To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

1RENESAS APPLICATION NOTE

SH7730 Group
SH7730 Example of Initialization

Introduction

This application note describes an example of items that must be set when starting up the SH7730 MCU.

Target Device

SH7730

Contents
O (=] = Lol OO RO PP UPR PR UPPPPPTN 3
2. Essential EMS fOr SEINGooiiiiiiiiiii e e e e e e e e e e s bbb e e e e e e e nneee s 4
3. Description of Sample APPIICALIONcoiiii i e s 9
4. Listing of the Sample Program ... e e e e e r e e e e e e s e sanraeeee e e s 16
5. DOCUMENLS TOI RETEIENCE ...ttt e e e e sneeeeas 35

REJ06B0848-0200/Rev.2.00 December 2009 Page 1 of 37

SH7730 Group
u {EN ESAS SH7730 Example of Initialization

Positioning of the Application Note

This application note describes the procedure for SH7730 initialization. It is intended to be the first application note for
reference regarding the SH7730. The descriptions include brief introductions of relevant fundamental background
material to take first-time users of a Super H RISC engine Family product with the SH-4A CPU core into account.

The structure of this application note is as follows.

e Section 1 gives specifications and applicable conditions for the sample program of the application note.

e Section 2 summarizes the development environment, introduces fundamental background material on initialization,
and supplementary information regarding Super H Family MCUs. This section is the minimum required reading of
this document for users. For those who already have fundamental background knowledge of Super H Family
products and initialization, please skip this section.

e Section 3 describes the actual processing involved in making initial settings, including the conduct of initialization
and points to keep in mind.

e Section 4 includes sample programs for the processing described in section 3.

e Section 5 gives a list of documents for reference.

SH7730-Related Application Notes

Refer to the following application notes in combination with this one. These documents include descriptions of the
individual settings for particular modules and functions.

e SH7730 Group Application Note: Example of BSC SDRAM Interface Connection (32-Bit Data Bus) (REJO6B0850):
Describes initial settings of the BSC for use with external SDRAM.

e SH7730 Group Application Note: Example of BSC Interface Connection to NOR-Type Flash Memory
(REJ06B0849): Describes initial settings of the BSC for use with external memory.

e SH7730 Group Application Note: Examples of Cache Memory Settings (REJO6B0851): Describes initial settings to
enable the instruction/operand cache.

e SH7730 Group Application Note: Example of Writing Back from the Operand Cache (REJ06B0853): Describes
writing back data from the operand cache to memory.

REJ06B0848-0200/Rev.2.00 December 2009 Page 2 of 37

SH7730 Group
u {EN ESAS SH7730 Example of Initialization

1. Preface

1.1 Specifications
The clock pulse generator (CPG), bus state controller (BSC), and cache are initialized after release from the reset state.

1.2 Modules Used

Clock pulse generator (CPG)
Bus state controller (BSC)
Cache

1.3 Applicable Conditions

Evaluation board The AP-SH4A-1A board incorporates the SH7730 with SH-4A CPU core and is
available from AlphaProject Co., Ltd.
External memory (area 0) 4-MB NOR-type flash memory: S29AL032D70TF104
from Spansion
(area 3) 32-MB SDR-SDRAM (16 MB x 2):
K4S281632F-UC75 from Samsung

e MCU SH7730 (R8A77301)

e Operating frequency Internal clock: 266.66 MHz
SuperHyway bus clock: 133.33 MHz
Bus clock: 66.66 MHz
Peripheral clock: 33.33 MHz

e Bus width for area 0 16-bit fixed (with the MD3 pin at the low level)

o Clock operating mode Mode 2 (with the MDO pin at the low level, and MD1 pin at the high level)

e Endian Big endian (with the MD5 pin at the low level)

e Toolchain SuperH RISC engine Standard Toolchain Ver.9.1.1.0 from Renesas Technology
e Compiler options Default settings of High-performance Embedded Workshop

-cpu=sh4a -include="$(PROJDIR)\inc" -object="$(CONFIGDIR)\$(FILELEAF).obj"
-debug -optimize=0 -gbr=auto -chgincpath -errorpath -global_volatile=0
-opt_range=all -infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1 -nologo

REJ06B0848-0200/Rev.2.00 December 2009 Page 3 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

2. Essential Items for Setting

This section gives fundamental required background knowledge, things to do in general, and points to keep in mind
regarding SH7730 initialization.

2.1 Fundamental Background

Before using the sample program, make sure you obtain the manuals listed in section 5, and understand the
development environment and the SH7730 CPU. Points for reference in the manuals are indicated below.

211 Development Environment

e How to set up the High-performance Embedded Workshop
In this document, the High-performance Embedded Workshop is assumed to serve as the development environment.
See the document: SuperH RISC engine C/C++ Compiler Package Application Note: [Introduction Guide] Sample
File Guide for SH-3, SH-4, and SH-4A (REJ06J0012) for information on how to set it up. Also consult the Help
function in the High-performance Embedded Workshop menu bar for information on usage.

e Downloading to flash memory
In this sample program, the flash memory downloading function of the EL0A-USB emulator is used to download the
user’s programs to an external flash memory area. See the Application Note Flash Memory Download Program for
the E10A-USB Emulator (REJ10J1221) for information on using the emulator for this purpose.

2.1.2 SH7730 CPU
e Sections
See the section on programming in the User’s Manual: SuperH ™RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Compiler Package V.9.01 (REJ10J1571).
o Register descriptions
See the section on register descriptions in the SH7730 Group Hardware Manual (REJ09B0359).
o Instruction set
See the section on instruction set in the SH7730 Group Hardware Manual (REJO9B0359) and the User’s Manual:
SuperH ™RISC engine C/C++ Compiler, Assembler, Optimizing Linkage Editor Compiler Package V.9.01
(REJ10J1571).
e Exception handling
See the section on exception handling in the SH7730 Group Hardware Manual (REJ09B0359).
e Virtual addresses, areas PO to P4, physical addresses
See the section on the memory management unit (MMU) in the SH7730 Group Hardware Manual (REJO9B0359).
e Division into areas (0 to 7), shadow areas, address map
See the section on the bus state controller (BSC) in the SH7730 Group Hardware Manual (REJ09B0359).
e Cache
See the following SH7730 Group Application Notes: Examples of Cache Memory Settings (REJ06B0851) and
Example of Writing Back from the Operand Cache (REJO6B0853).
e BSC setting
See the following SH7730 Group Application Notes: Example of BSC SDRAM Interface Connection (32-Bit Data
Bus) (REJ06B0850) and Example of BSC Interface Connection to NOR-Type Flash Memory (REJ06B0849).

REJ06B0848-0200/Rev.2.00 December 2009 Page 4 of 37

SH7730 Group
u {EN ESAS SH7730 Example of Initialization

2.2 Preparing the Development Environment

221 Preparing the Evaluation Board for the SH7730

In this document, the evaluation board is assumed to be the AP-SH4-1A board produced by AlphaProject Co., Ltd. As
the program is written to external flash memory on the evaluation board, consult the Application Note Flash Memory
Download Program for the EL10A-USB Emulator (REJ10J1221) and make the E10A-USB emulator connectable.

2.2.2 Preparing the for Environment: High-performance Embedded Workshop
A new project for the High-performance Embedded Workshop is launched and the following settings are made.

e Project name: sh7730 (any project name is acceptable))

e CPU: SuperH RISC engine

e CPU series: SH-4A

o CPU type: SH7730

e Stack pointer address: Values of the stack area in table 1 Allocation of Sections are set.
e Target: SessionSH-4A_E10A-USB_SYSTEM is ticked.

If a new project is launched with the above settings having been made, the following files are automatically generated.
For the contents of these automatically generated files and further details, see SuperH RISC Engine C/C++ Compiler
Package Application Note: [Introduction Guide] Sample File Guide for SH-3, Sh-4, and SH-4A (REJ06J0012).

e sh7730.c

e dbsct.c

e resetprg.c

e shrk.c

e jodefine.h

e shrk.h

e stacksct.h

o typedefine.h
e env.inc

e vectinc

e intprg.src

e vecttbl.src

e vhandler.src

REJ06B0848-0200/Rev.2.00 December 2009 Page 5 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

2.3 Points for Setting and Caution

231 Allocation of Sections

Make settings so that sections are allocated at the addresses given in table 1. When debugging proceeds during
development, data (programs) which would usually be written to the ROM area are written to the RAM area instead.
Carefully consider the sizes of sections and whether caching is enabled or disabled for the areas where sections are
allocated.

