
 APPLICATION NOTE

R21AN0013EJ0100 Rev.1.00 Page 1 of 24

Feb 01, 2015

Smart Analog IC101

How to Use Smart Analog IC101's API and Sample Code for Other MCUs

Introduction

This application note describes how to use API functions and sample code to control Smart Analog IC 101 (referred to

as “SAIC101” herein) when using an RL78 family MCUs that does not belong to the RL78/L13 group.

Target Device

Smart Analog IC 101 (part name: RAA730101)

Contents

1. Related Application Notes ... 2

2. How to use Smart Analog IC101’s API and sample code for other MCU 3

3. How to Add an MCU Compatible with RL78 Family Code Generation Tool to API

Builder SAIC101 ... 4

3.1 Preparation .. 4

3.2 How to Edit the MCU Definition File .. 5

3.3 Confirming Addition of MCU Definition File ... 6

4. How to Add an MCU Not Compatible with RL78 Family Code Generation Tool 7

4.1 Changes to API .. 7

4.1.1 Replacing Global Constant to Store Serial Module Information ... 7

4.1.2 Replacing Global Constant to Store SAIC Information ... 9

4.1.3 Replacing Global Constant to Store RESET Information ... 9

4.1.4 Corrections to #include Header Files .. 11

4.1.5 Corrections to Macro Declarations for User Environment-dependent Settings 11

4.2 Tasks Required for User-created Source File .. 13

4.2.1 Creating Serial Communication Functions ... 13

4.2.2 Call API Functions, Assign Global Variables .. 13

4.2.3 Global Variable Definitions Used by API for Serial Communications 14

4.2.4 Width Specification Integer Types .. 14

4.2.5 RL78 MCU-Specific Description Corrections .. 15

4.3 Function Specifications .. 16

4.3.1 UART Communications .. 16

4.3.2 SPI Communications .. 20

R21AN0013EJ0100
Rev.1.00

Feb 01, 2015

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 2 of 24

Feb 01, 2015

1. Related Application Notes

The following application notes also provide information related to SAIC101 and should be referred to as needed in

combination with this document.

 Smart Analog IC101 API Specification (R21AN0015EJ)

 Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

(R21AN0012EJ)

 RL78/G13 Serial Array Unit (UART Communication) (R01AN0459EJ)

 RL78/G13 Serial Array Unit for 3-Wire Serial I/O (SPI Master Transmission/Reception) for CubeSuite+, IAR, and

e2 studio Development Environments (R01AN1367EJ)

http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R21AN0015EJ*
http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R21AN0015EJ*
http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R21AN0012EJ*
http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R21AN0012EJ*
http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R01AN0459EJ*
http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R01AN1367EJ*
http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R01AN1367EJ*

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 3 of 24

Feb 01, 2015

2. How to use Smart Analog IC101’s API and sample code for other MCU

The Smart Analog IC101 sample code calls the RL78/L13 serial communication module function (which is generated

by CubeSuite+ Code_Generator for RL78_78K and the code generator plug-in included in e
2
 studio) from the API

function. Functions generated by the RL78 family code generation tool are compatible for all RL78 family MCUs.

When using an MCU that is supported by the RL78 family code generation tool, the user can automatically include the

SAIC101 sample code into user project files created with CubeSuite+ or e
2
 studio by adding an MCU definition file to

the API Builder SAIC101 coding assistance tool. However, when using an MCU that is not supported by the RL78

family code generation tool, the user will need to create functions equivalent to and compatible with the functions

generated by the code generation tool, and manually include the sample code or API file into the project files.

The following is the basic flow for how to use Smart Analog IC101’s API and sample code for other MCUs.

Figure 2-1 Routine Flow for Replacing MCU

Code Generator Plug-in

http://www.renesas.com/products/tools/coding_tools/coding_assistance/cg_p/index.jsp

Start

End

Is your MCU supported by
RL78 family code generation
tool?

Note

Method 1

Add the MCU definition file to API Builder SAIC101

(See section 3. How to Add an MCU Compatible

with RL78 Family Code Generation Tool to API

Builder SAIC101)

Method 2

Create and manually include API functions that

are compatible with the RL78 code generation

functions. (See section 4. How to Add an MCU

Not Compatible with RL78 Family Code

Generation Tool)

API inclusion

Refer to Smart Analog IC 101 Tutorial for Sample
Code Introduction and API Builder SAIC101
Specification (R21AN0012EJ).

