To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 - “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
1. Abstract

This document describes a program for timer RA in pulse period measurement mode.

2. Introduction

The application example described in this document applies to the following MCU and parameter(s):

- **MCU**: R8C/25 Group

This program can be used with other R8C/Tiny Series MCUs which have analogous special function registers (SFRs) as the R8C/25 Group. Check the manual for any additions and modifications to functions. Careful evaluation is recommended before using this application note.
3. Application Example Description

In pulse period measurement mode, the pulse period of an external signal input from the INT1/TRAIO pin is measured.

The setting conditions for this program are as follows:

- **Count source**: \(f_8 \)
- **Measurement period**: The period from one rising edge to the next rising edge of the measured pulse
- **Input pin**: INT1/TRAIO pin (P1_7)
- **TRAIO input filter**: No filter
- **Timer RA prescaler underflow period**: 10 μs

\[
40 \text{ MHz (fOCO)} \times f_2 (\text{FRA2}) \times f_8 (\text{TCK0 to TCK2}) \times 25 (\text{TRAPRE register}) = 10 \mu s
\]

Figure 3.1 shows an Operating Example in Pulse Period Measurement Mode.
This sample program may include bit operations of unused functions for the SFR bit layout. Set these values according to the operating conditions of the user system.
3.1 Pin Used

Table 3.1 Pin Used and Its Function

<table>
<thead>
<tr>
<th>Pin</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1_7/TRAIO/INT1</td>
<td>Input</td>
<td>Measurement pulse input</td>
</tr>
</tbody>
</table>

![Diagram showing the period from one rising edge to the next rising edge of the measured pulse is measured.]

Figure 3.2 Pin Used

3.2 Memory Usage

Table 3.2 Memory Usage

<table>
<thead>
<tr>
<th>Memory Usage</th>
<th>Size</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM</td>
<td>246 bytes</td>
<td>In main.c module</td>
</tr>
<tr>
<td>RAM</td>
<td>5 bytes</td>
<td>In main.c module</td>
</tr>
<tr>
<td>Maximum user stack usage</td>
<td>10 bytes</td>
<td>main function: 7 bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>timer_ra_init function: 3 bytes</td>
</tr>
<tr>
<td>Maximum interrupt stack usage</td>
<td>18 bytes</td>
<td>TRA_int function: 18 bytes</td>
</tr>
</tbody>
</table>

Memory usage varies depending on the C compiler version and the compile option. The above applies under the following conditions:

- C compiler: M16C/60, 30, 20, 10, Tiny, R8C/Tiny Series Compiler V.5.40 Release 00
- Compile option: -c -finfo; NOTE: -dir "$(CONFIGDIR)" -R8C
 NOTE: Unavailable in the R8C/Tiny-exclusive free version.
4. Setup

This section shows the initial setting procedures and values to perform the example described in 3. Application Example Description. Refer to the R8C/25 Group Hardware Manual for details on individual registers.

4.1 System Clock Setting

(1) Enable writing to registers CM0, CM1, OCD, FRA0, FRA1, and FRA2.

Protect Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

PRCR [Address 000Ah]

Writing to registers CM0, CM1, OCD, FRA0, FRA1, and FRA2 enabled

(2) Start the low-speed on-chip oscillator.

System Clock Control Register 1

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CM1 [Address 0007h]

CM14 Low-speed on-chip oscillator oscillation stop bit
Low-speed on-chip oscillator oscillates

(3) Set the division ratio of the high-speed on-chip oscillator clock.

High-Speed On-Chip Oscillator Control Register 2

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

FRA2 [Address 0025h]

FRA22 to FRA20 High-speed on-chip oscillator frequency switch bit
Divide-by-2 mode

(57-53) Reserved bits
Set to 0.

(4) Start the high-speed on-chip oscillator.

High-Speed On-Chip Oscillator Control Register 0

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

FRA0 [Address 0023h]

FRA00 High-speed on-chip oscillator enable bit
High-speed on-chip oscillator oscillates
(5) Wait until oscillation stabilizes.

(6) Select the high-speed on-chip oscillator.

![High-Speed On-Chip Oscillator Control Register 0](image)

(7) Set system clock division select bits 1.

![System Clock Control Register 1](image)

(8) Set system clock division select bit 0.

![System Clock Control Register 0](image)

(9) Disable writing to registers CM0, CM1, OCD, FRA0, FRA1, and FRA2.

![Protect Register](image)
4.2 Pulse Period Measurement Mode Setting

(1) Set the port P1 direction register.

