
 Application Note 

R11AN0132EU0103  Rev.1.03  Page 1 of 34 
Oct 1, 2018  

Renesas Synergy™ Platform 

SSP Module Development Guide  
Introduction 
Using the Renesas Synergy™ Platform provides developers with qualified and ready to use software modules and 
frameworks within the Synergy Software Package (SSP). Software developers may want to create their own modules, 
drivers, and frameworks to package them and distribute them to other developers. This guide provides developers 
everything they need to create their own modules, drivers, and frameworks, in addition to the processes necessary to 
package and distribute them. 

Target Device 
Synergy MCU Family 

Recommended Reading 
SSP User’s Manual introduction chapters  
SSP Datasheet v1.2.0 or later 
SSP Development Best Practices Guide 
 
Note: If you are not familiar with the above documents, you should review them before continuing. 

Purpose 
This document provides you, the developers, with the information you need to develop your own modules, drivers, and 
frameworks, along with the necessary details for creating Synergy Configurators and packaging them for distribution. 

Intended Audience 
The intended audience are users that understand the Synergy Platform’s fundamentals and want to create their own 
drivers, modules, and frameworks on MCU’s. 

R11AN0132EU0103 
Rev.1.03 

Oct 1, 2018 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 2 of 34 
Oct 1, 2018  

Contents 

1. Driver Development Overview ................................................................................................... 4 

2. Creating the Software Content .................................................................................................. 4 
2.1 Module file structure organization ........................................................................................................... 4 
2.2 Filling in the details from scratch ............................................................................................................. 6 
2.3 Filling in the details from an existing module .......................................................................................... 6 

3. Creating a Module Configurator XML File for the ISDE ............................................................. 6 
3.1 Module configurator overview ................................................................................................................. 6 
3.2 Creating the XML .................................................................................................................................... 8 
3.3 XML file naming conventions .................................................................................................................. 8 
3.4 Module configurator XML file sections and tags ..................................................................................... 9 
3.5 Multiple configurators per Module in XML files ..................................................................................... 10 
3.6 Module configurator checklist ................................................................................................................ 10 
3.7 Module configurator dictionary .............................................................................................................. 12 

4. Packaging the New Software Module ...................................................................................... 14 
4.1 The PDSC (pack descriptor) ................................................................................................................. 14 
4.2 The Custom Pack Creator Tool – e2 studio ........................................................................................... 14 
4.3 Modifying the custom pack from above to include the XML files .......................................................... 19 
4.4 Pack Creation for IAR Embedded Workbench ...................................................................................... 21 

5. Using the Custom Synergy Module ......................................................................................... 22 
5.1 Install the Custom Pack ......................................................................................................................... 22 

6. Creating Custom packs for Wi-Fi module ................................................................................ 23 

7. Appendix – Rules for the Module Configurator XML File ........................................................ 23 
7.1 Best practices for user-visible text ......................................................................................................... 23 
7.2 Content of text visible to user ................................................................................................................ 23 
7.3 Using elements as variables ................................................................................................................. 23 
7.4 Config element ...................................................................................................................................... 24 
7.5 Attributes id, path, and version .............................................................................................................. 24 
7.6 Property elements ................................................................................................................................. 24 
7.7 Module element ..................................................................................................................................... 24 
7.8 Attributes and the idea of “common” ..................................................................................................... 25 
7.9 Constraint element ................................................................................................................................ 26 
7.10 Provides interface element .................................................................................................................... 26 
7.11 Requires interface element ................................................................................................................... 26 
7.12 Override element ................................................................................................................................... 27 
7.12.1 Property elements ............................................................................................................................... 27 
7.12.2 Call back and context property elements ............................................................................................ 28 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 3 of 34 
Oct 1, 2018  

7.13 Property element constraints ................................................................................................................. 29 
7.14 Header element ..................................................................................................................................... 29 
7.14.1 Includes element ................................................................................................................................. 29 
7.14.2 Declarations element ........................................................................................................................... 30 
7.15 Init element ............................................................................................................................................ 32 

Revision History .............................................................................................................................. 34 

 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 4 of 34 
Oct 1, 2018  

1.  Driver Development Overview 
The Synergy Platform provides you with modules and frameworks that are ready to use out of the box and can be 
configured using graphical configurators known as Synergy Configurators. There is a general process that you can 
follow to create your own custom modules, configurators, drivers, and frameworks, and then distribute them as a pack 
that shows up in the Synergy Configurator menus. This process requires the steps shown in Figure 1. 

 

Figure 1   Steps to create a custom module 
As a developer, you may have a slightly different starting point, depending on whether you are starting from scratch, or 
are looking to modify an existing module. In general, the recommendation is that you review the modules that already 
exist in the SSP and then copy, paste, and modify them to get your desired result. This helps in significantly simplifying 
and speeding-up the process. 

The Synergy module is composed of three different pieces of information that are required to package and deliver the 
module.  

1. The content (such as code and documentation) to be distributed with the pack. 
2. The PDSC file (that is, the pack descriptor and final .pack file). 
3. The XML configurator for the module, that is, a XML file that is located in .module_descriptions. 
 
The following sections walk you through the steps that are necessary to create and package your own custom SSP 
modules. In general, throughout this document, when discussing creating the module, the concept can also be extended 
to include creating drivers and frameworks. 

2. Creating the Software Content 
The first step for creating a custom module is to create the software content. The software content includes the end file 
directory structure, configuration files, and software modules that include the header source files along with any 
additional files you may require, such as documentation or precompiled libraries. This section describes the 
recommendations and best practices for creating the software content. 

2.1 Module file structure organization 
Prior to writing or copying the software program, you should first create your new module’s directory structure. The 
directory structure determines where the final packaged module is copied into a Synergy project, when in use. It is 
recommended that you create a local file structure that reflects a Synergy project in e2 studio. For example, when 
creating a new Synergy Framework module named sf_example, you would create a folder for the framework under 
synergy/ssp/src/framework/sf_example as shown in the following figure. This is not a requirement, but it 
makes the process of creating the pack easier. 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 5 of 34 
Oct 1, 2018  

 

Figure 2   Example software framework folder structure 
If you are a third-party developer,  it’s recommended that you do not create SSP modules, but instead, create your own 
custom modules and frameworks. In order to keep a clear distinction between the SSP and third-party components, the 
module should be in a distinct folder that identifies its source rather than synergy/ssp. Instead, you can use 
synergy/<company> as the base for the module. In which case, the previous sf_example module, 
sf_example code would be located under synergy/<company>/sf_example as shown in the following 
figure. Note that using the prefix sf_ is optional, but it is a standard used by SSP to denote a software framework layer 
module. 

When the custom module is eventually packaged, any content that is provided in a pack, when used in a project will be 
read-only, like all native SSP modules. Assuming this custom module is not protected (encrypted), you can modify the 
module and customize when using it in your project. However, if this module, after modification, is located in the same 
folder as the original module, then on any subsequent builds, or when the Generate Project Content button is pressed, 
the original module will be re-extracted from the pack and any changes to it will be overwritten and lost in the process. 
Overwriting changes applies to the pack generated code only. When developing a custom module, you can create your 
own file structure and code in the Synergy directory without being concerned with your changes being overwritten until 
you create a pack.  

Note: Once a pack is created, installed, and added to a project, your directory is subject to overwriting. Make sure that 
at this stage, any changes are backed up diligently to prevent losing work. 