YES

NO

Note: API Builder SAIC101 requires the following files
1) Main function file

r_cg_main.c or r_main.c

2) Serial module file

r_cg_sau.c/ r_cg_sau_user.c/ r_cg_sau.h

or

r_cg_serial.c/ r_cg_serial_user.c/r_cg_serial.h

http://www.renesas.com/products/tools/coding_tools/coding_assistance/cg_p/index.jsp
http://www.renesas.com/products/tools/coding_tools/coding_assistance/cg_p/index.jsp
http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R21AN0012EJ*
http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R21AN0012EJ*
http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R21AN0012EJ*

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 4 of 24

Feb 01, 2015

3. How to Add an MCU Compatible with RL78 Family Code Generation Tool to API
Builder SAIC101

When using an MCU that is supported by the RL78 family code generation tool, the user can automatically include the

SAIC101 sample code in user project files of CubeSuite+ or e
2
 studio by adding an MCU definition file to the API

Builder SAIC101 coding assistance tool. (The CubeSuite+ Code_Generator for RL78_78K or the code generator plug-

in included in e
2
 studio must output source code for serial communication equivalent to code output for RL78/L13.)

This section serves as a tutorial for RL78/G14 (R5F104PJ), providing an example of adding an MCU that is supported

by the RL78 family code generation tool.

API Builder SAIC101 download URL: http://www.renesas.com/smart_analog_api_builder

File name: API_Builder_SAIC101_Ver1.1.zip

3.1 Preparation

First, confirm the part name of the RL78 family MCU to be added. The part name must be one that is recognized by

CubeSuite+ or e
2
 studio.

Figure 3-1 Confirm RL78 family MCU Part Name

Next, create the MCU definition file. The definition file will be created in “Chips” which is stored at the same level in

the project tree as the folder that stores API_Builder_SAIC101.exe. Copy the Template.csv file stored in “Chips,” and

change the file name (in this case, the file name is changed to R5F104PJ).

Figure 3-2 Folder for Storing MCU Definition Files

http://www.renesas.com/smart_analog_api_builder

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 5 of 24

Feb 01, 2015

3.2 How to Edit the MCU Definition File

This section describes how to edit the MCU definition file created in Section 3.1. Use either Excel or a text editor to

edit the file. The following example uses Excel.

Figure 3-3 Fields Requiring Editing

Figure 3-4 Example of Changes to MCU Definition File

List all CSI included in MCU

*Add/delete lines as needed.

Enter MCU’s [part number], [Name], [supplementary (no.

of pins)], and [Max. Clock [MHx]].

 Enter register name and bit number for

each CSI.

List all UARTs in the MCU.

*Add/delete lines as needed.

Enter register name and bit number for each
UART.

Set port and register names according to

MCU. *Add/delete lines as needed.

Enter bit number belonging to each port and register.
*Unused bits can be omitted. (When omitting, the bit does

not have to be removed from the list.)
*For access-disabled bits: leave field blank, do not enter bit

number.

Delete <Comment> for required rows.

Delete <Comment> tag.

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 6 of 24

Feb 01, 2015

3.3 Confirming Addition of MCU Definition File

Save the file edited in section 3.2 and start the API Builder SAIC101.

 (The MCU definition file is read during API Builder SAIC101 startup. If API Builder SAIC101 is already running,

please close the software and then restart.)

If the MCU definition file is not successfully edited, the message shown in Figure 3-5 will appear at startup. This

message indicates that the file has not been read successfully and the MCU has not been added to the coding assistance

tool. Please correct the MCU definition file as needed to ensure it is successfully edited and read.

Figure 3-5 MCU Definition File Editing Error Message

When the API Builder SAIC101 is started up and the project created in CubeSuite+ or e
2
 studio is read successfully, the

message shown in Figure 3-6 is displayed, indicating the RL78 family MCU part name. This completes the

confirmation process.

Figure 3-6 Confirmation of New MCU Definition File Added to SAIC101

For more details on the above settings, please refer to Smart Analog IC 101 Tutorial for Sample Code Introduction and

API Builder SAIC101 (RL78/L13) (R21AN0012EJ).

http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R21AN0012EJ*
http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R21AN0012EJ*

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 7 of 24

Feb 01, 2015

4. How to Add an MCU Not Compatible with RL78 Family Code Generation Tool

The SAIC101’s API was designed assuming use of RL78/L13 source code generated by CubeSuite+ Code_Generator

for RL78_78K or the code generator plug-in included in e
2
 studio for project files. Therefore, when replacing an MCU

that is not supported by the RL78 family code generation tool, the user needs to create functions for processing and data

input/output equivalent to functions output by the code generation tool. The user will also need to add global variables

and modify definitions based on the user system environment.

4.1 Changes to API

This section describes the changes required for the API file (Table Table 4-1).

Table 4-1 API File

Communication

Method

API file

UART r_sa_uart_control_register.c / r_sa_uart_control_register.h /

r_sa_uart_control_register_user.c

SPI r_sa_spi_control_register.c / r_sa_spi_control_register.h /

r_sa_spi_control_register_user.c

4.1.1 Replacing Global Constant to Store Serial Module Information

Replace the global constant to store serial module information based on the method of communication as shown in

Figure 4-1 for UART communications and Figure 4-2 for SPI communications. The element number in this array is

specified by the enumeration used to specify the global variable to store serial module information. When replacing the

MCU, make sure you replace the serial module function of the element number that corresponds to the channel number

to be used. Refer to section 4.2.1 for information regarding Creating Serial Communication Functions corresponding to

the user system.