Port P1 Direction Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD1</td>
<td>[Address 00E3h]</td>
</tr>
<tr>
<td>PD1_7</td>
<td>Port P1_7 direction bit</td>
</tr>
<tr>
<td>Input mode</td>
<td></td>
</tr>
</tbody>
</table>

(2) Stop the timer RA count.

Timer RA Control Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRACR</td>
<td>[Address 0100h]</td>
</tr>
<tr>
<td>TSTART</td>
<td>Timer RA count start bit</td>
</tr>
<tr>
<td>Count stops</td>
<td></td>
</tr>
</tbody>
</table>

(3) Wait until the TCSTF bit in the TRACR register is set to 0.

(4) Set the timer RA interrupt control register (timer RA interrupt disabled).

Timer RA Interrupt Control Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAIC</td>
<td>[Address 0056h]</td>
</tr>
<tr>
<td>ILVL2 to ILVL0</td>
<td>Interrupt priority level select bits 2 to 0</td>
</tr>
<tr>
<td>Level 0 (interrupt disabled)</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>Interrupt request bit</td>
</tr>
<tr>
<td>No interrupt request</td>
<td></td>
</tr>
<tr>
<td>(b7-b4)</td>
<td>Nothing is assigned.</td>
</tr>
<tr>
<td>Set to 0.</td>
<td></td>
</tr>
</tbody>
</table>

(5) Forcibly stop the timer RA count.

Timer RA Control Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRACR</td>
<td>[Address 0100h]</td>
</tr>
<tr>
<td>TSTOP</td>
<td>Timer RA count forcibly stop bit</td>
</tr>
<tr>
<td>Count forcibly stopped</td>
<td></td>
</tr>
</tbody>
</table>
(6) Set the timer RA prescaler register.

Timer RA Prescaler Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

TRAPRE [Address 0103h]
Timer RA underflow period setting
25 – 1 (0 x 18) setting

(7) Set the timer RA register.

Timer RA Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRA [Address 0104h]
Timer RA register initial value setting
0xFF setting

(8) Set the timer RA control register.

Timer RA Control Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRACR [Address 0100h]

- **TSTART** Timer RA count start bit
 - Count stops
- **TCSTF** Timer RA count status flag
 - Unavailable. Set to 0.
- **TSTOP** Timer RA count forcible stop bit
 - Unavailable. Set to 0.
- **(b3)** Nothing is assigned.
 - Set to 0.
- **TEDGF** Timer RA edge judgment flag
 - No active edge
- **TUNDF** Timer RA underflow flag
 - No underflow
- **(b7-b6)** Nothing is assigned.
 - Set to 0.
(9) Set the timer RA I/O control register.

Timer RA I/O Control Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **TRAIOC** [Address 0101h]
 - TEDGSEL
 - **TRAIO** polarity switch bit
 - The period from one rising edge to the next rising edge of the measured pulse is measured.

- **TOPCR**
 - **TRAIO** output control bit
 - Set to 0 in pulse period measurement mode.

- **TOENA**
 - **TRAIO** output enable bit
 - Set to 0 in pulse period measurement mode.

- **TIOSEL**
 - **INT1/TRAIO** select bit
 - **INT1/TRAIO** pin (P1_7)

- **TIPF1 and TIPF0**
 - **TRAIO** input filter select bits
 - No filter
 - Set to 0.

(10) Set the timer RA mode register.

Timer RA Mode Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **TRAMR** [Address 0102h]
 - **TMOD2 to TMOD0**
 - Timer RA operating mode select bits
 - Pulse period measurement mode

- **TCK2 to TCK0**
 - Timer RA count source select bit
 - f8 selected

- **TCKCUT**
 - Timer RA count source cutoff bit
 - Count source provided
(11) Set the timer RA interrupt control register.

Timer RA Interrupt Control Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRAIC [Address 0056h]
- ILVL2 to ILVL0: Interrupt Priority Level Select Bits 2 to 0
- IR: Interrupt request bit
 - No interrupt request
 - Set to 0.

(12) Start the timer RA count.

Timer RA Control Register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TRACR [Address 0100h]
- TSTART: Timer RA count start bit
 - Count starts

(13) Wait until the TCSTF bit in the TRACR register is set to 1.

(14) Immediately after the count starts, allow two cycles or more of the timer RA prescaler.
(15) Set the TEDGF bit in the TRACR register to 0 before use.