 

Figure 3   Custom module location for non-SSP modules 
All contents in the synergy_cfg directory are typically not provided in a pack. The reason for this is that the 
contents of the synergy_cfg directory are expected to be generated by e2 studio based on the values provided in the 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 6 of 34 
Oct 1, 2018  

Synergy Configurator entries. Due to the read-only nature of content extracted from a pack, providing configuration 
files in synergy_cfg can create problems in your projects. It is best to provide default values for the configuration 
and let the toolchain generate the configuration. This process has been further discussed in later sections. 

2.2 Filling in the details from scratch 
As a developer, you should try to reuse as much of the existing code as possible to decrease time, costs, and efforts in 
developing a new module. In some cases, you may be able to copy an existing driver and then modify it to include all 
the changes necessary to support additional functionality or custom behavior of the driver. In other cases, you may not 
be able to leverage existing code and will need to instead start from scratch. If you are starting from scratch and wish to 
create a new module, the following steps can be used to help you get started. 

1. Extract the contents of synergy_module_template.zip (or any Application Project zip folder). 
2. Rename the example Interface file, modify, and move it to destination directory, as necessary. For example, 

synergy/ssp/inc/framework/api/sf_example_api.h 
3. Rename the example Instance file, modify, and move it to destination directory, as necessary. For example, 

synergy/ssp/inc/framework/instances/sf_example.h 
4. Rename the source files in the example source folder, modify, and move it to destination directory, as necessary, 

for example, synergy/ssp/src/framework/sf_example. 
 

2.3 Filling in the details from an existing module 
If you are a developer planning to start from an existing module, such as the CRC HAL Driver module, you can follow 
the steps that are provided below: 

1. Create a Synergy project with the module you want to start from. 
2. Make a copy of the existing module’s source folder and rename the folder. 

 For example, copy the synergy/ssp/src/driver/r_crc folder to 
synergy/ssp/src/driver/r_mydriver. 

3. Rename the source files in this renamed folder. 
 For example, change synergy/ssp/src/driver/r_crc/r_crc.c to synergy/src/driver/ 

r_mydriver /r_mydriver.c. 
4. Modify the newly copied source. 
5. Copy the existing module’s Instance header file. 

 For example, copy synergy/ssp/inc/driver/instances/r_crc.h to 
synergy/ssp/inc/driver/instances/r_mydriver.h. 

6. Modify the newly copied Instance header file. 
7. Repeat as necessary to fill in a new framework module. 
 
At this point, you will have working software content that is ready to be packaged. Before the module can be packaged, 
you should create an XML configurator file so that you can easily set the module properties through the Synergy 
Configurator. The next section describes the XML file and how to create it for a custom module. 

3. Creating a Module Configurator XML File for the ISDE 
3.1 Module configurator overview 
The XML configurator file allows the new module to appear in the Synergy Configurator Threads tab, from where it 
can be added to an application thread, and easily configured through the Properties view. 

The following figure illustrates how the XML configurator file is organized and how it is related to the ISDE (integrated 
solution development environment) and generated code. The module configurator XML file is located in 
the .module_descriptions folder that is not displayed in the ISDE, but can be found in the project folder. The 
XML data contains two primary elements, the config element, and module element. The config element contains 
configuration settings that affect how the module behaves on an application level, while the module element 
determines how the specific instance behaves. 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 7 of 34 
Oct 1, 2018  

 

Figure 4   Generating configuration information from the XML file 
The XML data is presented as a GUI in the ISDE when the module is added to a project in the Threads tab and then the 
developer clicks on it. The configuration settings are available in the Properties view. The XML data generates files in 
two distinct project areas. First, the module element data generates code in the src/synergy_gen folder, that is the 
instance specific configuration and shown in the figure above by the green arrows. Second, the config element data 
generates code in the synergy/ssp_cfg folder, that is the common, build-time configuration represented by the 
yellow arrows in the above figure. 

The ISDE has a flexible module configuration tool that is data driven. You can customize your module’s configurator 
XML file, that then uses the standard eclipse Properties view to provide plain text and simple to interpret configurators 
for you to set the configuration fields. The following figure shows a sample configurator that you might create for your 
module, and how that configuration information is used to generate code. 

 

     
 

 

 

 

 

 

Figure 5   Configurator View in ISDE that Generates Configuration Header and Source Code 

/* generated config header file - do not edit 
*/ 
#ifndef R_GPT_CFG_H_ 
#define R_GPT_CFG_H_ 
#define GPT_CFG_PARAM_CHECKING_ENABLE (1) 
#endif /* R_GPT_CFG_H_ */ 

Code generated in synergy_cfg/driver/r_gpt_cfg.h 

timer_ctrl_t g_timer; 
const gpt_timer_ext_t g_timer_ext = 
{ 
 .gtioca.output_enabled = false, 
 .gtioca.stop_level = GPT_PIN_LEVEL_LOW, 
 .gtiocb.output_enabled = false, 
 .gtiocb.stop_level = GPT_PIN_LEVEL_LOW, 
}; 
const timer_cfg_t g_timer_cfg = 
{ 
 .mode = TIMER_MODE_PERIODIC, 
 .period = 22050, 
 .unit = TIMER_UNIT_FREQUENCY_HZ, 
 .channel = 0, 
 .autostart = true, 
 .p_extend = &g_timer_ext 
}; 

Code generated in src/synergy_gen/touch_thread.c 

Configurator View in ISDE 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 8 of 34 
Oct 1, 2018  

After the configuration is complete, you can press the Generate Project Content button to generate parameters 
required for the module. This creates an instance of the module in the src/synergy_gen folder of the project and 
common code in the synergy_cfg folder. The example in the above figure-A shows the timer module that is used as 
part of the audio framework in a thread named touch_thread. After generating the project content, the common 
configuration properties are generated in the configuration header file as shown in the above figure-B, while the module 
configuration properties are generated in a code module in the above figure-C. 

Note: When you create your software program, you also write your own XML file that matches these configuration 
values for testing the module. This code then can be used to develop the configurator XML file that will then 
create the configurator for other users. 

3.2 Creating the XML 
The easiest way to create an XML configurator is to use one that already exists. The process is as follows: 

• Identify an XML that has similar configuration elements. 
• Create a copy of the XML file.  
• Rename the XML file using the XML Naming Conventions section recommendations in the next section. 
• Edit and update the XML file for the new module. 
• Perform a peer review and/or test to make sure the file has been updated successfully. 
 
For example, if you concluded that you need to create your module based on the r_crc module, you would copy the 
existing module’s Instance XML configurator file, rename it, and then edit it per the above process.  

This would require: 

• Copying .module_descriptions/Renesas##HAL Drivers##all##r_crc####1.2.0.xml 
• Pasting and renaming to .module_descriptions/Renesas##HAL 

Drivers##all##r_mydriver####1.2.0.xml 
 
The following sections describe these steps and examine the XML file conventions. 

3.3 XML file naming conventions  
The ability to build software stacks and generate runtime code for Synergy modules is provided through XML 
configurators. These are found in the .module_descriptions folder in your project. These XMLs are extracted 
from all the available packs of a certain version when a project is created. These XMLs are also what drive the options 
under the new stack button in the Threads tab. The file name of the XML configurator must match the settings in 
the <component> element in the PDSC file. The following figure shows an example for the component element 
in PDSC file. 
 