Target File: r_sa_uart_control_register_user.c

Figure 4-1 Changes to Global Constant to Store Serial Module Information (UART)

const uart_serial_t g_uart_serial_data_tbl[] =

{

#if (D_UART_OPERATION==D_UART_USE_INTERRUPT)

// { R_UARTx_Start, R_UARTx_Stop, R_UARTx_Receive, R_UARTx_Send, R_UARTx_GetHeader, R_UARTx_Getdata, R_UARTx_SettingChange, }, /* format */

 { NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, /* UART0 */

 { R_UART1_Start, R_UART1_Stop, R_UART1_Receive, R_UART1_Send, R_UART1_GetHeader, R_UART1_Getdata, R_UART1_SettingChange, }, /* UART1 */

 { NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, /* UART2 */

 { NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, /* UART3 */

 { NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, /* UART4 */

 { NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, /* UART5 */

#elif D_UART_OPERATION==D_UART_REGISTER_POLLING

 /* Not supported */

#endif

/*

/*

}; /* global constant to store serial module information */

(1) (2) (3) (4) (5) (6) (7)

No. Function Name Format Process Notes

(1) R_UARTx_Start Start UARTx module operations See sections エラー! 参照

元が見つかりません。 and

4.3.1

(2) R_UARTx_Stop Stop UARTx module operations

(3) R_UARTx_Receive UARTx reception function

(4) R_UARTx_Send UARTx transmission function

(5) R_UARTx_GetHeader UARTx header acquisition function

(6) R_UARTx_Getdata UARTx data acquisition function

(7) R_UARTx_SettingChange UARTx setting change function

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 8 of 24

Feb 01, 2015

Target File: r_sa_spi_control_register_user.c

Figure 4-2 Changes to Global Constant to Store Serial Module Information (SPI)

const spi_serial_t g_spi_serial_data_tbl[] =

{

#if D_SPI_OPERATION==D_SPI_USE_INTERRUPT

// { CSI_Start, CSI_Stop, CSI_Send_Receive, }, /* format */

 { NULL, NULL, NULL, }, /* CSI00 */

 { NULL, NULL, NULL, }, /* CSI01 */

 { R_CSI10_Start, R_CSI10_Stop, R_CSI10_Send_Receive, }, /* CSI10 */

 { NULL, NULL, NULL, }, /* CSI11 */

 { NULL, NULL, NULL, }, /* CSI20 */

 { NULL, NULL, NULL, }, /* CSI21 */

 { NULL, NULL, NULL, }, /* CSI30 */

 { NULL, NULL, NULL, }, /* CSI31 */

#elif D_SPI_OPERATION==D_SPI_REGISTER_POLLING

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI00 */

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI01 */

 { (uint16_t *)&SMR02, &SIO10, &IF1L, 1U, (uint16_t *)&SSR02, (uint16_t *)&SIR02, R_CSI10_MaskStart, R_CSI10_Stop, }, /* CSI10 */

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI11 */

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI20 */

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI21 */

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI30 */

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI31 */

#endif

}; /* Global constant to store serial module information */

The setting for no use of interrupts by

communication modules is only valid for RL78

MCUs and cannot be used in this case.

Function Name Format Process Notes

R_CSIxx_Start, Start CSIxx module operations See sections 4.2.1 and

4.3.2
R_CSIxx_Stop Stop CSIxx module operations

R_CSIxx_Send_Receive
CSIxx data

transmission/reception function

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 9 of 24

Feb 01, 2015

4.1.2 Replacing Global Constant to Store SAIC Information

Replace the global constant to store SAIC information based on the method of communication, as shown in Figure 4-3

for UART and Figure 4-4 for SPI.

Target File: r_sa_uart_control_register_user.c

Figure 4-3 Changes to Global Constant to Store SAIC Information (UART)

Target File: r_sa_spi_control_register_user.c

Figure 4-4 Changes to Global Constant to Store SAIC Information (SPI)

4.1.3 Replacing Global Constant to Store RESET Information

const uart_saic_t g_uart_saic_data_tbl[] =

{

// { UART_ch, sa_type, }, /* format */

 { E_UART1, E_SAIC101, }, /* SAIC information when SAIC number = 0 */

};/* Global constant for store SAIC information */

No. Description

example
Description

(1) E_UART1 Specify the ENUM e_uart_ch_t for specifying the global constant to store

serial module information for the element number of the array stored in the

function replaced in section 4.1.1.

(2) E_SAIC101 Specify the ENUM e_saic_type_t for specifying the SAIC type (part name)

for the type of SAIC connected to the serial module specified in (1).

(1) (2)

const spi_saic_t g_spi_saic_data_tbl[] =

{

// { csi_ch, sa_type, p_cs_addr, cs_bit_num, p_int_addr, int_bit_num, }, /* format */

 { E_CSI10, E_SAIC101, &P0, 6U, &P0, 7U, }, /* SAIC information when SAIC number =

0 */

}; /* Global constant for store SAIC information */

No. Description

example
Description

(1) E_CSI10 Specify the ENUM e_uart_ch_t for specifying the global constant to store serial module information

for the element number of the array stored in the function replaced in section 4.1.1.

