
 APPLICATION NOTE

R21AN0014EJ0100 Rev.1.00 Page 1 of 12

Nov 01, 2014

Smart Analog IC101

Useful Examples of SAIC101 Sample Code

Introduction

This application note describes general examples for a sample code using API functions to control Smart Analog IC101

(RAA730101).

Note: Smart Analog IC101 is referred to as “SAIC101” throughout this document.

Target Device

Smart Analog IC 101 (part name: RAA730101), RL78/L13 (part name: R5F10WMGAFB)

Contents

1. Overview ... 2

2. Operation Confirmation Conditions .. 2

3. Usage Example Instructions .. 3

3.1 Register Operations .. 3

3.1.1 Read Register Bytes (SPI/UART) .. 3

3.1.2 Write Register Bytes (SPI/UART) ... 4

3.2 Flash Memory Operations .. 5

3.2.1 Read Flash Memory Data (SPI/UART) .. 5

3.2.2 Write Verify Flash Memory Data ... 6

3.3 A/D Converter Control .. 7

3.3.1 A/D-converted Value Acquire (one channel, one sampling: “1 shot”)

(SPI/UART) .. 7

3.3.2 A/D-converted Value Acquire (multi-channel, continuous sampling)

(SPI/UART) .. 9

3.4 Application Example for Smart Analog IC RSK Option Evaluation Board 11

3.4.1 Thermistor Control .. 11

R21AN0014EJ0100
Rev.1.00

Nov 01, 2014

Smart Analog IC101 Useful Examples of SAIC101 Sample Code

R21AN0014EJ0100 Rev.1.00 Page 2 of 12

Nov 01, 2014

1. Overview

This application note describes the following typical usage examples for the sample code using API functions for

controlling the Smart Analog IC101 (“SAIC101” herein): register operations (read, write)Note, flash memory

operations (read, write verify), and A/D convertor control. The document also describes an application example using

the sensor mounted on the Smart Analog IC RSK Option Evaluation Board TSA-OP-IC101, which has an onboard

Smart Analog IC and can be used with the Renesas Starter Kit.

Note: Register read/write processes using SPI communications can be used for other Smart Analog devices as well.

2. Operation Confirmation Conditions

Operations for these usage examples have been confirmed under the following conditions.

Table 2-1 Operation Confirmation Conditions

Item Description

Evaluation board Renesas Starter Kit for RL78/L13 [R0K5010WMS900BE]

 Renesas Starter Kit for RL78/L13 CPU Board

Abbreviation: RSK CPU Board

 Renesas Starter Kit LCD Application Board V2

Abbreviation: LCD Extension Board

 Smart Analog IC RSK Option Evaluation Board [TSA-OP-IC101]

Abbreviation: TSA-OP-IC101

Target device R5F10WMGAFB (RL78/L13)

Operating frequency 24MHz

Operating voltage 5.0V

Integrated Development

Environment (CubeSuite+)

V2.02.00 [21 Feb 2014]

C Compiler (CubeSuite+) CA78K0R

V4.02.00.03 [16 Jan 2014]

Integrated Development

Environment (e2studio)

V3.0.0.22

C Compiler (e2studio) GNURL78 v14.01

Smart Analog IC101 Useful Examples of SAIC101 Sample Code

R21AN0014EJ0100 Rev.1.00 Page 3 of 12

Nov 01, 2014

3. Usage Example Instructions

3.1 Register Operations

3.1.1 Read Register Bytes (SPI/UART)

This usage example reads bytes of data from SAIC101
Note

registers.

SAIC101 API read register bytes function [R_SAIC_SPI_Read] (for SPI) or [R_SAIC_UART_Read] (for UART) is

used to read values from the SAIC101 CHIPID register (address 0x00). The CHIPID register is reserved for reading the

stored SAIC101 chip ID; it reads 0x3A (a fixed value). When 0x3A is read, this serves as a confirmation that the serial

communication connection and read register process function are operating correctly.

Note: SPI communications described here can be used for other Smart Analog devices as well.