<component Cclass="Company" 

         Cgroup="all" 

         Csub="sf_example" 

         Cvendor="Renesas" 

         Cversion="1.2.0" 

condition=""> 

Figure 6   Component element in the PDSC file in the pack 
The XML file must be named Renesas##Company##all##sf_example####1.2.0.xml, where the colored text matches the 
information provided in the PDSC component element. If any of these options do not match, the component appears in 
the Components tab, but will not be available under the new stack tree in the Synergy Configuration Threads tab. 

The name that is given to each module’s XML configuration file determines where the module is shown in the ISDE 
components tabs. For example, naming a configurator as follows will result in the component being shown in the 
Synergy Configurator Components tab as shown in the following figure. 
Renesas##Flashloaderv1.0.0##sf_bootloader####1.2.0-b.1.xml 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 9 of 34 
Oct 1, 2018  

 

 
 

Figure 7   Naming the XML file based on its display location 
If the module is being developed by a third party, you can name their component using the following template: 
Renesas##Company##FrameworkName##all##Module####Target_SSP_Version.xml 

The last part of the name that comes after #### is the SSP version that the component is designed and tested to work 
with. 

There are two rules that you should follow when naming the configurator XML files: 

1. The Cvendor attribute of your <components> must be set to Renesas. This is required even if you are not 
building a module on behalf of Renesas Electronics or its subsidiaries. If this attribute is not set appropriately, then 
the <component> will not appear correctly in the e2 studio Components tab. 

2. The name of your XML configurator must start with Renesas to match the Cvendor attribute of <component>. 
 

3.4 Module configurator XML file sections and tags 
After the configurator XML has been created, it is useful to understand the different sections that make up the 
configurator XML file. The module configurator XML file is divided into two main elements – config and module. 
The main distinction is that the sub-elements of the config element are persistent over all module instances (in the 
synergy_cfg folder), while the sub-elements of the module element belong to a single instance of a module. For 
example, if an application uses two GPT timer channels, the per-channel configurations (used to define the 
timer_cfg_t structures) are sub-elements of the module element in the XML file, while the shared configurations 
(used to define macros in synergy_cfg/driver/r_gpt_cfg.h) are sub-elements of the config element of the 
XML file. 

Each section can contain various XML tags that dictate how the module behaves, such as what configuration 
information is displayed to you, which modules are dependencies, which are provided interfaces, and so on. The 
following table shows the available XML tags and provides a brief description on the usage of each.  

You can copy and paste example XML Tags into their configurator in order to complete their task. Developers who 
would like additional details and examples on how to use these tags can examine section 7 Appendix – Rules for the 
Module Configurator XML File. 

Table 1 XML tags 

XML Tag Purpose 
<requires> Identifies the components that are necessary for the module to function. These 

are component dependencies.  
<provides> Conveys what the component provides to the module that is dependent upon 

this component.  
<constraints> Defines a constraint that must be met for the module to function. An example is 

that the instance must have a unique name. 
“Name” Uniquely names data structures to avoid duplication errors. 
<override> Can be used within <requires> when hardcoding a dependency option. 
<property> Creates configuration options that you can configure. 
<option> Provides different configuration dropdown options that exist within the 

<property> tab. 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 10 of 34 
Oct 1, 2018  

<config> Defines the high-level configuration options that exist for the module that will 
apply across all instances. 

<module> Defines elements that will apply to a single module instance. 
<header> Defines extern global variables such as instance structures that will be used by 

a developer in their code. 
<includes> Contains required include paths and is copied directly into the generated header 

file in src/synergy_gen. 
<declarations> Contains declarations of data required for the open call. Data is copied into a 

private C file and extended into a header file accessible by the developer. 
<init> Contains code to call the open function. This is the code generated for your 

thread and is executed before your thread code (entry function). 
 

3.5 Multiple configurators per Module in XML files 
Once you have started to create a module, you may want to know how you can create multiple configurators for a single 
module. The NetX™ module is a good example where three basic configurators exist for a single module. NetX has 
configurators for: 

• The common core code 
• Creating IP instances 
• Creating Packet Pool Instances 
 
These three configurators all use the same code from the nx folder in SSP. To enable multiple configurators from one 
module, you need to create additional <config> and <module> elements inside the same XML file. A good place 
to look at a working example is inside the file: 
Renesas##Framework Services##all##sf_i2c####x.xx.xx.xml. 

The XML file contains two <module> elements and two <config> elements. One is for the Shared Bus and the 
other is for a Device. 

3.6 Module configurator checklist 
The configurator XML files are straight forward, but they can very quickly become complicated. The following 
checklist can be used to make sure that everything necessary has been included. 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 11 of 34 
Oct 1, 2018  

Item Yes/No 
Config Property - Parameter checking required  
Module Description – The description that is provided to the user when the user clicks on a 
certain property 

 

Module provides interface element  
Module requires interface element with overrides (if applicable)  
Module override element: 
If your module requires a lower level module specified by the <requires> element, and your 
module requires certain settings, use the <override> subelement of the <requires> 
element to force settings in the lower layer. 
<override 
property="module.driver|framework.<lowerlevelapi>.<lowerlevelid>" 
value="module.driver|framework.<lowerlevelapi>.<lowerlevelid>.<lowerlev
elvalue> "/> 
An example for the sf_audio_playback_hw_dac framework is given below. Here the upper-
level Audio Playback on DAC is forcing the lower level DAC module to use a flush-right data 
format: 

Property Elements 

 

Module Property elements  
Module  
Header element 

 

Module Includes element   
Module Declarations Element  

 

<requires 
id="module.framework.sf_audio_playback_hw_dac.requires.dac"  
          interface="interface.driver.dac"  
          display="Add DAC Driver" > 
    <override property="module.driver.dac.data_format"  
              
value="module.driver.dac.data_format.data_format_flush_right"/> 

 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 12 of 34 
Oct 1, 2018  

Modules with lower level drivers require the following: 

Item Yes/No 
Module 
An example for ThreadX Source where only 1 is allowed.  

 
An example for a I2C Framework Shared Bus where an unlimited number (“100” is effectively 
that) of shared Module Instances is allowed 

 
Constraint element 

 

Module Requires interface element  
Module Init element12X  

 

3.7 Module configurator dictionary 
The way that the configurator XML is processed requires that certain characters be written in specific fashion to display 
themselves properly. For example, you cannot use “>” but instead needs to use “&gt;”. A list can be found in the 
following table for more alternative characters in the XML files. 

<module config="config.framework.sf_i2c_bus"  
        
display="Framework|Connectivity|${module.framework.sf_i2c_bus.name} 
I2C Framework  
                 Shared Bus on sf_i2c"  
        id="module.framework.sf_i2c_bus_on_sf_i2c"  
        common="100"  
        version="1"> 

<module config="config.el.tx_src"  
        id="module.framework.tx_src"  
        display="Framework|RTOS|ThreadX Source"  
        common="1"  
        version="0"> 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 13 of 34 
Oct 1, 2018  

Name Category Description 
=== Javascript Use to test equality in constraints, like ‘==’ in C 
|| Javascript Like ‘||’ in C, used in constraints 
&amp; Javascript Use &amp; to create an ampersand ( & ) character in XML generated code 
&amp; &amp; Javascript Like ‘&&’ in C, used in constraints 
&gt; Javascript Use &gt; to create a greater than ( > ) character in XML generated code 
&lt; Javascript Use &lt; to create a less than ( < ) character in XML generated code 
&quot; Javascript Use &quot; to create a quotation mark ( “ ) character in XML generated code 
config Element Contains properties of build time configurations that will go in 

ssp_cfg/<driver|framework>/r_<module>_cfg.h. Must have attributes id, 
path, and version. 

config Attribute Attribute of module, must be equal to id attribute of config element for the module 
constraint Element Framework to restrict invalid configurations 
display Attribute Text visible to the user 
declarations Element Text field with allocated ctrl and cfg data structures 
header Element Text field with externed global variables (example: extern <api>_ctrl_t 

<module_user_name>;) 
id Attribute Variable used in the XML. ${<id>} resolves to the value parameter when used. 

