

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

AN0309013/Rev.1.00 September 2003 Page 1 of 65

PRELIMINARY

H8/300L
SLP User Mode Programming (UserMP)

Introduction
This application note provides the complete solution for user mode flash memory programming on SLP microcomputer. The
document comes with the source codes for:

1. User Mode Programming kernel

2. User mode demo program

3. Flash programming GUI (TCL/TK based software)

Target Device
SLP H8/38024F

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 2 of 65

PRELIMINARY

 Contents

1. Overview ... 4
1.1 Boot Mode Programming .. 4
1.2 User Mode Programming.. 5

2. GUI.. 6
2.1 GUI Overview.. 7
Menu Bar: Flash .. 7
Input File Name ... 7
Input File Brows button.. 7
Boot Mode button .. 7
User Mode button .. 7

2.2 GUI Scripting Languages.. 8
2.2.1 Tcl/Tk Overview.. 8
2.2.2 TCL/TK LICENSE TERMS ... 9
2.2.3 Tcl/Tk scripting interpretive program Installation.. 9
2.2.4 Tcl/Tk scripting interpretive program execution.. 10

2.3 GUI Component .. 11

3. UI (User Interface) .. 12
UI Component ... 12

4. KERNEL.. 13
KERNEL Component .. 13

5. APPLICATION .. 14
APPLICATION Component... 14

6. Communication Protocol... 15

7. MCU Coding Implementation.. 16
7.1 Data Update.. 17
7.2 Code Upgrade... 19
7.2.1 Method 1 [M1]... 19
7.2.2 Method 2 [M2]... 22

8. Overall Operation and Observations .. 25
8.1 Environment Setup ... 25
8.2 Programming using GUI ... 26
8.2.1 Method 1 Demonstration .. 26
8.2.2 Method 2 Demonstration .. 26

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 3 of 65

PRELIMINARY

9. Code Listing .. 27
9.1 Method 1 [Initial Workspace] Code Listing ... 27
9.1.1 M1 [Initial Workspace] Main Routine.. 27
9.1.2 M1 [Initial Workspace] Application Routine .. 30
9.1.3 M1 [Initial Workspace] Interrupt Routine .. 31

9.2 Method 1 [New Workspace] Code Listing... 34
M1 [New Workspace] Application Routine .. 34

9.3 Method 2 [Initial Workspace] Code Listing ... 35
9.3.1 M2 [Initial Workspace] Main Routine.. 35
9.3.2 M2 [Initial Workspace] Interrupt Routine .. 38

9.4 Method 2 [New Workspace] Code Listing... 42
9.4.1 M2 [New Workspace] Main Routine ... 42
9.4.2 M2 [New Workspace] Interrupt Routine ... 44

9.5 KERNEL Code Listing... 46
9.5.1 Flash Kernel Program... 46
9.5.2 ROM to RAM mapping program... 59

10. Serial Communication Debugging Technique .. 62

11. References.. 63

Revision Record.. 64

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 4 of 65

PRELIMINARY

1. Overview
The flash MCU has two modes of operations: Boot & user mode.

In Boot mode, the MCU expects to communicate with the external world through its serial port. This is to ‘program’ the MCU flash
memory as there is no program in the MCU at this initial startup state. This boot mode flash programming has been detailed in the
application note “In-circuit boot mode programming”. (In this mode, user is not required to write any code, as a boot mode kernel is
residing in the MCU)

Once the MCU has been programmed, it can power up in the user mode for the program execution. In user mode, the flash memory
can be (re)programmed. However, user will have to prepare the user kernel, host interfacing program and also the host control
software (which can be a PC or another embedded system)

1.1 Boot Mode Programming
BOOT mode provides an automated mechanism to program a blank device in-circuit, or to reprogram a device with an automatic
chip-erase prior to programming. When BOOT mode is entered from chip RESET, the boot program in the LSI (originally
incorporated in the chip) is started to provide the following services:

i. Serial Port auto baud rate detection with external host
ii. Download of a user supplied BOOT kernel into RAM via the serial port
iii. Erase program in the boot program is executed to erase all the Flash memory
iv. Execution of the downloaded BOOT kernel

The entry mechanism to BOOT mode varies according to the technology used. Dual rail programming devices require a 12V supply,
whereas single rail programming devices simply require logic inputs. The example below shows the signals required entering and
exit BOOT mode for single rail programming devices is shown below (check the Hardware Manual for device specifics):

RES

Normal Mode BOOT Mode

Entry into Boot mode
 Reset State

P34

P95

Enter Boot Mode Exit Boot Mode

Figure 1 Boot Mode Entry Timing Diagram

At the point of execution of the BOOT kernel, the entire chip is erased, and ready for programming. The BOOT kernel itself can
perform any function (as this is a user supplied application), however it should include a programming function, as the chip is now
blank! The BOOT kernel may continue to use the serial port for data download, or can use any other peripheral features of the chip
to acquire the required data (e.g. parallel interface, CAN bus etc.). Upon completion of the programming operations, the required
mode pins should be reset to normal execution values and the chip RESET.

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 5 of 65

PRELIMINARY

1.2 User Mode Programming
User mode flash programming allows flexibility in version upgrade, data update etc., which will only change part of the total flash
memory without resetting the MCU. Since it is user determined, the data media can come from the serial port or any other
communication channel.

To perform programming in user mode, the following components are essential:

• Host controller (GUI) is another system that is communicating with the MCU. It provides the stream of data to be ‘burn’ into
the flash memory of the MCU. In this application note, a PC is used as a host controller. The software used for this GUI is
written based on the TCL/TK scripts.

• User mode host–interfacing routine (UI) work as the interfacing software to host, which determines the communication
channel and data transfer protocol.

• User mode flash kernel (KERNEL) is the main controller of the flash reprogramming. It contains the process (0.35µm flash
memory programming algorithm) detail of erasing and programming.

• Application software (APPLICATION) is refer to the user target application program that executing the specific embedded
system task.

Host
Controller

GUI

APPLICATION

UI KERNEL

PC PC MCU

Figure 2 The General View

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 6 of 65

PRELIMINARY

2. GUI
In both modes, the GUI will:

i. Decode S-record output file into binary format

ii. Establish communication with the UI routine located in the MCU

iii. Download machine code into MCU via serial port

Two type of flashing are provided in this GUI:

i. Boot Mode flashing

ii. User Mode flashing

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 7 of 65

PRELIMINARY

2.1 GUI Overview

Figure 3 Flash GUI dialog box

Menu Bar: Flash
User can click on “Quit” in the Flash menu bar to exit Flash GUI.

Input File Name
Flash GUI allow user to select S-Record file to be downloaded into Flash memory.

Input File Browse button
This command will launch a standard windows open file dialog. User can only select one S-Record file at each time.

Boot Mode button
This command is used to download the current input S-Record file. A Flash programming operation writes the data from the selected
S-Record file to target Flash memory. This operation is carried out in Boot Mode, so user has to take note that the target device must
reset in order to enter boot mode.

User Mode button
This command is used to update the target device with current input S-Record file without reset in boot mode. Please note that, user
must not overwrite or erase interfacing software (located in Flash ROM) during the software update operation. If user needs to
overwrite the whole Flash memory, it’s recommended to place the interfacing software in the RAM rather than ROM.

Title Bar

Menu Bar

Input File
name

Input File
Browse Button

Boot Mode
Button

User Mode
Button

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 8 of 65

PRELIMINARY

2.2 GUI Scripting Languages
2.2.1 Tcl/Tk Overview
Tcl – Tool Command Language (“tickle”) is a simple interpretative programming language.

Some key features of Tcl are summarized as follows:

i. Tcl is a high-level scripting language.
Users with experience in high-level programming languages should find Tcl similar to the other languages.

ii. Tcl is an interpreter
Code can be executed directly, without compiling and linking.

iii. Tcl is extensible
Users can add their own commands to extend the Tcl language.

iv. Tcl is embeddable in applications
The Tcl interpreter was designed from the start to be embedded in a variety of applications. It is easy to incorporate Tcl
into an application, and the Tcl interpreter melds naturally with the application, almost as if the Tcl language was designed
exclusively for that particular application.

v. Tcl runs on many platforms
Supported on Windows, UNIX, and Macintosh platforms, but minor changes have to be made.

vi. Tcl is free
The source for Tcl can be found in internet and can be freely used even for commercial applications.

Tk - Tool kit is a graphical user interface tool for window programming, which works together with Tcl scripting language. It is
designed for the X window system, although ports to other window systems are expected to appear eventually. Tk shares many
concepts with other windowing toolkits, but user doesn’t need to know much about the graphical user interfaces to get started with
Tk.

Tk provides a set of Tcl commands that create and manipulate widgets. A widget is a window in a graphical user interface that has a
particular appearance and behavior. The term widget and window are often used interchangeably. Widget types include buttons,
scrollbars, menus, and text windows.