 Sample Code (for UART)

If value other than D_SAIC_OK, is

returned, saic_data[0x00U].data is

undefined

Variable to store return value of API
function

SAIC number used in API

Variables not used in this sample.

Structure that stores SAIC byte data

in API

Specify no. of bytes to read.

Set 1U to read 1 byte.

Sample code that reads SAIC101
CHIP ID

Specify read address.
Set 0x00U to read Chip ID (address
0x00)

If D_SAIC_OK is returned, the read
value is stored in
D_SAIC_OK,saic_data[0x00U].data

Read Register Bytes function
(API)
When using SPI, use
R_SAIC_SPI_Read instead.

void main(void)
{
 R_MAIN_UserInit();
 {
 // ***
 // * Variable
 // ***
 uint8_t ret = D_SAIC_OK;
 uint8_t saic_num = 0U;
 uint16_t data_num;
 saic_data_t saic_data[0x20U];
 uint8_t err_index;
 saic101_adc_t adc_setting[0x05U];
 saic_data_t saic_flash_data[0x100U];
 {
 // ***
 // * Read register bytes
 // ***
 // [Example: Read values from address 0x00U]
 data_num = 1U;
 saic_data[0x00U].address = 0x00U;
 ret=R_SAIC_UART_Read(saic_num,&saic_data[0x00U],(uint8_t)data_num);
 if (D_SAIC_OK == ret)
 {
 /* If D_SAIC_OK is returned, the read value is stored in saic_data[0x00U].data.*/
 }
 else
 {
 /* If D_SAIC_ERR_COM is returned, communication has failed. */
 }
 }
}

}

saic_data[0]

data=
undefined

15 0

address=
undefined

saic_data[1]

data=
undefined

address=
undefined

saic_data[31]

data=
undefined

address=
undefined

saic_data[0]

data=3AH

15 0

address=00H

saic_data[0]

data=
undefined

15 0

address=00H

Smart Analog IC101 Useful Examples of SAIC101 Sample Code

R21AN0014EJ0100 Rev.1.00 Page 4 of 12

Nov 01, 2014

3.1.2 Write Register Bytes (SPI/UART)

This usage example writes bytes of data to SAIC101
Note

registers.

SAIC101 API write register bytes function [R_SAIC_SPI_Write] (for SPI) or [R_SAIC_UART_Write] (for UART) is

used to write 0x1F to the SAIC101 CH4CNT2 register (address 0x1A), a writable register. The lower 5 bits of the

CH4CNT2 register store the DC offset value for channel 4 of the SAIC101 input multiplexer.

Note: The SPI used in this example can be used for other Smart Analog devices as well.

 Sample Code (for UART)

When any value other than

D_SAIC_OK, is returned,

communication has failed.

Variable to store return value of API
function

SAIC number used in API

Variables not used in this sample.

Structure that stores SAIC byte data

in API

Specify no. of bytes to write.
Set 1U to write 1 byte

Specify write address
Set 0x1A to write to address 0x1A

When D_SAIC_OK is returned,
data has been written correctly.

Write Register Bytes Function
(API)
When using SPI, use

R_SAIC_SPI_Write instead.

Write data setting
 Set 0x1F to write 0x1F data

Sample code that writes 0x1FU to
SAIC101 address 0x1AU

void main(void)

{

 R_MAIN_UserInit();

 {

 // ***
 // * Variable
 // ***
 uint8_t ret = D_SAIC_OK;

 uint8_t saic_num = 0U;

 uint16_t data_num;

 saic_data_t saic_data[0x20U];

 uint8_t err_index;

 saic101_adc_t adc_setting[0x05U];

 saic_data_t saic_flash_data[0x100U];

 {

 // ***
 // * Write to register bytes
 // ***
 // [Example: Write 0x1FU to address 0x1AU]
 data_num = 1U;

 saic_data[0x00U].address = 0x1AU;

 saic_data[0x00U].data = 0x1FU;

 ret=R_SAIC_UART_Write(saic_num,&saic_data[0x00U],(uint8_t)data_num);

 if (D_SAIC_OK == ret)

 {

 /* If D_SAIC_OK is returned, data has been written correctly. */
 }

 else

 {

 /* If D_SAIC_ERR_COM is returned, communication has failed. */
 }

 }

 }

}

saic_data[0]

data=
undefined

15 0

address=
undefined

saic_data[1]

data=
undefined

address=
undefined

saic_data[31]

data=
undefined

address=
undefined

Smart Analog IC101 Useful Examples of SAIC101 Sample Code

R21AN0014EJ0100 Rev.1.00 Page 5 of 12

Nov 01, 2014

3.2 Flash Memory Operations

3.2.1 Read Flash Memory Data (SPI/UART)

This usage example reads bytes of data from the SAIC101 flash memory.