Example: ${module.driver.timer.unit} resolves to 
(${module.driver.timer.unit.unit_frequency_khz}, which resolves to) 
TIMER_UNIT_FREQUENCY_KHZ in all text fields visible to the user when the option 
Unit Frequency Khz is selected in the Unit dropdown of a GPT timer configuration. 
The id attribute should start with the id string of the parent element. Example: 
${module.driver.timer.unit} is the id for the unit property of the 
${module.driver.timer_on_gpt} parent module. 

includes Element Text field with required include paths (example: #include &quot; 
r_<instance>.h&quot;) 

init Element Text field with code to call the open function. Currently only used at the framework 
layer, called in <user_thread_name>.c before <user_thread_name>_entry is 
called 

interface Attribute Used in provides and requires elements to tie modules together 
macros Element Text field to define macros. Currently unused. 
module Element Contains properties of run time configurations created as part of the 

<user_specified_name>_cfg structure passed into the open function. Must have 
attributes config, display, id, and version. 

option Element Drop down option for a specific property (always a subelement of property). Each 
option must have display, id, and value attributes. 

property Element Configuration that the user must specify. Properties are found in the config and 
module elements. Each property must have default, display, and id attributes. 
Properties are text fields if no options are specified, or dropdowns if options are 
specified. 

provides Element Provides an interface to tie driver to upper layers and for use by constraints to ensure 
only one instance of each channel is used. 

requires Element Used by (typically framework) modules that require an interface to a lower level 
driver. 

override Element Locks lower level settings in the requires element. 
value Attribute Value that ${<id>} resolves to. 
common Attribute Only valid in <module> element. This determines whether a Module Instance can be 

shared between SSP stacks. 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 14 of 34 
Oct 1, 2018  

4. Packaging the New Software Module  
4.1 The PDSC (pack descriptor) 
CMSIS-Packs are used to deliver content to users in e2 studio and IAR Embedded Workbench for Synergy. Information 
about CMSIS-Packs can be found at: 

http://www.keil.com/pack/doc/CMSIS/Pack/html/index.html 

CMSIS-Packs are made up of two parts: 

• The content to be delivered (for example, code, documents) 
• The PDSC (Pack Descriptor) file that describes the contents 
 
The following figure shows the different information that must be included in the PDSC file. 

 

Figure 8   Example Pack file 
CMSIS-Packs are zip files with the extension .pack. In the root of the archived file is a file with the extension .pdsc. 
The PDSC file name should be the same as the Pack filename without the version number. There is a format for naming 
packs which are; <vendor>.<name>.<version>.pack. The SSP Pack’s filename is 
Renesas.Synergy.1.2.0.pack.  

The PDSC file contains XML with an associated schema that is discussed here: 
http://www.keil.com/pack/doc/CMSIS/Pack/html/packformat.html  

The PDSC file can be automatically generated by using the export capabilities within e2 studio, specifically the Custom 
Pack Creator Tool. For this reason, the details of the PDSC file won’t be covered. 

4.2 The Custom Pack Creator Tool – e2 studio 
The SSP and add-on software associated with the Synergy Platform are distributed in a pack format. Packs are a 
convenient way to collect and distribute software to developers in an organized way. Packs are located within the 
installation directory located under \e2_studio\internal\projectgen\arm\Packs. Custom modules and 
frameworks must also be distributed in the same manner. Exporting a custom pack is a relatively straight forward 
process in e2 studio 5.2.1 or later. 

Note: The Custom Pack Creator Tool is only available with e2 studio versions 5.2.1 and later. This feature is not 
available with IAR EW for Synergy as of version 7.71.1. 

To create a pack file, open the project that contains the custom code. From the File menu, select Export. The following 
figure shows the dialog box that appears.  

Under General, select the Renesas Synergy User Pack option and click Next. 

http://www.keil.com/pack/doc/CMSIS/Pack/html/index.html
http://www.keil.com/pack/doc/CMSIS/Pack/html/packformat.html


Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 15 of 34 
Oct 1, 2018  

 

Figure 9   Exporting to a Pack 
The next dialog box that is displayed gives you the opportunity to provide not only the pack name but also a variety of 
other parameters about the pack such as the version, description, and contact information. At this stage, you will want to 
fill in all the details that are shown in the following figure. Keep in mind that this first screen provides you with the 
ability to name your pack. Remember that the pack should be named <Company>.<Component>.<SSP 
Version>. The pack name that is generated is highlighted in the following figure. 

The pack information is not saved by default. If you want to test the pack, make changes, and then create another pack, 
you will need to use the save and open features within the pack creator. These are also highlighted in the following 
figure and can be found in the upper right-hand corner. 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 16 of 34 
Oct 1, 2018  

 

Figure 10   Setting the Pack Information 
Once the pack name and information is entered, you can now select the components, threads, and messaging 
components that will be included in the pack as shown in Figure 13. The green plus icon in the component selection box 
(shown in the red box in the figure below) can be used to create a new component that will be included in the pack file. 
Pressing it brings up the dialog box seen in Figure 11. 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 17 of 34 
Oct 1, 2018  

 

 

Figure 11   Creating a New Component 
Accurate naming of the component is critical as mentioned in section 3.3. The component name needs to match that of 
the XML file. The naming convention can be seen again in the following figure. These fields directly map to the 
component name. Not matching them properly results in the component not displaying in the stack menus under the 
Threads tab. 

<component Cclass="Company" 
         Cgroup="all" 

         Csub="sf_example" 
         Cvendor="Renesas" 

         Cversion="1.2.0" 
condition=""> 

Figure 12   XML File Naming Convention 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 18 of 34 
Oct 1, 2018  

There are several rules that you should follow to name your packs. These include: 

1. The <version> portion of the XML name must contain numbers separated by periods. Four version fields are 
accepted if the third has text. Valid examples: 
A. 1.0.0  
B. 1.1.0  
C. 1.1.0-beta.1. 

2. Packs are expected to be tested against a set version of SSP. This means that if you want your module to be used 
with SSP, it must have a matching version number. If your module will work with multiple versions of SSP, then 
you must create separate packs with different versions that are compatible with the respective SSP version. 
Examples where Renesas.Synergy.1.1.0.pack (a Renesas supplied SSP pack) is currently being used: 
A. Renesas.SynergyExample.1.1.0.pack will be displayed. 
B. Renesas.SynergyExample.1.0.0.pack will not be displayed. 
C. Renesas.SynergyExample.1.2.0.pack will not be displayed. 

3. e2 studio ignores version all fields after the second field. For example, when Renesas.Synergy.1.1.0.pack is used, all 
the packs below will be included: 
A. Renesas.SynergyExample.1.1.0.pack. 
B. Renesas.SynergyExample.1.1.1.pack. 
C. Renesas.SynergyExample.1.1.2.pack. 
D. Renesas.SynergyExample.1.1.0-alpha.1.pack. 

 
When the component has been created, you will need to select the threads and files that you want to package. This can 
be done by first checking the new component and then clicking on the component name. When this is done, the dialog 
like the one shown in the following figure appears. 