Figure 4 Tcl/Tk scripting interpretive program

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 9 of 65

PRELIMINARY

2.2.2 TCL/TK LICENSE TERMS
This software is copyrighted by the Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation, and other
parties. The following terms apply to all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its documentation for any purpose,
provided that existing copyright notices are retained in all copies and that this notice is included verbatim in any distributions. No
written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this software may be
copyrighted by their authors and need not follow the licensing terms described here, provided that the new terms are clearly
indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS
DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND
DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government, the Government shall have only
"Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause
52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be classified as
"Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined in Clause 252.227-7013 (c)
(1) of DFARs. Notwithstanding the foregoing, the authors grant the U.S. Government and others acting in its behalf permission to
use and distribute the software in accordance with the terms specified in this license.

2.2.3 Tcl/Tk scripting interpretive program Installation

Figure 5 Inside TclTk v8.4.4 (basic) folder

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 10 of 65

PRELIMINARY

2.2.4 Tcl/Tk scripting interpretive program execution
Double-click “wish84s.exe” to run Tcl/Tk scripting interpretive program.

Figure 6 Tcl/Tk Console

Click [File Sources… select “Flash_GUI.tcl” click Open]

Figure 7 Open Flash_GUI.tcl file

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 11 of 65

PRELIMINARY

2.3 GUI Component

GUI

Boot Mode
Flash

User Mode
Flash

Read S-type record
(.mot file)

Figure 8 GUI Overview

There are three basic software modules:

i. Read S-type recode

a. Convert S-type record format (.mot) to absolute binary format (.bin)
b. Break down the binary format data into a block of 128 bytes
c. Check for empty block information (empty block contains 128 bytes of 0xFF data)

ii. Boot Mode Flash

a. Read boot mode flash kernel file
b. Establish Boot Mode connection with MCU via PC serial port
c. Read user target program file
d. Download user target program into MCU flash memory

iii. User Mode Flash

a. Send write command (character ‘U’) to MCU
b. Read user target program file
c. Download user target program into MCU flash memory

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 12 of 65

PRELIMINARY

3. UI (User Interface)
The UI refer to the interfacing routine which determines the MCU communication channel and data transfer protocol.

UI

Init SCI

SCI ISR

Copy Flash Kernel

Figure 9 UI Overview

UI Component
There are three main modules:

i. Init SCI
a. Initialize on-chip serial communication interface module with receive interrupt enable
b. Set SCI baud rate to 38400bps

ii. Copy Flash Kernel

a. Copy flash kernel from ROM to RAM
 Note: Flash programming and erasing kernel must be executed in the RAM area

iii. SCI ISR

a. Interrupt service routine for SCI receive interrupt request
b. Receive write command (character ‘U’) from PC
c. Perform copy flash kernel from ROM to RAM
d. Get start address and 128 bytes block data from PC
e. Call flash erase routine if erase block start address detected
f. Call flash programming routine (return character ‘a’ if operation passed and ‘n’ if operation failed).
g. Repeat step (d) until end of flash address detected (0x8000)
h. Check for data valid flag validation then jump to program reset entry point [PowerON_Reset()]

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 13 of 65

PRELIMINARY

4. KERNEL
The KERNEL is the flash memory programming routines for H8/38024F microcontroller.

KERNEL

Flash Erasing

Flash Programming

Figure 10 KERNEL Overview

KERNEL Component
i. Flash Erasing

a. Flash erasing is performed in block units (e.g. Erase Block 0, 1, 2, 3 and 4)
b. The flash memory is erased in the following process:

• The flash block is erased
• The memory is placed into erase-verify mode
• Flash contents is read back
• Compared with the erase value of all ‘1’

c. If any of the bits in the block are not read back as ‘1’ then another attempt is made to erase the block. This process is
repeated until either flash memory block is successfully erased or the maximum number of erase attempts is reached.

ii. Flash Programming

a. Flash erasing must be performed before flash programming
b. The flash memory programming must in units of 128 bytes and starting on a 128 bytes boundary (e.g. 0x0000, 0x0080,

0x0100,… , 0x7F00, 0x7F80)
c. The 128-bytes flash line can be programmed by calling the function ‘prog_flash_line_128’ in kernel.c file
d. The first parameter passed to this function is the start address of the flash memory to be programmed, which must be

on the 128 bytes boundary.
e. The second parameter is a pointer to the data to be programmed.

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 14 of 65

PRELIMINARY

5. APPLICATION
The APPLICATION module refers to the user targeted application. This application note consist of a few simple application
programs that control two LEDs which are connected to Port 9 of H8/38024F MCU (in SLP 38024F CPU board).

APPLICATION

Blinking LED

Running LED

Blinking LED via
Timer A interrupt

Figure 11 KERNEL Overview

APPLICATION Component
Port 9 of H8/38024F is used as it is a large current port that can drive LED directly without any LED driver.

i. Blinking LED
a. Two LEDs are connected to Port 9 pin 2 and 3
b. Application program will toggle port 9 pin 2 and 3 with fixed delay while MCU is running

ii. Blinking LED via Timer A interrupt

a. Two LEDs are connected to Port 9 pin 2 and 3
b. Timer A overflow interrupt will toggle port 9 pin 2 and 3

iii. Running LED

a. Two LEDs are connected to Port 9 pin 2 and 3
b. Application program will toggle port 9 pin 2 and 3 alternately with fixed delay while MCU is running

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 15 of 65

PRELIMINARY

6. Communication Protocol
The figure shows the communication protocol between GUI (PC) and UI (MCU) in user mode programming. The boot mode
programming is detailed in hardware manual.

GUI

UI

MCU PC

Send write flash command ‘U’ Receive write command

Send start address
(High byte)

0x00 Receive start address
(High byte)

0x00 Echo back Receive echo back value
and verify

Send start address
(Low byte)

0x00 Receive start address (Low
byte)

Echo back Receive echo back value
and verify

Send 128 bytes program
data

128 bytes data Receive 128 bytes program
data and perform flash
programming

‘a’ or ‘n’ Acknowledge if complete
Flashing

Receive echo back value
and verify

Send next start address
(High byte)

0x00 Receive start address
(High byte)

Echo back Receive echo back value
and verify

Send start address
(Low byte)

0x80 Receive start address (Low
byte)

Echo back Receive echo back value
and verify

Send 128 bytes program
data

128 bytes data Receive 128 bytes program
data and perform flash
programming

‘a’ or ‘n’ Acknowledge if complete
Flashing

Receive echo back value
and verify

Send write end command 0x8000 Receive write end
command and jump to
power on reset function

0x00

0x00

0x80

Figure 12 Communication Protocol Transition Diagram

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 16 of 65

PRELIMINARY

7. MCU Coding Implementation
A program must reside in the MCU during the user mode execution & programming. This program will contain three main parts:

i. Flashing Kernel (KERNEL)
ii. Host interface program (UI)
iii. User application program (APPLICATION)

In order to maintain programmability, the flashing kernel & host interface program must remain in the MCU after any flashing
procedure. The main objectives of any flashing procedure are to

i. Update new data, or
ii. Upgrade to a new version of user application program

There are two possibilities of works:

i. All Blocks

 The whole MCU flash is erased and a whole new application code (with kernel & host interface program) will be
programmed. However this is not a usual programming practice as this is equivalent to Boot Mode programming.

ii. Partial Block

 Part of the MCU flash is erased and new code or data is updated.
 The generation of new data is simple, but user has to pay special attention when generating the new code

The following will elaborate the Partial Block user programming:

i. Data Update
ii. Code Update

 Method 1
 Method 2

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 17 of 65

PRELIMINARY

7.1 Data Update

Block 4

Memory Map 0x0000
Vector Table

Application
Section

0x0800

0x7FFF

Interfacing s/w
Section

Flash Kernel

0xF780
RAM and

I/O

0xFFFF

Download

ROM
To

RAM
Mapping

0x0030

Initial Workspace New Data
Workspace

Memory Map

NEW DATA DATA
0x7000 0x7000

0x7900
0x7B00

Figure 13 Memory Map for Data Update

Procedures

i. Create a empty workspace for C or assembly
ii. Declare data (Static constant… or DATA …)
iii. Declare the section and define the address.
iv. Compile and generate the S record file
v. Alternatively generate the S record file via ‘Save as’ in the emulator/simulator HEW.

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 18 of 65

PRELIMINARY

Figure 14 New Data Workspace Generation

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 19 of 65

PRELIMINARY

7.2 Code Upgrade
In order to co-exist with the “initial workspace”, the generated code in the “new workspace” has to consider several factors.

i. Initialized variables
ii. Stack
iii. Constant
iv. Entry point to the new workspace
v. Entry point to the initial workspace

7.2.1 Method 1 [M1]

Block 4

Memory Map 0x0000
Vector Table

Application
Section

0x0800

0x7FFF

Interfacing s/w
Section

Flash Kernel

0xF780
RAM and

I/O

0xFFFF

Download

ROM
To

RAM
Mapping

0x0030

Application
Section

[Initial Workspace] [New Workspace]
Memory Map

Figure 15 Memory Map for Code Upgrade Method 1

[Initial workspace]’s and [new workspace]’s working Procedure

i. Power-up sequence
ii. Enter Main function
iii. Initialize SCI
iv. Jump to “application program”
Note:

This method of implementation should only be used when minor changes are made to modify the existing workspace (e.g. new
function added to push button or new algorithm computation, and others value added implementation etc). There must be no changes
made to the constant, variables and interrupt vector table of the initial workspace. If such changes are required, user must implement
method 2 instead.

