1. Abstract

The R32C/100 Series allows users to select the three-phase motor control timer function operation mode, depending on the user system.

This application note describes microcomputers (MCUs) operation when the marked functions in Table 1.1 are selected.

<table>
<thead>
<tr>
<th>Table 1.1 Settings</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation mode</td>
<td>Sawtooth wave modulation mode</td>
</tr>
<tr>
<td></td>
<td>Triangular wave modulation mode</td>
</tr>
<tr>
<td>Timers A11, A21, and A41 control (three-phase mode)</td>
<td>Timers A11, A21, and A41 not used (three-phase mode 0)</td>
</tr>
<tr>
<td></td>
<td>Timers A11, A21, and A41 used (three-phase mode 1)</td>
</tr>
<tr>
<td>Active level</td>
<td>Active low</td>
</tr>
<tr>
<td></td>
<td>Active high</td>
</tr>
<tr>
<td>Three-phase output pins</td>
<td>Pins U, Û, V, V̅, W, and W of ports P7 and P8 used</td>
</tr>
<tr>
<td></td>
<td>Pins U, Û, V, V̅, W, and W̅ of port P3 used</td>
</tr>
</tbody>
</table>

2. Introduction

The application example described in this document applies to the following MCUs:

• MCUs: R32C/116 Group, R32C/117 Group, and R32C/118 Group

This application note can be used with other R32C/100 Series MCUs which have the same special function registers (SFRs) as the above groups. Check the user’s manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. Detailed Description

3.1 Triangular Wave Modulation Mode and Three-phase Mode 0

(1) Set the INV02 bit in the INVC0 register to 1 (three-phase motor control timer function), the INV06 bit to 0 (triangular wave modulation mode), and the INV11 bit in the INVC1 register to 0 (three-phase mode 0).

(2) Set bits TAiS and TB2S in the TABSR register to 1 (start counter) to decrement the timer B2 counter value (i = 4, 1, and 2).

(3) A one-shot pulse is output from the timer Ai when the timer B2 counter underflows.

(4) Each phase is output at the timing of the timer Ai one-shot pulse falling edge.

(5) Whenever a timer B2 interrupt occurs, the value of timer Ai is rewritten to determine the output value of one-shot pulse successively.

Figure 3.1 shows an example diagram of the triangular wave modulation (three-phase mode 0).
Three-phase Motor Control Timers
(Triangular Wave Modulation Mode, Three-phase Mode 0)

Figure 3.1 Triangular Wave Modulation (Three-phase Mode 0) Operation

The above assumes INVC0 is 00X1110Xb and INVC1 is 0100XX00b (X varies depending on individual system).
Examples of default PWM values are as follows:
- Default values of registers IDB0 and IDB1: DU0 = 0, DUB0 = 1, DU1 = 1, DUB1 = 0
- Default value of the TA4 register: TA4 = m
The value alternates between m and m whenever a timer B2 interrupt occurs.

Notes:
1. Internal signals.
2. INV14: Bit in the INVC1 register.
3. Bits in registers IDB0 and IDB1.
3.2 Dead Time

The signal to switch between active low and active high has dead time. Set the INV14 bit in the INVC1 register to select active low or active high.

Figure 3.2 shows the dead time when active low logic is selected.

![Figure 3.2 Dead Time (Active Low)](image)

3.3 Three-phase Output Buffer Register (IDB0 and IDB1 Registers)

Figure 3.3 shows a U-phase output signal operation example with registers IDB0 and IDB1 and each phase output signal.

When the triangular wave modulation mode is selected, the individual phase output port reflects the IDB1 register setting as soon as the timer starts.
The IDB0 and IDB1 register settings determine individual phase output signal levels. Signals are output successively at the falling edge of the timer A one-shot pulse.

Default values of bits in registers IDB0 and IDB1:
DU0 = 0, DUB0 = 1, DU1 = 1, DUB1 = 0