NOTE:
In pulse width measurement mode and pulse period measurement mode, use the MOV instruction to set the TRACR register. Write 1 to bits TEDGF and TUNDF to avoid their values being changed.
5. Flowchart

5.1 Main Function

5.1.1 Main Function 1

```
main()
asm("FCLR I")
prc0 ← 1
cm14 ← 0
fra2 ← 0x00
fra00 ← 1
Repeat
(i <= 255)
  i++;
  fra01 ← 1
  cm16 ← 0
  cm17 ← 0
  cm06 ← 0
  prc0 ← 0
Timer RA SFR initial setting processing
timer_ra_init()
asm("FSET I")
```

- Disable interrupts
- Disable system control register protect
- Start the low-speed on-chip oscillator
- High-speed on-chip oscillator clock: Divide-by-2 mode
- Start the high-speed on-chip oscillator
- Wait until oscillation stabilizes
- Select the high-speed on-chip oscillator
- No system clock division
- Enable CM16 and CM17
- Enable system control register protect
- Timer RA associated SFR initial setting processing (pulse period measurement mode)
- Enable interrupts
5.1.2 Main Function 2

1

f_edge = 1?

Yes

Check the active edge

No

undf_cnt = 0?

Yes

Check the underflow

No

measurement_value ← 0xFF − present_tra

measurement_value ← 0x0100 * undf_cnt + 0xFF − present_tra

undf_cnt ← 0

Clear the underflow counter

f_capture ← 0

Clear the edge flag

Calculate the measurement value
5.2 Timer RA Associated SFR Initial Setting Processing

- timer_ra_init()
 - pd1 ← pd1&0x7F
 - tstart_tracr ← 0
 - tcstf_tracr = 0?
 - traic ← 0x00
 - tstop_tracr ← 1
 - trapre ← 25 − 1
 - tra ← 0xFF
 - tracr ← 0x00
 - traioc ← 0x00
 - traioc ← 0x14
 - traic ← 0x07
 - tstart_tracr ← 1
 - tcstf_tracr = 1?
 - Repeat (i <= 255)
 - i++;
 - tracr ← 0x21
 - return
 - Stop timer RA operation
 - Timer RA interrupt: Interrupt level 0 (interrupt disabled)

 - Initialize registers TRAPRE and TRA, and bits TSTART and TCSTF in the TRACR register
 - Underflow period: Set to 10 μs (40 MHz ⨉ f2 ⨉ f8 ⨉ 25 = 10 μs)
 - TRA: Set to 0xFF
 - TEDGF: Set to no active edge; TUNDF: Set to no underflow
 - Count at the rising edge of the TRAIO input
 - Select the INT1/TRAIO pin (P1_7)
 - TRAIO input filter: No filter
 - Select pulse period measurement mode
 - Count source: Set to f8
 - Provide the count source
 - Timer RA interrupt: Interrupt level 7
 - Start timer RA operation
 - Wait for two or more cycles of the timer RA prescaler
 - Set 0 to tedgf_tracr

- P1_7(TRAIO) pin: Set to an input port
5.3 Timer RA Interrupt Handling

TRA_int()

```
if (tedgf_tracr != 0)
    Yes
    tracr ← 0x21
    present_tra ← tra
    f_edge ← 1

if (tundf_tracr != 0)
    Yes
    tracr ← 0x11
    undf_cnt ++
```

Any active edge?
Set 0 to both tedgf_tracr and tundf_tracr
Read tra
Set the edge flag
Any underflow?
Set 1 to tedgf_tracr and 0 to tundf_tracr
Increment the underflow counter

return
6. Sample Programming Code

A sample program can be downloaded from the Renesas Technology website.
To download, click “Application Notes” in the left-hand side menu of the R8C/Tiny Series page.

7. Reference Documents

Hardware Manual
R8C/25 Group Hardware Manual
The latest version can be downloaded from the Renesas Technology website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Technology website.
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Sep 15, 2006</td>
<td>−</td>
<td>First Edition issued</td>
</tr>
<tr>
<td>2.00</td>
<td>June 29, 2007</td>
<td>2 to 4</td>
<td>3. Application Example Description modified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 to 11</td>
<td>4. Setup SFR setting procedures added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>5.1.1 Main Function 1 Oscillation stabilization processing added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>5.1.2. Main Function 2 Pulse period measurement calculation processing added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>5.2 Timer RA Associated SFR Initial Setting Processing modified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>5.3 Timer RA Interrupt Handling added</td>
</tr>
</tbody>
</table>
1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed on our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guarantees regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.