Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SH7080 Group

SSU Master Reception (Reading from EEPROM via the SPI Bus)

Introduction

This application note describes master reception on the SPI interface using the SSU (Synchronous Serial Communication Unit) module. You can use this application note as reference information for designing user software.

Target Device

SH7085 (R5F7085)

Contents

1.	Specifications	. 2
2.	Description of Functions Used	. 4
3.	Principles of Operation	. 6
4.	Description of Software	. 9
5.	Flowcharts	16
Web	site and Contact Information	21

RENESAS

1. Specifications

Applicable Conditions

• Microcomputer: SH7085 (R5F7085)

Operating freque	ncy: Internal clock	80 MHz
	Bus clock	40 MHz
	Peripheral clock	40 MHz
	MTU2 clock	40 MHz
	MTU2S clock	80 MHz
C	\mathbf{V} 7 1 0 4	11 D

- C compiler: V.7.1.04 manufactured by Renesas Technology Corp.
- (1) The SSU (Synchronous Serial Communication Unit) module of the SH7085 is used to read 10-byte data from a 4-wire serial-transmission (SPI bus) EEPROM (HN58X25128I, 128 Kbits, 16 Kwords × 8 bits).
- (2) The connection is a single-master configuration with the SH7085 used as the master device.
- (3) PE12 (general input/output port) is used as the chip select pin*.
- (4) Data is read from the EEPROM in the address range of H'0000 to H'0009.
- (5) The data transfer clock on the SPI bus is set to 2.5 MHz.
- (6) Figure 1 shows an example of connection between the SH7085 and the EEPROM. Table 1 shows the SH7085 SSU settings.
- (7) Table 2 is a list of EEPROM instruction codes used in this sample task.
- Note: * The SSU module enables the \overline{SCS} pin for each frame. When one or more frames is transmitted or received, the \overline{SCS} pin is used for general output.

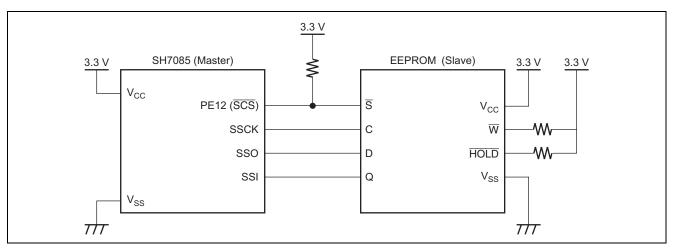


Figure 1 Example of Connection between the SH7085 and EEPROM

Table 1 SH7085 SSU Settings

Format	Settings
Operating mode	SSU master mode
Data input/output pin	Normal mode (input pins and output pins are independent)
Transfer clock	2.5MHz (Pø=40 MHz)
Number of data bits	8 bits
MSB/LSB first	MSB first
Timing for setting the TEND bit	After the final bit is transmitted

Table 2 EEPROM Instruction Codes

Code Name	Operation	Code [B']	
WREN	Sets the EEPROM to be writable.	0000 0110	
WRDI	Sets the EEPROM to be unwritable.	0000 0100	
RDSR	Reads the EEPROM Status Register.	0000 0101	
WRSR	Writes to the EEPROM Status Register.	0000 0001	
READ	Reads stored data.	0000 0011	
WRITE	Writes data.	0000 0010	

2. Description of Functions Used

This sample task reads data from EEPROM through the SSU (Synchronous Serial Communication Unit).

2.1 Synchronous Serial Communication Unit (SSU)

The SSU supports a master mode (with clock output from this LSI) and a slave mode (clock input from an external device). In addition, the SSU allows synchronous serial communication between devices with different clock polarities and clock phases.

Figure 2 shows a block diagram of the SSU module.

