, 4)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Address</th>
<th>After Reset</th>
<th>Function</th>
<th>Setting Range</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRBSC</td>
<td>010Dh</td>
<td>FFh</td>
<td>Counts timer RB prescaler underflows(^{(1)})</td>
<td>00h to FFh</td>
<td>WO(^{(2)})</td>
</tr>
</tbody>
</table>

NOTES:
1. The values of registers TRBPR and TRBSC are reloaded to the counter alternately and counted.
2. The count value can be read out by reading the TRBPR register even when the secondary period is being counted.
3. When the TSTOP bit in the TRBCR register is set to 1, the TRBSC register is set to FFh.
4. To write to the TRBSC register, perform the following steps.
 (1) Write the value to the TRBSC register.
 (2) Write the value to the TRBPR register. (If the value does not change, write the same value second time.)

Timer RB Primary Register\(^{(2)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Address</th>
<th>After Reset</th>
<th>Function</th>
<th>Setting Range</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRBPR</td>
<td>010Eh</td>
<td>FFh</td>
<td>Counts timer RB prescaler underflows(^{(1)})</td>
<td>00h to FFh</td>
<td>RW</td>
</tr>
</tbody>
</table>

NOTES:
1. The values of registers TRBPR and TRBSC are reloaded to the counter alternately and counted.
2. When the TSTOP bit in the TRBCR register is set to 1, the TRBPRE register is set to FFh.

Figure 3.4 Registers TRBPRE, TRBSC, and TRBPR in Programmable Waveform Generation Mode
Figure 3.5 Operating Example of Timer RB in Programmable Waveform Generation Mode

The above applies under the following conditions.
- TRBPRE = 01h, TRBPR = 01h, TRBSC = 02h
- TRBIOC register TOCNT = 0 (timer RB waveform is output from the TRBO pin)
3.3 Notes on Timer RB

- Timer RB stops counting after a reset. Set the values in the timer RB and timer RB prescalers before the count starts.
- Even if the prescaler and timer RB is read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In programmable one-shot generation mode and programmable wait one-shot generation mode, when setting the TSTART bit in the TRBCR register to 0 (count stops) or setting the TOSSP bit in the TRBOCR register to 1 (one-shot stops), the timer reloads the value of reload register and stops. Therefore, in programmable one-shot generation mode and programmable wait one-shot generation mode, read the timer count value before the timer stops.
- The TCSTF bit remains 0 (count stops) for 1 to 2 cycles of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped. During this time, do not access registers associated with timer RB(1) other than the TCSTF bit.
- The TCSTF bit remains 1 for 1 to 2 cycles of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. During this time, do not access registers associated with timer RB(1) other than the TCSTF bit.

Timer RB counting is stopped when the TCSTF bit is set to 0.

NOTE:

1. Registers associated with timer RB: TRBCR, TRBOCR, TRBMR, TRBPRE, TRBSC, and TRRBPR.

- If the TSTOP bit in the TRBCR register is set to 1 during timer operation, timer RB stops immediately.
- If 1 is written to the TOSST or TOSSP bit in the TRBOCR register, the value of the TOSSTF bit changes after one or two cycles of the count source have elapsed. If the TOSSP bit is written to 1 during the period between when the TOSST bit is written to 1 and when the TOSSTF bit is set to 1, the TOSSTF bit may be set to either 0 or 1 depending on the content state. Likewise, if the TOSST bit is written to 1 during the period between when the TOSSP bit is written to 1 and when the TOSSTF bit is set to 0, the TOSSTF bit may be set to either 0 or 1.
4. Program Overview

By starting the count operation, a signal will be output from the TRBO pin as follows.

- Primary period: 1 ms
 \[1 \text{ ms} = 20 \text{ MHz} \times f_2 \times (\text{TRBPRE} + 1) \times (\text{TRBPR} + 1)\]
 \[= 50 \text{ ns} \times 2 \times (199 + 1) \times (49 + 1)\]

- Secondary period: 2 ms
 \[1 \text{ ms} = 20 \text{ MHz} \times f_2 \times (\text{TRBPRE} + 1) \times (\text{TRBSC} + 1)\]
 \[= 50 \text{ ns} \times 2 \times (199 + 1) \times (99 + 1)\]

- “H” output during primary period, “L” output during secondary period, and “L” output when the timer stops

Figure 4.1 shows the Pin Used.

![Figure 4.1 Pin Used](image)

4.1 Faction Table

| Table 4.1 | Declaration | void timer_rbr Init(void) |
| Argument | Argument name | Meaning |
| None |

| Variable used (global) | Variable name | Usage |
| None |

| Return value | Type | Value | Meaning |
| None |

| Function | Initialize the SFR registers associated with timer RB |

(Original text continues...
4.2 Flow Chart

4.2.1 Main functions

```
main()

asm("FCLR I")

prc0 ← 1

cm13 ← 1

while (i <= 255) i++

ocd2 ← 0

wait until oscillation stabilizes

cm16 ← 0

Main clock frequency: no divide

cm17 ← 0

CM16 and CM17 enabled

cm06 ← 0

prc0 ← 0

System control register protect

Timer RB SFR initial setting

timer_rb_init()

asm("FSET I")

Timer RB interrupt request ?

ir_trbic ≠ 0

Yes

No

Set timer RB interrupt request bit to 0
(Set IR bit to 0 using MOV instruction)

trbic ← 0x00

Interruption disabled

System control register protect cancelled

XIN-XOUT pin

Select XIN-XOUT drive capacity: HIGH

Main clock oscillation starts

Select main clock

Main clock frequency: no divide

CM16 and CM17 enabled

System control register protect

Initialize timer RB SFR setting
(Set to programmable waveform generation mode)
4.2.2 Timer RB SFR Initial Setting

```
4.2.2 Timer RB SFR Initial Setting

- tstart_trbcrt ← 0
- tcstf_trbcr = 0 ?
 - trbic ← 0x00
 - tstop_trbcr ← 1
 - trbpre ← 200 - 1
 - Secondary period: set to 2 ms
 (20 MHz × f2 × 200 × 100 = 2 ms)
- Yes
 - Timer RB interrupt disabled
 - Initialize registers TRBPRE, TRBSC, and TRBPR,
 and bits TSTART and TCSTF in TRBCR register
- No
 - trbsc ← 100 -1
 - trbpr ← 50 - 1
 - topl_trbioc ← 0
 - “H” output during primary period,
 “L” output during secondary period
 - tocni_trbioc ← 0
 - inostg_trbioc ← 0
 - inoseg_trbioc ← 0
 - tmod0_trbmr ← 1
 - tmod1_trbmr ← 0
 - twrc_trbmr ← 1
 - tck0_trbmr ← 1
 - tck1_trbmr ← 1
 - tckcut_trbmr ← 0
 - Set to 01 in programmable waveform generation mode
 - tckcut_trbmr ← 0
 - Timer RB count source: f2
 - Provide count source
 - tstart_trbcrt ← 1
 - Timer RB operation starts
 - tcstf_trbcr = 1 ?
 - Yes
 - return
```
5. Sample Programming Code

Download a sample program from the Renesas Technology website.
To download, click “Application Notes” in the left-hand side menu from the top page of the R8C/Tiny Series.

6. Reference Document

Hardware Manual
   R8C/25 Group Hardware Manual
   (Download the latest version from the Renesas Technology website.)

Technical News/Technical Update
   (Download the latest information from the Renesas Technology website.)
Website and Support

Renesas Technology website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

<table>
<thead>
<tr>
<th>REV.</th>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Sep 15, 2006</td>
<td>First Edition issued</td>
</tr>
</tbody>
</table>
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
   Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.