Notes:
1. Bits in registers IDB0 and IDB1.
2. Internal signals.
3.4 Setting

Figure 3.4 Triangular Wave Modulation (Three-phase Mode 0) Flowchart

1. **Initialize the timer B2 interrupt count.**
2. Set the ICTB2 register.
3. Set the PRC1 bit in the PRCR register to 1 (write enabled).
4. Set the following bits in the INVC0 register:
 - the INV06 bit to 0 (triangular wave modulation mode)
 - the INV04 bit to 1 (disables simultaneous turn-on signal output)
 - the INV03 bit to 1 (enables the three-phase motor control timer output)
 - the INV02 bit to 1 (use three-phase motor control timer function)
5. Set the following bits in the INVC1 register:
 - the INV16 bit to 1 (rising edge of the three-phase output shift register (phases U, V, and W))
 - the INV15 bit to 0 (enables dead time)
 - the INV14 bit to 0 (active low output)
 - the INV12 bit to 0 (f1)
 - the INV11 bit to 0 (three-phase mode 0)
 - the INV10 bit to 0 (the underflow of timer B2)
6. Set the PRC1 bit in the PRCR register to 0 (write disabled).
7. Set the PWCON bit in the TB2SC register to 0 (the underflow of timer B2).
8. Set the following bits in the IDB0 register:
 - bits DU0, DV0, and DW0 to 0 (active (ON))
 - bits DUB0, DVB0, and DWB0 to 1 (inactive (OFF))
9. Set the following bits in the IDB1 register:
 - bits DU1, DV1, and DW1 to 1 (inactive (OFF))
 - bits DUB1, DVB1, and DWB1 to 0 (active (ON))
10. Set the following bits in the TAiMR register (i = 4, 1, and 2):
 - bits TMOD1 and TMOD0 to 10b (one-shot timer mode)
 - bits MR3 and MR1 to 0
 - the MR2 bit to 1 (selected by the TRGSR register)
 - bits TCK1 and TCK0 to 00b (f1)
11. Set the following bits in the TB2MR register:
 - bits TMOD1 and TMOD0 to 00b (timer mode)
 - bits TCK1 and TCK0 to 00b (f1)
12. Use individual output control circuit (set bits TAITGH and TAITGL in the TRGSR register to 01b (the underflow of TB2)) (i = 4, 1, and 2).
13. Set the TB2 register to 2000h.
14. Set bits ILVL2 to ILVL0 in the TB2IC register to 111b (level 7).
15. Set the DTT register to 80h.
16. Set the TAI register to 0800h (i = 4, 1, and 2).
17. Change the TAI register to 1000h.
18. Change the TAI register to 0800h (i = 4, 1, and 2).
19. Change the TAI register to 1000h.
20. Increment
21. Decrement
22. While (1)
23. Disable maskable interrupts.
24. Configuring PLL mode
25. Set the ports for the three-phase motor control timer function.
27. Set bits TAiS and TB2S in the TABSR register to 1 (start counter) (i = 4, 1, and 2).
28. Variable count is cleared to 0?
29. Set the TB2 register to 1000h.
30. No
31. Yes
32. Set the DTT register to 80h.
33. Set the TAl register to 1000h (i = 4, 1, and 2).
3.5 Notes for Registers TAi and TAi1 Settings (i = 4, 1, and 2)

Note the following information when setting registers TAi and TAi1.

(1) TAi register setting

Users must avoid setting the TAi register as follow except if necessary.

If the TAi register is set to 0000h (0000h or 0001h when the INV12 bit in the INVC1 register to 1 (f1 divided-by-2)), the TAi timer counter will not start.

Besides, if the TAi register is set to a value larger than the TB2 register setting value (a value larger than “TB2 register setting value - 1” when the INV12 bit in the INVC1 register is 1 (f1 divided-by-2)), the TAi timer counter continues running the number of cycles determined by the TB2 register.

At the end of both events, the output signal level does not change since no falling edges occur.

(2) Dead time timer restart

Even if the TAi register setting causes the dead time timer to restart while a dead time timer is counting, the dead time timer does not restart counting.

If the following conditions are met, the dead time timer will not restart counting:

- Triangular wave modulation mode (three-phase mode 0): f1 selected as count source for the dead time timer
 \[
 ((\text{TB2 register setting value} + 1) - \text{TAi register setting value at an even number of times}) + \text{TAi register setting value at an odd number of times} < \text{setting value of dead time timer}
 \]
 \[
 \text{TAi register setting value at an even number of times} + ((\text{TB2 register setting value} + 1) - \text{TAi register setting value at an odd number of times}) < \text{setting value of dead time timer}
 \]

- Triangular wave modulation mode (three-phase mode 1): f1 selected as count source for the dead time timer
 \[
 ((\text{TB2 register setting value} + 1) - \text{TAi1 register setting value}) + \text{TAi register setting value} < \text{setting value of dead time timer}
 \]
 \[
 \text{TAi1 register setting value} + ((\text{TB2 register setting value} + 1) - \text{TAi register setting value}) < \text{setting value of dead time timer}
 \]

- Sawtooth wave modulation mode: f1 selected as count source for the dead time timer
 \[
 ((\text{TB2 register setting value} + 1) - \text{TAi register setting value}) - 1 < \text{setting value of dead time timer}
 \]
 \[
 \text{TAi register setting value} - 1 < \text{setting value of dead time timer}
 \]
4. Sample Program

A sample program can be downloaded from the Renesas Electronics website.

5. Reference Documents

R32C/116 Group User’s Manual: Hardware Rev.1.10
R32C/117 Group User’s Manual: Hardware Rev.1.10
R32C/118 Group User’s Manual: Hardware Rev.1.10
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
R32C/100 Series C Compiler Package V.1.02 C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Oct. 29, 2010</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application example. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacturer, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunction under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of recreative software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damage or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

(Nota 1) Renesas Electronics as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Nota 2) "Renesas Electronics product" means any product developed or manufactured by or for Renesas Electronics.