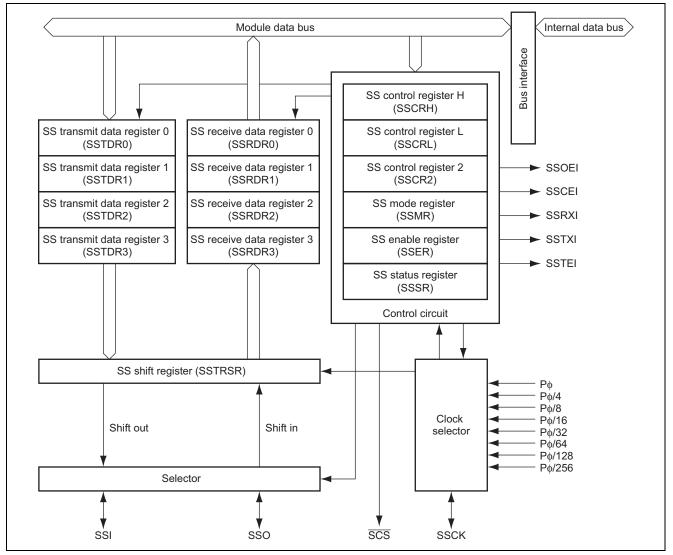


Figure 2 Block Diagram of the SSU Module

- SS Control Register H (SSCRH) selects the master or slave mode, selects the input/output pin mode, selects the SSO pin output value, and selects the SCS pin function.
- SS Control Register L (SSCRL) selects the operating mode, software reset, and the transmit/receive data length.
- The SS Mode Register (SSMR) selects MSB first or LSB first, the clock polarity, the clock phase, and the transfer clock rate.
- The SS Enable Register (SSER) enables and disables transmission, reception, and interrupts requests.
- The SS Status Register (SSSR) handles the status flags for various interrupts.

ENESAS

- SS Control Register 2 (SSCR2) sets open drain output of the SSO pin, SSI pin, SSCK pin, and SCS pin, the timing for asserting the SCS signal, the timing for outputting data from the SSO pin, and the timing for setting the TEND bit.
- SS Transmit Data Registers 0 to 3 (SSTDR0 to 3) are 8-bit registers used to store transmit data.
- SS Receive Data Registers 0 to 3 (SSRDR0 to 3) are 8-bit registers used to store receive data.
- The SS Shift Register (SSTRSR) is dedicated to serial data transmission and reception.

RENESAS

3. Principles of Operation

This sample task reads data from an EEPROM using concurrent transmit and receive operations in the SSU mode.

3.1 Reading Data from an EEPROM

The following procedure can be used to read from EEPROM:

- 1. Transmit the read code (READ) to the EEPROM
- 2. Transmit the read start address to the EEPROM
- 3. Output data from the EEPROM (receive data from the EEPROM)

Figure 3 shows the communication format for a data read from an EEPROM.

When data is read from an EEPROM, selecting the device (setting PE12 low) and continuously inputting the clock outputs data from the EEPROM. When one byte has been output, the EEPROM internally increments the address and outputs the data at the next address. When reading from the EEPROM is complete, the device is deselected (PE12 is set high). Any timing can be used to deselect the device.

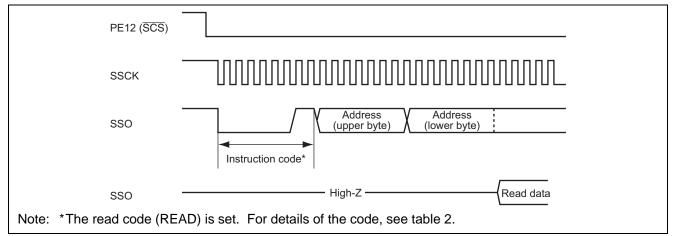


Figure 3 Communication Processing for Reading Data from the EEPROM

Figure 4 illustrates how data is read from an EEPROM. The software and hardware processing illustrated in figure 4 is described in table 3.

