Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/300L Series

SSB Communication via Serial Communication Interface (H8/3644)

Introduction

As shown in figure 1.1, IC1 and IC2, which are connected by a serial clock (SCL) and a serial data (SDA) line, are controlled using an SSB communication function.

Target Device

H8/3644

Contents

1.	Specifications	2
2.	Description of Functions	2
3.	Principle of Operation	5
4.	Description of Software	6
5.	Flowchart	8
6.	Program Listing	9

1. **Specifications**

- 1. As shown in figure 1.1, IC1 and IC2, which are connected by a serial clock (SCL) and a serial data (SDA) line, are controlled using an SSB communication function.
- 2. The length of the transmit data is 16 bits. The data is transmitted according to the 6.4-us transfer clock.
- 3. After the end of 16-bit transferred data, a tail mark is added and transmitted. In this sample task, the hold tail is selected as a tail mark.

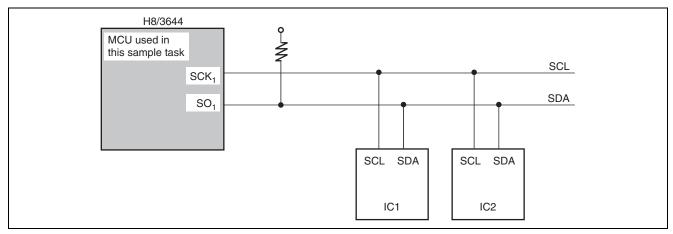


Figure 1.1 Example of SSB Connection

2. **Description of Functions**

- 1. In this sample task, SSB communication is performed via the serial communication interface (SCI). Figure 2.1 shows a block diagram of the SSB communication, and the following is the description for the block diagram:
 - The SSB communication method is configured with two lines, SCL and SDA, to control multiple ICs connected.
 - In SSB mode, a tail mark is added and transmitted after an 8-bit or 16-bit data transfer. The hold or latch tail can be selected for the tail mark.
 - The system clock frequency (φ) used as the basic clock for the CPU or peripheral-function operation is 5-MHz; this clock is obtained by dividing the 10-MHz OSC clock by 2.
 - The prescaler S (PSS) is a 13-bit counter, to which ϕ is input. The PSS counts up on each cycle.
 - The serial control register 1 (SCR1) is an 8-bit readable/writable register that selects operating mode, transfer clock source, and prescaler division ratio.
 - The serial control/status register 1 (SCSR1) is an 8-bit counter that indicates operation status, error status, etc.
 - The serial data register U (SDRU) is an 8-bit readable/writable register that functions as a data register for the upper 8 bits in 16-bit data transfer. Data written to SDRU is output to SDRL with the LSB first. Then, data is in turn input from the SI₁ pin with the LSB first, and data is shifted from the MSB to the LSB. SDRU should be read or written to after data transmission or reception is complete. If it is read or written to during data transmission or reception, data may not be guaranteed.
 - The serial data register L (SDRL) is an 8-bit readable/writable register that functions as a data register in 8-bit data transfer and as a data register for the lower 8 bits in 16-bit data transfer. In 8-bit data transfer, data written to SDRL is output from the SO₁ pin with the LSB first. Then, data is in turn input from the SI₁ pin with the LSB first, and data is shifted from the MSB to the LSB. In 16-bit data transfer, operation is the same as that in 8-bit data transfer except that data is input from SDRU. SDRL should be read or written to after data transmission or reception is complete. If it is read or written to during data transmission or reception, data may not be guaranteed.
 - The transfer clock can be selected from eight internal clocks. External clocks cannot be selected because this LSI provides clock output. The transfer rate can be selected with CKS2 to CKS0 in SCR1, however, the transfer clock cycle should be set as 2 µs or more because the transfer rate is also used for a tail mark.

— The SCI1 transfer format is shown in figure 2.2. Data is transferred with the LSB first that transmits data from its lowest bit. After 8-bit or 16-bit data transfer, a tail mark is added.