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 20 of 65

PRELIMINARY

Flashing Procedure

i. ‘Download’ command activated at the PC GUI.
ii. SCI interrupt activated
iii. MCU interface routine (UI) will jump to SCI interrupt service routine and perform:

a. Copy flashing kernel from ROM to RAM space
b. Obtain the data stream for flash kernel

iv. Flash kernel will program the flash memory
v. Upon completion,

a. UI will force jump to the ‘Power ON Reset’ function which will initialize the whole workspace, or
b. User may assert hardware reset signal in order to run new application, or
c. User may make use of watchdog timer to generate an internal reset to initialize all I/O ports to high impedance

Steps to generate M1 [Initial workspace]

i. Create a new workspace (application) based on SLP Toolchain
ii. Write the code (& create the section name for this code)
iii. Declare the section address in HEW [Option/ Toolchain/ Linker/ Section]
iv. Compile to obtain the S record file

Figure 16 Method 1 [Initial workspace] Generation

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 21 of 65

PRELIMINARY

Steps to generate M1 [New Workspace]

i. Create a new workspace (empty application) based on SLP
ii. Write the code (& create the section name for this code)
iii. Declare the section address in HEW [Option/ Toolchain/ Linker/ Section]
iv. Copy the iodefine.h file from the initial workspace folder to new workspace folder

- Copy [\Method 1\M1_init_ws\M1_init_ws\iodefine.h] to [\Method 1\M1_new_ws\M1_new_ws]
v. Compile to obtain the S record file

Figure 17 Method 1 [New workspace] generation

Highlight

The new application has much restriction:

i. No control of interrupt entry
ii. User have to take care of copying initial data

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 22 of 65

PRELIMINARY

7.2.2 Method 2 [M2]

0x0000
Vector Table

0x7FFF

SCI ISR
(Flash Kernel &
Interfacing s/w

0xF780
RAM and

I/O

0xFFFF

Download

0x0400

[Initial Workspace]
Memory Map

[New Workspace]
Memory Map

Init SCI ()

0x0C00
Reset Program

Flash Kernel
Constant

Main Program

Other Interrupt
Service Routine

Erasable

Vector Table

RAM and
I/O

Reset Program

RESERVE

AREA
[Init SCI ()]
[SCI ISR]

[Flash Kernel]
[Interfacing s/w]

Main Program

Other Interrupt
Service Routine

Download

0x0000

0x7FFF

0xF780

0xFFFF

0x0400

0x0C00
PResetPRG
P
C
C$DSEC
C$BSEC
PIntPRG

0x0440

Figure 18 Memory Map for Code Upgrade Method 2

Flashing Procedure

i. ‘Download’ command activated at the PC GUI.
ii. SCI interrupt activated
iii. MCU interface routine (UI) will jump to SCI interrupt service routine and perform:

a. Copy flashing kernel from ROM to RAM space
b. Obtain the data stream for flash kernel

iv. Flash kernel will program the flash memory
v. Upon completion,

a. UI will force jump to the ‘Power ON Reset’ function which will initialize the whole workspace, or
b. User may assert hardware reset signal in order to run new application, or
c. User may make use of watchdog timer to generate internal reset to initialize all I/O port to high impedance

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 23 of 65

PRELIMINARY

Steps to generate M2 [Initial workspace]

i. Create a new workspace (application) based on SLP
ii. Write the code (& create the section name for this code)
iii. Declare the section address in HEW [Option/ Toolchain/ Linker/ Section]
iv. Compile to obtain the S record file
v. Compiler Setting :

a. Optimization = Speed oriented optimization (reason is to remove “register save” library option in SCI ISR)
b. Kernel constant section added to avoid overwriting by the [new workspace]

Figure 19 Method 2 [Initial workspace] Generation

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 24 of 65

PRELIMINARY

Important Note for M2 [New Workspace]:

i. Reserve H’0400 to H’0C00 (flash block 1 and 2)
→ To prevent overwriting to initial application flash kernel and interfacing software

ii. Fix RESET routine at H’0C00 (flash block 3)
iii. Fix MAIN and other ISR after RESET routine
iv. Init SCI () can be access by function call to H’0400
v. SCI Interrupt Service Routine must fix at H’0440

→ This can be achieve using the interrupt handler (intprg.c)
e.g:

 #pragma section SCI_ISR
 static const unsigned short DATA = 0x0440;
 #pragma section

Steps to Generate M2 [New Workspace]

i. Create a new workspace (Application) based on SLP
ii. Write the new workspace code
iii. Declare the section address in HEW [Option/ Toolchain/ Linker/ Section]

- please refer to figure below for detail
iv. Compile to obtain the S record file

Figure 20 Method 2 [New workspace] generations

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 25 of 65

PRELIMINARY

8. Overall Operation and Observations
This section shows the setup required for the application note and demonstrates the operation of the Flash GUI.

8.1 Environment Setup

Serial
Cable

RSS 38024F CPU Board

Flash GUI

Figure 21 Environment setup for User Mode (Re)Programming

If the RSS 38024F CPU Board is not available, a simple connection diagram is shown as below figure:

MCU

M
A

X
32

32

To PC TxD

RxD

Vcc

Crystal
9.8304MHz

Reset
Circuit

Boot Mode
Switching circuitry

P92

P93

LED

Figure 22 User Mode Programming demo board block diagram

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 26 of 65

PRELIMINARY

8.2 Programming using GUI
8.2.1 Method 1 Demonstration
Boot mode programming
i. Open Flash_GUI.tcl
ii. Select download file “M1_init_ws.mot”
iii. Switch H8/38024F MCU to Boot Mode* and press reset button.
iv. Click on the Boot Mode Button, “Flash program into H8/38024F via boot mode”, on the Flash GUI to begin downloading.
v. “Program downloaded!” message box will be displayed, indicating the completion of boot mode programming.
vi. Switch H8/38024F MCU to User Mode* and press reset button.
vii. Both of the LEDs connected to Port 9 will blink continuously indicating that the “M1_init_ws” program is running.

User mode Programming
i. Select “M1_new_ws.mot” as input S-Record file.
ii. Click “Update program into H8/38024F via user mode” to download [New Workspace]
iii. “Program downloaded!” message box will be displayed
iv. New application program is executed causing both LEDs, D3 and D4, to light up alternately

User mode Re-Programming
i. Select “M1_App1.mot” as input S-Record file
ii. Click “Update program into H8/38024F via user mode” to download new application program
iii. “Program downloaded!” message box will be displayed
iv. New application program is executed causing LEDs, D3 and D4, to blink together

User is able to download and execute different application programs in User mode without resetting MCU.

Note: *Refer to 38024F CPU Board Quick Start Guide for jumper settings to switch to Boot Mode and User Mode

8.2.2 Method 2 Demonstration
The Method 2 demonstration can be access by repeat section 8.2.1 and change the downloading file name:

e.g.:

“M1_init_ws.mot” “M2_init_ws.mot”

“M1_new_ws.mot” “M2_new_ws.mot”

“M1_APP1.mot” “M2_APP1.mot”

The result of the demonstration is same.

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 27 of 65

PRELIMINARY

9. Code Listing
The attached code is generated using HEW project generator targeting at H8/38024F SLP MCU. The toolchain used is the free
SLP/Tiny toolchain.

9.1 Method 1 [Initial Workspace] Code Listing
9.1.1 M1 [Initial Workspace] Main Routine
The Figure below shows the flow chart for “m1_init_ws.c”, followed by its code listing.