Basically, the settings listed in table 1 are automatically made by the High-performance Embedded Workshop. In cases
where other sections need to be added, please take it into consideration that individual settings are separately made
(sections indicated by *1 and *2 are newly added).

Table 1 Allocation of Sections

Section Application of Section Area Allocation Address (Virtual Address)
Name
P Program area (in the case of none ROM 0x00003000 Area PO
specified) (caching is enabled,
C Constant area ROM MMU addresses can be
C$BSEC Address structure for non-initialized ROM translated)
data area
C$DSEC Address structure for initialized data ROM
area
D Initialized data (initial value) ROM
B Non-initialized data area RAM 0x0C000000
R Initialized data area RAM
S Stack area RAM OXODFFF9FO0
INTHandler Exception/interrupt handler ROM 0x80000800 Area P1
VECTTBL Reset vector table ROM (caching is enabled,
Interrupt vector table MMU addresses cannot
INTTBL Interrupt mask table ROM be translated)
PIntPRG Interrupt function ROM
sp_ st Stack area for handler of TLB misses RAM Ox8DFFFDFO
RSTHandler Reset handler ROM 0xA0000000 Area P2
PResetPRG Reset program ROM (caching is disabled,
PnonCache**> Program area (non-cacheable access) ROM MMU addresses cannot

be translated)

REJ06B0848-0200/Rev.2.00 December 2009 Page 6 of 37

SH7730 Group
u {EN ESAS SH7730 Example of Initialization

[Reference] How to set sections
The following procedure makes the window in the figure below appear.
1. Select Build (B) in the High-performance Embedded Workshop menu bar.
2. Select SuperH RISC engine Standard Toolchain.
3. Select Link/Library.
4. Select “Section” for Category (Y).

SuperH RISCG eneine Standard Toolchain

Configuration : GG+ | Besembly Link/Library | Standard Library | GPU | Deb ¢ | ¥
|De|:|ug ﬂ Category |Secti|:|n ﬂ
= E Al DadEd Prajgets Show entries for : |Seu:tiu:ur'| ﬂ
+ D 0 source file fddress Section - Edit..
+-[7] C++ zource file =0C000000 | B ;
+-[_7 Aszembly source file e SR
- 3 M
+-(Linkage symbol file OoB0000800 | INTHandler
WECTTEL
INTTEL
IntPRG
0«8FFFFDOFD | 5P 5
s SO000000 Fi=THandler
PRezetPR
PrionC&CHE b

Optionz LinkLibrary :

—nioprelink —rom=0=R -nomeszage -ligt="$ICOMNFIGDIRY A
YEPROJECTHAME) map” —nooptimize —
=tart=B,R/0C000000, SfEIFFFFQ FOIMTHandler VECTTEBLIMTTEL, v

] 4 I el

Figure 1 Section Setting Window

2.3.2 Stack Settings

A stack area is required to run a program; specify the stack size and stack-pointer address. The High-performance
Embedded Workshop automatically sets these to the values which have been set when the project was launched. To
change the size and address of the stack area, select: Project (P) in the High-performance Embedded Workshop menu
bar — Edit Project Configuration (E) — the Stack tab.

Furthermore when the memory management unit (MMU) is used, the stack area for the handler of TLB misses (SP_S*")
as given in table 1 needs to be taken into consideration. See 3.2.1. vhandler.src in section 3.2 Description of the Sample
Program. For details on the MMU, see the section on the MMU in the SH7730 Group Hardware Manual
(REJ0O9B0359).

2.3.3 Setting of the Watchdog Timer (WDT)

In the initial state, counting by the watchdog timer starts. When the counter overflows, an internal reset occurs. To
activate a system, halting of the WDT or regular clearing of its counter is required.

REJ06B0848-0200/Rev.2.00 December 2009 Page 7 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

234 Setting of the Floating-Point Status/Control Register (FPSCR)

This register is used to specify whether floating-point instructions are executed as single-precision operations or double-
precision operations. Settings should be made in accord with the system design. The initial setting is for single-precision
mode.

2.35 Setting of the Bus State Controller (BSC)

Settings for the BSC should be in accord with the timing specifications for reading and writing of external memory. The
stack area can be used when a function written in the C language is called. Accordingly, if the stack area is allocated in
external memory such as SDRAM, the BSC must be initialized in advance of program execution. In the sample
program, the code that handles processing for BSC initialization is in the exception handler (vhandler.src). For details,
see 3.2.1. vhandler.src in section 3.2, Description of the Sample Program.

2.3.6 Setting of the Vector Base Register (VBR)

The reset vector address is fixed at H'/A000 0000. Start addresses for general exceptions and interrupts other than the
reset are determined by adding an offset (H'400 for TLB miss exceptions, H'100 for other exceptions in general, and
H'600 for interrupts) for the specific event to the vector base address.

In the sample program, the start address of the general exception handler (_INTHandlerPRG) is exported by the
exception handler (vhandler.src) and then used to set the VBR in the PowerON_Reset() function, the first to be called in
the reset processing program (resetprg.c).

In the exception handler (vhandler.src), the start addresses of the TLB miss handler (_TLBmissHandler) and interrupt
handler (_IRQ_Handler) are defined by “.org H'300” and “.org H'500”, respectively based on the offset (H'100) for
other exceptions in general.

2.3.7 Memory Initialization (_INITSCT)

Although global variables with initial values are placed in the ROM area (section D) when the system is activated, they
must be copied to the RAM area (section R) so that they can be handled as variables. Global variables without initial
values are placed in the RAM area (section B) and must be initialized at the time of system activation. The High-
performance Embedded Workshop automatically handles these processes. For details, see 3.2.5 dbsct.c in section 3.2,
Description of the Sample Program.

2.3.8 Cache Settings

In the initial settings, please consider which of the cacheable areas (PO, P1, P3) are to be placed in the cache-enabled
state, and the write mode (write-through or copy-back) in the cache-enabled state. For details, see the following SH7730
Group Application Notes: Examples of Cache Memory Settings (REJO6B0851) and Example of Writing Back from the
Operand Cache (REJO6B0853).

2.3.9 Setting of the Status Register (SR)

The SR is used to select privileged mode or user mode, specify general register banks, and control exceptions and
interrupts. Settings should be made in accord with the system design. In the sample program, the following settings are
made.

e Privileged mode
e Selection of general register bank 0
o Release of exception/interrupt blocking (changing value of block bits)

REJ06B0848-0200/Rev.2.00 December 2009 Page 8 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

3. Description of Sample Application

Based on the previous sections, this section describes the actual creation of an environment for SH7730 initialization
with corrections and additions to the source code that is automatically generated by the High-performance Embedded
Workshop.

Use of the sample program described in this document as a program for initialization is a precondition for using the
sample code of the other application notes of the SH7730.

