Abstract

This document describes timer A operation using a two-phase pulse signal and quadrupled processing in event counter mode with the R32C/100 Series.

Products

MCUs: R32C/116 Group, R32C/117 Group, and R32C/118 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.
Contents

1. Specifications .. 3
2. Operation Confirmation Conditions ... 4
3. Reference Application Note .. 4
4. Hardware ... 4
 4.1 Pins Used .. 4
5. Software .. 5
 5.1 Operation Overview ... 5
 5.2 Flowchart .. 7
 5.2.1 Main Processing .. 7
 5.2.2 Timer A4 Interrupt Handler ... 9
6. Sample Code .. 10
7. Reference Documents .. 10
8. Website and Support .. 10
1. Specifications

When using the event counter mode of timer A4, the timer counts a two-phase pulse signal applied to pins TA4IN and TA4OUT using quadrupled processing. When an overflow or underflow occurs, a high is output from the corresponding port.

Table 1.1 lists the Peripheral Function and Its Application. Figure 1.1 shows the Overview of Quadrupled Processing.

Table 1.1 Peripheral Function and Its Application

<table>
<thead>
<tr>
<th>Peripheral Function</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer A (timer A4)</td>
<td>Counts a two-phase pulse signal applied to pins TA4IN and TA4OUT</td>
</tr>
</tbody>
</table>

Figure 1.1 Overview of Quadrupled Processing
2. **Operation Confirmation Conditions**

The sample code accompanying this application note has been run and confirmed under the conditions below.

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCU used</td>
<td>R5F64189DFD (R32C/118 Group)</td>
</tr>
</tbody>
</table>
| Operating frequencies | Main clock: 16 MHz
PLL clock: 100 MHz
Base clock: 50 MHz
CPU clock: 50 MHz
Peripheral bus clock: 25 MHz
Peripheral function clock source: 25 MHz |
| Operating voltage | 5 V |
| Integrated development environment | Renesas Electronics Corporation
High-performance Embedded Workshop Version 4.07 |
| C compiler | Renesas Electronics Corporation
R32C/100 Series C Compiler V.1.02 Release 01
Compile options
-D__STACKSIZE__=0X300 -D__ISTACKSIZE__=0X300
-DVECTOR_ADR=0x0FFFFFFFBDC -c -finfo -dir "$(CONFIGDIR)"
(Default setting is used in the integrated development environment.) |
| Operating mode | Single-chip mode |
| Sample code version | Version 1.00 |
| Board used | Renesas Starter Kit for R32C/118 (product name: R0K564189S000BE) |

3. **Reference Application Note**

The application note associated with this application note is listed below. Refer to the following application note for additional information.

- R32C/100 Series Configuring PLL Mode (REJ05B1221-0100)

4. **Hardware**

4.1 **Pins Used**

Table 4.1 lists the Pins Used and Their Functions.

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8_0/TA4OUT</td>
<td>Input</td>
<td>Two-phase pulse input of timer A4</td>
</tr>
<tr>
<td>P8_1/TA4IN</td>
<td>Input</td>
<td>Two-phase pulse input of timer A4</td>
</tr>
<tr>
<td>P4_0</td>
<td>Output</td>
<td>Output to confirm counter overflow</td>
</tr>
<tr>
<td>P4_1</td>
<td>Output</td>
<td>Output to confirm counter underflow</td>
</tr>
</tbody>
</table>
5. Software

5.1 Operation Overview

The timer counts a two-phase pulse signal applied to pins TA4IN and TA4OUT. If the counter overflows or underflows, a timer A4 interrupt is generated.

(1) Timer A4 initial settings

Table 5.1 and Table 5.2 list the Timer A4 Settings and Initial Pin Settings to Confirm Overflow or Underflow, respectively.