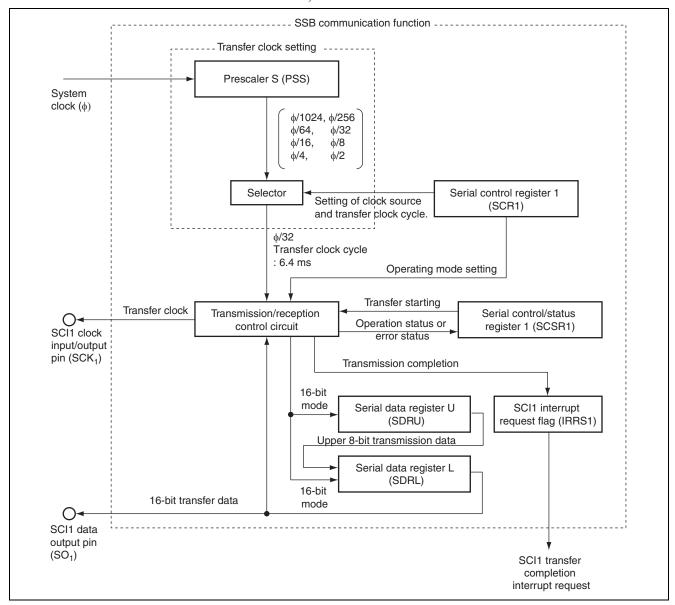


Figure 2.1 Block Diagram of SSB Communication Function

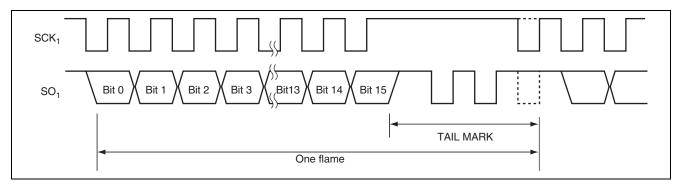


Figure 2.2 Transfer Format (When SNC1 = 0, SNC0 = 1 and MRKON = 1)

- The hold or latch tail can be selected for a tail mark. Figure 2.3 shows output waveforms of the hold and latch tails. Time t in figure 2.3 indicates the period determined by the transfer clock that is set with CKS2 to CKS0 in SCR1.
- One of the SCI1 interrupt sources is transfer completion. When the SCI1 transfer completes, IRRS1 in IRR2 is set to 1. SCI1 interrupt requests can be enabled or disabled with IENS1 in IENR2.

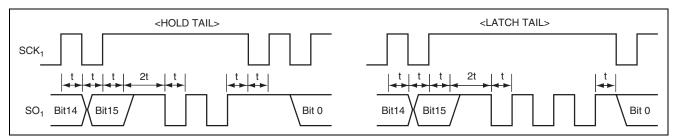


Figure 2.3 Hold and Latch Tail Output Waveforms

2. Table 2.1 shows the allocation of functions used in this sample task. Functions are allocated as shown in table 1 to perform SSB communication.

Table 2.1 Function Allocation

Function	Function Allocation
PSS	13-bit counter to which the system clock is input.
SCR1	Operating mode, transfer clock source and prescaler division ratio are set.
SCSR1	Operation status or error status is indicated.
SDRU	Data register for the upper 8 bits of 16-bit transmit data
SDRL	Data register for the lower 8 bits of 16-bit transmit data
SCK1	Transfer clock output pin of SCI1
SO1	Transmit data output pin of SCI1
IRRS1	SCI1 transfer completion is indicated.
IENS1	Enabling/disabling of SCI1 interrupt requests is controlled.
PMR3	P3 ₂ /SO ₁ and P3 ₀ /SCK ₁ pin functions are set.
PMR7	Turning on/off of the P3 ₂ /SO ₁ pin output buffer PMOS is controlled.