M1 Initial
Workspace

Main

Initialize Serial port
with Receive

Interrupt Enable

Application

SCI3
Interrupt

Return

Figure 23 Flow Chart for M1 [Initial Workspace] Main Routine

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 28 of 65

PRELIMINARY

/***/
/* */
/* FILE :M1_init_ws.c */
/* DATE :Mon, Sep 29, 2003 */
/* DESCRIPTION :Main Program */
/* CPU TYPE :H8/38024F */
/* */
/* This file is generated by Hitachi Project Generator (Ver.2.1). */
/* */
/***/
#include "iodefine.h"
#include <machine.h>

//Flash function prototype
extern void copyfunc(void);
extern unsigned char prog_flash_line_128 (unsigned long t_address, union
char_rd_datum_union *p_data);
extern unsigned char erase_block (unsigned char block_num);
extern int *_PkernelBegin, *_PkernelEnd, *_Pkernel_RAMBegin;
extern int *_CkernelBegin, *_CkernelEnd, *_Ckernel_RAMBegin;

//function prototype
void copyfunc(void);
extern void Application(void);

//SCI3 initialize information//
#define XTAL 9830400L
#define Baudrate 38400L
#define N ((XTAL) / (64L*1L*Baudrate)) - 1L
void initserial(void);
void sci_put(char byte);
char sci_get(void);
void initserial()
{
 P_SCI3.SCR3.BYTE = 0x00; //Disable TIE,TE,RE,MPIE,TEIE,RIE,
 P_SCI3.SMR.BYTE = 0x00; //set Async, 8 data, none parity, 1 stop, clk n=0
 P_SCI3.BRR = N; //set baud rate = N
 nop(); //wait baud rate setup time
 P_SCI3.SPCR.BYTE = 0xE0; //SPC32=1, make P42 function as TXD32
 P_SCI3.SCR3.BYTE |= 0x70; //Enable RIE, TE and RE
}

void main(void)
{
 initserial(); //initilize SCI
 Application(); //Execute application program
}

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 29 of 65

PRELIMINARY

void copyfunc(void)
{
 register int *p, *q;
 for (p=_PkernelBegin, q=_Pkernel_RAMBegin;p<_PkernelEnd;p++,q++)
 {
 *q=*p;
 }

 for (p=_CkernelBegin, q=_Ckernel_RAMBegin;p<_CkernelEnd;p++,q++)
 {
 *q=*p;
 }
}

void sci_put(char byte)
{
 while(P_SCI3.SSR.BIT.TDRE==0);
 P_SCI3.TDR=byte;
 while(P_SCI3.SSR.BIT.TEND==0);
}

char sci_get(void)
{
 while(P_SCI3.SSR.BIT.RDRF==0){} //Wait until RDRF = 1
 if ((P_SCI3.SSR.BYTE & 0x38) ==0) //Check for SCI error
 {
 return P_SCI3.RDR;
 }
 else return 0xFF; //If error occur return 0xFF
 if(P_SCI3.SSR.BIT.RDRF==1) P_SCI3.SSR.BIT.RDRF=0;
}

#pragma section

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 30 of 65

PRELIMINARY

9.1.2 M1 [Initial Workspace] Application Routine
The Figure below shows the flow chart for “Application.c”, followed by its code listing.

M1 Initial
Workspace

APPLICATION

Initialize I/O Port

Toggle Port 92
and Port 93

SCI3
Interrupt

Return

Delay Loop

Figure 24 Flow Chart for M1 [Initial Workspace] Application Routine

#include "iodefine.h"
//Section define for application program
#pragma section application
void Application(void);
//Application Program code start
//Blinking LED application
void Application(void)
{
 unsigned int i;
 P_IO.PDR9.BIT.P92 = 1;
 P_IO.PDR9.BIT.P93 = 1;

 while(1)
 {
 P_IO.PDR9.BIT.P92 ^= 1;
 P_IO.PDR9.BIT.P93 ^= 1;
 for (i=0;i<0xFFFF;i++);
 }
}
#pragma section

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 31 of 65

PRELIMINARY

9.1.3 M1 [Initial Workspace] Interrupt Routine
The Figure below shows the flow chart for SCI interrupt service routine, followed by its code listing.

 M1 Initial Workspace
SCI ISR

RAM Transfer
Program

Clear SCI3
error flag

Yes Return from
Interrupt

SCI3 error?

No

Update
Command?

Yes

No Clear SCI3
error flag

Get Start Address

End Address?
Yes

Erase Flash Block

Get Program Data

Program Flash
Block

Acknowledge(“a”)
if Pass

Power On
Reset routine

Figure 25 Flow Chart for M1 [Initial Workspace] SCI Interrupt Service Routine

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 32 of 65

PRELIMINARY

/***/
/* */
/* FILE :intprg.c */
/* DATE :Mon, Sep 29, 2003 */
/* DESCRIPTION :Interrupt Program */
/* CPU TYPE :H8/38024F */
/* */
/* This file is generated by Hitachi Project Generator (Ver.2.1). */
/* */
/***/
#include "iodefine.h"
#include <machine.h>

//SCI function prototype
extern void sci_put(char byte);
extern char sci_get(void);
extern unsigned char temp_buff;

//Flash function prototype
extern unsigned char prog_flash_line_128 (unsigned long t_address, union
char_rd_datum_union *p_data);
extern unsigned char erase_block (unsigned char block_num);
extern void PowerON_Reset(void);

#pragma section IntPRG
// vector 1 Reserved
.
.
__interrupt(vect=16) void INT_TimerG(void) {/* sleep(); */}
// vector 17 Reserved

// vector 18 SCI3
__interrupt(vect=18) void INT_SCI3(void)
{
 unsigned short start_address;
 unsigned char prog_data_addr[128],count1;
 unsigned char temp_buff;
 if ((P_SCI3.SSR.BYTE & 0x38) == 0) //Check for SCI error
 {
 if(P_SCI3.RDR=='U')
 {
 copyfunc();
 while(1)
 {
 //GET START ADDRESS
 temp_buff = sci_get();
 start_address = (unsigned short) (temp_buff <<8); //high byte
 sci_put(temp_buff);

 temp_buff = sci_get();
 start_address = start_address | (unsigned short) (temp_buff);
 //low byte
 sci_put(temp_buff);

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 33 of 65

PRELIMINARY

 if (start_address == 0x0000) {erase_block (0);}
 else if (start_address == 0x0400) {erase_block (1);}
 else if (start_address == 0x0800) {erase_block (2);}
 else if (start_address == 0x0c00) {erase_block (3);}
 else if (start_address == 0x1000) {erase_block (4);}
 else if (start_address == 0x8000) {PowerON_Reset();}
 //end of flash programming
 else nop(); //invalid start address

 for(count1=0;count1<128;count1++)
 {
 prog_data_addr[count1] = sci_get();
 }

 if(prog_flash_line_128 (start_address, (union
 char_rd_datum_union *) prog_data_addr)==0x01)
 {
 sci_put('a');
 }
 else sci_put('n');
 }

 }
 else return; // if not Update flash command then do nothing
 }
 else
 {
 //SCI error occur
 if (P_SCI3.SSR.BIT.OER == 1)
 temp_buff = P_SCI3.RDR;
 temp_buff = P_SCI3.RDR;
 P_SCI3.SSR.BYTE=0x84;
 sci_put('e');
 }
}
// vector 19 ADI
__interrupt(vect=19) void INT_ADI(void) {/* sleep(); */}
// vector 20 Direct Transition
__interrupt(vect=20) void INT_Direct_Transition(void) {/* sleep(); */}

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 34 of 65

PRELIMINARY

9.2 Method 1 [New Workspace] Code Listing
M1 [New Workspace] Application Routine
The Figure below shows the flow chart for “m1_new_ws.c”, followed by its code listing.

 M1 New
Workspace

APPLICATION

Initialize I/O Port

Toggle Port 92
and Port 93

SCI3
Interrupt

Return

Delay Loop

Figure 26 Flow Chart for M1 [New Workspace] Application Routine

#include "iodefine.h"
void Application(void);

#pragma section application

//Application Program code start
void Application(void)
{
 unsigned int i;
 P_IO.PDR9.BIT.P92 = 1;
 P_IO.PDR9.BIT.P93 = 0;

 while(1)
 {
 P_IO.PDR9.BIT.P92 ^= 1;
 P_IO.PDR9.BIT.P93 ^= 1;
 for (i=0;i<0xFFFF;i++);
 }
}

#pragma section

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 35 of 65

PRELIMINARY

9.3 Method 2 [Initial Workspace] Code Listing
9.3.1 M2 [Initial Workspace] Main Routine
The Figure below shows the flow chart for “m2_init_ws.c”, followed by its code listing.