Table 5.1 Timer A4 Settings

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode</td>
<td>Event counter mode</td>
</tr>
<tr>
<td>Two-phase processing operation</td>
<td>Quadrupled processing operation</td>
</tr>
<tr>
<td>Count operation type</td>
<td>Free-running type</td>
</tr>
</tbody>
</table>

Table 5.2 Initial Pin Settings to Confirm Overflow or Underflow

<table>
<thead>
<tr>
<th>Pin</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4_0 (output to confirm overflow)</td>
<td>0</td>
</tr>
<tr>
<td>P4_1 (output to confirm underflow)</td>
<td>0</td>
</tr>
</tbody>
</table>

(2) Timer A4 count starts

Set the timer A4 count start bit in the count start register to 1 (start counter).

(3) When the counter overflows or underflows

When the counter overflows or underflows, the interrupt request flag of timer A4 becomes 1 (interrupt requested). The counter continues counting without reloading the value in the reload register. In the timer A4 interrupt handler, set each pin as output to confirm overflow or underflow. Table 5.3 lists the Setting Pins as Output to Confirm Overflow or Underflow.

Table 5.3 Setting Pins as Output to Confirm Overflow or Underflow

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting Value for Port P4_0</th>
<th>Setting Value for Port P4_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the counter overflows</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>When the counter underflows</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 5.1 shows the Operation Timing.

![Operation Timing Diagram]

- **TA4OUT pin**: Set to 1 by a program.
- **TA4IN pin**: Set to 0 by an interrupt request acceptance or by a program.
- **Counter value**: 0000h to FFFFh
- **Timer A4 count start bit**: 1
- **Timer A4 interrupt request flag**: 1
- **Port P4_0**: 1
- **Port P4_1**: 1

(1) Initial setting
(2) Start counter: Set to 1 by a program.
(3) Underflow: Set to 0 by an interrupt request acceptance or by a program.
(3) Overflow: Change the setting value by an interrupt handler.
5.2 Flowchart

5.2.1 Main Processing

Figure 5.2 and Figure 5.3 show Main Processing (1) and Main Processing (2), respectively.

![Flowchart]

Figure 5.2 Main Processing (1)
Enable maskable interrupts

Start timer A4 counter

Set pins to confirm overflow or underflow

P4 register ← 00h
P4_0 bit = 0
P4_1 bit = 0

P4_0S register ← 00h
Bits PSEL2 to PSEL0 = 000b
NOD bit = 0

P4_1S register ← 00h
Bits PSEL2 to PSEL0 = 000b
NOD bit = 0

PD4 register
PD4_0 bit ← 1
PD4_1 bit ← 1

TA4S bit = 1

Start counter

I/O port P4_0
Push-pull output

I/O port P4_1
Push-pull output

Output port

Output port

Output port

Output port

Figure 5.3 Main Processing (2)
5.2.2 Timer A4 Interrupt Handler

Figure 5.4 shows the Timer A4 Interrupt Handler.

![Diagram of Timer A4 Interrupt Handler]

(1) Counter overflowed?
 Yes
 (2) Set pin as output to confirm overflow
 return
 No
 (3) Set pin as output to confirm underflow
6. **Sample Code**
 Sample code can be downloaded from the Renesas Electronics website.

7. **Reference Documents**
 R32C/118 Group User's Manual: Hardware Rev.1.10
 The latest versions can be downloaded from the Renesas Electronics website.

 Technical Update/Technical News
 The latest information can be downloaded from the Renesas Electronics website.

 C Compiler Manual
 R32C/100 Series C Compiler Package V.1.02
 C Compiler User's Manual Rev.2.00
 The latest version can be downloaded from the Renesas Electronics website.

8. **Website and Support**
 Renesas Electronics website
 http://www.renesas.com/

 Inquiries
 http://www.renesas.com/inquiry
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Jan. 14, 2011</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereunder by any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application example. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the product or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

- **Standard**: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, and industrial robots.
- **High Quality**: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for support.
- **Specific**: Aircraft, aerospace equipment; submarine repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g., artificial life support devices or systems), surgical implantation, or healthcare intervention (e.g., excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of reconfigurable computer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

Note 1: "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

Note 2: "Renesas Electronics products" mean any product developed or manufactured by or for Renesas Electronics.