 

Figure 13   Adding Components to Export 
You can select threads to include in the pack by checking the thread at the bottom of the window. The add file button, 
located in the upper right, can also be used to add files. The following figure is an example of how you would add your 
new files to the component. On the left-hand side, files that are available for export are displayed. You can check the 
files that you want to include, and then press the Add button in the middle of the screen to add them to the component 
files. Finally, at the bottom, the include path for the files can be added so that they will be automatically added to the 
project when you select the component. 

Keep in mind that you cannot export: 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 19 of 34 
Oct 1, 2018  

1. SSP components and SSP source files (for example, <Project>\synergy\ssp) 
2. SSP generated files (for example, <Project>\synergy_cfg\ssp_cfg) 
 

 

Figure 14   Select Files and Set Include Paths 
After adding files, you can click Finish to generate the pack. Alternatively, you can click Next and select pack 
conditions to export. These conditions specify the exact compiler, target processor, and so forth. If the settings are to be 
reused, make sure that the configuration settings are saved before clicking finish and generating the pack. 

 

4.3 Modifying the custom pack from above to include the XML files 
As of e2 studio v5.4.0.023, Module Configurator XML files cannot be directly added to the pack files from 
the .module_descriptions folder. These files should be manually added to the packs. 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 20 of 34 
Oct 1, 2018  

1. Extract the pack file to a folder as shown in the following figure. Delete the .pack file. 

 

Figure 15   Extracting the contents of pack file 
2. Copy the module configurator XML files into the .module_descriptions folder. Create a 

new .module_descriptions folder if one is not already there. The contents to be packed should look as 
shown in the following figure. 

 

Figure 16   Contents of folder to be packed 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 21 of 34 
Oct 1, 2018  

3. Compress the contents of the folder into a .zip file as shown in the following figure. Copy the .zip file to 
e2_studio/internal/projectgen/arm/Packs folder. Delete the uncompressed original folder. 

 

Figure 17   Compress the contents of folder into .zip file 
4. Rename the .zip file to .pack file to look like Renesas.Synergy_tm_riic.1.2.0.pack. The final folder should look as 

shown in the following figure. 

 

Figure 18   Packs folder 

4.4 Pack Creation for IAR Embedded Workbench 
As there is no Custom Pack Creator Tool available in IAR Embedded Workbench, all the pack files should be created 
manually as below: 

1. Create the contents folder. 
2. Manually create the PDSC file. 
3. Create module configuration XML files and place them in .module_descriptions folder. 
4. Add the above contents to a .zip file and create a .pack file. 
 
The only extra step needed in this case would be manual creation of PDSC file. 

Also, care should be taken with the pack file, XML files, and PDSC file naming convention. 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 22 of 34 
Oct 1, 2018  

5. Using the Custom Synergy Module 
5.1 Install the Custom Pack 
Copy your new pack to the <e2_studio_install_folder>/internal/projectgen/arm/Packs 
directory. If you have a Synergy Configuration window already open, e2 studio has a window pop up asking you to 
refresh as seen in the following figure. If a Synergy Configuration is not open, the pack list will be refreshed the next 
time one is opened. 

 

Figure 19   Pack refresh dialog 
There are some very important rules that must be followed to make sure that your pack will be properly recognized by 
e2 studio: 

1. Packs are specific to a particular e2 studio version. If you have multiple versions of e2 studio, then you will have to 
install your pack into each version for it to be recognized and displayed in that version of e2 studio. 

2. Each SSP version is tested and released with an associated version of e2 studio, identified in the Release Notes for 
SSP. When developing your module and XML, you must use the version of e2 studio that is recommended for use 
with the version of SSP that you are using for the module. 

 
It is useful to note that the PDSC component section is used to list the new software component in the Synergy 
Configurator tool. If a module has an XML configurator associated with it, the new module appears in the module 
options as shown in the following figure. 

 

Figure 20   sf_example has a Configurator and appears in the Configurator menu 
When you choose a module in the Threads tab, e2 studio then checks the associated component in the Components tab. 
If a module does not have an XML configurator, you must check the component manually in the Components tab.  

When a component is chosen, only the files that are described in the <component> are extracted. Here is the 
<components> element of the example PDSC file. 

Note: Custom Pack Installation process is the same as above for IAR Embedded Workbench as well with the 
exception that the pack files need to be placed into 
<SSC_install_folder>/internal/projectgen/arm/Packs. 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 23 of 34 
Oct 1, 2018  

6. Creating Custom packs for Wi-Fi module 
For creating custom packs for Wi-Fi modules, use the Wi-Fi module templates that come with the Wi-Fi Porting Guide 
Application Project. Follow the steps defined in the Wi-Fi porting guide for creation and installation of packs. 

7. Appendix – Rules for the Module Configurator XML File 
This section goes into greater detail on the different tags that are available within the Module Configurator XML file. 
These additional examples and rules will provide you with the detailed knowledge you need to customize the XML file.  

7.1 Best practices for user-visible text 
All text fields visible to the user (attributes starting with display=) must be human readable.  

Manually, edit all display ids so that abbreviations are spelled out and the acronyms are in the proper case. For example, 
the bolded text shown below was originally Khz and was edited to kHz to make it easy to read. 

 

7.2 Content of text visible to user 

 

7.3 Using elements as variables 
Note: Element ids are like variables that can be used in any text fields, including display attributes for other elements 

and in code elements such as the Declarations element. Order is not important. A text field can resolve an 
element that is defined later in the XML file. To use the variables, ${<element_id>} resolves to the value 
selected by the user. 

In the example below, ${module.driver.timer.name} will resolve to g_timer (default attribute), if the 
Name field is not edited by the user. 

 
In the example below, when Unit Frequency kHz is selected in the ISDE: 

1. The value of module.driver.timer.unit is set to the value attribute of 
module.driver.timer.unit.unit_frequency_khz 

2. ${module.driver.timer.unit} resolves to TIMER_UNIT_FREQUENCY_KHZ in any text fields where it 
is referenced. 

 

 

 

<option display="Unit Frequency kHz"  
        id="module.driver.timer.unit.unit_frequency_khz"  
        value="TIMER_UNIT_FREQUENCY_KHZ"/> 

 

<option display="Unit Frequency Khz"  
        id="module.driver.timer.unit.unit_frequency_khz"  
        value="TIMER_UNIT_FREQUENCY_KHZ"/> 

 

 

<module config="config.driver.gpt"  
        display="${module.driver.timer.name} TIMER Driver on GPT${module.driver.timer.channel}"  
        id="module.driver.timer_on_gpt" version="1"> 
    ... 
    <property default="g_timer" display="Name" id="module.driver.timer.name"> 

<option display="Unit Frequency kHz"  
        id="module.driver.timer.unit.unit_frequency_khz"  
        value="TIMER_UNIT_FREQUENCY_KHZ"/> 

 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 24 of 34 
Oct 1, 2018  

7.4 Config element 
The first element in the XML files is the config element. The config element contains build time configurations 
that will go in the ssp_config/<driver|framework>/<namespace>_<instance>_cfg.h file. 

Config elements, like the <namespace>_<instance>_cfg.h header files they populate, are common to all 
instances of a module. For example, if parameter checking is changed from enabled to disabled in a TIMER driver on 
GPT2, it will also be automatically changed from enabled to disabled in a TIMER driver on GPT5. The parameter 
checking option is configurable on the screen for each channel, but it cannot be defined to different options for different 
channels. 