(2) E_SAIC101 Specify the ENUM e_saic_type_t for specifying the SAIC type (part name) for the type of

SAIC connected to the serial module specified in (1)

(3) &P0 Define address of port register connected to CS pin.

(4) 6U Define bit number of port register connected to CS pin.

(5) &P0 Define address of port register connected to INT pin.

(6) 7U Define bit number of port register connected to INT pin.

(1) (3) (4) (5) (6) (2)

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 10 of 24

Feb 01, 2015

Although unnecessary when using UART, refer to Figure 4-5 when using SPI to replace the global constant to store

RESET information based on the method of communication.

Target File: r_sa_spi_control_register_user.c

Figure 4-5 Changes to Global Constant to Store RESET Information (SPI)

const uart_reset_t g_uart_reset_data_tbl[] =
{
 //process, Port address, Bit num, nop_cnt, uart_saic_tnumber,}, /* format */

 { E_SAIC_POWERON_RESET, NULL, 0U, D_PON_RST_NOP_CNT, 0U, }, /* First RESET process*/

};/* Global variable to store RESET information */

No. Description example Description

(1) E_SAIC_POWERON_RESET Specify RESET process in enumeration for specifying RESET

process e_reset_process_t.

(2) NULL Define address of port register connected to RESET pin when

using external RESET. For all other settings, define NULL.

(3) 0U Define bit number of port register connected to RESET pin when

using external RESET. For all other settings, define 0.

(4) 0U Define SAIC number for internal RESET. Although this API does

not use this setting for any type of RESET process other than

internal, still specify the SAIC number. (This is used in API

Builder SAIC101.)

(2) (3) (4) (1)

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 11 of 24

Feb 01, 2015

4.1.4 Corrections to #include Header Files

As the API uses the types and functions output by the RL78 family code generation tool, the API includes the header

file output by the code generation tool. This header file must be replaced with a header file defined by the user-created

serial communication function or a header file that reflects the contents detailed in sections 4.2.4 and 4.2.5.

Table 4-2 Files Requiring Corrections

Communication

Method

Files

UART r_sa_uart_control_register_user.c

r_sa_uart_control_register.c

SPI r_sa_spi_control_register_user.c

r_sa_spi_control_register.c

Table 4-3 #include Header File Changes

Item Existing definition Changes

Serial

communication

definition

#include "r_cg_sau.h" Replace with the header file defined by the user-created

serial communication function

Type definition #include "r_cg_macrodriver.h" Replace with the header that reflects the contents detailed in

sections 4.2.4 and 4.2.5

4.1.5 Corrections to Macro Declarations for User Environment-dependent Settings

To adjust settings according to the target MCU, refer to section 4.2 Macro Declarations for User Environment-

dependent Settings in the Smart Analog IC101 API Specification (R21AN0015EJ).

In addition, the API calculates the number of loops for the internal software wait from the minimum number of steps

required for loop processing and uses seven clocks as required in the RL78 MCU. Change the definitions in Tables.

Table 4-4 and Table 4-5 accordingly to correct for the difference in number of steps required by the loop processing in

the target MCU.

Target File: r_sa_uart_control_register_user.c

Table 4-4 Software Wait Loop Count Definition (UART)

Existing Definition Change

#define D_PON_RST_NOP_CNT

((uint32_t)((D_WAIT_PON_RST_TIME_MS / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

Change section 7.0F

accordingly to reflect the

minimum number of steps

required for loop processing

in the target MCU.

Input range: float type

#define D_UART_4800BPS_HALF_BIT

((uint16_t)((D_UART_4800BPS_HALF_BIT_MS / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

#define D_UART_250kbps_HALF_BIT

((uint16_t)((D_UART_250kbps_HALF_BIT_MS / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

#define D_UART_5MS_NOP_CNT

((uint16_t)((D_UART_5MS / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

#define D_UART_1800US_NOP_CNT

((uint16_t)((D_UART_1800US / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

#define D_UART_270US_NOP_CNT

((uint16_t)((D_UART_270US / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

#define D_UART_250US_NOP_CNT

((uint16_t)((D_UART_250US / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&KEY_WORD=R21AN0015EJ*

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 12 of 24

Feb 01, 2015

Target File: r_sa_spi_control_register_user.c

Table 4-5 Software Wait Loop Count Definition (SPI)

Existing Definition Change

#define D_PON_RST_NOP_CNT

((uint32_t)((D_WAIT_PON_RST_TIME_MS / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

Change section 7.0F

accordingly to reflect the

minimum number of steps

required for loop processing

in the target MCU.