M2 Initial
Workspace

Main

Toggle Port 92
and Port 93

SCI3
Interrupt

Return

Delay Loop

Initialize Serial port
with Receive

Interrupt Enable

Data
Valid

No

Yes SCI3
Interrupt

Figure 27 Flow Chart for M2 [Initial Workspace] Main Routine

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 36 of 65

PRELIMINARY

/***/
/* */
/* FILE :M2_init_ws.c */
/* DATE :Mon, Sep 29, 2003 */
/* DESCRIPTION :Main Program */
/* CPU TYPE :H8/38024F */
/* */
/* This file is generated by Hitachi Project Generator (Ver.2.1). */
/* */
/***/

#include "iodefine.h"
#include <machine.h>
void initserial(void);
void sci_put(char byte);char sci_get(void);unsigned char temp_buff;

void main(void)
{
 unsigned int delay;
 unsigned long datavalid = 0x55AA1234, *VALID;

 initserial();
 VALID = (unsigned long *)0x7FFC;
 if (*VALID != datavalid)
 {
 while(1); //wait for interrupt
 }
 P_IO.PDR9.BIT.P93 = 1;
 P_IO.PDR9.BIT.P92 = 1;

 while(1)
 {
 P_IO.PDR9.BIT.P93 ^= 1;
 P_IO.PDR9.BIT.P92 ^= 1;
 for (delay=0;delay<0xFFFF;delay++);
 }
}

//Code Valid Flag fixed at last address (0x7FFC-0x7FFF)
#pragma section Valid
const unsigned long DATA = 0x55AA1234;
#pragma section

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 37 of 65

PRELIMINARY

//Init SCI routine fixed at address 0x0400
#pragma section InitSCI
//SCI3 initialize information
#define XTAL 9830400L
#define Baudrate 38400L
#define N ((XTAL) / (64L*1L*Baudrate)) - 1L

//unsigned char *addr, temp;
void initserial()
{
 P_SCI3.SCR3.BYTE = 0x00; //Disable TIE,TE,RE,MPIE,TEIE,RIE,
 P_SCI3.SMR.BYTE = 0x00; //set Async, 8 data, none parity, 1 stop,
clk n=0
 P_SCI3.BRR = N; //set baud rate = 9600
 nop(); //wait baud rate setup time
 P_SCI3.SPCR.BYTE = 0xE0; //SPC32=1, make P42 function as TXD32
 P_SCI3.SCR3.BYTE |= 0x70; //Enable RIE, TE and RE
 set_imask_ccr(0);
}
//SCI3 initialize information end//
#pragma section

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 38 of 65

PRELIMINARY

9.3.2 M2 [Initial Workspace] Interrupt Routine
The Figure below shows the flow chart for “m2_init_ws.c”, followed by its code listing.

RAM Transfer
Program

Clear SCI3
error flag

Yes Return from
Interrupt

SCI3 error?

No

Update
Command?

Yes

No Clear SCI3
error flag

Get Start Address

End Address?
Yes

Erase Flash Block

Get Program Data

Program Flash
Block

Acknowledge(“a”)
if Pass

M2 Initial Workspace
SCI ISR

Erase Valid Flag

Power On
Reset routine

Figure 28 Flow Chart for M2 [Initial Workspace] SCI Interrupt Service Routine

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 39 of 65

PRELIMINARY

/***/
/* */
/* FILE :intprg.c */
/* DATE :Mon, Sep 29, 2003 */
/* DESCRIPTION :Interrupt Program */
/* CPU TYPE :H8/38024F */
/* */
/* This file is generated by Hitachi Project Generator (Ver.2.1). */
/* */
/***/
#include "iodefine.h"
#include <machine.h>

//SCI function prototype
void sci_put(char byte);char sci_get(void);
extern unsigned char temp_buff;

//Flash function prototype
void copyfunc(void);
extern unsigned char prog_flash_line_128 (unsigned long t_address, union
char_rd_datum_union *p_data);
extern unsigned char erase_block (unsigned char block_num);
extern int *_PkernelBegin, *_PkernelEnd, *_Pkernel_RAMBegin;
extern int *_CkernelBegin, *_CkernelEnd, *_Ckernel_RAMBegin;

extern void PowerON_Reset(void);

#pragma section OtherIntPRG
// vector 1 Reserved
.
.

// vector 19 ADI
__interrupt(vect=19) void INT_ADI(void) {/* sleep(); */}
// vector 20 Direct Transition
__interrupt(vect=20) void INT_Direct_Transition(void) {/* sleep(); */}

//SCI ISR section fixed at 0x0440
#pragma section SCI_ISR
// vector 18 SCI3
__interrupt(vect=18) void INT_SCI3(void)
{

 unsigned short start_address;
 unsigned char prog_data_addr[128],count1;

 if ((P_SCI3.SSR.BYTE & 0x38) == 0) //Check for SCI error
 {
 if(P_SCI3.RDR=='U')
 {
 copyfunc();

 erase_block (4); //erase Valid Flag

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 40 of 65

PRELIMINARY

 while(1)
 {
 //GET START ADDRESS
 temp_buff = sci_get();
 start_address = (unsigned short) (temp_buff <<8); //high byte
 sci_put(temp_buff);

 temp_buff = sci_get();
 start_address = start_address | (unsigned short) (temp_buff);
 //low byte
 sci_put(temp_buff);

 if (start_address == 0x0000) {erase_block (0);}
 else if (start_address == 0x0400) {erase_block (1);}
 else if (start_address == 0x0800) {erase_block (2);}
 else if (start_address == 0x0c00) {erase_block (3);}
 else if (start_address == 0x1000) {erase_block (4);}
 else if (start_address == 0x8000)
 {PowerON_Reset();}//end of flash programming
 else nop(); //invalid start address

for(count1=0;count1<128;count1++)

 {
 prog_data_addr[count1] = sci_get();
 }
 if(prog_flash_line_128 (start_address, (union
 char_rd_datum_union *) prog_data_addr)==0x01)
 {
 sci_put('a');
 }
 else sci_put('n');
 }
 }
 else return; // if not Update flash command then do nothing
 }
 else
 {
 //SCI error occur
 if (P_SCI3.SSR.BIT.OER == 1)
 temp_buff = P_SCI3.RDR;
 temp_buff = P_SCI3.RDR;
 P_SCI3.SSR.BYTE=0x84;
 sci_put('e');
 }
}

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 41 of 65

PRELIMINARY

void sci_put(char byte)
{
 while(P_SCI3.SSR.BIT.TDRE==0){}
 P_SCI3.TDR=byte;
 while(P_SCI3.SSR.BIT.TEND==0){}
}

char sci_get(void)
{
 while(P_SCI3.SSR.BIT.RDRF==0){} //Wait until RDRF = 1
 if ((P_SCI3.SSR.BYTE & 0x38) ==0) //Check for SCI error
 {
 return P_SCI3.RDR;
 }
 else return 0xFF; //If error occur return 0xFF
 if(P_SCI3.SSR.BIT.RDRF==1) P_SCI3.SSR.BIT.RDRF=0;
}

void copyfunc(void)
{
 register int *p, *q;
 for (p=_PkernelBegin, q=_Pkernel_RAMBegin;p<_PkernelEnd;p++,q++){*q=*p;}
 for (p=_CkernelBegin, q=_Ckernel_RAMBegin;p<_CkernelEnd;p++,q++){*q=*p;}
}
#pragma section

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 42 of 65

PRELIMINARY

9.4 Method 2 [New Workspace] Code Listing
9.4.1 M2 [New Workspace] Main Routine
The Figure below shows the flow chart for “m2_new_ws.c”, followed by its code listing.

M2 Initial
Workspace

Main

Initialize I/O Port &
Timer A

SCI3
Interrupt

Return

Dummy Loop

Init SCI pointer
function call

Data
Valid

No

Yes

SCI3 /
Timer A
Interrupt

Figure 29 Flow Chart for M2 [New Workspace] Main Routine

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 43 of 65

PRELIMINARY

/***/
/* */
/* FILE :M2_new_ws.c */
/* DATE :Mon, Sep 29, 2003 */
/* DESCRIPTION :Main Program */
/* CPU TYPE :H8/38024F */
/* */
/* This file is generated by Hitachi Project Generator (Ver.2.1). */
/* */
/***/
#include "iodefine.h"
#include <machine.h>

//pointer function call to init SCI
typedef void (*init_SCI_FnPtr)(void);
#define init_SCI_Fn (init_SCI_FnPtr)((unsigned short *)(0x0400))

void main(void)
{
 unsigned long datavalid = 0x55AA1234, *VALID;
 unsigned int delay = 0;

 (*init_SCI_Fn) ();

 VALID = (unsigned long *)0x7FFC;
 if (*VALID != datavalid)
 {
 while(1); //wait for interrupt
 }
 P_IO.PDR9.BIT.P93 = 1;
 P_IO.PDR9.BIT.P92 = 1;

 P_SYSCR.IENR1.BIT.IENTA = 1;

 P_TMRA.TMA.BIT.TMA = 10;

 set_imask_ccr(0);
 while (1)
 {
 //write user code here
 }
}
//Code Valid Flag
#pragma section Valid
const unsigned long DATA = 0x55AA1234;
#pragma section

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 44 of 65

PRELIMINARY

9.4.2 M2 [New Workspace] Interrupt Routine
The Figure below shows the flow chart for “intprg.c”, followed by its code listing.