3. Principle of Operation

1. Figure 3.1 shows the principle of operation. SSB communication is performed with the hardware and software processing shown in the figure.

Figure 3.1 Principle of Operation of SSB Communication

4. Description of Software

4.1 Module

Table 4.1 describes the module used in this sample task.

Table 4.1 Description of Module

Module	Label	Function
Main routine	main	Initializes the stack pointer, sets transfer data, sets SSB communication mode, enables interrupts, and terminates when 4 frames of 16-bit data have been transmitted.

4.2 Arguments

Table 4.2 describes the arguments used in this sample task.

Table 4.2 Description of Modules

Argument	Function	Used in	Data Length	Input/ Output
STD0H to STD3H	Upper 8 bits of 16-bit transmit data are stored	Main routine	1 byte	Input
SRD0L to SRD3L	Lower 8 bits of 16-bit transmit data are stored	Main routine	1 byte	Input

4.3 Internal Registers

The internal registers used in this sample task are described in table 4.3.

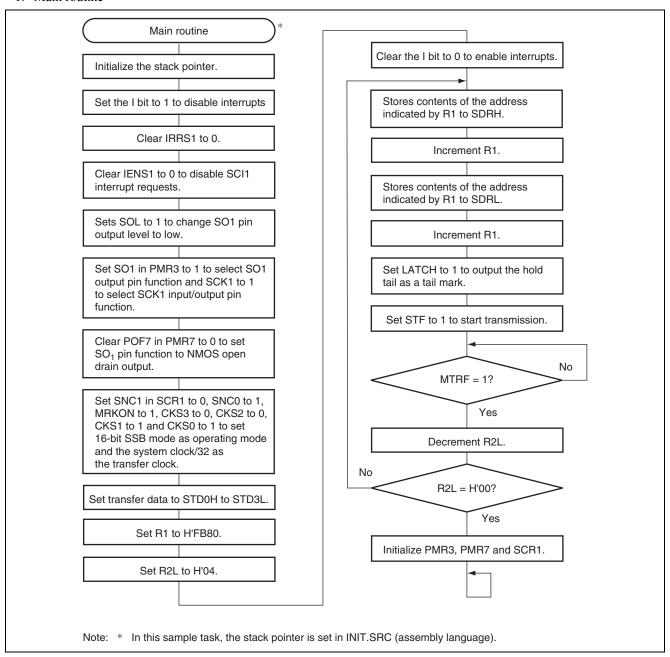
Table 4.3 Description of Internal Registers

Register		Function		Setting
SCR1 SNC1		Serial Control Register 1 (Operating Mode Select 1, 0)	H'FFA0	SNC1 = 0
S	SNC0	When SNC1 = 0 and SNC0 = 0, operating mode is set to 16-bit	Bit 7	SNC0 = 0
		mode.	Bit 6	
N	MRKON	Serial Control Register 1 (Tail Mark Control)	H'FFA0	1
		When MRKON = 1, a tail mark is output.	Bit 5	
L	LATCH	Serial Control Register 1 (Latch Tail Select)	H'FFA0	0
		When LATCH = 0, the hold tail is output as a tail mark.	Bit 4	
(CKS3	Serial Control Register 1 (Clock Source Select 3)	H'FFA0	0
		When CKS3 = 0, prescaler S is set for the clock source and the	Bit 3	
		SKC₁ pin is set to output.		
C	CKS2	Serial Control Register 1 (Clock Source Select 2, 1, 0)	H'FFA0	CKS2 = 0
C	CKS1	When CKS2 = 0, CKS1 = 1 and CKS0 = 1, prescaler division	Bit 2	CKS1 = 1
CKS0 ratio is set to 32 and the transfer clock cycle is set to 6.4 µ		ratio is set to 32 and the transfer clock cycle is set to 6.4 μs .	Bit 1	CKS0 = 1
			Bit 0	
SCSR1 S	SOL	Serial Control/Status Register 1 (Expansion Data Bit)	H'FFA1	1
		When SOL = 0 , the SO ₁ pin output level is changed to low.	Bit 6	
		When SOL = 1, the SO_1 pin output level is changed to high.		
N	MTRF	Serial Control/Status Register 1 (Tail Mark Flag)	H'FFA1	0
		When MTRF = 0, indicates that transfer wait state is entered or	Bit 1	
		8-bit/16-bit data transfer is in progress.		
		When MTRF = 1, indicates that a tail mark is being transmitted.		