Input range: float type

#define D_HARD_RESET_NOP_CNT

((uint32_t)((D_WAIT_HARD_RESET_TIME_MS / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

#define D_SPI_5MS_NOP_CNT

((uint16_t)((D_SPI_5MS / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

#define D_SPI_1800US_NOP_CNT

((uint16_t)((D_SPI_1800US / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

#define D_SPI_820US_NOP_CNT

((uint16_t)((D_SPI_820US / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

#define D_SPI_250US_NOP_CNT

((uint16_t)((D_SPI_250US / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

#define D_SPI_3US_NOP_CNT

((uint16_t)((D_SPI_3US / (1.0F / D_CPU_CLK_MHZ)) * 1000.0F / 7.0F))

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 13 of 24

Feb 01, 2015

4.2 Tasks Required for User-created Source File

This section describes the changes required for the user-created source file.

4.2.1 Creating Serial Communication Functions

The API uses the functions output by the RL78 family code generation tool for hardware access to serial

communication functions. Additional functions are also created for UART-related hardware access. The user will need

to provide equivalent functions when using a replacement MCU. The following lists the functions necessary for using

the API. For more details regarding functions, see section 4.3.

Table 4-6 Serial Communication Functions

Communi-

cation Method

Function Name in

Sample
Argument Return Value Description

UART R_UART1_Start None None Goes to UART communications wait

state.

R_UART1_Stop None None Stops UART communication.

R_UART1_Receive uint8_t * const rx_buf,

uint16_t rx_num

MD_STATUS Starts UART reception of data.

R_UART1_Send uint8_t * const tx_buf,

uint16_t tx_num

MD_STATUS Starts UART transmission of data.

R_UART1_GetHeader uint8_t *packet_data

uint8_t rx_buffer[]

uint16_t read_pos

uint8_t If data is received, acquires 1 byte of

header data for analysis.

R_UART1_Getdata uint16_t rx_cnt uint8_t Checks for data exceeding specified

receive data count.

R_UART1_SettingCha

nge

uint8_t setting None Changes UART module

communication setting.

SPI R_CSI10_Start None None Goes to 3-wire serial I/O

communication wait state.

R_CSI10_Stop None None Stops 3-wire serial I/O

communication.

R_CSI10_Send_Recei

ve

uint8_t * const tx_buf, uint16_t

tx_num, uint8_t * const rx_buf

MD_STATUS Starts CSI transmission/reception of

data.

4.2.2 Call API Functions, Assign Global Variables

 When using API functions, first execute the Smart Analog initialization functions (R_SAIC_SPI_Init,

R_SAIC_UART_Init).

 When unsure of the default SAIC101 baud rate, always call the communication setting negotiation function

(R_SAIC_UART_Negotiation) after executing Smart Analog initialization functions but before starting UART

communications. This will allow you to adjust the SAIC101 UART baud rate, parity, and other communication

settings to satisfy MCU and SAIC101 conditions.

 Set the bit corresponding to enum e_uart_ch_t of the UART reception completion flag (g_uart_rx_end_flag) after

receiving the number of bytes specified in the UART reception function argument.

 Set the bit corresponding to enum e_uart_ch_t of the UART transmission completion flag (g_uart_tx_end_flag)

after transmitting the number of bytes specified in the UART transmission function argument.

 After transmission/reception of the number of bytes specified in the 3-wire serial (clock synchronous serial)

communication transmission/reception function argument is complete, specify the argument corresponding to

enum e_csi_ch_t, and call the API’s R_SAIC_SPI_CSDisable function to set the CS pin to high. Also add a

completion process as needed.

 If an overrun error occurs during 3-wire serial communication, specify the argument corresponding to enum

e_csi_ch_t, call the R_SAIC_SPI_CSDisable function to set the CS pin to high, and set the bit corresponding to

enum e_csi_ch_t of the overrun error flag (g_csi_overrun_flag). Also add a communication completion process as

needed.

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 14 of 24

Feb 01, 2015

4.2.3 Global Variable Definitions Used by API for Serial Communications

The API determines whether operations are in the serial communication state or error state based on the global variables

listed in Table 4-7. These global variables should be declared on the user side, ensuring that they can be referenced by

API functions. In addition, the user should add the corresponding process items to the user’s source code as described in

section 4.2.2

Table 4-7 Global Variables Used by API for Serial Communications

Communication

Method

Part

Name
Variable Name Description API Functions Used

UART uint8_t g_uart_tx_end_flag UART transmission

completion flag.

Sets bit corresponding

to e_uart_ch_t when

transmission is

completed.

Clears flag in API

r_saic_uart_send_command

UART uint8_t g_uart_rx_end_flag UART reception

completion flag.

Sets bit corresponding

to e_uart_ch_t when

reception is completed.

Clears flag in API.

r_saic_uart_write_read

r_saic_uart_send_command

r_saic_uart_get_response

R_SAIC_UART_ADC_GetResult

R_SAIC_UART_ADC_GetReceive

r_saic_uart_flash_read

r_saic_uart_flash_write

r_saic_uart_flash_all_erase

r_saic_uart_all_flash_to_reg

r_saic_uart_buffer_refresh

R_SAIC_UART_FLASH_WRITE_01H

R_SAIC_UART_FLASH_WRITE_1FH

SPI uint8_t g_csi_overrun_flag SPI overrun flag.