In this example, the SAIC101 API’s unique command processing function [R_SAIC_SPI_IC101] (for SPI) or

[R_SAIC_UART_IC101] (for UART) reads values from addresses 0x20 to 0x22 in the user area of the SAIC101 flash

memory.

Caution: This program is limited to a maximum size of 256 bytes for one flash memory read operation. In addition,

when reading flash memory data of over 32 bytes in UART communications, set the size of data to be read to 32

bytes. For other limitations, please refer to Section 13. Flash Memory in the latest SAIC101 Data Sheet

(R02DS0014E).

 Sample code (for UART)

Variable to store return value of API
function

SAIC number used in API

Structure that stores SAIC byte data
in API

Specify no. of bytes to read.
Set 3U to read 3 bytes

Sample code that reads
SAIC101flash memory

Specify read address.
Set 0x20U as first address to read
from address 0x20

SAIC101 unique command
processing function (API)
When using SPI, use
R_SAIC_SPI_IC101 instead.

Variables not used in this sample.

Set E_FLASH_READ as argument
for flash read.

void main(void)

{

 R_MAIN_UserInit();

 {

 // ***
 // * Variable
 // ***
 uint8_t ret = D_SAIC_OK;

 uint8_t saic_num = 0U;

 uint16_t data_num;

 saic_data_t saic_data[0x20U];

 uint8_t err_index;

 saic101_adc_t adc_setting[0x05U];

 saic_data_t saic_flash_data[0x100U];

 {

 // ***
 // * Read data from flash memory
 // ***
 // [Example: Read values from addresses 0x20U to 0x22U]
 data_num = 3U;

 saic_flash_data[0x00U].address = 0x20U;

 ret=R_SAIC_UART_IC101(saic_num,

E_FLASH_READ,

&saic_flash_data[0x00U],data_num);

 if (D_SAIC_OK == ret)

 {

 /* If D_SAIC_OK is returned, the read value is stored as shown below. */
 }

 else if (D_SAIC_ERR_PARAM == ret)

 {

 /* If D_SAIC_ERR_PARAM is returned, a parameter setup error has occurred. */
 }

 else

 {

 /* If D_SAIC_ERR_COM is returned, communication has failed. */
 }

 }

 }

}

If value other than D_SAIC_OK is
returned, an undefined value is
stored in
saic_flash_data[0x00U].data to
saic_flash_data[0x02U].data.

If D_SAIC_OK is returned, the read
value is stored in,
saic_flash_data[0x00U].data to
saic_flash_data[0x02U].data.

saic_flash_data[0]

data=
undefined

15 0

address=
undefined

saic_flash_data[1]

data=
undefined

address=
undefined

saic_flash_data[255]

data=
undefined

address=
undefined

saic_flash_data[0]

data=xxH

15 0

address=20H

saic_flash_data[1]

data=xxH address=21H

saic_flash_data[2]

data=xxH address=22H

saic_flash_data[0]

data=
undefined

15 0

address=20H

saic_flash_data[1]

data=
undefined

address=21H

saic_flash_data[2]

data=
undefined

address=22H

Smart Analog IC101 Useful Examples of SAIC101 Sample Code

R21AN0014EJ0100 Rev.1.00 Page 6 of 12

Nov 01, 2014

3.2.2 Write Verify Flash Memory Data

This usage example writes data to the SAIC101 flash memory and verifies the data.