Register		Function	Address	Setting
SCSR1 STF Serial Control/Status Register 1 (Start Flag)		Serial Control/Status Register 1 (Start Flag)	H'FFA1	0
		When STF = 0, transfer operation is complete.	Bit 0	
		When STF = 1, transfer operation starts.		
SDRU		Serial Data Register U	H'FFA2	
		Stores upper 8 bits of transmit data during 16-bit transfer		
SDRL		Serial Data Register L	H'FFA3	_
		Stores lower 8 bits of transmit data during 16-bit transfer		
IENR2	IENS1	Interrupt Enable Register 2 (SCI1 Interrupt Enable)	H'FFF5	0
		When IENS1 = 0, SCI1 interrupt requests are disabled.	Bit 4	
		When IENS1 = 1, SCI1 interrupt requests are enabled.		
IRR2	IRRS1	Interrupt Request Register 2 (SCI1 Interrupt Request Flag)	H'FFF8	0
		When IRRS1 = 0, SCI1 interrupt requests are not requested.	Bit 4	
		When IRRS1 = 1, SCI1 interrupt requests are requested.		
PMR3	SO1	Port Mode Register 3 (P3 ₂ /SO ₁ Pin Function Switch)	H'FFFD	1
		When SO1 = 1, this pin functions as SO_1 output pin.	Bit 2	
	SCK1	Port Mode Register 3 (P3 ₀ /SCK ₁ Pin Function Switch)	H'FFFD	1
		When SCK1 = 1, this pin functions as SCK_1 input/output pin.	Bit 0	
PMR7	POF1	Port Mode Register 7 (P3 ₂ /SO ₁ Pin PMOS Control)	H'FFFF	1
		When POF1 = 1, NMOS open drain output is selected.	Bit 0	

Description of RAM 4.4

Table 4.4 describes the RAM used in this sample task.


Description of RAM Table 4.4

Label	Function	Address	Used in
STD0H	Stores the upper 8 bits of 16-bit transmit data in the 1st frame	H'FB80	Main routine
STD0L	Stores the lower 8 bits of 16-bit transmit data in the 1st frame	H'FB81	Main routine
STD1H	Stores the upper 8 bits of 16-bit transmit data in the 2nd frame	H'FB82	Main routine
STD1L	Stores the lower 8 bits of 16-bit transmit data in the 2nd frame	H'FB83	Main routine
STD2H	Stores the upper 8 bits of 16-bit transmit data in the 3rd frame	H'FB84	Main routine
STD2L	Stores the lower 8 bits of 16-bit transmit data in the 3rd frame	H'FB85	Main routine
STD3H	Stores the upper 8 bits of 16-bit transmit data in the 4th frame	H'FB86	Main routine
STD3L	Stores the lower 8 bits of 16-bit transmit data in the 4th frame	H'FB87	Main routine