M2 New Workspace
Timer A Overflow

ISR

Toggle Port 92 and
93

Clear Interrupt
Request Flag

Return from
Interrupt

Figure 30 The Flow Chart for M2 [New Workspace] Timer A Interrupt Service Routine

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 45 of 65

PRELIMINARY

/***/
/* */
/* FILE :intprg.c */
/* DATE :Mon, Sep 29, 2003 */
/* DESCRIPTION :Interrupt Program */
/* CPU TYPE :H8/38024F */
/* */
/* This file is generated by Hitachi Project Generator (Ver.2.1). */
/* */
/***/
#include "iodefine.h"
#include <machine.h>
#pragma section IntPRG
// vector 1 Reserved
.
.
// vector 10 Reserved

// vector 11 Timer A Overflow
__interrupt(vect=11) void INT_TimerA(void)
{
 unsigned int delay = 0;
 if (P_SYSCR.IRR1.BIT.IRRTA == 1)
 P_SYSCR.IRR1.BIT.IRRTA = 0;
 P_IO.PDR9.BIT.P93 ^= 1;
 P_IO.PDR9.BIT.P92 ^= 1;
}
.
.
__interrupt(vect=16) void INT_TimerG(void) {/* sleep(); */}
// vector 17 Reserved

// vector 18 SCI3
// vector 19 ADI
__interrupt(vect=19) void INT_ADI(void) {/* sleep(); */}
// vector 20 Direct Transition
__interrupt(vect=20) void INT_Direct_Transition(void) {/* sleep(); */}

//Insert SCI ISR vector address as 0x0440
#pragma section SCI_ISR
static const unsigned short DATA = 0x0440;
//__interrupt(vect=18) void INT_SCI3(void) {/* sleep(); */}

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 46 of 65

PRELIMINARY

9.5 KERNEL Code Listing
9.5.1 Flash Kernel Program
The Figure below shows the flow chart for “kernel.c”, followed by its code listing.

Kernel

Program

Programming
Function

(prog_flash_line_128)

Write Pulse Function
(apply_write_pulse)

Flash Block Erasing
Function

(erase_block)

Figure 31 The Flow Chart for Kernel Program

Note: Please refer to the ‘Flash Memory Programming Mode’ Application note for more detail.

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 47 of 65

PRELIMINARY

// Hitachi H8/38024F example flash programming and erasing routines
//
// kernel.c
//
// Clock speed = 9.8304MHz
// H8/38024F uses SCI3 for user mode
// Kernel start address - 0xF780

#include "iodefine.h" // IO header file
#include <machine.h>

// H8/38024F specific
#define FLASH_SWE P_ROM.FLMCR1.BIT.SWE
#define FLASH_PSU P_ROM.FLMCR1.BIT.PSU
#define FLASH_P P_ROM.FLMCR1.BIT.P
#define FLASH_PV P_ROM.FLMCR1.BIT.PV
#define FLASH_EBR1 P_ROM.EBR.BYTE
#define FLASH_ESU P_ROM.FLMCR1.BIT.ESU
#define FLASH_E P_ROM.FLMCR1.BIT.E
#define FLASH_EV P_ROM.FLMCR1.BIT.EV
#define FLASH_FENR P_ROM.FENR.BIT.FLSHE

// H8/38024F specific
#define MAX_FLASH_ADDR 0x8000
#define FLASH_LINE_SIZE 128
#define NO_OF_FLASH_BLOCKS 5
#define XTAL 9830400L
#define MAX_PROG_COUNT 1000
#define MAX_ERASE_ATTEMPTS 100
#define BLANK_VALUE 0xFFFF // 0xFFFFFFFF for SH,
 //0xFFFF for H8S/300H

// array below should contain the start addresses of the flash memory blocks
// final array element should contain the end address of the flash memory (+1)

#pragma section kernel_const //only applicable for M2_init_ws
 //additional constant section define needed

const unsigned long eb_block_addr [NO_OF_FLASH_BLOCKS + 1] = {
 0x00000000L,
 0x00000400L,
 0x00000800L,
 0x00000C00L,
 0x00001000L,
 0x00008000L /* max flash address + 1 */
};

#define BLANK 1
#define NOT_BLANK 2
#define PROG_PASS 0x01
#define PROG_FAIL 0x02
#define ERASE_PASS 0x01
#define ERASE_FAIL 0x02

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 48 of 65

PRELIMINARY

// delay values
// note this is xtal frequency specific
// these values are for the H8/38024F Timer F with a clock divider of 4
#define ONE_USEC ((1L * XTAL) / 8000000L)
#define TWO_USEC ((2L * XTAL) / 8000000L)
#define FOUR_USEC ((4L * XTAL) / 8000000L)
#define FIVE_USEC ((5L * XTAL) / 8000000L)
#define TEN_USEC ((1L * XTAL) / 800000L)
#define TWENTY_USEC ((2L * XTAL) / 800000L)
#define THIRTY_USEC ((3L * XTAL) / 800000L)
#define FIFTY_USEC ((5L * XTAL) / 800000L)
#define ONE_HUNDRED_USEC ((1L * XTAL) / 80000L)
#define TWO_HUNDRED_USEC ((2L * XTAL) / 80000L)
#define TEN_MSEC ((1L * XTAL) / 800L)

// typedef for reading the flash memory
// should be the size of the data bus connection to the flash memory
typedef unsigned short read_datum;

// function prototypes
unsigned char prog_flash_line_128 (unsigned long t_address, union
char_rd_datum_union *p_data);
void delay (unsigned short);
void init_delay_timer (void);
unsigned char erase_block (unsigned char block_num);
void apply_write_pulse(unsigned short prog_pulse);
extern void sci_put(char byte);
// variables
volatile unsigned long delay_counter;

union char_rd_datum_union {
 unsigned char c[FLASH_LINE_SIZE];
 read_datum u[FLASH_LINE_SIZE / sizeof (read_datum)];
} prog_data;

//DEFINE SECTION FOR KERNEL PROGRAM
#pragma section kernel

/**
/*
/* FUNCTION : prog_flash_line_128
/* DESCRIPTION : program 128 bytes of flash memory
/* INPUT : flash start address,
/* program data pointer
/* OUTPUT : PROG_PASS if programming is successful
/* PROG_FAIL if programming is unsucessful
/* Other information:
/* t_address is the start address for the flash line to
/* be programmed and must be on a flash line boundary e.g.
/* multiple of 128 (this is not checked and so must be
/* ensured by the caller) data to be programmed should be
/* passed to this function in the form of a 'char_rd_datum_union'
/* union pointer data must be written to the flash in byte units

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 49 of 65

PRELIMINARY

/*
/* Please note that for the H8/38024F during the dummy write,
/* setting the PSU and P bits no RTS intructions are permitted.
/* Therefore no functions calls are allowed.
/*
/* For this reason at these points in this function the code from
/* the 'delay' function has been inlined to eliminate any RTS
/* instructions. For further information on this see the Flash ROM
/* section of the H8/38024F hardware manual version 4 or later.
/*
/***/

// Program 128 bytes functions start here
unsigned char prog_flash_line_128 (unsigned long t_address, union
char_rd_datum_union *p_data)
{
 unsigned char i;
 unsigned short n_prog_count;
 // loop counter for programming attempts (0 -> MAX_PROG_COUNT)
 unsigned short d;
 // variable used for various loop counts
 unsigned short ax;
 // loop counter for incrementing 'uc_v_write_address'

 // pointer (an unsigned short produces more efficient code than unsigned
 // char in this case)
 unsigned char m;
 // flag to indicate if re-programming is required (1=yes, 0=no)
 unsigned char *dest_address; // pointer for writing to flash
 unsigned char *uc_v_write_address;
 // pointer for writing to address to be verified
 read_datum *ul_v_read_address; // pointer for reading verify address
 union char_rd_datum_union additional_prog_data, re_program_data;
 // storage on stack for intermediate
 // programming data
 //Init Timer F start
 // 16 bit timer F counter, System clock / 4 selected
 P_TMRF.TCRF.BYTE = 0x86;

 //TCF cleared when TCF and OCRF match
 P_TMRF.TCSRF.BIT.CCLRH = 1;
 //Init Timer F end

 // enable access to the flash registers
 FLASH_FENR = 1;

 // enable flash writes
 FLASH_SWE = 1;

 // wait tSSWE (1 us)
 delay(ONE_USEC);

 // copy data from program data area to reprogram data area
 for (d=0; d<FLASH_LINE_SIZE; d++)

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 50 of 65

PRELIMINARY

 {
 re_program_data.c[d] = p_data->c[d];
 }

 // program the data in FLASH_LINE_SIZE (128) byte chunks
 for (n_prog_count=0; n_prog_count<MAX_PROG_COUNT; n_prog_count++)
 {
 // clear reprogram required flag
 m = 0;

 // copy data from reprogram data area into the flash with byte wide
 // access
 dest_address = (unsigned char *) t_address;

 for (d=0; d<FLASH_LINE_SIZE; d++)
 {
 *dest_address++ = re_program_data.c[d];
 }

 // to minimise code space the code to apply a write pulse has been
 // placed into a separate function called 'apply_write_pulse'
 if (n_prog_count < 6)
 {
 apply_write_pulse(THIRTY_USEC);
 }
 else
 {
 apply_write_pulse(TWO_HUNDRED_USEC);
 }

 // verify the data via word wide reads
 uc_v_write_address = (unsigned char *) t_address;
 ul_v_read_address = (read_datum *) t_address;

 // enter program verify mode
 FLASH_PV = 1;