Sets the bit

corresponding to

e_csi_ch_t if an overrun

occurs.

Clears flag in API.

r_saic_spi_overrun_err_check

4.2.4 Width Specification Integer Types

The API uses C99-compliant width specification integer types (intN_t, uintN_t), which are declared in the

macrodriver.h generated by the code generation tool, not in stdint.h. If width specification integer types are not

supported by the compiler you are using (i.e. stdint.h is not defined), please add the definitions listed in Table 4-8.

Table 4-8 Width Specification Integer Types Used in API

Type Description Definition

int8_t
8-bit width signed integer

type
typedef signed char int8_t;

uint8_t
8-bit width unsigned integer

type
typedef unsigned char uint8_t;

int16_t
16-bit width signed integer

type
typedef signed short int16_t;

uint16_t
16-bit width unsigned

integer type
typedef unsigned short uint16_t;

int32_t
32-bit width signed integer

type
typedef signed long int32_t;

uint32_t
32-bit width unsigned

integer type
typedef unsigned long uint32_t;

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 15 of 24

Feb 01, 2015

4.2.5 RL78 MCU-Specific Description Corrections

The API functions use the descriptions created specifically for some RL78 MCUs and compilers and the definitions

used in the code generation tool. When using SAIC101 with other MCUs, the user will need to replace some

descriptions, accordingly.

Table 4-9 Specialized Definitions

Item Function/Variable/Definition Description

RL78 MCU-

specific

description

NOP() Description of nop command execution for RL78

compiler.

When using other MCUs, this description must be

replaced according to the macro definition.

Definitions used

in code

generation tool

MD_STATUS Definition of the return value type of the serial function.

When using other MCUs, add the following definition:

typedef unsigned short MD_STATUS;

The return values used: MD_OK and MD_ARGERROR

Declaration is as follows:

#define MD_STATUSBASE (0x00U)

/* register setting OK */

#define MD_OK (MD_STATUSBASE + 0x00U)

/* Error list definition */

#define MD_ERRORBASE (0x80U)

/* error argument input error */

#define MD_ARGERROR (MD_ERRORBASE +

0x01U)

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 16 of 24

Feb 01, 2015

4.3 Function Specifications

4.3.1 UART Communications

Specifications of functions required for UART communications are listed below. UART1 is used as an example in the

explanations.

[Function Name] R_UART1_Start

Outline UART1 operation start process

Header r_cg_macrodriver.h, r_cg_sau.h, r_cg_userdefine.h

Declaration void R_ UART1_Start(void)

Description Starts operations of channel corresponding to the serial array unit and goes to wait state

Argument None

Return

Value

None

Reference

doc.

RL78/G13 Serial Array Unit (UART Communication) R01AN0459EJ

Additional

Notes

When it is not necessary to start and stop serial communication functions in the API, this

function does not need to be created. In this case, always register a dummy function in

the corresponding location in the global variable to store serial module information.

[Function Name] R_UART1_Receive

Outline UART1 reception status initialization function

Header r_cg_macrodriver.h, r_cg_sau.h, r_cg_userdefine.h

Declaration MD_STATUS R_UART1_Receive(uint8_t *rxbuf, uint16_t rxnum)

Description Initial setup of UART1 reception

Argument uint8_t *rxbuf: [receive data buffer address]

uint16_t rxnum: [receive data buffer size]

Return

Value

If [MD_OK]: Reception setup completed

If [MD_ARGERROR]: reception setup failure

Reference

doc.

RL78/G13 Serial Array Unit (UART Communication) R01AN0459EJ

Additional

Notes

When a register read or other API is called, the API calls this function, the UART

communication function goes to the reception wait state and continues to receive data in

the background until the specified number of bytes of data is received. The receive data

storage buffer must be established by the user and passed by-pointer.

After the number of receptions specified in argument rxnum is completed, execute the

communication completion process described in section 4.2.2

[Function Name] R_UART1_Send

Outline UART1 data transmission function

Header r_cg_macrodriver.h, r_cg_sau.h, r_cg_userdefine.h

Declaration MD_STATUS R_UART1_Send(uint8_t* txbuf, uint16_t txnum)

Description Initial setup of UART1 transmission and start data transmission.

Argument uint8_t *txbuf: [transmit data buffer address]

uint16_t txnum: [transmit data buffer size]

Return

Value

If [MD_OK]: transmission setup completed

If [MD_ARGERROR]: transmission setup failure

Reference

doc.

RL78/G13 Serial Array Unit (UART Communication) R01AN0459EJ

Additional

Notes

Almost all APIs call this function. When an API calls this function, the UART

communication function goes to the transmission wait state and continues to transmit data

in the background until the specified number of bytes of data is sent. The transmit data

storage buffer must be established by the user and passed by-pointer.