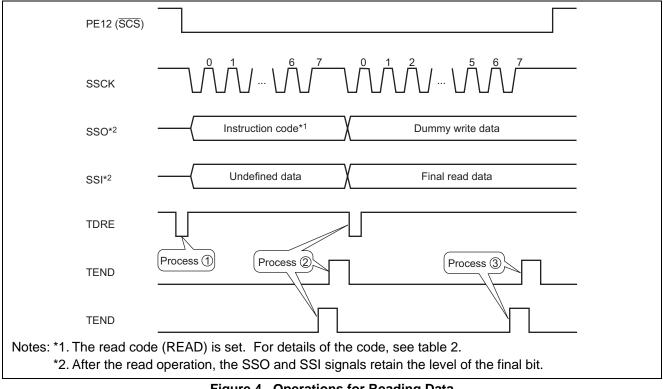


Figure 4 Operations for Reading Data

Procedure	Software Processing	Hardware Processing
Process ①	 Set PE12 low (output; EEPROM selected). Set transmit data (instruction code) in SSTDR0. 	 Setting transmit data in SSTDR0 clears the TDRE bit to 0. Transfer the transmit data from SSTDR0 to SSTRSR. Set the TDRE bit to 1. Transmit and receive the data.
Process 2	 Confirm RDRF = 1, and read the SSRDR0 register. Confirm TDRE = 1, and set transmit data in the SSTDR0 register. 	 Transmit and receive 1 frame (8 bits) of data. Transfer data from the SSTRSR register to the SSRDR0 register. Set the RDRF bit to 1. After the last bit is transmitted with TDRE = 1, set the TEND bit to 1. Clear the RDRF bit to 0 by reading the SSRDR0 register. Setting transmit data in the SSTDR0 register clears the TDRE and TEND bits to 0. Transfer the transmit data from the SSTDR0 register to the SSTRSR register. Set the TDRE bit to 1. Transfer the transmit data from the SSTDR0 register to the SSTRSR register. Set the TDRE bit to 1. Transmit and receive the data.
Process 3	 Confirm RDRF = 1, and read the SSRDR0 register. Set PE12 high (output; EEPROM deselected). Clear the TEND bit to 0. Clear the TE and RE bits to 0 to disable the transmit and receive operations. 	 Transmit and receive 1 frame (8 bits) of data. Transfer data from the SSTRSR register to the SSRDR0 register. Set the RDRF bit to 1. After the last bit is transmitted with TDRE = 1, set the TEND bit to 1.

Table 3 Description of Software and Hardware Processing

4. Description of Software

4.1 Descriptions of Modules

The modules used in this application sample are described in table 4.

Table 4 Description of Modules

Module Name	Label Name	Description
Main function	main()	Sets the operating frequency, sets the address to start reading from, calls the SSU initialization function, and calls the EEPROM data-read function.
SSU initialization function	init_ssu()	Takes the module out of module standby mode, makes the the pin function controller (PFC) setting, and sets the SSU.
EEPROM data-read function	read_EEPROM()	Reads data from the EEPROM.
Instruction code setting function	set_inst_code()	Sets an instruction code in the EEPROM Status Register.
EEPROM addressing function	set_addr_EEPROM()	Sets the read start address in the EEPROM.

4.2 Variables Used

The variables used in this application sample are described in table 5.

Table 5 Variables

Variable, Label Name	Description	Used In
read_data[0-9]	Array for storing read data	Main function
address	EEPROM address to start reading from	Main function
addr	Copy of the EEPROM read start address	EEPROM data-read function
auui	Copy of the EEPRON lead start address	EEPROM addressing function
*r_data	Pointer variable to the array for storing the read data	EEPROM data-read function
num	Number of receive data	EEPROM data-read function
dmmy_w	Variable for a dummy write	EEPROM data-read function
		EEPROM data-read function
dmmy_r	Variable for a dummy read	Instruction code setting function
		EEPROM addressing function
code	Instruction code	Instruction code setting function

4.3 Setting the Registers

This section describes the setting of registers used in this sample application. Note that the settings presented below are used in the sample task and are not initial values.