 // wait tSPV (4 us)
 delay (FOUR_USEC);

 // read data in read_datum size chunks
 // verify loop
 for (d=0; d<(FLASH_LINE_SIZE / sizeof(read_datum)); d++)
 {
 // dummy write of H'FF to verify address
 *uc_v_write_address = 0xff;

 // see note at beginning of function
 // no RTS allowed here so 'apply_write_pulse' function inlined

 P_TMRF.OCRF.BYTE.H = (TWO_USEC)>>8;
 P_TMRF.OCRF.BYTE.L = (TWO_USEC);

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 51 of 65

PRELIMINARY

 // Clear compare match flag
 P_TMRF.TCSRF.BIT.CMFH = 0;

 // Clear counter and start the timer F
 P_TMRF.TCF.BYTE.H = 0;
 P_TMRF.TCF.BYTE.L = 0;

 // Loop until we have a compare match
 while (P_TMRF.TCSRF.BIT.CMFH == 0);

 // increment this pointer to get to next verify address
 for (ax=0; ax<sizeof(read_datum); ax++)
 uc_v_write_address++;

 // read verify data
 // check with the original data
 if (*ul_v_read_address != p_data->u[d])
 {
 // 1 or more bits failed to program
 //
 // set the reprogram required flag
 m = 1;
 }

 //Enable watchdog timer
 P_WDT.TCSRW.BYTE = 0x5A;
 P_WDT.TCW = 0x00;
 P_WDT.TCSRW.BYTE = 0xF4;

 // check if we need to calculate additional programming data
 if (n_prog_count < 6)
 {
 // calculate additional programming data
 // simple ORing of the reprog and verify data
 additional_prog_data.u[d] = re_program_data.u[d] |
 *ul_v_read_address;
 }

 // calculate reprog data
 re_program_data.u[d] = p_data->u[d] | ~(p_data->u[d] |
 *ul_v_read_address);

 // increment the verify read pointer
 ul_v_read_address++;

 //Disable watchdog timer
 P_WDT.TCSRW.BYTE = 0xF2;
 } // end of verify loop
 // exit program verify mode
 FLASH_PV = 0;

 // check if additional programming is required
 if (n_prog_count < 6)

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 52 of 65

PRELIMINARY

 {
 // perform additional programming
 //
 // copy data from additional programming area to flash memory
 dest_address = (unsigned char *) t_address;
 for (d=0; d<FLASH_LINE_SIZE; d++)
 {
 *dest_address++ = additional_prog_data.c[d];
 }

 apply_write_pulse(TEN_USEC);
 }
 // check if flash line has successfully been programmed
 if (m == 0)
 {
 // program verified ok
 //
 // disable flash writes
 FLASH_SWE = 0;

 // wait tCSWE (100 us)
 delay (ONE_HUNDRED_USEC);

 // end of successful programming
 // disable access to the flash registers
 FLASH_FENR = 0;
 return (PROG_PASS);
 }

 } // end of for loop (n<MAX_PROG_COUNT) at this point we have made
 // MAX_PROG_COUNT programming attempts

 // failed to program after MAX_PROG_COUNT attempts
 // disable flash writes
 FLASH_SWE = 0;

 // wait tCSWE (100 us)
 delay (ONE_HUNDRED_USEC);

 // end of failed programming
 // disable access to the flash registers
 FLASH_FENR = 0;
 return (PROG_FAIL);
}
// Program 128 bytes functions end here

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 53 of 65

PRELIMINARY

/**
/*
/* FUNCTION :apply_write_pulse
/* DESCRIPTION :Applies programming pulse to flash memory
/* INPUT :prog_pulse = 30us, 200us or 10us
/* OUTPUT :None
/***/
// apply_write_pulse functions start here
void apply_write_pulse(unsigned short prog_pulse)
{

 //Enable watchdog timer
 P_WDT.TCSRW.BYTE = 0x5A;
 P_WDT.TCW = 0x00;
 P_WDT.TCSRW.BYTE = 0xF4;

 // enter program setup mode
 FLASH_PSU = 1;

 // no RTS allowed here so 'apply_write_pulse' function inlined

 P_TMRF.OCRF.BYTE.H = FIFTY_USEC>>8;
 P_TMRF.OCRF.BYTE.L = FIFTY_USEC;

 // Clear compare match flag
 P_TMRF.TCSRF.BIT.CMFH = 0;

 // Clear counter and start the timer F
 P_TMRF.TCF.BYTE.H = 0;
 P_TMRF.TCF.BYTE.L = 0;

 // Loop until we have a compare match
 while (P_TMRF.TCSRF.BIT.CMFH == 0);

 // start programming pulse
 FLASH_P = 1;

 // no RTS allowed here so 'apply_write_pulse' function inlined

 P_TMRF.OCRF.BYTE.H = prog_pulse>>8;
 P_TMRF.OCRF.BYTE.L = prog_pulse;

 // Clear compare match flag
 P_TMRF.TCSRF.BIT.CMFH = 0;

 // Clear counter and start the timer F
 P_TMRF.TCF.BYTE.H = 0;
 P_TMRF.TCF.BYTE.L = 0;

 // Loop until we have a compare match
 while (P_TMRF.TCSRF.BIT.CMFH == 0);

 // stop programming

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 54 of 65

PRELIMINARY

 FLASH_P = 0;

 // delay (FIVE_USEC);
 P_TMRF.OCRF.BYTE.H = FIVE_USEC>>8;
 P_TMRF.OCRF.BYTE.L = FIVE_USEC;

 // Clear compare match flag
 P_TMRF.TCSRF.BIT.CMFH = 0;

 // Clear counter and start the timer F
 //P_TMRF.TCF.WORD = 0;
 P_TMRF.TCF.BYTE.H = 0;
 P_TMRF.TCF.BYTE.L = 0;

 // Loop until we have a compare match
 while (P_TMRF.TCSRF.BIT.CMFH == 0);

 // exit program setup mode
 FLASH_PSU = 0;

 // wait tCPSU (5 us)
 // delay (FIVE_USEC);
 P_TMRF.OCRF.BYTE.H = FIVE_USEC>>8;
 P_TMRF.OCRF.BYTE.L = FIVE_USEC;

 // Clear compare match flag
 P_TMRF.TCSRF.BIT.CMFH = 0;

 // Clear counter and start the timer F
 //P_TMRF.TCF.WORD = 0;
 P_TMRF.TCF.BYTE.H = 0;
 P_TMRF.TCF.BYTE.L = 0;

 // Loop until we have a compare match
 while (P_TMRF.TCSRF.BIT.CMFH == 0);
 //Disable watchdog timer
 P_WDT.TCSRW.BYTE = 0xF2;
}
// apply_write_pulse functions end here

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 55 of 65

PRELIMINARY

/**
/*
/* FUNCTION :erase_block
/* DESCRIPTION :Erase flash memory block
/* INPUT :block_num = 0,1,2,3,4
/* OUTPUT :ERASE_PASS is attempt is successful
/* ERASE_FAIL is attempt fails
/***/
// erase block functions start here
unsigned char erase_block (unsigned char block_num)
{
 unsigned char erase, ax, x;
 unsigned long attempts;
 read_datum *ul_v_read;
 unsigned char *uc_v_write;

 //Init Timer F start
 // 16 bit timer F counter, System clock / 4 selected
 P_TMRF.TCRF.BYTE = 0x86;

 //TCF cleared when TCF and OCRF match
 P_TMRF.TCSRF.BIT.CCLRH = 1;

 // check that block is not already erased
 erase = BLANK;
 for (attempts=eb_block_addr[block_num]; attempts<eb_block_addr[block_num +
 1]; attempts++)
 {
 if (*(unsigned char *) attempts != 0xff)
 erase = NOT_BLANK;
 }

 if (erase == BLANK)
 return ERASE_PASS;
 else
 {
 // block needs erasing
 //
 // enable access to the flash registers
 FLASH_FENR = 1;

 // enable flash writes
 FLASH_SWE = 1;

 // wait tSSWE (1us)
 delay (ONE_USEC);

 // initialise the attempts counter
 // 0 as we check for less than MAX (not <= MAX)
 attempts = 0;

 // set the correct EB bit in correct EBR register
 FLASH_EBR1 = 1<<block_num;
 erase = 0;

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 56 of 65

PRELIMINARY

 while ((attempts < MAX_ERASE_ATTEMPTS) && (erase == 0))
 {
 // increment the attempts counter

 attempts++;
 // enter erase setup mode
 FLASH_ESU = 1;

 // wait tSESU (100 us)
 delay (ONE_HUNDRED_USEC);

 // start erasing
 FLASH_E = 1;

 // wait tSE (10 ms)
 delay (TEN_MSEC);

 // stop erasing
 FLASH_E = 0;

 // wait tCE (10 us)
 delay (TEN_USEC);

 // exit erase setup mode
 FLASH_ESU = 0;

 // wait tCESU (10 us)
 delay (TEN_USEC);