7.5 Attributes id, path, and version 
The first line defining the config element should define the following attributes: 

• id= config.<driver|framework>.<instance> 
This is used later by the <module> element to tie the <module> element to a particular <config> element.  

• path= ssp_cfg/<driver|framework>/<namespace>_<instance>_cfg.h 
This is the path relative to the synergy_cfg folder where the output file 
(<namespace>_<instance>_cfg.h) will be generated. 

• version= 1.0 
 
An example from GPT is below: 

 

7.6 Property elements 
At a minimum, each config element contains a property drop down with three options for the parameter checking macro 
required by each module: 

1. Manually edit the BSP option element (see example below). 
2. Manually edit the default value to config.driver.<module>.param_checking_enable.bsp. 
3. Manually edit the display value to Parameter Checking. 
4. Manually edit the values of any other build time configurations as appropriate. 
 
An example of the GPT properties is below: 

 

7.7 Module element 
Elements in the module apply to a particular instance of a module. For example, a single application can use more than 
one GPT channel. If GPT channel 2 and GPT channel 5 are used, each will have their own elements saved (in contrast 
to elements of config, which are shared). 

 
<config id="config.driver.gpt" path="ssp_cfg/driver/r_gpt_cfg.h" version="0"> 

 

<property default="config.driver.gpt.param_checking_enable.bsp"  
          display="Parameter Checking"  
          id="config.driver.gpt.param_checking_enable"> 

    <option display="Default (BSP)"  
            id="config.driver.gpt.param_checking_enable.bsp"  
            value="(BSP_CFG_PARAM_CHECKING_ENABLED)"/> 

    <option display="Enabled"  
            id="config.driver.gpt.param_checking_enable.enabled"  
            value="(1)"/> 

    <option display="Disabled"  
            id="config.driver.gpt.param_checking_enable.disabled"  
            value="(0)"/> 

</property> 

 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 25 of 34 
Oct 1, 2018  

7.8 Attributes and the idea of “common” 
The first line defining the module element should define the following attributes: 

config=”config.<driver|framework>.<instance>” 
Must match the id of the config element created above. 
display="${module.<driver|framework>.<api>.name} <API> Driver on <module_name> 
id=”module.<driver|framework>.<api>_on_<instance>” 
version=”1” 
 

(Optional, see below) common= n. 

There are three ways a module can be used in a software stack. The appropriate option to choose depend on whether the 
common attribute is found in the <module> element, and its value. 

1. Common attribute is not found. 
 This is the default case. This means that this Module Instance (that is, a block in the ISDE) can only be used in 

the current SW stack. If you have two threads with different software stacks, then a <module> with this 
setting can be used in one, but not the other. The other stack would have to create a new Module Instance. The 
same applies to multiple stacks in the same thread. 

 Most of the HAL drivers currently use approach. They are not thread-safe and are not meant to be shared. You 
can of course share them at the application level. 

2. Common attribute is set to 1. 
 The value of 1 means only one Module Instance of this module can exist. If you try to create a new Module 

Instance of this <module> when one already exists, then the only option will be to use the existing Module 
Instance. 

 Example of modules using this are X-Ware libraries. There can only be one NetX library. There can be 
multiple uses of IPs and packet pools, but the common library can have only one instance. 

3. Common attribute is set to n (some integer) 
 An integer value greater than 1 means that this <module> can have n number of Module Instances. If the 

attribute’s value was 4 then it would allow 4 distinct Module Instances to be created. After that, an existing 
Module Instance would have to be chosen. We typically use a value of 100 to mean unlimited since 100 
Module Instances should never occur in typical use cases. 

 Examples of this include SPI and I2C Framework buses and NetX packet pools. You may want to share a 
common packet pool between a NetX IP instance and a NetX HTTP Client. 

 
The following is an example for GPT where the common attribute is not set. 

 
The following is an example for ThreadX® source where only one instance is allowed. 

 
The following is an example for an I2C Framework Shared Bus where an unlimited number (100) of shared Module 
Instances is allowed. 

 

<module config="config.driver.gpt"  
        display="${module.driver.timer.name} Timer Driver on r_gpt"  
        id="module.driver.timer_on_gpt"  
        version="1"> 

 

 

<module config="config.el.tx_src"  
        id="module.framework.tx_src"  
        display="Framework|RTOS|ThreadX Source"  
        common="1"  
        version="0"> 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 26 of 34 
Oct 1, 2018  

 

7.9 Constraint element 
Constraints are used to alert you of errors early in the development process. Constraints catch errors in the ISDE rather 
than when building or worse yet, when debugging. 

Constraints are implemented as a condition that gets inserted into a JavaScript conditional statement 
 if (!<constraint>) { /* Error */ } 

Note: When referring to properties in constraints, only module properties from your current module can be used. To 
constrain lower level modules, see Override element. 

All modules that can have multiple instances must have the following constraint: 

display=”Module instances must have unique names” 

The following is an example for the audio framework: 

 

7.10 Provides interface element 
The provides element satisfies constraints in upper layer modules used to tie modules together. The interfaces named 
can be accessed by other modules, and resolve to the number of times they have been provided. 

Add the following element(s): 

• <provides interface="interface.driver|framework.<api>”/> 
• <provides interface="interface.driver|framework.<api>_on_<instance>”/> 
 
If your driver supports more than one instance: 

• <provides 
interface="interface.driver|framework.<api>.${module.driver|framework.<api>.n
ame}”/> 

• <provides 
interface="interface.driver|framework.<api>_on_<instance>.${module.driver|fra
mework.<api>.name}”/> 

 
An example for GPT is below: 

 

7.11 Requires interface element 
If you require a lower level module (not including the BSP), add the following line (note that this is not required for 
most HAL modules): 

 

<module config="config.framework.sf_i2c_bus"  
        display="Framework|Connectivity|${module.framework.sf_i2c_bus.name} I2C Framework  
                 Shared Bus on sf_i2c"  
        id="module.framework.sf_i2c_bus_on_sf_i2c"  
        common="100"  
        version="1"> 

 

<constraint display="Module instances must have unique names">                
"${interface.framework.sf_audio_playback.${module.framework.sf_audio_playback.name}}" === "1" 

 

 

<provides interface="interface.driver.timer" /> 

<provides interface="interface.driver.timer_on_gpt" /> 

<provides interface="interface.driver.timer.${module.driver.timer.name}" /> 

<provides interface="interface.driver.timer_on_gpt.${module.driver.timer.name}" /> 

 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 27 of 34 
Oct 1, 2018  

Note: The interface attribute of the <requires> element must match the interface element of the <provides> 
element in the lower level module; this is how the connection between the two is made. 

<requires id="module.driver|framework.<api>.requires.<lowerlevelapi>" 
interface="interface.driver|framework.<lowerlevelapi>" display="Add <Lower Level 
Module Name>" /> 

If your (framework) module requires ThreadX, use: 
<requires interface="_rtos" /> 

• This option means that this module will be available in the Threads tab of the module configurator. Without this 
option, the module would be available in the HAL tab of the module configurator. 

The following is an example for the sf_audio_playback framework: 

 

7.12 Override element 
If your module requires a lower level module specified by the <requires> element, and your module requires certain 
settings, use the <override> sub-element of the <requires> element to force settings in the lower layer. 

<override property="module.driver|framework.<lowerlevelapi>.<lowerlevelid>" 
value="module.driver|framework.<lowerlevelapi>.<lowerlevelid>.<lowerlevelvalue
> "/> 
 

The following is an example for the sf_audio_playback_hw_dac framework. The upper level Audio Playback 
on DAC is forcing the lower level DAC module to use a flush-right data format: 

 
7.12.1 Property elements 
Name element 

At a minimum, each module element contains a name property text field for you to enter the name of the symbol. This 
property must be the first property in each XML.  