3.1 Changes to the Environment Automatically Generated by the High-
performance Embedded Workshop

This sample program changes, adds to, and deletes from the environment that has been automatically generated by the
High-performance Embedded Workshop in the following ways.

o Allocation of sections
Changes and additions need to be made as given in table 1.
e Processing to enable the caches
Function PowerON_Reset () (see 7 in figure 2) is used to enable the caches.
e Timing of initialization of the floating-point status/control register (FPSCR)
Changes are made so that the values which have been set in the PowerON_Reset () function are set in the reset
handler (see 4 in figure 2).
e Setting of the clock pulse generator (CPG)
Reset handler (see 5 in figure 2) is used to set the CPG so that the applicable conditions given in section 1.3,
Applicable Conditions, are in effect.
e Setting of the bus state controller (BSC)
Processing for BSC initialization so that external memory (flash memory, SDRAM) can be used is added to the reset
handler (see 6 in figure 2).
e Setting of the On-Chip Memory Control Register (RAMCR)
In the code that is automatically generated by the High-performance Embedded Workshop, the RMD (on-chip
memory access mode) bit in the on-chip memory control register (RAMCR) is set to 1 before return from the
PowerON_Reset () function, enabling access to on-chip memory in user mode. This setting is skipped in the sample
program because operation in privilege mode is a precondition for the rest of the processing.
e intprg.src
The language for functions of general exceptions and interrupts is changed from assembler to C.
Note: The sample program sets up an environment where the MMU is not in use. If it is to be used, take the following
points into consideration.
Addition of the TLB miss handler
Additional setting of a dedicated stack area for cases where a TLB miss occurs

REJ06B0848-0200/Rev.2.00 December 2009 Page 9 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

3.2 Description of the Sample Program
The initialization program consists of the following eight source files.

vhandler.src
vecttbl.src
resetprg.c
stacksct.h
dbsct.c
sh7730.c
intprg.c
vect.inc

NG wWN PR

3.2.1 vhandler.src

When an exception (reset, general exception, or interrupt) occurs, the code in the exception handler (vhandler.src) is
first to be executed. File vhandler.src contains the code for processing by the handlers for all exceptions and the
processing for BSC initialization. Processing in handlers for the reset and for exceptions other than reset is different; for
details, see SuperH RISC engine C/C++ Compiler Package Application Note: [Introduction Guide] Sample File Guide
for SH-3, SH-4, and SH-4A (REJ06J0012).

The reset handler (from label _Reset_handler) is activated by a power-on reset. The reset handler used in this
application program differs from that generated by the High-performance Embedded Workshop in the following ways:
the instruction cache and operand cache are disabled (see 3 in figure 2), the FPSCR is set (see 4 in figure 2), the CPG is
set (see 5 in figure 2), and the BSC is initialized (see 6 in figure 2). The TLB miss handler has also been changed for the
reasons described below.

The initial setting of FPSCR selects 32 bits as the transfer size for floating-point instructions. Please change this setting
if this is required by the specifications of your application. In the code that is automatically generated by the High-
performance Embedded Workshop, the set_fpscr (FPSCR _Init) function handles this initialization and is called from the
PowerOn_Reset() function. This processing has been shifted to the reset handler so that it proceeds in response to other
kinds of reset (manual reset).

The stack area is placed in external SDRAM, which requires initialization. When a function written in the C language is
called, the stack area can be used. To avoid access to the stack area before BSC initialization, the BSC is initialized in
the early section of the reset handler.

If the MMU is to be used, TLB misses must also be taken into consideration. The TLB-miss handler which is
automatically generated by the High-performance Embedded Workshop uses the same stack area as the other exception
handlers and other programs. If the stack area is allocated to the PO or P3 area where address translation by the TLB is
enabled, generation of a TLB-miss exception will lead to a further TLB-miss exception every time the TLB-miss
handler places a value on the stack, leading to the generation of a manual reset.

A stack area (H'200) for exclusive use in cases where a TLB miss occurs is set up in area P1 where address translation
by the TLB is disabled. The TLB-miss handler in this sample program uses the stack area (H'200) for exclusive use
until return from the TLB-miss handler. This prevents the generation of TLB-miss exceptions by execution of the TLB-
miss handler.

When the interrupt operating mode switching bit in the CPU operating mode register (CPUOPM) is in use along with
automatic setting of the threshold interrupt level for acceptance in SR.IMASK or multiple interrupts, modify the
processing in the respective exception handlers accordingly (in vhandler.src).

In event handling by the source program which is automatically generated by the High-performance Embedded
Workshop, a common vector table (_INT_Vectors) for exception handling (resets, general exceptions, and interrupts) is
looked up, and the general exception function or interrupt function is determined in accord with the value in the
exception event register (EXPEVT) or the interrupt event register (INTEVT), respectively. However, the general FPU
illegal exception and DMA (DEIQ), and the slot FPU illegal exception and DMAC (DEI1), share exception codes.
These exceptions thus cannot be distinguished in processing by the event handler that is automatically generated by the
High-performance Embedded Workshop. In response to this, a countermeasure has been adopted for the general FPU
illegal exception and slot FPU illegal exception so that even the event handler of the source program which is
automatically generated by the High-performance Embedded Workshop can distinguish between said exceptions.

REJ06B0848-0200/Rev.2.00 December 2009 Page 10 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

In processing by the event handler which is automatically generated by the High-performance Embedded Workshop,
the BL bit is cleared so that multiple interrupts can be handled before any exception handler. Accordingly, a non-
maskable interrupt (NMI) will be accepted even if a previous NMI is being processed. As a countermeasure against this,
processing to clear the BL bit is not executed when the exception code corresponds to the NMI.

3.2.2 vecttbl.src

This file contains definitions for the vector table for exception handling (resets, general exceptions, interrupts) and
interrupt mask table. The tables are looked up in processing by the code in vhandler.src (described above), and
processing continues in the corresponding exception handling function (resetprg.c or intprg.c).

3.2.3 resetprg.c

This file contains the code for the PowerON_Reset() function, i.e. the reset processing program (see 7 in figure 2). The
PowerON_Reset() function described in this application note differs from the file that the High-performance Embedded
Workshop automatically generates in that the HardwareSetup() function is not called. Since sections B, R, and S are
allocated to the external SDRAM, which requires initialization, BSC initialization is handled by code in the reset
handler (vhandler.src).

The PowerOn_Reset() function contains code that sets the vector base register (VBR) (see 8 in figure 2), calls the
_INITSCT() function (see 9 in figure 2), calls the function that enables the cache (see 10 in figure 2), sets the status
register (SR) (see 11 in figure 2), and calls the main function (see 12 in figure 2).

If the sample program is extended to include settings for the internal registers of peripheral modules, the main function
is intended to be the source of calls to the corresponding functions. Therefore the status register (SR) is set in privileged
mode in the PowerON_Reset() function. If peripheral modules are to be used in user mode, be sure to exclude
instructions which are only available in privileged mode.

Furthermore, in the file that the High-performance Embedded Workshop automatically generates, RAMCR is set before
exit from the PowerON_Reset() function. This setting is not made by the sample program. Accordingly, if the
processing mode is changed to user mode, subsequent access to the on-chip memory will generate an address error
exception due to the function of protection against access to on-chip memory. In cases where the processing mode is
changed to user mode, be sure to set the RMD bit in RAMCR to 1.

3.24 stacksct.h

This file specifies the size of the stack (initial value: H'400). Do not change the stack size by directly making changes to
the stacksct.h file (to change the size or address of the stack, select Project (P) in the High-performance Embedded
Workshop menu bar — Edit Project Configuration (E) — the Stack tab).

3.25 dbsct.c

The dbsct.c file is automatically generated by the High-performance Embedded Workshop and handles part of the
initialization of sections: specifically, definition of the addresses where the initialized data sections (sections D and R)
and non-initialized data section (section B) start and end. Clearing of section B to 0 and copying of data from section D
to section R are handled by the call of the INITSCT() function from within the PowerOn_Reset() function, which is in
resetprg.c (see 9 in figure 2).

When the ROM support function is used to run a program in RAM, the address to which the program will be transferred
should be added to the dbsct.c file so that the corresponding section is copied by the _INITSCT() function.

3.2.6 sh7730.c

This file contains the main function, which is called after completion of initialization (see 12 in figure 2). Code for user
programs should be written in the main routine. In source programs that the High-performance Embedded Workshop
automatically generates, hwsetup.c is used to make settings for the operation of peripheral modules. In this sample
program, on the other hand, calls to functions that make such settings are supposed to be in the main function.

REJ06B0848-0200/Rev.2.00 December 2009 Page 11 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

3.2.7 intprg.c

The programs (dummy functions) in this file are called by the handler (vhandler.src) for general exceptions and
interrupts other than resets. When interrupts for peripheral functions are used, alter the dummy function by creating new
functions on the basis of this sample program (and altering vect.inc and vecttbl.src in accord with any changes of
function name), or include a call to a separate function within the dummy function.