4.3.1 Register Setting the Clock Pulse Generator (CPG)

(1) Frequency Control Register (FRQCR)

This register specifies the division ratio of the frequency. Setting: H'0241

Bit	Bit Name	Setting Value	Function
15	—	0	Reserved
14-12	IFC[2:0]	000	Division ratio of the internal clock ($I\phi$) frequency
14-12		000	000: $ imes$ 1, 80 MHz when the input clock is 10 MHz
11-9	BFC[2:0]	001	Division ratio of the bus clock (B ϕ) frequency
11-9	BFC[2.0]	001	001: $ imes$ 1/2, 40 MHz when the input clock is 10 MHz
8-6	PFC[2:0]	001	Division ratio of the peripheral clock (P ϕ) frequency
0-0	PPG[2.0]	001	001: $ imes$ 1/2, 40 MHz when the input clock is 10 MHz
5-3	MIFC[2:0]	000	Division ratio of the MTU2S clock (MI
5-5		000	000: $ imes$ 1, 80 MHz when the input clock is 10 MHz
2-0	MPFC[2:0]	001	Division ratio of the MTU2 clock (MP
2-0		001	001: \times 1/2, 40 MHz when the input clock is 10 MHz

4.3.2 Setting the Power-Down Mode

(1) Standby Control Register 3 (STBCR3)

This register controls the operation of each module in the power-down mode. Setting: H'FB

Bit	Bit Name	Setting Value	Function
7	MSTP15	1	1: Stops clock supply to I ² C2.
6	MSTP14	1	1: Stops clock supply to the SCIF.
5	MSTP13	1	1: Stops clock supply to SCI_2.
4	MSTP12	1	1: Stops clock supply to SCI_1.
3	MSTP11	1	1: Stops clock supply to SCI_0.
2	MSTP10	0	0: SSU in operation.
1-0	_	11	Reserved

4.3.3 Register for Setting the Synchronous Serial Communication Unit (SSU)

(1) SS Control Register H (SSCRH)

This register selects the master or slave mode and sets the \overline{SCS} pin function. Setting: H'8F

Bit	Bit Name	Setting Value	Function
7	MSS	1	1: Master mode
6	BIDE	0	 Normal mode (two input/output pins used for communication)
5	—	0	Reserved
4	SOL	0	0: Changes the serial data output to a low level.
2	SOLP	1	SOL write-protect
3	SOLF	I	Setting 0 changes the SOL bit.
2	—	1	Reserved
1-0	CSS[1:0]	11	11: The SCS pin is used as the automatic output function.

(2) SS Control Register L (SSCRL)

This register selects the operating mode, software reset, and the transmit/receive data length. Setting: H'80

Bit	Bit Name	Setting Value	Function
7	FCLRM	0	 Clears the interrupt flag when the register is accessed.
6	SSUMS	0	0: SSU mode
5	SRES	0	Setting 1 forcibly resets the SSU internally.
4-2	—	000	Reserved
1-0	DATS[1:0]	00	00: 8-bit data length

(3) SS Mode Register (SSMR)

This register selects MSB-first and the transfer clock. Setting: H'83

SCK pin in the idle state and
e first edge on the SSCK pin.
6 (Pφ = 40 MHz)

(4) SS Enable Register (SSER)

This register enables transmit/receive operation. Setting: H'C0

Bit	Bit Name	Setting Value	Function
7	TE	1	1: Enables transmit operation.
6	RE	1	1: Enables receive operation.
5-4	_	00	Reserved
3	TEIE	0	0: Disables SSTEI interrupts.
2	TIE	0	0: Disables SSTXI interrupts.
1	RIE	0	0: Disables SSRXI and SSOEI interrupts.
0	CEIE	0	0: Disables SSCEI interrupts.

(5) SS Status Register (SSSR)

This register shows the interrupt request flags and indicates status. Setting: H'04

Bit	Bit Name	Setting Value	Function	
7	—	0	Reserved	
6	ORER	0	Overrun error	
5-4	_	00	Reserved	
3	TEND	0	Transmission end	
2	TDRE	1	Transmit data empty	
1	RDRF	0	Receive data register full	
0	CE	0	Conflict error/incompletion error	

(6) SS Control Register 2 (SSCR2)

This register selects the timing for setting the TEND bit. Setting: H'10

Bit	Bit Name	Setting Value	Function
7	SDOS	0	0: Sets the serial data output pin to TTL output.
6	SSCKOS	0	0: Sets the SSCK pin to TTL output.
5	SCSOS	0	0: Sets the SCS pin to TTL output.
4	TENDSTS	1	1: Sets the TEND bit after transmission of the last bit.
3	SCSATS	0	Selects the timing for asserting the SCS signal*.
2	SSODTS	0	Selects the timing for outputting data from the SSO pin*.
1-0		00	Reserved

(7) SS Transmit Data Register 0 (SSTDR0)*
 This register is an 8-bit register that stores transmit data.
 Setting: H'00 (initial value)

Note: * Since the length of the transmit/receive data is 8 bits, SSTDR1 to SSTDR3 are not used.