The field name is the name of the <api>_instance_t structure associated with this instance of the module. The 
name field is used to identify the module in the interface attributes. The name was chosen for this purpose over the 
channel number so the application code does not have to change if the channel number changes. 

Manually add a name property element with the following attributes: 

 

<requires interface="_rtos" /> 

<requires id="module.framework.sf_audio_playback_common.requires.sf_message"  
          interface="interface.framework.sf_message"  
          display="Add Messaging Framework" /> 

<requires id="module.framework.sf_audio_playback_common.requires.sf_audio_playback_hw"  
          interface="interface.framework.sf_audio_playback_hw"  
          display="Add Audio Playback Hardware" /> 

 

<requires id="module.framework.sf_audio_playback_hw_dac.requires.dac"  
          interface="interface.driver.dac"  
          display="Add DAC Driver" > 
    <override property="module.driver.dac.data_format"  
              value="module.driver.dac.data_format.data_format_flush_right"/> 
</requires> 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 28 of 34 
Oct 1, 2018  

• default= g_<api> 
• display=Name 
• id= module.driver|framework.<api>.name 
• constraint element 
• testSymbol= ${module.driver|framework.<api>.name} 
 
This constraint is documented in Property Element Constraints. 

The following is an example for the GPT: 

 
The property elements for configuration of the following fields of *_cfg_t. 

• Enumerations 
• stdint/stdbool types (bool, uint8_t, int16_t, and so forth) 
• Structures/Unions 

If there are structures in your *_cfg_t structures, create property elements for configuration of each element of 
each structure/union. 
id= module.<driver|framework>.<api>.structure_union_name_element_name 

 
Following is an example from GPT. This is in the timer extension, where .gtiocb is a structure with element 
stop_level. The resulting id is module.driver.timer.gtiocb_stop_level. 

 
• Pointers 

If there are any pointers in your *_cfg_t structures, create property elements for configuration of the pointer. 
For callback/context pointers, see the following Callback and Context Property Elements. 

• Single Line Typedefs/Forward Declarations 
 
7.12.2 Call back and context property elements 
The process for specifying p_callback and p_context arguments are described below. 

Manually, add a callback property element with the following attributes: 

• default= NULL 
• display= Callback 
• id= module.driver|framework.<api>.p_callback 
• constraint element 
• testSymbol= ${module.driver|framework.<api>.p_callback} 
 
Following is an example for GPT: 

 

 

<property default="g_timer" display="Name" id="module.driver.timer.name"> 

    <constraint display="Name must be a valid C symbol"> 
        testSymbol("${module.driver.timer.name}") 
    </constraint> 

</property> 

 

 

<property default="module.driver.timer.gtiocb_stop_level.pin_level_low"  
          display="Stop Level"  
          id="module.driver.timer.gtiocb_stop_level"> 

 

<property default="NULL"  
          display="Callback"  
          id="module.driver.timer.p_callback"> 
    <constraint display="Name must be a valid C symbol"> 
        testSymbol("${module.driver.timer.p_callback}") 
    </constraint> 

 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 29 of 34 
Oct 1, 2018  

7.13 Property element constraints 
Note: Only one <constraint> element is permitted per <property> element now. If your property has more 

than one constraint, combine them into one using && and || operators. 

For all text entry properties (properties with no options provided), add constraints to specify what type of text is 
expected. Common constraints include: 

• testInteger(${<id>}) – to test if input is an integer related, JavaScript logic: 
("${module.driver.block_media_on_spi_flash.block_size}" &gt; 0) 

 

 
• testSymbol(${<id>}) – to test if input is a valid C symbol: 

This tests only that the symbol is a valid C symbol. It does not test that the C symbol is defined in the project.  For 
example, bad_ch@racters is not a valid C symbol, but my_variable is. 

 

7.14 Header element 
The header element externs global variables such as the instance structure (<api>_instance_t) that you will use 
in your application code. Text from this element is copied directly into header files accessible by you (in the 
src/ssp_gen folder). 

Add the header element. Extern the instance structure (that is, <api>_instance_t). 

If you specified a callback function, a prototype must be provided at the top of the header section. To do this, you will 
first determine if the callback is NULL. NULL is a defined macro, so this is tested by checking if the callback is 
defined. If the callback is not NULL, a prototype is declared. 

Add a callback function prototype based on the example from GPT (timer interface) below. 

Following is an example from GPT: 

 
7.14.1 Includes element 
The includes element contains the required include paths and is copied directly into header files accessible by you 
(in the src/ssp_gen folder). 

 

<constraint display="Name must be a valid C symbol"> 
    testSymbol("${module.driver.timer.name}") 
</constraint> 

 

<header> 

    /** Timer on GPT Instance. */ 

    extern const timer_instance_t ${module.driver.timer.name}; 

    #ifdef ${module.driver.timer.p_callback} 

    #define TIMER_ON_GPT_CALLBACK_USED_${module.driver.timer.name} (0) 

    #else 

    #define TIMER_ON_GPT_CALLBACK_USED_${module.driver.timer.name} (1) 

    #endif 

    #if TIMER_ON_GPT_CALLBACK_USED_${module.driver.timer.name} 

    void ${module.driver.timer.p_callback}(timer_callback_args_t * p_args); 

    #endif 
</header> 

<constraint display="Value must be an integer greater than 0"> 
    testInteger("${module.driver.timer.period}") &amp;&amp;  
    ("${module.driver.timer.period}" &gt; 0) 
/ i  



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 30 of 34 
Oct 1, 2018  

Add the includes element with all required include paths, typically r_<instance>.h. 

Following is an example from GPT: 

 
7.14.2 Declarations element 
The declarations element contains declarations of data required for the open call. This data is copied into a 
private C: file and extended into a header file accessible by you. You will typically access everything through the 
instance structure that is created and named according to the name you have provided. 

• Edit the declarations element to create a control structure to be pointed to by the instance structure. 

 

 

<includes> 
    #include &quot;r_gpt.h&quot; 

</includes> 

 

<declarations> 
static timer_ctrl_t ${module.driver.timer.name}_ctrl; 
</declarations> 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 31 of 34 
Oct 1, 2018  

• Edit the declarations element to ensure all elements of the *_cfg_t structures are populated appropriately. Add 
code for any property elements added in the property elements section. 
 Following is an example from the GPT timer output compare extension (structure within a structure). The 

gpt_timer_ext_t structure has an element gtiocb, that is a structure with an output_enabled 
element. The property for this is module.driver.timer.gtiocb_output_enabled.  

 The callback and context also must be added to initialize the <api>_cfg_t structure. The context should be 
a pointer to the instance structure. 