 // enter erase verify mode
 FLASH_EV = 1;

 // wait tSEV (20 us)
 delay (TWENTY_USEC);

 // verify flash has been erased
 // setup the pointers for reading and writing the flash
 ul_v_read = (read_datum *) eb_block_addr [block_num];
 uc_v_write = (unsigned char *) eb_block_addr [block_num];

 erase = 1;
 while ((erase == 1) && (ul_v_read < (read_datum *) eb_block_addr
 [block_num + 1]))
 {
 // this loop will exit either when one word is not erased ('erase'
 // becomes 0)
 // or all addresses have been read as erased ('erase' stays as 1)
 // if 'erase' stays as 1 the outer while loop will exit as the
 // block has been erased
 //
 // dummy write
 *uc_v_write = 0xff;

 // see note at beginning of function

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 57 of 65

PRELIMINARY

 // no RTS allowed here so 'apply_write_pulse' function inlined
 P_TMRF.OCRF.BYTE.H = TWO_USEC>>8;
 P_TMRF.OCRF.BYTE.L = TWO_USEC;

 // Clear compare match flag
 P_TMRF.TCSRF.BIT.CMFH = 0;

 // Clear counter and start the timer F
 P_TMRF.TCF.BYTE.H = 0;
 P_TMRF.TCF.BYTE.L = 0;

 // Loop until we have a compare match
 while (P_TMRF.TCSRF.BIT.CMFH == 0);

 if (*ul_v_read != BLANK_VALUE)
 {
 // this word is not erased yet
 erase = 0;
 }
 else
 {
 // advance to the next byte write address
 for (ax=0; ax<sizeof(read_datum); ax++)
 uc_v_write++;

 // advance to the next verify read address
 ul_v_read++;
 }
 }

 // exit erase verify mode

 FLASH_EV = 0;

 // wait tCEV (4 us)
 delay (FOUR_USEC);
 } // end of outer while loop

 // end either of erase attempts or block has been erased ok
 //
 // disable flash writes
 FLASH_SWE = 0;

 // wait tCSWE (100 us)
 delay (ONE_HUNDRED_USEC);

 // check if block has been erased ok
 if (erase == 1)
 {
 // successfully erased
 // disable access to the flash registers
 FLASH_FENR = 0;

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 58 of 65

PRELIMINARY

 return ERASE_PASS;
 }
 else
 {
 // failed to erase this block
 // disable access to the flash registers
 FLASH_FENR = 0;
 return ERASE_FAIL;
 }
 }
}
// erase block functions end here

/**
/*
/* FUNCTION :delay
/* DESCRIPTION :Timer F delay function
/* INPUT :d = time in us
/* OUTPUT :None
/***/
// delay functions start here
void delay (unsigned short d)
{
 // load compare match value into the output compare register

 P_TMRF.OCRF.BYTE.H = d>>8;
 P_TMRF.OCRF.BYTE.L = d;

 // Clear compare match flag
 P_TMRF.TCSRF.BIT.CMFH = 0;

 // Clear counter and start the timer F
 P_TMRF.TCF.BYTE.H = 0;
 P_TMRF.TCF.BYTE.L = 0;

 // Loop until we have a compare match
 while (P_TMRF.TCSRF.BIT.CMFH == 0);

 P_TMRF.TCSRF.BIT.CMFH = 0;
}
// delay functions start here

#pragma section
//end of kernel section

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 59 of 65

PRELIMINARY

9.5.2 ROM to RAM mapping program
The following code listing is the ROM to RAM mapping section declaration of “ROMtoRAM.c”.

This code, which is stored in ROM but executed in RAM, has to be treated differently. The section has to be correctly mapped, to
allow the compiler to generate the correct executing code.

 ROM
0x0000

Vector Table

0x0400

0x0800
Block 2

0x0C00
Block 3

0x1000

0x7FFF

Pkernel_RAM
Section

RAM Progrm
Section

Pkernel

Ckernel_const

0XF780

0XFF80 Block 4

Figure 32 Memory Map for Kernel Section

Figure 33 Rom to RAM section mapping configuration

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 60 of 65

PRELIMINARY

#pragma asm
 .SECTION PkernelRAM,CODE,ALIGN=2

 .SECTION Pkernel,CODE,ALIGN=2

 .SECTION Ckernel_const,DATA,ALIGN=2

;Start Address of Section ROMCODE - kernel
__PkernelBegin .DATA.W (STARTOF Pkernel)

;End Address of Section ROMCODE - kernel
__PkernelEnd .DATA.W (STARTOF Pkernel) + (SIZEOF Pkernel)

;Start Address of Section RAMCODE - kernel
__Pkernel_RAMBegin .DATA.W (STARTOF PkernelRAM)

 .EXPORT __PkernelBegin
 .EXPORT __PkernelEnd
 .EXPORT __Pkernel_RAMBegin
#pragma endasm

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 61 of 65

PRELIMINARY

Note: The above code is written in assembly languages. Thus “Assembly source code (*.src)” output file type needs to
be configured from the Hitachi H8 Tiny/SLP Toolchain in the Options menu as below:

Figure 34 ROM to RAM .c file configuration

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 62 of 65

PRELIMINARY

10. Serial Communication Debugging Technique
If modification is made to the interfacing protocol, programmer can make use of the following technique to assist him/her in
troubleshooting. A simple serial communication tool can be built to monitor the TX & RX lines between the PC & SLP.

PC

C
O

M
 3

PC

C

O
M

 2

RSS 38024F CPU Board

Serial
Monitoring

PC Tx

PC Rx

MCU Rx

MCU Tx

PC

C
O

M
 1

PC Rx

PC Rx

PC Tx not
connected

PC Tx not
connected

USB to serial
Convertor

Flash
GUI

Serial
Watcher

Serial
Watcher

PC
Application

Software

Figure 35 Serial Communication Monitoring Tool

In this case the PC will require three serial ports:

i. For the Flash GUI to control the SLP
ii. To monitor the PC TX line
iii. To monitor the PC RX line
A good software for monitoring COM port activity is the “SerialWatcher.exe”. It is able to display data in Hexadecimal and ASCII
and is able to support up to 8 COM ports at a time.

Figure 36 Serial Watcher 2.0.4 for Windows

User may download the serial watcher software from http://www.pcremotecontrol.com/serialwatcher.zip .

http://www.pcremotecontrol.com/serialwatcher.zip

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 63 of 65

PRELIMINARY

11. References
Tcl Related:
i. http://www.activestate.com/Products/ActiveTcl/
ii. http://freewrap.sourceforge.net/

Other related application Notes:
i. Flash Memory Programming Routines for Renesas microcontrollers (Version:App125/1.3)
ii. F-ZTAT Microcomputer On-Board Programming Application Note
iii. F-ZTATTM Microcomputer Single Power Supply F-ZTATTM On-Board Programming Application Note
iv. H8/300L Super Low Power – H8/38024 Series Application Notes

Other related documents:
i. Quick Start Guide for CPUBD38024F[ver1.02].pdf

http://www.activestate.com/Products/ActiveTcl/
http://freewrap.sourceforge.net/

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 64 of 65

PRELIMINARY

Revision Record
Description

Rev.

Date Page Summary

1.00 September.03 — First edition issued

H8/300L
SLP User Mode Programming (UserMP)

AN0309013/Rev.1.00 September 2003 Page 65 of 65

PRELIMINARY

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Overview
	Boot Mode Programming
	User Mode Programming

	GUI
	GUI Overview
	Menu Bar: Flash
	Input File Name
	Input File Browse button
	Boot Mode button
	User Mode button

	GUI Scripting Languages
	Tcl/Tk Overview
	TCL/TK LICENSE TERMS
	Tcl/Tk scripting interpretive program Installation
	Tcl/Tk scripting interpretive program execution

	GUI Component

	UI (User Interface)
	UI Component

	KERNEL
	KERNEL Component

	APPLICATION
	APPLICATION Component

	Communication Protocol
	MCU Coding Implementation
	Data Update
	Code Upgrade
	Method 1 [M1]
	Method 2 [M2]

	Overall Operation and Observations
	Environment Setup
	Programming using GUI
	Method 1 Demonstration
	Method 2 Demonstration

	Code Listing
	Method 1 [Initial Workspace] Code Listing
	M1 [Initial Workspace] Main Routine
	M1 [Initial Workspace] Application Routine
	M1 [Initial Workspace] Interrupt Routine

	Method 1 [New Workspace] Code Listing
	M1 [New Workspace] Application Routine

	Method 2 [Initial Workspace] Code Listing
	M2 [Initial Workspace] Main Routine
	M2 [Initial Workspace] Interrupt Routine

	Method 2 [New Workspace] Code Listing
	M2 [New Workspace] Main Routine
	M2 [New Workspace] Interrupt Routine

	KERNEL Code Listing
	Flash Kernel Program
	ROM to RAM mapping program

	Serial Communication Debugging Technique
	References