(8) SS Receive Data Register 0 (SSRDR0)*

This register is an 8-bit register that stores receive data. Setting: H'00 (initial value)

Note: * Since the length of the transmit/receive data is 8 bits, SSRDR1 to SSRDR3 are not used.

4.3.4 Registers for Setting the Pin Function Controller (PFC)

(1) Port E Control Register L4 (PECRL4)

This register selects the functions of multiplexed pins in port E (PE15-PE12). Setting: H'0000

Bit	Bit Name	Setting Value	Function
15	—	0	Reserved
14-12	PE15MD[2:0]	000	000: PE15 input/output (port)
11	—	0	Reserved
10-8	PE14MD[2:0]	000	000: PE14 input/output (port)
7-6	—	00	Reserved
5-4	PE13MD[1:0]	00	00: PE13 input/output (port)
3	_	0	Reserved
2-0	PE12MD[2:0]	000	000: PE12 input/output (port)

(2) Port E Control Register L3 (PECRL3)

This register selects the functions of multiplexed pins in port E (PE11-PE8). Setting: H'0505

Bit	Bit Name	Setting Value	Function
15	—	0	Reserved
14-12	PE11MD[2:0]	000	000: PE11 input/output (port)
11	—	0	Reserved
10-8	PE10MD[2:0]	101	101: Sets SSO (SSU data input/output).
7	—	0	Reserved
6-4	PE9MD[2:0]	000	000: PE9 input/output (port)
3	—	0	Reserved
2-0	PE8MD[2:0]	101	101: Sets SSCK (SSU clock input/output).

RENESAS

(3) Port E Control Register L2 (PECRL2)

This register selects the functions of multiplexed pins in port E (PE7-PE4). Setting: H'5000

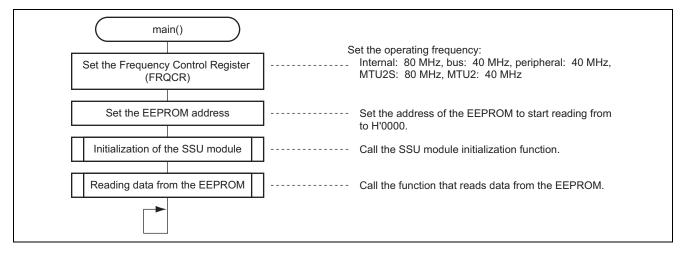
Bit	Bit Name	Setting Value	Function
15	—	0	Reserved
14-12	PE7MD[2:0]	101	101: Sets SSI (SSU data input/output).
11	—	0	Reserved
10-8	PE6MD[2:0]	000	000: PE6 input/output (port)
7	—	0	Reserved
6-4	PE5MD[2:0]	000	000: PE5 input/output (port)
3	_	0	Reserved
2-0	PE4MD[2:0]	000	000: PE4 input/output (port)

(4) Port E I/O Register L (PEIORL)

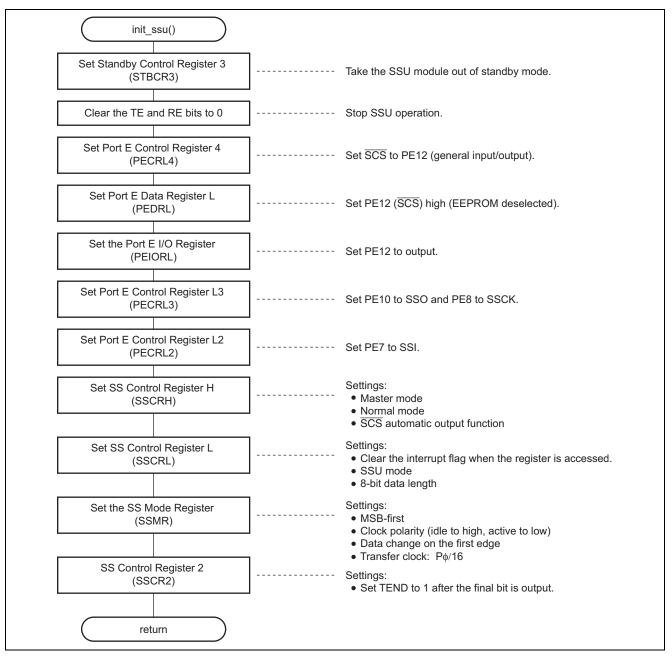
This register selects the input/output directions of the port E pins. Setting: H'5000