SAIC101 operations are unaffected even when values in the flash memory users area (addresses 0x20 to 0xFF) are

rewritten. This example uses SAIC101 unique command processing function [R_SAIC_UART_IC101] (for SPI) or

[R_SAIC_UART_IC101](for UART) to write the value 0x55 to address 0x30, 0xAA to address 0x31, and 0x5A to

address 0x32.

Caution: The SAIC101 API function used in this usage example writes data in single bytes. Therefore, the user must

specify an address each time data is written to the SAIC data storage structure, the second argument. When

writing any value other than 0x00, all data must be erased before the rewrite. A programming window period is

established from startup after a power-on reset until the first A/D conversion starts. Flash memory programming

is only valid during this period. For other limitations, please refer to Section 13. Flash Memory in the latest

SAIC101 Data Sheet (R02DS0014E).

 Sample code (for UART)

Variable to store return value of API
function

SAIC number used in API

Structure that stores SAIC byte data
in API

Specify no. of bytes to write.
Set 3U to write 3 bytes

Set write address and data
Write 0x55U to 0x30
Write 0xAAU to 0x31
Write 0x5AU to 0x32

Variables not used in this sample.

If value other than D_SAIC_OK is
returned, the write process failed.

If D_SAIC_OK is returned, the data
was written correctly.

ENUM value for SAIC101function
unique command
Set E_FLASH_WRITE_VERIFY as
argument to perform write verify
data

Write verify sample code

SAIC101 unique command
processing function (API)
When using SPI, use
R_SAIC_SPI_IC101

void main(void)

{

 R_MAIN_UserInit();

 {

 // ***
 // * Variable
 // ***
 uint8_t ret = D_SAIC_OK;

 uint8_t saic_num = 0U;

 uint16_t data_num;

 saic_data_t saic_data[0x20U];

 uint8_t err_index;

 saic101_adc_t adc_setting[0x05U];

 saic_data_t saic_flash_data[0x100U];

 {

 // ***
 // * Write data to the flash memory for verification
 // ***
 // [Example: Write 0x55U to address 0x30U, 0xAAU to 0x31U, and 0x5AU to 0x32U]
 data_num = 3U;

 saic_flash_data[0x00U].address = 0x30U;

 saic_flash_data[0x00U].data = 0x55U;

 saic_flash_data[0x01U].address = 0x31U;

 saic_flash_data[0x01U].data = 0xAAU;

 saic_flash_data[0x02U].address = 0x32U;

 saic_flash_data[0x02U].data = 0x5AU;

 ret=R_SAIC_UART_IC101(saic_num,

E_FLASH_WRITE_VERIFY,

&saic_flash_data[0x00U],data_num);

 if (D_SAIC_OK == ret)

 {

 /* If D_SAIC_OK is returned, data has been written correctly. */
 }

 else if (D_SAIC_ERR_VERIFY == ret)

 {

 /* If D_SAIC_ERR_VERIFY is returned, a verification error has occurred. */
 }

 else

 {

 /* If D_SAIC_ERR_COM is returned, communication has failed. */
 }

 }

 }

}

saic_flash_data[0]

data=
undefined

15 0

address=
undefined

saic_flash_data[1]

data=
undefined

address=
undefined

saic_flash_data[255]

data=
undefined

address=
undefined

Smart Analog IC101 Useful Examples of SAIC101 Sample Code

R21AN0014EJ0100 Rev.1.00 Page 7 of 12

Nov 01, 2014

3.3 A/D Converter Control

3.3.1 A/D-converted Value Acquire (one channel, one sampling: “1 shot”) (SPI/UART)

This usage example uses the SAIC101 A/D converter to convert and acquire data from one channel of the SAIC101

input multiplexer.

The example uses the following three functions: SAIC101 API A/D converter registers initial setup function

[R_SAIC_SPI_ADC_InitRegSet] (for SPI) or [R_SAIC_UART_ADC_InitRegSet] (for UART); SBIAS register setting

function [R_SAIC_SPI_SbiasRegSet] (for SPI) or [R_SAIC_UART_SbiasRegSet] (for UART); and A/D-converted

value acquire function (1 shot) [R_SAIC_SPI_ADC_GetResult_1Shot] (for SPI) or

[R_SAIC_UART_ADC_GetResult_1Shot] (for UART). Call the A/D-converted value acquire function (1 shot) one

time to acquire the A/D-converted value of one sampling a one channel.