After the number of communications specified in argument txnum is completed, execute

the communication completion process described in section 4.2.2.

http://documentation.renesas.com/doc/products/mpumcu/apn/rl78/r01an0459jj0300_rl78g13.pdf
http://documentation.renesas.com/doc/products/mpumcu/apn/rl78/r01an0459jj0300_rl78g13.pdf
http://documentation.renesas.com/doc/products/mpumcu/apn/rl78/r01an0459jj0300_rl78g13.pdf

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 17 of 24

Feb 01, 2015

[Function Name] R_UART1_Stop

Outline UART1 operation stop process

Header r_cg_macrodriver.h, r_cg_sau.h, r_cg_userdefine.h

Declaration void R_UART1_Stop (void)

Description Stops operations of channel corresponding to the serial array unit.

Argument None

Return

Value

None

Reference

doc.

RL78/G13 Serial Array Unit (UART Communication) R01AN0459EJ

Additional

Notes

When it is not necessary to start and stop serial communication functions in the API, this

function does not need to be created. In this case, always register a dummy function in

the corresponding location in the global variable to store serial module information.

[Function Name] R_UART1_SettingChange

Outline UART1 setting change process

Header r_cg_macrodriver.h, r_cg_sau.h, r_cg_userdefine.h, r_sa_uart_control_register.h

Declaration void R_UART1_SettingChange(uint8_t setting)

Description Changes settings of corresponding UART channel according to the value of the argument

“setting”.

Argument uint8_t setting

Return

Value

None

Reference

doc.

－

Additional

Notes

Changes the communication format of the UART communication function according to the

value of the argument “setting”.

Argument “setting”

Value

UART Communication Setting

0 4800bps, Parity = None

1 4800bps, Parity = Odd

2 4800bps, Parity = Even

3 250000bps, Parity = None

4 250000bps, Parity = Odd

5 250000bps, Parity = Even

http://documentation.renesas.com/doc/products/mpumcu/apn/rl78/r01an0459jj0300_rl78g13.pdf

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 18 of 24

Feb 01, 2015

[Function Name] R_UART1_GetHeader

Outline Header data acquisition function

Header r_cg_macrodriver.h, r_cg_sau.h, r_cg_userdefine.h, r_sa_uart_control_register.h

Declaratio

n

uint8_t R_UART1_GetHeader(uint8_t *packet_data, uint8_t rx_buffer[], uint16_t read_pos)

Description If data is received, acquires one byte of header data for analysis.

Argument uint8_t *packet_data : header storage pointer

uint8_t rx_buffer[] : receive data buffer address

uint16_t read_pos : receive data buffer read position

Return

Value

uint8_t : 0 = Invalid, 1 = Valid

Reference

doc.

RL78/G13 Serial Array Unit (UART Communication) R01AN0459EJ

Additional

Notes

When the UART communication function goes to the reception wait state, this function is

called according to the API reception data analysis process. If the size of the newly

received data is more than one byte, the value of the oldest received one byte data in

unread data from receive data buffer is assigned to the header storage pointer for analyzing

header data. The function is called by loop processing until the header data matches the

SAIC101 reception data type or it goes to time-out.

Global variable g_uart1_rx_count is used in this function. This variable is declared as serial

module file [r_cg_sau.c] or [r_cg_serial.c] by the code generation tool. The function

initializes the value by calling UART1 reception status initialization function

(R_UART1_Receive) and then adds the number of bytes received in the reception interrupt

function.

uint8_t R_UART1_GetHeader(uint8_t *packet_data, uint8_t rx_buffer[], uint16_t

read_pos)

{

 uint8_t ret = 0U;

 if (read_pos < g_uart1_rx_count)

 {

 *packet_data = rx_buffer[read_pos];

 ret = 1;

 }

 return (ret);

}

Comparison of receive data buffer

reading position specified in

argument and current receive data

counter value (g_uart1_rx_count)

If received data is stored after the

reading position, the data from the

reading position is stored in the

pointer.

If received data is stored after the

reading position, returns 1.

http://documentation.renesas.com/doc/products/mpumcu/apn/rl78/r01an0459jj0300_rl78g13.pdf

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 19 of 24

Feb 01, 2015

[Function Name] R_UART1_GetData

Outline Specified receive data count complete check function

Header r_cg_macrodriver.h, r_cg_sau.h, r_cg_userdefine.h, r_sa_uart_control_register.h

Declaratio

n
uint8_t R_UART1_Getdata(uint16_t rx_cnt)

Description Checks for data exceeding specified receive data count.

Argument uint16_t rx_cnt : specified receive data count

Return

Value

uint8_t : 0 = Invalid, 1 = Valid

Reference

doc.

－

Additional

Notes

When the UART communication function goes to the reception wait state and the header

data is analyzed in the API reception data analysis process, the function checks if the

number of reception data specified in argument rx_cnt is received at the time of SAIC101

reception data type 1 or 2. The function is called by loop processing until it receives the

number of data that matches SAIC101 reception data type or it goes to time-out.

uint8_t R_UART1_Getdata(uint16_t rx_cnt)

{

 uint8_t ret = 0U;

 if (rx_cnt <= g_uart1_rx_count)

 {

 ret = 1U;

 }

 return (ret);

}

Comparison of receive data buffer

count specified in argument and

current receive data counter value

(g_uart1_rx_count)

If received data exceeds specified

receive data count, returns 1.

