1. Abstract

This document describes the setting procedure and operation example for timer A in timer mode using the pulse output function.

2. Introduction

The application example described in this document applies to the following microcomputer (MCU):

MCU: R32C/111 Group

This program can be used with other R32C/100 Series MCUs which have the same special function registers (SFRs) as the R32C/111 Group. Check the user’s manual for any additions or modifications to functions. Careful evaluation is recommended before using this application note.
3. Overview

In timer mode, the timer counts an internally generated count source. The timer decrements until it underflows. Subsequently, the timer then generates an interrupt request.

This document also describes setting the peripheral clock source to 25 MHz, how to generate a timer interrupt request of timer A with a 1 ms period using the peripheral count source f8, and how to output a 1 kHz rectangular wave generated at TAiOUT pin from a port (i = 0 to 4).

Table 3.1 lists the Maximum Period of Timer A Interrupt Request Per Count Source.

Timer A Interrupt Request Period = (timer register value + 1) × Timer Count Source Period

<table>
<thead>
<tr>
<th>Count Source</th>
<th>Count Source Period</th>
<th>Maximum Period of Timer A Interrupt Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>40 ns</td>
<td>2.621 ms</td>
</tr>
<tr>
<td>f8</td>
<td>320 ns</td>
<td>20.972 ms</td>
</tr>
<tr>
<td>f2n (n = 15)</td>
<td>1200 ns (1)</td>
<td>78.64 ms (1)</td>
</tr>
<tr>
<td>fC32</td>
<td>Approx. 0.977 ms</td>
<td>64 s</td>
</tr>
</tbody>
</table>

Xin (main clock) = 16 MHz, PLL clock = 100 MHz, f1 = 25 MHz, fC = 32.768 kHz

Note:
1. Value when selecting the peripheral count source as the f2n clock source.

When outputting the timer Ai pulse from the TAiOUT pin, set the corresponding direction bit of the pin to 1 (output) and TAiOUT output to function registers PSEL2 to PSEL0.

Table 3.2 lists the Port Assigned to TAiOUT Pin and Related Output Register.

<table>
<thead>
<tr>
<th>Timer Pin</th>
<th>Port</th>
<th>Port Direction Register</th>
<th>Function Select Register</th>
<th>Setting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA0OUT</td>
<td>P3_0</td>
<td>PD3_0</td>
<td>P3_0S</td>
<td>01h</td>
</tr>
<tr>
<td></td>
<td>P7_0 (1)</td>
<td>PD7_0</td>
<td>P7_0S</td>
<td>01h</td>
</tr>
<tr>
<td>TA1OUT</td>
<td>P3_2</td>
<td>PD3_2</td>
<td>P3_2S</td>
<td>01h</td>
</tr>
<tr>
<td></td>
<td>P7_2</td>
<td>PD7_2</td>
<td>P7_2S</td>
<td>01h</td>
</tr>
<tr>
<td>TA2OUT</td>
<td>P3_4</td>
<td>PD3_4</td>
<td>P3_4S</td>
<td>01h</td>
</tr>
<tr>
<td></td>
<td>P7_4</td>
<td>PD7_4</td>
<td>P7_4S</td>
<td>01h</td>
</tr>
<tr>
<td>TA3OUT</td>
<td>P3_1</td>
<td>PD3_1</td>
<td>P3_1S</td>
<td>01h</td>
</tr>
<tr>
<td></td>
<td>P7_6</td>
<td>PD7_6</td>
<td>P7_6S</td>
<td>01h</td>
</tr>
<tr>
<td>TA4OUT</td>
<td>P3_6</td>
<td>PD3_6</td>
<td>P3_6S</td>
<td>01h</td>
</tr>
<tr>
<td></td>
<td>P8_0</td>
<td>PD8_0</td>
<td>P8_0S</td>
<td>01h</td>
</tr>
</tbody>
</table>

Note:
1. This port is N-channel open drain output.
3.1 Timer Mode Operation

The following describes timer mode operation of timer A.

1. While the timer counter is stopped, the value written to the timer Ai register is written to both the reload register and the counter \(i = 0 \) to \(4\).
2. After setting the TAiS bit in the TABSR register to 1 (count started), the counter decrements the count source.
3. When the counter underflows, the value from the reload register is reloaded, and the count continues. At the same time, the IR bit in the TAiIC register becomes 1 (interrupt requested), and the TAiOUT pin is inverted.
4. After setting the TAiS bit to 0 (count stopped), the counter holds the count value and stops. At this time, the TAiOUT pin outputs a low signal.
5. The IR bit in the TAiIC register becomes 0 by accepting an interrupt request, or setting it to 0 by a program.

Figure 3.1 shows the operation timing, Figure 3.2 shows the Flowchart of main Process, and Figure 3.3 shows the Process Flowchart of Initial Timer A0 Setting.
Timer A Operation in Timer Mode Using the Pulse Output

Figure 3.2 Flowchart of main Process

Figure 3.3 Process Flowchart of Initial Timer A0 Setting

Note:
1. For SetPLLClock function setting, refer to the user’s manual.

Note:
1. This procedure is for setting port P3_0 to TA0OUT output.
3.2 Settings

This section shows the setting procedures and values to set the example shown in section 3.1 “Timer Mode Operation”. Refer to the user’s manual for details on individual registers.

Set the timer A0 mode register.

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Timer A0 Mode Register (TA0MR)

- **TMOD1 and TMOD0**: Operating Mode Select Bit
 - 00b: Timer mode

- **MR2 and MR1**: Gate Function Select Bit
 - 00b: No gate function

- **MR3**: Set to 0 in timer mode.

- **TCK1 and TCK0**: Count Source Select Bit
 - 01b: f8

Set the timer A0 register.

<table>
<thead>
<tr>
<th>b15</th>
<th>b14</th>
<th>b13</th>
<th>b12</th>
<th>b11</th>
<th>b10</th>
<th>b9</th>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3124</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Timer A0 Register (TA0)

- **Timer Mode**: 3124: Divides the count source by 3125

A 16-bit read/write access to this register should be performed.

Set the port P3 direction register.

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Port P3 Direction Register (PD3)

- **PD3_0**: Port P3_0 Direction Bit
 - 1: Output port

When setting port P3_0 to TA0OUT output, set the port P3_0 direction bit to 1.
Set the function select register.

Set the count start register.

When setting port P3_0 to pulse output using timer A0 timer mode, set the port P3_0 output function select bit in the port P3_0 function select register to 001b (TA0OUT output).
4. **Sample Program**

A sample program can be downloaded from the Renesas Electronics website.

5. **Reference Documents**

User’s Manual
R32C/111 Group User’s Manual Rev.1.10
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C compiler manual
R32C/100 Series C Compiler Package V.1.02 C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
REVISION HISTORY

R32C/100 Series
Timer A Operation in Timer Mode Using the Pulse Output Function

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>June 4,</td>
<td>First Edition issued</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td></td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of the third party or from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application example. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

8. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc. "Standard": Computer, office equipment, communication equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, and industrial robots.

9. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

10. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

12. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Notice