Processing for tasks such as clearing interrupt request flags should be written in accord with the descriptions in the
SH7730 Group Hardware Manual (REJO9B0359).

3.2.8 vect.inc

To enable reference from vhandler.src to the individual processing routines for general exceptions and interrupts in
intprg.c, declarations of symbols for external reference are made in vect.inc. When a dummy function of intprg.c is
rewritten as a new interrupt function, change the function name in the corresponding entry of this file accordingly. If
separate functions are called from within the dummy function, changes to this file are not necessary.

REJ06B0848-0200/Rev.2.00 December 2009 Page 12 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

Figure 2 shows the flow of processing from a power-on reset.

Generation of an exception
In the case of a power-on reset (reset, general exception, or interrupt)

C 1. _Reset_handler > @ vect.inc
' vhandler.src o .

v S 1 S
eference
| 2. Halt the WDT. | o ‘(*********** vecttbl.src
| 3. Disable the caches. |

Exceptions other than reset
(general exceptions, interrupts)

4. Set the floating-point status/

control register (FPSCR). . Reset
| 5. Set the CPG. | i intprg.c
6. Set the BSC. i In the case of a power-on reset
Flash memory (CS0) N
SDRAM (CS3) stacksct.h !
| @ ; (7. PowerON_Reset()) :
END i 1 : * 5
o ____-——“"' 8. Set the vector base .
resetprg.c ::: i register*(VBR). E dbsct.c
9. Call the function for memory | g
initialization: _INITSCT(). '
: 10. Enable the caches. -
@ + Sample program which is i | 11. Set the status register
described in this application ! (SR) :
note. E v I sh7730.c
: 12. Call function main(). 4—:—@
; 13. Call function sleep().

Figure 2 Flow of Processing from Power-On Reset

REJ06B0848-0200/Rev.2.00 December 2009 Page 13 of 37

SH7730 Group
u {EN ESAS SH7730 Example of Initialization

3.3 Description of Settings in the Sample Program
Table 2 is a list of the settings in the sample program.

Table 2 Settings in the Sample Program

Module Description

CPG Internal clock: 266.66 MHz
SuperHyway bus clock: 133.33 MHz
Bus clock: 66.66 MHz
Peripheral clock: 33.33 MHz

BSC CSO0 NOR-type flash memory
Data bus width: 16-bit (fixed) ™
Cycles of delay from address/CSn assertion to RD/WEn assertion: 1.5
Cycles of waiting for access: 4
Cycles of delay from RD/WEn negation to address/CSn negation: 1.5
CS3 SDRAM
Data bus width: 32 bits
Row address bits: 12
Column address bits: 9
CAS latency: 2 cycles

PFC All the multiplexed pins can be used at initial setting.

Cache Instruction/operand cache enabled

Note: 1. Data bus width of area 0 is determined by the level on pin MD3.

REJ06B0848-0200/Rev.2.00 December 2009 Page 14 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

3.4 Precautions Regarding the Sample Program

3.4.1 Allocation of Sections B, R, and S to External Memory and Initialization of
Sections by the INITSCT() Function

In this sample program, the bus state controller (BSC) is initialized before the initialization of sections B, R, and S. This
is so that the sections can be allocated to external SDRAM and then initialized.

For initialization of the sections, the _INITSCT() function that copies data from section D to section R, and relocates
symbol to addresses in the R section is used. Therefore, in any function which is executed before the sections are
initialized (i.e. before the _INITSCT() function), avoid variables, including global variables, which are to be placed in
sections to be initialized by the _INITSCT() function.

3.4.2 Faster Initialization of Sections

If the caching is enabled before the _INITSCT() function that handles the copying of sections is called, execution of the
_INITSCT() function can be sped up. In this case, however, after the sections have been copied, data in the operand
cache for sections B and R must be written back to ensure that external memory reflects the data in the cache.

For details on writing-back operations, see the following SH7730 Group Application Note: Example of Writing Back
from the Operand Cache (REJO6B0853).

3.4.3 Running a Program in RAM

Follow the procedures below if you are using the _INITSCT() function with the ROM support function to develop the
user programs in RAM rather than ROM for execution of the program at a higher speed.

e Organize the user program at the source for transfer under an explicit name such as “PROM section”.

o Refer to the destination for transfer by an explicit name such as “PRAM section”.

e Add the addresses of the PROM section and PRAM section to the structure under CS$DSEC in dbsct.c.

e Since the _INITSCT() function is placed in section P, section P should be allocated to ROM.

e Toadd PROM and PRAM to sections in ROM and RAM, respectively, select Build (B) in the High-performance
Embedded Workshop menu bar — SuperH RISC engine Standard Toolchain — Link/Library — Category (Y)
“Output” — Show entries for (S) “ROM to RAM mapped sections”.

344 Stack Pointer Addresses

The address of the stack pointer at the start of the PowerOn_Reset() function (specified as the entry point by the
#pragma entry directive that immediately precedes it) is the address specified by the High-performance Embedded
Workshop at the time of project generation.

To change the address and size of stack area, select Project (P) in the High-performance Embedded Workshop menu
bar — Edit Project Configuration (E) — the Stack tab. Do not directly change the address allocation of section S. If
this is directly changed, the dialog box might not be activated by selection of the Edit menu item.

REJ06B0848-0200/Rev.2.00 December 2009 Page 15 of 37

LENESANS

SH7730 Group

SH7730 Example of Initialization

4. Listing of the Sample Program

1. Sample Program Listing: "vhandler.src"

1 P e
2 ;

3 ; FILE :vhandler.src |
4 ; DATE :Tue, Oct 07, 2008 |
5 ; DESCRIPTION :Reset/Interrupt Handler |
6 ; CPU TYPE :SH7730 |
7 ;

8 ; This file is generated by Renesas Project Generator (Ver.4.9).

9 ;

10 e e et e L
11 3/

12 3

13 ;* Device : SH-4A/SH7730

14 3

15 ;* File Name : vhandler.src

16 3

17 ;* Abstract : Reset/Interrupt Handler.

18 e

19 ;* History : 1.00 (2008-10-01) [Hardware Manual Revision : 1.00]
20 3

21 ;* Copyright(c) 2008 Renesas Technology Corp.

22 ;* And Renesas Solutions Corp.,All Rights Reserved.

23 3*

24 /
25

26 -include “env.inc"

27 -include "vect.inc"

28

29 ;

30 ILLEGALFPU_CODE: -equ H"800

31 DUMMY_ILLEGALFPU_CODE: -equ H"880

32 ILLEGALSLOTFPU_CODE: -equ H"820

33 DUMMY_ILLEGALSLOTFPU_CODE: -equ H"8A0

34 INT_NMI_CODE: -equ H"1CO

35 ;

36 IMASKclr: -equ H*"FFFFFFOF

37 RBBLclr: -equ H*CFFFFFFF

38 MDRBBLset: .equ H®70000000

39 MDRBset: -equ H"60000000

40 RBclr: .equ H"DFFFFFFF

41

42 -import _RESET_Vectors

43 - import _INT_Vectors

44 -import _INT_MASK

45

46 3333333333333 33393333333333333333333333333333333333933333333333733

47 ; macro definition ;

48 5333333333333 3333332323333232333323333332333333233333333333333333

49 -macro PUSH_EXP_BASE_RE

50 stc ssr,@-r15 ; save ssr

51 stc spc,@-ri15 ; save spc

52 sts pr,@-ri5 ; save context registers

53 sts fpscr,@-r15 ; save fpscr registers

[6)]
N
n
-
(¢}

r7_bank,@-r15
ré6_bank,@-r15
r5_bank,@-r15
r4_bank,@-r15
r3_bank,@-r15
r2_bank,@-r15
r1_bank,@-r15
rO_bank,@-r15
-endm

[BN BNe) RN BN NG NG INe) |
NEFP, OOWL~NOO
wnonnonon
-]
000000 O0

REJ06B0848-0200/Rev.2.00 December 2009

Page 16 of 37

LENESANS

SH7730 Group
SH7730 Example of Initialization

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

.macro POP_EXP_BASE_REG

; recover registers

_ResetHandler:

CSO_INIT_END:

SDRAM_INIT_END:

;set RWTCSR address
;RWDT disable

;set CCR address
;1C,0C Invalidate

;set single precision mode
;set double precision mode

;set CPG address

; * Clockin = 33.333 MHz, CKIO 66.6 MHz

; * 1 Clock = 266 MHz, B Clock = 66.6 MHz,
* P Clock = 33.3 MHz

@(r0,r1),r0 ;set Reset function address

; exceptional

__INTHandlerPRG:

_ExpHandler:

Idc.1 @ri5+,r0_bank

Idc.1 @rl15+,rl1_bank

Idc.1 @r15+,r2_bank

Idc.l @rl15+,r3_bank

Idc.1 @ri5+,r4_bank

Idc.1 @rl15+,r5_bank

Idc.1 @r15+,r6_bank

Idc.1 @ri5+,r7_bank

Ids.1 @rl15+,fpscr

Ids.l @rl5+,pr

Idc.1 @r15+,spc

Idc.1 @rl5+,ssr
.endm

.section RSTHandler,code
mov.l #H"A4520004,r0
mov.l #H"0000A507,rl
mov.w ri1,@rO
mov.l #H"FFO0001C,rO
mov.l #H"00000808,rl1
mov. |1 rl,@ro0
mov.l #H"00040001,rO0
;mov.l #H"000CO001,r0
Ids.l rO,fpscr
mov.l #H"A4150000,r0
mov.l #H"07002508,rl1
mov. 1 ri,@rO0
mov.l #CSO_INIT,rO
Jmp @ro
nop
mov.l #SDRAM_INIT,rO
Jmp @ro
nop
mov.l #EXPEVT,rO
mov.l @rO,rO
shir2 rO
shlr ro
mov.l # RESET_Vectors,rl
mov. 1
Jmp @ro
nop

interrupt

.section INTHandler,code

.export _INTHandlerPRG

PUSH_EXP_BASE_REG

REJ06B0848-0200/Rev.2.00

December 2009

Page 17 of 37

LENESANS

SH7730 Group

SH7730 Example of Initialization

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

mov. 1
mov. 1

mov . 1
cmp/eq
bf
mov. I
bra
nop
exp_01:
mov. I
cmp/eq
bf
mov. I
exp_10:

mov. 1
add

shlr2
shlr
mov. I

mov. 1
shlr2
mov.b
extu.b

stc
mov. 1
and
or
Idc

Idc.1
mov. I
Ids

rte
nop

#EXPEVT, ro
@ro,r1

#1LLEGALFPU_CODE, r2
ri,r2
exp_01
#DUMMY_ILLEGALFPU_CODE,
exp_10

#1LLEGALSLOTFPU_CODE, r2
ri,r2

exp_10
#DUMMY _ILLEGALSLOTFPU_C

INT_Vectors,rO
#-(h"40),r1

ri

ri

@(ro,r1),r3

#_ INT_MASK,rO
ri
@(ro,r1),r1
ri,rl

sr,r0
#(RBBLclr&IMASKclIr),r2

r2,r0

ri,r0

ro,ssr

r3,spc
__int_term,r0
ro,pr

; set event address
; set exception code

; H"800

ri ; H"800 -> H"880

; H"820

ODE,rl ; H"820 -> H"8A0

; set vector table address
; exception code - h"40

; set interrupt function addr

; interrupt mask table addr

; interrupt mask

, save sr

; RB,BL,mask clear data

; clear mask data

; set interrupt mask
; set current status

; set interrupt terminate

Interrupt terminate

__int_term:
mov .1
Idc.1

#MDRBBLset, r0O
ro,sr

POP_EXP_BASE_REG

rte
nop

; set MD,BL,RB

; return

TLB miss interrupt

.org H"300

_TLBmissHandler:

mov. 1
stc.1

#(SP_STACK+H"200),r15 ;set SP_STACK(for only TLBmiss) pointer

sgr,@-ri5

PUSH_EXP_BASE_REG

REJ06B0848-0200/Rev.2.00

December 2009

Page 18 of 37

LENESANS

SH7730 Group
SH7730 Example of Initialization

; set event address

; set exception code

; set vector table address

; exception code - h"40

; set interrupt function addr
; Interrupt mask table addr

; interrupt mask

; save sr

; RB,BL,mask clear data

; clear mask data

; set interrupt mask
; set current status

;set interrupt terminate

;set MD,BL,RB

; set event address
; set exception code

; HT1CO

195 ;

196 mov.l #EXPEVT,rO

197 mov. 1 @ro,r1

198 mov.l #_INT_Vectors,rO
199 add #-(h"40),r1
200 shir2 ri

201 shir rl

202 mov.l @(r0,r1),r3

203 ;

204 mov.l # INT_MASK,rO
205 shir2 ri

206 mov.b @(ro,rl),rl

207 extu.b ri,ril

208 ;

209 stc sr,r0
210 mov.l #(RBBLclr&IMASKclr),r2
211 and r2,ro0
212 or ril,r0
213 Idc rO,ssr
214 ;

215 Idc.1 r3,spc

216 mov.l #_ TLBMISS_INT_TERM,RO
217 Ids rO,pr
218 ;

219 rte

220 nop

221

222 .align 4

223

224 _ TLBMISS_INT_TERM:

225 mov.l #MDRBBLset,rO
226 Idc.1 ro,sr

227

228 POP_EXP_BASE_REG

229

230 Idc.l @rl5+,sgr

231 stc.l sgr,ri5

232 rte

233 nop

234 ;

235 pool

236 ;

237 3333333333333 3933333933333333933933933333333333333333333333333333
238 ; 1IRQ

239 533333333333 23333332323323323333332333323332333333333333333333333333
240 .org H"500

241 _IRQHandler:

242 PUSH_EXP_BASE_REG

243 ;

244 mov.l #INTEVT,rO

245 mov.l @rO,rl

246

247 mov.l #INT_NMI_CODE,r2
248 cmp/eq rl,r2

249 bf no_nmi

250

251 ;add NMI CASE

252

253 mov.l # INT_NMI,r3

254 jsr @r3

255 nop

256

257 POP_EXP_BASE_REG

258

259 rte

260 nop

REJ06B0848-0200/Rev.2.00

December 2009

Page 19 of 37

LENESANS

SH7730 Group

SH7730 Example of Initialization

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

no_nmi:

;add end NMI CASE

; CSO INIT

CSO_INIT:

S29AL032D70TF104)

; SDRAM INIT

SDRAM_INIT:

stc sr,r0
mov.l #(RBBLclr&IMASKclr),r2
and r2,ro0
or rl,r0

Idc ro,ssr

Idc.1 r3,spc
mov.l # _int_term,rO

Ids ro,pr

rte

nop

pool
mov.l #H"FEC10004,r0
mov.l #H"10480400,rl1
mov. 1 ri,@ro0
mov.l #H"FEC10024,r0
mov.l #H"00000A41,rl
mov. 1 rl,@r0
mov.l #CSO_INIT_END,rO
jmp @ro

nop

-pool
#H"FEC1000C, rO ;set CS3BCR address
#H"10004600,rl1

;32bit bus-width,

rl,@ro0

mov.
mov.

mov .

mov.
mov.

mov .

mov.

mov.l #_INT_Vectors,rO
add #-(h"40),r1
shir2 ri

shir rl

mov.l @(r0,r1),r3

mov.l # INT_MASK,rO
shir2 ri

mov.b @(ro,rl),rl

extu.b ri,rl

#H"FEC1002C,r0 ;set CS3WCR address

#H"00002492,r1 ;tRP 2cyc
;tRCD 2cyc
;A3CL 2cyc
;EtRWL 2cyc
;tRC 6cyc
rl,@r0

#H"FEC10044,r0 ;set SDCR address

; set vector table address
; exception code - h"40

; set interrupt function addr

interrupt mask table addr

interrupt mask

; save sr
; RB,BL,mask clear data
; clear mask data

; set interrupt mask

; set current status

; set interrupt terminate

;set CSOBCR address
;set for FLASHROM(spansion

;set CSOWCR address

;set for SDRAM(Samsung K4S281632F-UC75)
IWW 1cyc

REJ06B0848-0200/Rev.2.00

December 2009

Page 20 of 37

LENESANS

SH7730 Group

SH7730 Example of Initialization

327 mov. 1
328 mov. 1
329

330 mov. 1
331 mov. 1
332 mov. 1
333

334

335 mov. 1
336 LOOP1:

337 dt
338 bf
339 nop
340 nop
341

342 mov. I
343 mov. 1
344 mov. 1
345

346 mov. 1
347 mov. 1
348 mov.w
349

350 mov. |1
351 Jjmp
352 nop
353

354 -pool
355

356 3333iis

#H"00000809,r1 ;auto refresh mode,
rl,@r0

#H"FEC10050,r0 ;set RTCOR address
#H"a55a003E,rl ;refresh rate
rl,@ro0

#H"000030d4,r0

ro
LOOP1 ;200us wait

#H"FEC10048,r0 ;set RTCSR address
#H"a55a0010,r1
rl,@ro0

row 12bit, column 9bit

#H"FEC15080,r0 ;set SDMR3(32bit bus-width, CL=2, burstRAl(burst length=1))

#H"00000000, r1
ri,@rO0

#SDRAM_INIT_END, rO
@ro

357 ; SPECIAL STACK(for TLBmiss Handler)

358 3333337337333 33

359
360 SP_STACK:
361
362

.section SP_S,data

.res.b H"200
.end

REJ06B0848-0200/Rev.2.00

December 2009

Page 21 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

2. Sample Program Listing: "vecttbl.src"

©O© 00O ~NOO U WNPRE

el e
W N PP O

15
16
17
18
19

21
22
23

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

FILE
DATE
DESCRIPTION

This file is

svecttbl.src

:Fri, Aug 01, 2008
:Initialization of Vector Table
:SH7730

generated by Renesas Project Generator (Ver.4.9).

; CPU TYPE

;* Device

;* File Name
;* Abstract
;* History

;* Copyright(c)

: SH-4A/SH7730
. vecttbl.src
: Initialize of Vector Table.
1.00 (2008-10-01) [Hardware Manual Revision : 1.00]

2008 Renesas Technology Corp.
And Renesas Solutions Corp.,All Rights Reserved.

/
-include "'vect.inc"
.section VECTTBL,data
.export _RESET_Vectors
_RESET_Vectors:
;<<VECTOR DATA START (POWER ON RESET)>>
;H"000 Power On Reset(H-UDI RESET)
.data.l _PowerON_Reset
;<<VECTOR DATA END (POWER ON RESET)>>
;<<VECTOR DATA START (MANUAL RESET)>>
;H"020 Manual Reset
.data.l _Manual_Reset
;<<VECTOR DATA END (MANUAL RESET)>>
;H"040-120 Reserved
-datab.1 8,H"00000000
;H"140 TLB Reset(DATA TLB Reset)
.data.l _TLB_Reset
.section INTTBL ,data
.export _INT_Vectors
_INT_Vectors:
; H®040 Data TLB miss exception(read)
.data.l _INT_TLB_MISS_READ_EXP
; H"060 Data TLB miss exception(write)
.data.l _INT_TLB_MISS_WRITE_EXP
; H"080 Initial page write exception
.data.l _INT_TLB_INIT_PAGE_EXP
; H"O0AO Data TLB protection violation exception (read)
.data.l _INT_TLB_PROTECT_READ_EXP
; H®0CO Data TLB protection violation exception (write)
.data.l _INT_TLB_PROTECT_WRITE_EXP
; H"OEO Data address error(read)
.data.l _INT_ADR_ERROR_READ
; H®100 Data address error(write)
.data.l _INT_ADR_ERROR_WRITE

REJ06B0848-0200/Rev.2.00 December 2009 Page 22 of 37

LENESANS

SH7730 Group
SH7730 Example of Initialization

63 ; H"120 FPU exception

64 .data.l _INT_FPU_EXP

65 ; H"140 Instruction TLB multiple-hit exception
66 .data.l _TLB_Reset

67 ; H"160 Unconditional trap(TRAPA)
68 .data.l _INT_TRAP

69 ; H"180 General illegal instruction exception
70 .data.l _INT_ILLEGAL_INST_EXP
71 ; H"1A0 Slot illegal instruction exception
72 .data.l _INT_ILLEGAL_SLOT_EXP
73 ;EXTERNAL INTERRUPT

74 ; H"1CO NMI

75 .data.l _INT_NMI

76 ; H"1EO USER_BREAK

77 .data.l _INT_USER_BREAK
78 ; H"200 IRL_LEVEL15

79 .data.l _INT_IRL_LEVEL15
80 ; H"220 IRL_LEVEL14

81 .data.l _INT_IRL_LEVEL14
82 ; H"240 IRL_LEVEL13

83 .data.l _INT_IRL_LEVEL13
84 ; H"260 IRL_LEVEL12

85 .data.l _INT_IRL_LEVEL12
86 ; H"280 IRL_LEVEL11

87 .data.l _INT_IRL_LEVEL11
88 ; H"2A0 IRL_LEVEL10

89 .data.l _INT_IRL_LEVEL10
90 ; H"2CO IRL_LEVEL9

91 .data.l _INT_IRL_LEVEL9
92 ; H"2EO IRL_LEVELS

93 .data.l _INT_IRL_LEVEL8
94 ; H"300 IRL_LEVEL7

95 .data.l _INT_IRL_LEVELY
96 ; H"320 IRL_LEVEL6

97 .data.l _INT_IRL_LEVEL6
98 ; H"340 IRL_LEVEL5

99 .data.l _INT_IRL_LEVEL5
100 ; H"360 IRL_LEVEL4

101 .data.l _INT_IRL_LEVEL4
102 ; H"380 IRL_LEVEL3

103 .data.l _INT_IRL_LEVEL3
104 ; H"3A0 IRL_LEVEL2

105 .data.l _INT_IRL_LEVEL2
106 ; H"3CO IRL_LEVEL1

107 .data.l _INT_IRL_LEVEL1
108 ;H"3EO Reserved

109 .data.l H*00000000

110 ; TMU-chO

111 ;H"400 TMU_TUNIO

112 .data.l _INT_TMUO_TUNIO
113 ; TMU-chl

114 ;H"420 TMU_TUNI1

115 .data.l _INT_TMU1_TUNI1
116 ; TMU-ch2

117 ;H"440 TMU_TUNI2

118 .data.l _INT_TMU2_TUNI2
119 ;H"460 Reserved

120 .data.l H"00000000

121 ;RTC

122 ;H"480 RTC ATI

123 .data.l _INT_RTC_ATI

124 ;H"4A0 RTC PRI

125 .data.l _INT_RTC_PRI
REJ06B0848-0200/Rev.2.00 December 2009 Page 23 of 37

LENESANS

SH7730 Group
SH7730 Example of Initialization

126

127

128 ;PINT
129

130

131

132

133

134

135 ;H-UDI
136

137

138 ; IRQ
139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155 ;SIM
156

157

158

159

160

161

162

163

164

165

166 ;1IC1
167

168

169 ;DMAC(1)
170

171

172

173

174

175

176

177

178 ;11legal FPU
179

180

181

182

183

184

185 ; IRDA
186

187

188

;H"4C0
.data.l

RTC CUI
_INT_RTC_CUI

;H"4EO PINT PINTA

.data.l _INT_PINT_PINTA
;H"500 PINT PINTB

.data.l _INT_PINT_PINTB
;H"520-5C0 Reserved

-datab.1 6,H"00000000

;H"5EO0 H-UDI1

.data.l _INT_H_UDI1

;H"600 IRQ IRQO

.data.l _INT_IRQ_IRQO

;H"620 IRQ IRQ1

.data.l _INT_IRQ_IRQ1

;H"640 IRQ IRQ2

.data.l _INT_IRQ_IRQ2

;H"660 IRQ IRQ3

.data.l _INT_IRQ_IRQ3

;H"680 IRQ IRQ4

.data.l _INT_IRQ_IRQ4

;H"6A0 IRQ IRQ5

.data.l _INT_IRQ_IRQ5

;H"6CO IRQ IRQ6

.data.l _INT_IRQ_IRQ6

;H"6EO IRQ IRQ7

.data.l _INT_IRQ_IRQ7

;H"700 SIM ERI

.data.l _INT_SIM_ERI

;H"720 SIM RX1

.data.l _INT_SIM_RXI

;H"740 SIM TX1

.data.l _INT_SIM_TXI

;H"760 SIM TEI

.data.l _INT_SIM_TEI
;H"780-7CO Reserved

-datab.1 3,H"00000000

;H"7EO 1IC1 1ICI1

.data.l _INT_IICL_1ICI1
;H"800 DMAC DEIO ; Illegal FPU -> Dummy Code H"880
.data.l _INT_DMAC_DEIO