5. **Flowchart**

1. Main routine

6. **Program Listing**

```
; *
       H8/300L Series -H8/3644, H8/3657-
       Application Note
; *
      'SSB Communications'
; *
; *
      Function
; *
       : Serial Communication Interface
        SSB Communication
; *
      External Clock: 10MHz
; *
       Internal Clock: 5MHz
; *
      Sub Clock : 32.768kHz
.cpu
                       300L
;* Symbol Defnition
H'FFA0 ;Serial Control Register 1
7,SCR1 ;Select the Operation Mode 1
6,SCR1 ;Select the Operation Mode 0
5,SCR1 ;TAIL MARK Control
4,SCR1 ;LATCH TAIL Select
SCR1 .equ
         .bequ
SNC1
SNC0
         .bequ
MRKON
         .bequ
LTCH
         .bequ
CKS3
         .bequ
                      3,SCR1
                                    ;Clock Source Select 3
CKS2
         .bequ
                      2,SCR1
                                    ;Clock Select 2
CKS1
          .bequ
                      1,SCR1
                                    ;Clock Select 1
                     0,SCR1
CKS0
                                    ;Clock Select 0
         .bequ
                      H'FFA1
SCSR1
          .equ
                                      ;Serial Control Status Register 1
                      6,SCSR1
SOL
          .bequ
                                      ;Extended Data Bit
                      5,SCSR1
                                    Overrun Error Flag
ORER
          .bequ
                                    ;TAIL MARK Transmit Flag
         .bequ
                      1,SCSR1
MTRF
                     0,SCSR1
                                    ;Start Flag
STF
         .bequ
                     0,SCSR1
H'FFA2
H'FFA3
H'FFF5
4,IENR2
H'FFF8
4,IRR2
H'FFFD
2,PMR3
1,PMR3
0,PMR3
                                   , serial Data Register U
; Serial Data Register L
; Interrupt Enable Register 2
; SCI1 Interrupt Enable
; Interrupt Request Register 2
; SCI1 Interrupt Request Flag
; Port Mode Register 3
; P32/SO1 Pin Function Switch
; P31/SI1 Pin Function Switch
; P30/SCK1 Pin Function Switch
                                    ;Serial Data Register U
SDRU
         .equ
SDRL .equ
IENR2 .equ
IENRZ .equ
IENS1 .bequ
IRR2 .equ
IRRS1 .bequ
PMR3 .equ
SO1 .bequ
SI1 .bequ
SCK1 .bequ
PMR7 .equ
                                    ;P30/SCK1 Pin Function Switch
                     H'FFFF
       .equ
.bequ
                                    ;Port Mode Register 7
PMR7
                  0,PMR7
                                    ;P32/S01 Pin Function Switch
POF1
```

H8/300L Series SSB Communication via Serial Communication Interface

```
;* RAM Allocation
STACK .equ
STD0H .equ
STD0L .equ
STD1H .equ
STD1L .equ
STD2H .equ
STD2H .equ
STD3H .equ
STD3H .equ
STD3H .equ
                    H'FF80 ;Stack Pointer
H'FB80 ;Serial Transmitting Data 0 Upper
H'FB81 ;Serial Transmitting Data 0 Lower
H'FB82 ;Serial Transmitting Data 1 Upper
H'FB83 ;Serial Transmitting Data 1 Lower
H'FB84 ;Serial Transmitting Data 2 Upper
H'FB85 ;Serial Transmitting Data 2 Lower
H'FB86 ;Serial Transmitting Data 3 Upper
H'FB87 ;Serial Transmitting Data 3 Lower
;* Vector Address
;
           .org
                      н'0000
           .data.w
                       MAIN
                                     ;Reset Interrupt
                       н'0008
           .org
                      MAIN
           .data.w
                                     ; IRQ0 Interrupt
           .data.w
                      MAIN
                                     ;IRQ1 Interrupt
           .data.w MAIN .data.w MAIN .data.w MAIN
                                     ;IRQ2 Interrupt
                                    ;IRQ3 Interrupt
                                     ;INTO - INT7 Interrupt
;
          .org H'0014
.data.w MAIN
.data.w MAIN
                                    ;Timer A Interrupt
                                      ;Timer B1 Interrupt
;
          .org H'0020
.data.w MAIN
.data.w MAIN
                                      ;Timer X Interrupt
                                      ;Timer V Interrupt
;
           .org H'0026
.data.w MAIN
                                     ;SCI1 Interrupt
;
           .org
                      H'002A
           .data.w
                      MAIN
                                     ;SCI3 Interrupt
                                    ;A/D Converter Interrupt
           .data.w
                      MAIN
           .data.w
                                     ;SLEEP Instruction Executed Interrupt
                      MAIN
```