  

<property default="module.driver.timer.gtiocb_output_enabled.false"  
          display="Gtiocb Output Enabled"  
          id="module.driver.timer.gtiocb_output_enabled"> 

    <option display="True"  
            id="module.driver.timer.gtiocb_output_enabled.true"  
            value="true"/> 

    <option display="False"  
            id="module.driver.timer.gtiocb_output_enabled.false"  
            value="false"/> 

</property> 

... 
<declarations> 

static const timer_on_gpt_cfg_t ${module.driver.timer.name}_extend = 

{ 

    .gtioca = { .output_enabled = ${module.driver.timer.gtioca_output_enabled}, 

                .stop_level     = ${module.driver.timer.gtioca_stop_level} 

              }, 

    .gtiocb = { .output_enabled = ${module.driver.timer.gtiocb_output_enabled}, 

                .stop_level     = ${module.driver.timer.gtiocb_stop_level} 

              } 

}; 

static const timer_cfg_t ${module.driver.timer.name}_cfg = 

{ 

    .mode                = ${module.driver.timer.mode}, 

    .period              = ${module.driver.timer.period}, 

    .unit                = ${module.driver.timer.unit}, 

    .duty_cycle          = ${module.driver.timer.duty_cycle}, 

    .duty_cycle_unit     = ${module.driver.timer.duty_cycle_unit}, 

    .channel             = ${module.driver.timer.channel}, 

    .autostart           = ${module.driver.timer.autostart}, 

    .p_callback          = ${module.driver.timer.p_callback}, 

    .p_context           = &amp;${module.driver.timer.name}, 

    .p_extend            = &amp;${module.driver.timer.name}_extend 

}; 
</declarations> 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 32 of 34 
Oct 1, 2018  

 An example from DTC is below (pointer to structure). The transfer_info_t structure is created before 
the transfer_cfg_t structure, and the p_info element points to it. 

 

 
 With the control and configuration structures created, we can now create an instance structure that points to 

them. We will also add a pointer to the API structure for this instance. This will be common across all uses of 
this module. The name is typically g_<api>_on_<instance>. 

 

 

7.15 Init element 
The init element (framework layers only at this time) contains code to call the open function. This code is called in 
the generated code for your thread in src/ssp_gen/<user_thread_name>.c. This code executes before your 
thread code (in src/<user_thread_name>_entry.c). 

Add the init element with the call to the framework layer open function. 

An example from the audio framework is below: 

 
  

  

 

<init> 

    ssp_err_t ssp_err_${module.framework.sf_audio_playback.name}; 

    ssp_err_${module.framework.sf_audio_playback.name} =  
        ${module.framework.sf_audio_playback.name}.p_api-> 
        open(${module.framework.sf_audio_playback.name}.p_ctrl,  
        ${module.framework.sf_audio_playback.name}.p_cfg); 

    if (SSP_SUCCESS != ssp_err_${module.framework.sf_audio_playback.name}) 

    { 

        while (1); 

    } 
</init> 

 

transfer_info_t ${module.driver.transfer_on_dtc.name}_info = 
{ 
    .dest_addr_mode      = ${module.driver.transfer.dest_addr_mode}, 
    .repeat_area         = ${module.driver.transfer.repeat_area}, 
    ... 
}; 
Static const transfer_cfg_t ${module.driver.transfer.activation_source}_cfg = 
{ 
    .p_info              = &amp;${module.driver.transfer.name}_info, 
    ... 
}; 

<declarations> 
/* Instance structure to use this module. */ 
const timer_instance_t ${module.driver.timer.name} =  
{ 
    .p_ctrl        = &amp;${module.driver.timer.name}_ctrl, 
    .p_cfg         = &amp;${module.driver.timer.name}_cfg, 
    .p_api         = &amp;g_timer_on_gpt 
}; 
</declarations> 



Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 33 of 34 
Oct 1, 2018  

Website and Support 
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components and 
related documentation, and get support. 

 
Synergy Software    renesassynergy.com/software 
 Synergy Software Package  renesassynergy.com/ssp 
 Software add-ons   renesassynergy.com/addons 
 Software glossary   renesassynergy.com/softwareglossary 

Development tools  renesassynergy.com/tools 
 

Synergy Hardware   renesassynergy.com/hardware 
 Microcontrollers   renesassynergy.com/mcus 
 MCU glossary   renesassynergy.com/mcuglossary 
 Parametric search   renesassynergy.com/parametric 

Kits    renesassynergy.com/kits 
 

Synergy Solutions Gallery   renesassynergy.com/solutionsgallery 
 Partner projects   renesassynergy.com/partnerprojects 

Application projects  renesassynergy.com/applicationprojects 
 
Self-service support resources:  

Documentation    renesassynergy.com/docs 
Knowledgebase    renesassynergy.com/knowledgebase 
Forums     renesassynergy.com/forum 
Training     renesassynergy.com/training 
Videos    renesassynergy.com/videos 
Chat and web ticket   renesassynergy.com/support 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

http://renesassynergy.com/software
http://renesassynergy.com/ssp
http://renesassynergy.com/addons
http://renesassynergy.com/softwareglossary
http://renesassynergy.com/tools
http://renesassynergy.com/hardware
http://renesassynergy.com/mcus
http://renesassynergy.com/mcuglossary
http://renesassynergy.com/parametric
http://renesassynergy.com/kits
http://renesassynergy.com/solutionsgallery
http://renesassynergy.com/partnerprojects
http://renesassynergy.com/applicationprojects
http://renesassynergy.com/docs
http://renesassynergy.com/knowledgebase
http://renesassynergy.com/forum
http://renesassynergy.com/training
http://renesassynergy.com/videos
http://renesassynergy.com/support


Renesas Synergy™ Platform SSP Module Development Guide 

R11AN0132EU0103  Rev.1.03  Page 34 of 34 
Oct 1, 2018  

Revision History 

Rev. Date 
Description 
Page Summary 

1.00 Jan 23, 2018 — Initial release 
1.01 Feb 2, 2018 — Minor edits for grammar and usage 
1.02 May 9, 2018 16, 17 Corrected Figures 10, 11  

20 Corrected “module_descriptions” to “.module_descriptions” 
22 Corrected “Packs are specific to a particular e2 studio 

installation.” to “e2 studio version”.  
1.03 Oct 1, 2018 23 Procedure for creating Custom packs for Wi-Fi module has 

been moved to a separate document. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
All trademarks and registered trademarks are the property of their respective owners.



 

 
 

http://www.renesas.comSALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.2

(Rev.4.0-1  November 2017)

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel:  +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338


	1.  Driver Development Overview
	2. Creating the Software Content
	2.1 Module file structure organization
	2.2 Filling in the details from scratch
	2.3 Filling in the details from an existing module

	3. Creating a Module Configurator XML File for the ISDE
	3.1 Module configurator overview
	3.2 Creating the XML
	3.3 XML file naming conventions 
	3.4 Module configurator XML file sections and tags
	3.5 Multiple configurators per Module in XML files
	3.6 Module configurator checklist
	3.7 Module configurator dictionary

	4. Packaging the New Software Module 
	4.1 The PDSC (pack descriptor)
	4.2 The Custom Pack Creator Tool – e2 studio
	4.3 Modifying the custom pack from above to include the XML files
	4.4 Pack Creation for IAR Embedded Workbench

	5. Using the Custom Synergy Module
	5.1 Install the Custom Pack

	6. Creating Custom packs for Wi-Fi module
	7. Appendix – Rules for the Module Configurator XML File
	7.1 Best practices for user-visible text
	7.2 Content of text visible to user
	7.3 Using elements as variables
	7.4 Config element
	7.5 Attributes id, path, and version
	7.6 Property elements
	7.7 Module element
	7.8 Attributes and the idea of “common”
	7.9 Constraint element
	7.10 Provides interface element
	7.11 Requires interface element
	7.12 Override element
	7.12.1 Property elements
	7.12.2 Call back and context property elements

	7.13 Property element constraints
	7.14 Header element
	7.14.1 Includes element
	7.14.2 Declarations element

	7.15 Init element

	Revision History