Bit	Bit Name	Setting Value	Function
15	PE15IOR	0	0: PE15 input
14	PE14IOR	0	0: PE14 input
13	PE13IOR	0	0: PE13 input
12	PE12IOR	1	1: PE12 output (SCS used as a general input/output port)
11	PE11IOR	0	0: PE11 input
10	PE10IOR	0	0: PE10 input
9	PE9IOR	0	0: PE9 input
8	PE8IOR	0	0: PE8 input
7	PE7IOR	0	0: PE7 input
6	PE6IOR	0	0: PE6 input
5	PE5IOR	0	0: PE5 input
4	PE4IOR	0	0: PE4 input
3	PE3IOR	0	0: PE3 input
2	PE2IOR	0	0: PE2 input
1	PE1IOR	0	0: PE1 input
0	PE0IOR	0	0: PE0 input

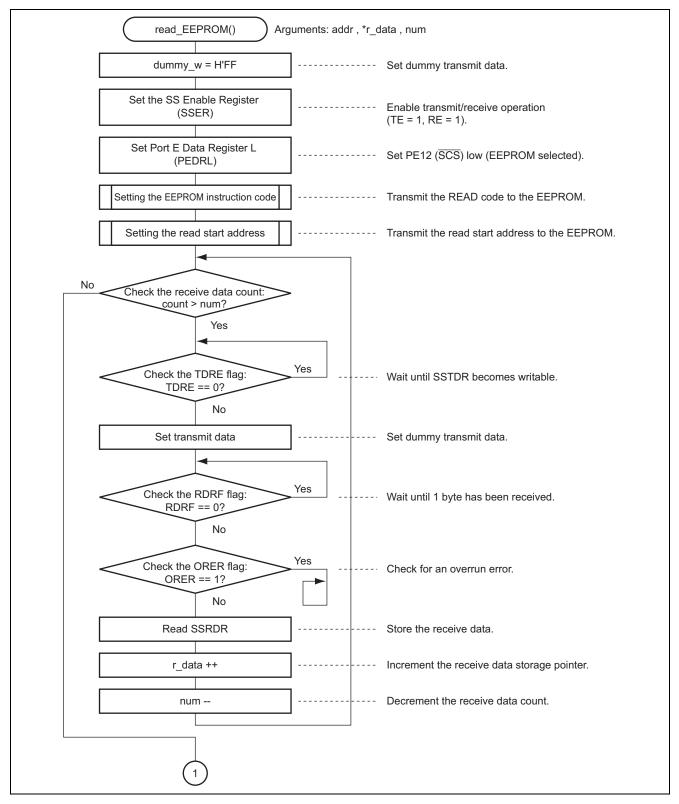
4.3.5 Setting the I/O Port


 Port E Data Register L (PEDRL) This register stores port E data. Setting: H'1000

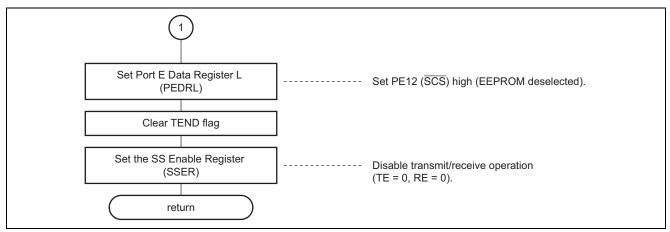
Bit	Bit Name	Setting Value	Function
15	PE15DR	0	0: The port state is low level.
14	PE14DR	0	0: The port state is low level.
13	PE13DR	0	0: The port state is low level.
12	PE12DR	1	0: The EEPROM is selected.
12	FEIZDR	Ι	1: The EEPROM is deselected.
11	PE11DR	0	0: The port state is low level.
10	PE10DR	0	0: The port state is low level.