Caution: The A/D converter must be setup using the A/D converter registers initial setup function of the SAIC101 API

before calling the A/D-converted value acquire function. The saic101_adc_t array of the 5 channels is required

to set the A/D converter.

 Sample code (for UART)

Variable to store return value of API
function

SAIC number used in API

Variables stored in ADC information

used by API

Initial settings for variables stored in
ADC information used by API:
See link for details.
- Disable A/D conversion
- Set to differential input mode
- Set DC offset to 0mV
- Set oversampling ratio to 256
- Set gain to x1
- Set number of A/D conversions to
1

Sample code for [one channel
(ch2) x 1 shot] for acquiring A/D
converter value

A/D converter registers initial
setup function (API)
When using SPI, use
R_SAIC_SPI_ADC_InitRegSet

Variables not used in this sample.

Ch2 settings for variables stored in

ADC information used in API:

- Set DC offset to -153.13/GSET1
[mV]
- Set gain to 1x4=4

void main(void)

{

 R_MAIN_UserInit();

 {

 // ***
 // * Variable
 // ***
 uint8_t ret = D_SAIC_OK;

 uint8_t saic_num = 0U;

 uint16_t data_num;

 saic_data_t saic_data[0x20U];

 uint8_t err_index;

 saic101_adc_t adc_setting[0x05U];

 saic_data_t saic_flash_data[0x100U];

 {

 // ***
 // * Initial setup of A/D converter registers
 // ***
 // [Example: Disable SAIC101 input multiplexer channels 1 and 3 to 5, and enable channel
2. Set as follows.]
 uint8_t count;

 /* Initialize all values set to channels */
 for (count=0U; count<5U; count++)

 {

 adc_setting[count].onoff = E_ADC_OFF;

 adc_setting[count].input_mode = E_ADC_DIFF;

 adc_setting[count].offset = E_ADC_OFFSET_0p00;

 adc_setting[count].over_sampling_rate = E_ADC_OSR_256;

 adc_setting[count].gain = E_ADC_GAIN_1_1_1;

 adc_setting[count].count = 0x01U;

 }

 /* Set up channel 2 separately */
 adc_setting[E_ADC_CH2].gain = E_ADC_GAIN_1_4_4;

 adc_setting[E_ADC_CH2].offset = E_ADC_OFFSET_M153p13;

 ret = R_SAIC_UART_ADC_InitRegSet(saic_num, adc_setting);

adc_setting[0]

count =
undefined

gain =
undefined

over_sampling_rate
= undefined

offset =
undefined

input_mode =
undefined

onoff =
undefined

adc_setting[4]

count =
undefined

gain =
undefined

over_sampling_rate
= undefined

offset =
undefined

input_mode =
undefined

onoff =
undefined

Smart Analog IC101 Useful Examples of SAIC101 Sample Code

R21AN0014EJ0100 Rev.1.00 Page 8 of 12

Nov 01, 2014

ENUM value for setting SBIAS
voltage
Set to 1.2V

ENUM value for setting CH number
to be measured
Set ch2

If process is successful, A/D
converted value is stored.

If return value is not D_SAIC_OK,
the sampling failed. A/D converted
value is undefined.

If process is successful, 1.2V setting
is stored in SBIAS register.

If R_SAIC_UART_SbiasRegSet is
returned (not D_SAIC_OK), SBIAS
register settings are undefined.

If R_SAIC_UART_ADC_InitRegSet
is returned (not D_SAIC_OK), A/D
register settings are undefined.