;H"820 DMAC DEI1 ; Illegal slot FPU -> Dummy Code H"8AO0
.data.l _INT_DMAC_DEI1

;H"840 DMAC DEI2

.data.l _INT_DMAC_DEI2

;H"860 DMAC DEI3

.data.l _INT_DMAC_DEI3

;H"880 Reserved -> Used as Illegal FPU
.data.l _INT_ILLEGAL_FPU
;H"8A0 Reserved -> Used as Illegal slot FPU
.data.l _INT_ILLEGAL_SLOT_FPU
;H"8C0-920 Reserved

-datab.1 4 ,H"00000000

;H"940 IRDA IRDAIO
.data.l
;H"960 IRDA IRDAI1

_INT_IRDA_IRDAIO

REJ06B0848-0200/Rev.2.00

December 2009 Page 24 of 37

LENESANS

SH7730 Group
SH7730 Example of Initialization

189 .data.l _INT_IRDA_IRDAI1
190 ;ADC

191 ;H"980 ADC ADI

192 .data.l _INT_ADC_ADI

193 ;TPU

194 ;H"9A0 TPU TPUIO

195 .data.l _INT_TPU_TPUIO
196 ;H"9CO TPU TPUI1

197 .data.l _INT_TPU_TPUI1
198 ;H"9EO0-B60 Reserved

199 .datab.1 13,H*00000000

200 ;DMAC(2)

201 ;H"B80 DMAC DE14

202 .data.l _INT_DMAC_DEI14
203 ;H"BAO DMAC DEIS5

204 .data.l _INT_DMAC_DEI5
205 ;H"BCO DMAC DADERR

206 .data.l _INT_DMAC_DADERR
207 ;H"BEO Reserved

208 .data.l H®"00000000

209 ;SCIF

210 ;H"CO00 SCIF SCIFI0

211 .data.l _INT_SCIF_SCIFI0
212 ;H"C20 SCIF SCIFI1

213 .data.l _INT_SCIF_SCIFI1
214 ;H"C40 SCIF SCIFI2

215 .data.l _INT_SCIF_SCIFI2
216 ;H"C60 SCIF SCIFI3

217 .data.l _INT_SCIF_SCIFI3
218 ;H"C80 SCIFA SCIFl14

219 .data.l _INT_SCIFA_SCIF14
220 ;H"CAO SCIFA SCIFI5

221 .data.l _INT_SCIFA_SCIFI5
222 ;H"CCO-E40 Reserved

223 .datab.1 13,H*00000000

224 ;11CO

225 ;H"E60 11CO I1ICIO

226 .data.l _INT_IICO_lICIO
227 ;H"E8BO0-EEO Reserved

228 -datab.1 4 ,H"00000000

229 ;CMT

230 ;H"FOO CMTI

231 .data.l _INT_CMT_CMTI

232 ;SIOF

233 ;H"F20 SI0F1

234 .data.l _INT_SIOF_SIOFI
235 ;H"F40-FEO Reserved

236 -datab.1 6,H"00000000

237

238 .export _INT_MASK

239 _INT_MASK:

240 ; interrupt priority mask level(31 to 0)
241

242 ;H"040 Data TLB miss exception(read)
243 .data.b H®"00

244 ;H"060 Data TLB miss exception(write)
245 .data.b H"00

246 ;H"080 Initial page write exception
247 .data.b H®"00

248 ;H"0AO Data TLB protection violation exception (read)
249 .data.b H®"00

250 ;H"0CO Data TLB protection violation exception (write)
251 .data.b H"00

REJ06B0848-0200/Rev.2.00

December 2009

Page 25 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

252 ;H"OEO Data address error(read)
253 .data.b H®"00

254 ;H"100 Data address error(write)
255 .data.b H®"00

256 ;H"120 FPU exception
257 .data.b H"00

258 ;H"140 Instruction TLB multiple-hit exception
259 .data.b H®"00

260 ;H"160 TRAPA

261 .data.b H®"00

262 ;H"180 ILLEGAL_INST
263 .data.b H®"00

264 ;H"1A0 ILLEGAL_SLOT
265 .data.b H®"00

266 ;EXTERNAL INTERRUPT

267 ;H"1cO NM1

268 .data.b H®"00

269 ;H"1EO USER_BREAK
270 .data.b H®"00

271 ;H"200-3c0 IRL

272 .datab.b 15,H700

273 ;H"3e0 Reserved
274 .data.b H®"00

275 ;TMU

276 ;H"400 TMU TUNIO
277 .data.b H®"00

278 ;H"420 TMU TUNI1
279 .data.b H®"00

280 ;H"440 TMU TUNIZ2
281 .data.b H®"00

282 ;H"460 Reserved
283 .data.b H®"00

284 ;RTC

285 ;H"480 RTC ATI

286 .data.b H®"00

287 ;H"4A0 RTC PRI

288 .data.b H®"00

289 ;H"4C0 RTC CUl

290 .data.b H®"00

291 ;PINT

292 ;H"4EO PINT PINTA
293 .data.b H®"00

294 ;H"500 PINT PINTB
295 .data.b H®"00

296 ;H"520-5C0 Reserved
297 .datab.b 6,H"00

298 ;HUDI

299 ;H"5EO _INT_H_UDI1
300 .data.b H®"00

301 ; IRQ

302 ;H"600 IRQ IRQO
303 .data.b H®"00

304 ;H"620 IRQ IRQ1
305 .data.b H®"00

306 ;H"640 IRQ IRQ2
307 .data.b H®"00

308 ;H"660 IRQ IRQ3
309 .data.b H®"00

310 ;H"680 IRQ IRQ4
311 .data.b H®"00

312 ;H"6A0 IRQ IRQ5
313 .data.b H®"00

314 ;H"6CO IRQ IRQ6

REJ06B0848-0200/Rev.2.00 December 2009 Page 26 of 37

LENESANS

SH7730 Group
SH7730 Example of Initialization

315 .data.b H"00

316 ;H"6EO IRQ IRQ7
317 .data.b H"00

318 ;SIM

319 ;H"700 SIM ERI

320 .data.b H"00

321 ;H®720 SIM RXI1

322 .data.b H"00

323 ;H"740 SIM TXI

324 .data.b H"00

325 ;H*760 SIM TEI

326 .data.b H"00

327 ;H"780-7C0 Reserved
328 .datab.b 3,H"00

329 ;1IC1

330 ;H*7EO 11C1 1ICI11
331 .data.b H"00

332 ;DMAC(1)