9	PE9DR	0	0: The port state is low level.
8	PE8DR	0	0: The port state is low level.
7	PE7DR	0	0: The port state is low level.
6	PE6DR	0	0: The port state is low level.
5	PE5DR	0	0: The port state is low level.
4	PE4DR	0	0: The port state is low level.
3	PE3DR	0	0: The port state is low level.
2	PE2DR	0	0: The port state is low level.
1	PE1DR	0	0: The port state is low level.
0	PE0DR	0	0: The port state is low level.

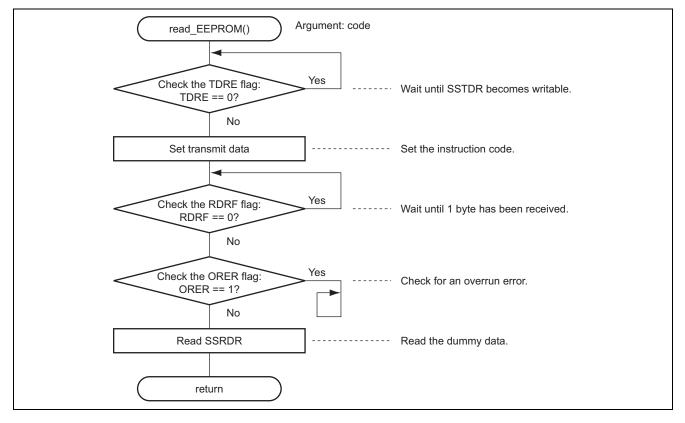

5. Flowcharts

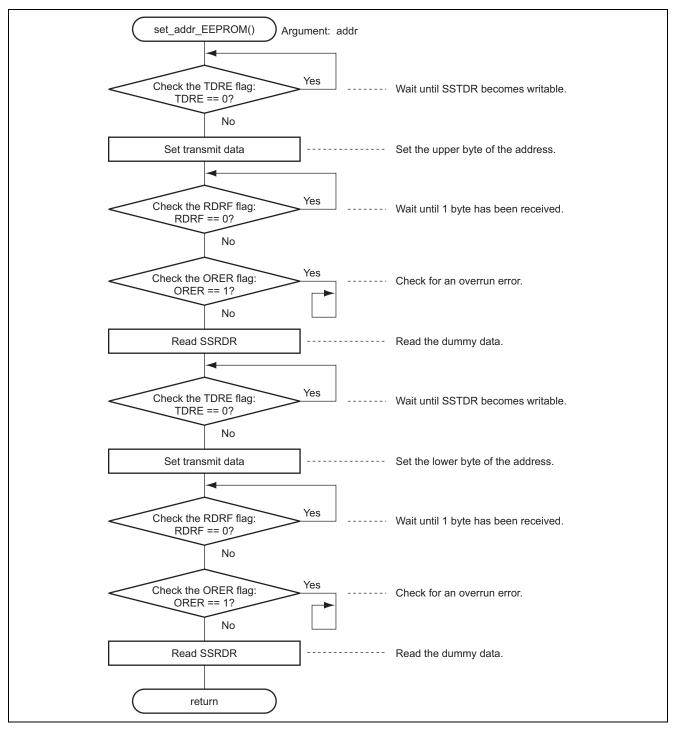
5.1 Main Function



5.2 SSU Initialization Function




5.3 EEPROM Data-Read Function



5.4 Instruction Code Setting Function

5.5 EEPROM Addressing Function

Website and Contact Information

Renesas Technology Corp. Website

http://www.renesas.com

Customer support center

E-mail: csc@renesas.com

Revision Record

		Descript	tion	
Rev.	Date	Page	Summary	
1.00	Sep.14.05		First edition issued	

Keep safety first in your circuit designs!

CENESAS

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.