If process is successful, SAIC101

A/D registers (CHxCNT1、

CHxCNT2、CHxCNT3 *x=1 to 5)

are overwritten.

 if (D_SAIC_OK == ret)

 {

 /* If D_SAIC_OK is returned, processing has finished correctly. */

 // ***

 // * Specify SBIAS register settings

 // ***

 // [Example: Set the SBIAS output value to 1.2 V]
 ret = R_SAIC_UART_SbiasRegSet(saic_num, E_ADC_SBIAS_1p2);

 if (D_SAIC_OK == ret)

 {

 /* If D_SAIC_OK is returned, processing has finished correctly. */
 // ***
 // * Acquire the A/D-converted value (1shot)
 // ***

 uint16_t ad_data_1shot; /* A/D-converted value */

 ret=R_SAIC_UART_ADC_GetResult_1Shot(saic_num,

E_ADC_CH2,

&ad_data_1shot);

 if (D_SAIC_OK == ret)

 {

 }

 else

 {

 /* If D_SAIC_ERR_COM is returned, communication has failed. */
 }

 }

 else

 {

 /* If D_SAIC_ERR_COM is returned, communication has failed. */
 }

 }

 else

 {

 /* If D_SAIC_ERR_COM is returned, communication has failed. */
 }

 }

 }

}

A/D-converted value acquire
function (1 shot) (API)
When using SPI, use
R_SAIC_SPI_ADC_GetResult_1Sh
ot instead.

SBIAS register setting function
(API)
When using SPI, use
R_SAIC_SPI_SbiasRegSet

instead.

0

ad_data_1shot = A/D
converted value

15

0

ad_data_1shot = undefined

15

Smart Analog IC101 Useful Examples of SAIC101 Sample Code

R21AN0014EJ0100 Rev.1.00 Page 9 of 12

Nov 01, 2014

3.3.2 A/D-converted Value Acquire (multi-channel, continuous sampling) (SPI/UART)

This usage example uses the SAIC101 A/D converter to convert and acquire data from multiple channels of the

SAIC101 input multiplexer.

The example uses the following three functions: SAIC101 API A/D converter registers initial setup function

[R_SAIC_SPI_ADC_InitRegSet] (for SPI) or [R_SAIC_UART_ADC_InitRegSet] (for UART); SBIAS register setting

function [R_SAIC_SPI_SbiasRegSet] (for SPI) or [R_SAIC_UART_SbiasRegSet] (for UART); and A/D-converted

value acquire function [R_SAIC_SPI_ADC_GetResult] (for SPI) or [R_SAIC_UART_ADC_GetResult] (for UART).

Call the A/D-converted value acquire function one time to acquire the A/D-converted value for the number of times set

in A/D conversion setting register 3of each channel.

When executing this sample code, the converted value is acquired by performing A/D conversion twice on all channels

of the SAIC101 input multiplexer.

Caution: The A/D converter must be setup using the A/D converter registers initial setup function of the SAIC101 API

before calling the A/D-converted value acquire function. The saic101_adc_t array of the 5 channels is required

to set the A/D converter. The user should prepare the array size of the second and third arguments of the A/D-

converted value acquire function to be equal to the total number of times the channels are processed.

 Sample code (for UART)

Variable to store return value of API
function

SAIC number used in API

Variables stored in ADC information

used by API

Settings for variables stored in ADC

information used by API:

- Enable A/D conversion
- Single-end input mode
- DC offset: 0 mV
- Oversampling ratio: 128
- Gain: x1
- Number of A/D conversions: 2

Sample code for continuous
sampling (2 times) of A/D-

converted value acquire channels

Variables not used in this sample

Variables to store A/D-converted
value
5 channels x 2 times

Variables to store ADCC register
value
5 channels x 2 times

void main(void)

{

 R_MAIN_UserInit();

 {

 // ***
 // * Variable
 // ***
 uint8_t ret = D_SAIC_OK;

 uint8_t saic_num = 0U;

 uint16_t data_num;

 saic_data_t saic_data[0x20U];

 uint8_t err_index;

 saic101_adc_t adc_setting[0x05U];

 saic_data_t saic_flash_data[0x100U];

 {

 // ***
 // * Initial setup of A/D converter registers
 // ***
 // [Example: Enable SAIC101 input multiplexer channels 1 to 5. Set as follows.]
 uint16_t ad_data[2U * 5U];

 uni_adcc_t ad_adcc[2U * 5U];

 uint8_t count;

 for (count=0U; count<5U; count++)