; *****	*****	*****	***********
;* Mai	n Program		*
; * * * * * *	*****	*****	**************
;			
	.org	H'1000	
;			
MAIN	.equ	\$	
	MOV.W	#STACK,SP	;Initialize Stack Pointer
	ORC	#H'80,CCR	;Interrupt Disable
;			
	BCLR	IRRS1	;Clear IRRS1
	BCLR	IENS1	;SCI1 Interrupt Disable
;			
	BSET	SOL	;Initialize SO1 Terminal Output Level
	MOV.B	#H'05,R0L	
	MOV.B	ROL,@PMR3	;Initialize SO1 CKS1 Terminal Function
	BSET	POF1	;Initialize SO1 Terminal NMOS Open-Drain Output
;			
	MOV.B	#H'63,R0L	
	MOV.B	ROL,@SCR1	; Initialize SSB Communication Function
;			
	MOV.W	#H'0001,R0	
	MOV.B	ROH,@STDOH	;Set Serial Transmitting Data 1 Upper
	MOV.B	ROL,@STDOL	;Set Serial Transmitting Data 1 Lower
	MOV.W	#H'0011,R0	
	MOV.B	ROH,@STD1H	;Set Serial Transmitting Data 2 Upper
	MOV.B	ROL,@STD1L	;Set Serial Transmitting Data 2 Lower
	MOV.W	#H'0111,R0	
	MOV.B	ROH,@STD2H	;Set Serial Transmitting Data 3 Upper
	MOV.B	ROL, @STD2L	;Set Serial Transmitting Data 3 Lower
	MOV.W	#H'1111,R0	
	MOV.B	ROH,@STD3H	;Set Serial Transmitting Data 4 Upper
	MOV.B	ROL,@STD3L	;Set Serial Transmitting Data 4 Lower
;			
	MOV.W	#H'FB80,R1	;Initialize Serial Transmitting Data Address
	MOV.B	#H'04,R2L	;Initialize Serial Transmitting Data Counter
;			
MAIN1	.equ	\$	
	MOV.B	@R1,R0H	;Load Serial Transmitting Data Upper
	MOV.B	ROH,@SDRU	;Set Serial Transmitting Data Upper
	ADDS	#1 , R1	;Increment Serial Transmitting Data Address
;	D	0.01 0.01	
	MOV.B	@R1,R0L	;Load Serial Transmitting Data Lower
	MOV.B	ROL,@SDRL	;Set Serial Transmitting Data Lower
	ADDS	#1,R1	;Increment Serial Transmitting Data Address
;	DOLD	T MOIT	.Cot HOLD BALL
_	BCLR	LTCH	;Set HOLD TAIL
;	DCEM	CTF	·Ctart Transmitting
	BSET	STF	;Start Transmitting
,			

H8/300L Series SSB Communication via Serial Communication Interface

MAIN2	.equ	\$	
	BTST	MTRF	;MTRF = "1" ?
	BEQ	MAIN2	; No.
;			
	DEC	R2L	;Decrement Serial Transmitting Data Counter
	BNE	MAIN1	;Serial Transmitting Data Counter = H'00 ? No.
;			
	MOV.B	#H'00,R0L	
	MOV.B	ROL,@PMR3	; Initialize SO1 & SCK1 Terminal Function
	BCLR	POF1	;Initialize SO1 Terminal Function
	MOV.B	ROL,@SCR1	;Initialize SCI1 Function
;			
MAIN9	.equ	\$	
	BRA	MAIN9	
;			
	.end		

Revision Record

	Descript	ion	
Date	Page	Summary	
Dec.19.03	_	First edition issued	
		Date Page	

Keep safety first in your circuit designs!

 Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.