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 20 of 24

Feb 01, 2015

4.3.2 SPI Communications

Specifications of functions required for SPI communications are listed below. CSI10 is used as an example in the

explanations.

[Function Name] R_CSI10_Start

Outline CSI10 operation start process

Header r_cg_macrodriver.h, r_cg_sau.h, r_cg_userdefine.h

Declaration void R_CSI10_Start(void)

Description Starts operations of the CSI corresponding to the serial array unit and goes to wait state.

Argument None

Return

Value

None

Reference

doc.

RL78/G13 Serial Array Unit for 3-wire Serial I/O (SPI Master Transmission/Reception),
for CubeSuite+, IAR, and e

2
 studio (R01AN1367EJ)

Additional

Notes

When it is not necessary to start and stop serial communication functions in the API, this

function does not need to be created. In this case, always register a dummy function in

the corresponding location in the global variable to store serial module information.

[Function Name] R_CSI10_Send_Receive

Outline CSI10 data transmission/reception function

Header r_cg_macrodriver.h, r_cg_sau.h, r_cg_userdefine.h

Declaration MD_STATUS R_CSI10_Send_Receive(uint8_t *txbuf, uint16_t txnum, uint8_t *rxbuf)

Description Sets up data transmission/reception for CSI10.

Argument uint8_t *txbuf: [transmit data buffer address]

uint16_t txnum: [transmit data buffer size]

uint8_t *rxbuf: [receive data buffer address]

Return

Value

If [MD_OK]: transmission/reception setup completed

If [MD_ARGERROR]: transmission/reception setup failure

Reference

doc.

RL78/G13 Serial Array Unit for 3-wire Serial I/O (SPI Master Transmission/Reception), for

CubeSuite+, IAR, and e
2
 studio (R01AN1367EJ)

Additional

Notes

The transmit/receive data storage buffer must be established by the user and passed by-

pointer.

After the number of communications specified in argument txnum is completed, execute

the communication completion process described in section 4.2.2.

[Function Name] R_CSI10_Stop

Outline CSI10 operation stop process

Header r_cg_macrodriver.h, r_cg_sau.h, r_cg_userdefine.h

Declaration void R_CSI10_Stop(void)

Description Stops operations of corresponding CSI.

Argument None

Return

Value

None

Reference

doc.

－

Additional

Notes

When it is not necessary to start and stop serial communication functions in the API, this

function does not need to be created. In this case, always register a dummy function in

the corresponding location in the global variable to store serial module information.

http://documentation.renesas.com/doc/products/mpumcu/apn/rl78/r01an1367jj0201_rl78g13.pdf
http://documentation.renesas.com/doc/products/mpumcu/apn/rl78/r01an1367jj0201_rl78g13.pdf
http://documentation.renesas.com/doc/products/mpumcu/apn/rl78/r01an1367jj0201_rl78g13.pdf
http://documentation.renesas.com/doc/products/mpumcu/apn/rl78/r01an1367jj0201_rl78g13.pdf

Smart Analog IC101 How to Use Smart Analog IC101's API and Sample Code for Other MCUs

R21AN0013EJ0100 Rev.1.00 Page 21 of 24

Feb 01, 2015

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History

Rev. Date

Description

Page Summary

Rev.1.00 Feb 01, 2015 --- First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number,

implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved. �

Colophon 4.0

	Introduction
	Target Device
	Contents
	1. Related Application Notes
	1.1

	2. How to use Smart Analog IC101’s API and sample code for other MCU
	3. How to Add an MCU Compatible with RL78 Family Code Generation Tool to API Builder SAIC101
	3.1 Preparation
	3.2 How to Edit the MCU Definition File
	3.3 Confirming Addition of MCU Definition File

	4. How to Add an MCU Not Compatible with RL78 Family Code Generation Tool
	4.1 Changes to API
	4.1.1 Replacing Global Constant to Store Serial Module Information
	4.1.2 Replacing Global Constant to Store SAIC Information
	4.1.3 Replacing Global Constant to Store RESET Information
	4.1.4 Corrections to #include Header Files
	4.1.5 Corrections to Macro Declarations for User Environment-dependent Settings

	4.2 Tasks Required for User-created Source File
	4.2.1 Creating Serial Communication Functions
	4.2.2 Call API Functions, Assign Global Variables
	4.2.3 Global Variable Definitions Used by API for Serial Communications
	4.2.4 Width Specification Integer Types
	4.2.5 RL78 MCU-Specific Description Corrections

	4.3 Function Specifications
	4.3.1 UART Communications
	4.3.2 SPI Communications

	Website and Support
	Revision History
	General Precautions in the Handling of MPU/MCU Products