 {

 adc_setting[count].onoff = E_ADC_ON;

 adc_setting[count].input_mode = E_ADC_SINGLE;

 adc_setting[count].offset = E_ADC_OFFSET_0p00;

 adc_setting[count].over_sampling_rate = E_ADC_OSR_128;

 adc_setting[count].gain = E_ADC_GAIN_1_1_1;

 adc_setting[count].count = 0x02U;

 }

 /* Initial setup of A/D converter registers */
 ret = R_SAIC_UART_ADC_InitRegSet(saic_num, adc_setting);

A/D converter registers initial
setup function (API)
When using SPI, use
R_SAIC_SPI_ADC_InitRegSet

adc_setting[0]

count =
undefined

gain =
undefined

over_sampling_rate
= undefined

offset =
undefined

input_mode =
undefined

onoff =
undefined

adc_setting[4]

count =
undefined

gain =
undefined

over_sampling_rate
= undefined

offset =
undefined

input_mode =
undefined

onoff =
undefined

Smart Analog IC101 Useful Examples of SAIC101 Sample Code

R21AN0014EJ0100 Rev.1.00 Page 10 of 12

Nov 01, 2014

ENUM value for setting SBIAS
voltage
Set to 1.2V

A/D-converted value acquire
function (API)
When using SPI, use
R_SAIC_SPI_ADC_GetResult
instead.

If successful, ADCC
register values are stored
in ad_adcc[0] to
ad_adcc[9].

If the return value is anything other than
D_SAIC_OK, the values of ad_adcc[0] to
ad_adcc[9] and ad_data[0] to ad_data[9] are
undefined.

If successful, A/D-
converted values are
stored in ad_data[0] to
ad_data[9].

If R_SAIC_UART_SbiasRegSet is returned
(not D_SAIC_OK), SBIAS register settings
are undefined.

If process is successful, 1.2V setting
is stored in SBIAS register.

If R_SAIC_UART_ADC_InitRegSet is
returned (not D_SAIC_OK), A/D register
settings are undefined.

If process is successful,
SAIC101A/D control registers
(CHxCNT1, CHxCNT2, CHxCNT3

*x=1 to 5) are overwritten.

 if (D_SAIC_OK == ret)

 {

 /* If D_SAIC_OK is returned, processing has finished correctly. */

 // ***

 // * Specify SBIAS register settings

 // ***

 // [Example: Set the SBIAS output value to 1.2 V]
 ret = R_SAIC_UART_SbiasRegSet(saic_num, E_ADC_SBIAS_1p2);

 if (D_SAIC_OK == ret)

 {

 /* If D_SAIC_OK is returned, processing has finished correctly. */

 // ***

 // * Acquire the A/D-converted value

 // ***

 /* Acquire the A/D-converted value */
 ret=R_SAIC_UART_ADC_GetResult(saic_num,ad_adcc,ad_data,(5U*2U));

 if ((D_SAIC_OK == ret) &&

 (ad_adcc[0x00U].BIT.ch==1U)&&(ad_adcc[0x01U].BIT.ch==1U)&&

 (ad_adcc[0x02U].BIT.ch==2U)&&(ad_adcc[0x03U].BIT.ch==2U)&&

 (ad_adcc[0x04U].BIT.ch==3U)&&(ad_adcc[0x05U].BIT.ch==3U)&&

 (ad_adcc[0x06U].BIT.ch==4U)&&(ad_adcc[0x07U].BIT.ch==4U)&&

 (ad_adcc[0x08U].BIT.ch==5U)&&(ad_adcc[0x09U].BIT.ch==5U))

 {

 /* If D_SAIC_OK is returned, the A/D-converted value is stored in ad_data,

and the ADCC register value is stored in ad_adcc. */

 }

 else

 {

 /* If D_SAIC_ERR_COM is returned, communication has failed. */
 }

 }

 else

 {

 /* If D_SAIC_ERR_COM is returned, communication has failed. */
 }

 }

 else

 {

 /* If D_SAIC_ERR_COM is returned, communication has failed. */
 }

 }

 }

}

SBIAS register setting function
(API)
When using SPI, use
R_SAIC_SPI_SbiasRegSet
instead.

0

ad_data[0] = ch1 1st
A/D converted value

15

ad_data[1] = ch1 2nd
A/D converted value

ad_data[2] = ch2 1st
A/D converted value

ad_data[3] = ch2 2nd
A/D converted value

ad_data[4] = ch3 1st
A/D converted value

ad_data[5] = ch3 2nd
A/D converted value

ad_data[6] = ch4 1st
A/D converted value

ad_data[7] = ch4 2nd
A/D converted value

ad_data[8] = ch5 1st
A/D converted value

ad_data[9] = ch5 2nd
A/D converted value

0

ad_adcc[0] = ch1 1st
ADCC register value

15

ad_adcc[1] = ch1 2nd
ADCC register value

ad_adcc[2] = ch2 1st
ADCC register value

ad_adcc[3] = ch2 2nd
ADCC register value

ad_adcc[4] = ch3 1st
ADCC register value

ad_adcc[5] = ch3 2nd
ADCC register value

ad_adcc[6] = ch4 1st
ADCC register value

ad_adcc[7] = ch4 2nd
ADCC register value

ad_adcc[8] = ch5 1st
ADCC register value

ad_adcc[9] = ch5 2nd
ADCC register value

Smart Analog IC101 Useful Examples of SAIC101 Sample Code

R21AN0014EJ0100 Rev.1.00 Page 11 of 12

Nov 01, 2014

3.4 Application Example for Smart Analog IC RSK Option Evaluation Board

3.4.1 Thermistor Control

The following example demonstrates how to measure temperature using the thermistor on the Smart Analog IC RSK

Option Evaluation Board (TSA-OP-IC101) by connecting the Renesas Starter Kit for RL78/L13 to the TSA-OP-IC101

board integrating a Smart Analog IC.

The thermistor, an onboard sensor, is attached to channel 2 of the SAIC101 input multiplexer on the TSA-OP-IC101

board. When the sample code is executed, the A/D conversion results of the thermistor output are displayed on the LCD

panel enabling confirmation of A/D converter operations. In this example, the A/D-converted value decreases as the

thermistor temperature increases. This effect can be visually confirmed by holding the thermistor between two fingers.

As your fingers heat up the thermistor, the value on the LCD panel decreases. The range of A/D-converted values is

between -32768 and 32767 as the differential input is 16 bits.

Figure 3-1 Block Diagram

Figure 3-2 Flowchart

AIN2P

AIN2N

SBIAS

SAIC101

AGND

Thermistor

33kΩ

22kΩ
MOSI_RX

RXD1

TXD1

MISO_TX

RL78/L13

LCD

Sensor

…

IO_VDD

START

A/D initial setup

SBIAS setup

A/D-converted value
acquired (1shot)

Software wait

LCD display update

See Section 3.3.1

See Section 3.3.1

See Section 3.3.1

Smart Analog IC101 Useful Examples of SAIC101 Sample Code

R21AN0014EJ0100 Rev.1.00 Page 12 of 12

Nov 01, 2014

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History

Rev. Date

Description

Page Summary

Rev.1.00 Nov 01, 2014 --- First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number,

implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved. �

Colophon 4.0

	Introduction
	Target Device
	Contents
	1. Overview
	2. Operation Confirmation Conditions
	3. Usage Example Instructions
	3.1 Register Operations
	3.1.1 Read Register Bytes (SPI/UART)
	3.1.2 Write Register Bytes (SPI/UART)

	3.2 Flash Memory Operations
	3.2.1 Read Flash Memory Data (SPI/UART)
	3.2.2 Write Verify Flash Memory Data

	3.3 A/D Converter Control
	3.3.1 A/D-converted Value Acquire (one channel, one sampling: “1 shot”) (SPI/UART)
	3.3.2 A/D-converted Value Acquire (multi-channel, continuous sampling) (SPI/UART)

	3.4 Application Example for Smart Analog IC RSK Option Evaluation Board
	3.4.1 Thermistor Control

	Website and Support
	Revision History
	General Precautions in the Handling of MPU/MCU Products