333 ;H"800 DMAC DEIO
334 .data.b H"00

335 ;H"820 DMAC DEI1
336 .data.b H"00

337 ;H"840 DMAC DEIZ2
338 .data.b H"00

339 ;H"860 DMAC DEI3
340 .data.b H"00

341 ;H"880 Reserved -> Used as Illegal FPU
342 .data.b H"00

343 ;H"8A0 Reserved -> Used as Illegal slot FPU
344 .data.b H"00

345 ;H"8C0-920 Reserved
346 .datab.b 4,H"00

347 ; IRDA

348 ;H"940 IRDA IRDAIO
349 .data.b H"00

350 ;H"960 IRDA IRDAI1
351 .data.b H"00

352 ;ADC

353 ;H"980 ADC ADI

354 .data.b H"00

355 ;TPU

356 ;H"9A0 TPU TPUIO
357 .data.b H"00

358 ;H"9CO TPU TPUI1
359 .data.b H"00

360 ;H"9EO-B60 Reserved
361 .datab.b 13,H"00

362 ;DMAC

363 ;H"B80 DMAC DEIl4
364 .data.b H"00

365 ;H"BAO DMAC DEI5
366 .data.b H"00

367 ;H"BCO DMAC DADERR
368 .data.b H"00

369 ;H"BEO Reserved
370 .data.b H"00

371 ;SCIF

372 ;H"CO00 SCIF SCIFI0
373 .data.b H"00

374 ;H"C20 SCIF SCIFI1
375 .data.b H"00

376 ;H"C40 SCIF SCIFI2
377 .data.b H"00
REJ06B0848-0200/Rev.2.00 December 2009 Page 27 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

378 ;H"C60 SCIF SCIFI3
379 .data.b H"00

380 ;H"C80 SCIFA SCIF14
381 .data.b H"00

382 ;H"CAO SCIFA SCIFI5
383 .data.b H"00

384 ;H"CCO-E40 Reserved
385 .datab.b 13,H"00

386 ;11Co

387 ;H"E6O 11CO 1I1CI10

388 .data.b H"00

389 ;H"EBO-EEO Reserved
390 .datab.b 4,H"00

391 ;CMT

392 ;H"FOO CMT

393 .data.b H"00

394 ;SIOF

395 ;H*F20 SIOFI1

396 .data.b H"00

397 ;H*F40-FEO Reserved
398 .datab.b 6,H"00

399

400 .end

REJ06B0848-0200/Rev.2.00 December 2009 Page 28 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

3. Sample Program Listing: "resetprg.c”

©O© 00O ~NOO U WNPRE

OO0 U ao oo adbDdsDDBEDASDIDMDIAEDAEDNDEOWWWWWWWWWWNNNDNNNNNNNNRPRPRPEPERPREPEPRPRELR
P O OO ~NOOOPRMWNPOOONOOODUODNNWNRPOOONOOOPMAWNPOOWONOOOOPMWNRPOOONOOODMWNEO

[
N

/ /
/* */
/* FILE :resetprg.c */
/> DATE :Wed, Dec 24, 2008 */
/* DESCRIPTION :Reset Program */
/* CPU TYPE :SH7730 */
/* */
/* This file is generated by Renesas Project Generator (Ver.4.9). */
/* */
/ /
/*""FILE COMMENT'"'******xxx*x* Technical reference data

* System Name : SH7730 Sample Program

* File Name I resetprg.c

* Abstract : Sample Program of the SH7730 Initialization

* Version : Ver 1.00

* Device : SH7730

* Tool-Chain : SuperH RISC engine Standard Toolchain Ver.9.1.1.0

* 0S : None

* H/W Platform : The SH-4A evaluation board AP-SH4A-1A is

* available from AlphaProject Co., Ltd.

* Description : Sample program for the SH7730 initialization

* -

* Operation

* Disclaimer

* :

* Copyright (C) 2008. Renesas Technology Corp., All Rights Reserved.

*

* History : 27.May.2008 Ver. 1.00 First Release

"""FEILE COMMENT END' /
#include <machine_h>

#include <_h_c_lib.h>

#include "typedefine.h"

#include '"stacksct.h"

#include "iodefine.h"

#include 'cache.h" /* Add cache function */
#define SR_Init 0x40000000
#define INT_OFFSET 0x100UL

#ifdef _ cplusplus

extern "C" {

#endif

extern void INTHandlerPRG(void);
void PowerON_Reset(void);

void Manual_Reset(void);

void main(void);

#ifdef _ cplusplus

}

#endif

//7#ifdef __ _cplusplus // Enable 1/0 in the application(both SIM 1/0 and hardware 1/0)
//extern "C" {

//#endif

//extern void _INIT_IOLIB(void);
//extern void _CLOSEALL(void);
//7#ifdef __ _cplusplus

//}

//#endi T

//extern void srand(_UINT); // Remove the comment when you use rand()

REJ06B0848-0200/Rev.2.00 December 2009 Page 29 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

//extern _SBYTE *_slptr; // Remove the comment when you use strtok()
#ifdef _ cplusplus // Use Hardware Setup

extern "C" {

#endi f

extern void HardwareSetup(void);
#ifdef _ cplusplus

}

#endif

//7#ifdef _ _cplusplus // Remove the comment when you use global class object
//extern "C" { // Sections C$INIT and C$END will be generated
//#endif

//extern void _CALL_INIT(void);
//extern void _CALL_END(void);
//7#ifdef _ _cplusplus

//%}

//#endif

/* = = = = Changing section name to ResetPRG = = = = */
#pragma section ResetPRG

/* = = = = Specification of entry function = = = = */
#pragma entry PowerON_Reset
/*"""FUNC COMMENT""*

* 1D :

* Outline : Function for CPU Initialization

* Include :

* Declaration : void PowerON_Reset(void)

* Description : CPU initialization routine. Its address is registered in

* : the vector table entry for power-on reset exception handling.
* : This is the first function executed after a power-on reset.
*

* Disclaimer : Enable processing which has been commented out as required.
* Argument I none

* Return Value I none

* Calling Functions

'"""EUNC COMMENT END'" /

void PowerON_Reset(void)

{

set_vbr((void *)((_UINT) INTHandlerPRG - INT_OFFSET));

/* = = = = Initialization of sections B and D = = = = */
_INITSCTQ ;

// errno=0; // Remove the comment when you use errno
// srand((_UINT)1); // Remove the comment when you use rand()
// _slptr=NULL; // Remove the comment when you use strtok()

/* ==== Cache setting ==== */

/* ==== For details on this function, see the SH7730 Group Application Note: Examples
of Cache Memory Settings (REJO6B0851). ==== */

cache_set_ccr(CACHE_I_ON | CACHE_O_ON);

/* ==== Setting the status register (privileged mode) ==== */
set_cr(SR_Init);

mainQ);

// _CLOSEALLQ); // Close 1/0 in the application(both SIM 1/0 and hardware 1/0)

REJ06B0848-0200/Rev.2.00 December 2009 Page 30 of 37

SH7730 Group
u {EN ESAS SH7730 Example of Initialization

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

// _CALL_ENDQ); // Remove the comment when you use global class object
sleep(Q);

3

//#pragma entry Manual_Reset // Remove the comment when you use Manual Reset

/*"""FUNC COMMENT"""

* 1D :

* Qutline : Manual reset processing

* Include :

* Declaration : void Manual_Reset_PC (void)

* Description : The address of this function is registered in the vector

* : table entry for manual reset exception handling.

*

* Disclaimer : No processing is defined in this sample program.

* : Add processing as required.

* Argument I none

* Return Value I none

*

Calling Functions

*'"""FUNC COMMENT END'"
void Manual_Reset (void)
{

/* NOP */

}

/* END of File */

REJ06B0848-0200/Rev.2.00

December 2009 Page 31 of 37

SH7730 Group
u {EN ESAS SH7730 Example of Initialization

4. Sample Program Listing: "dbsct.c"

1 / /

2 /* */

3 /* FILE: dbsct.c */

4 /* DATE: Wed, Dec 24, 2008 */

5 /* DESCRIPTION: Setting of the B and R sections */

6 /* CPU TYPE: SH7730 */

7 /* */

8 /* This file is generated by Renesas Project Generator (Ver.4.9). */

9 /* */
10 / /
11

12

13

14 #include "typedefine._h"

15

16 #pragma section $DSEC

17 static const struct {

18 _UBYTE *rom_s; /* First address of initialized data section in ROM */
19 _UBYTE *rom_e; /* Last address of initialized data section in ROM */
20 _UBYTE *ram_s; /* First address of initialized data section in RAM */
21 } DTBL[] = {

22 { __sectop(*'D"), _ secend(''D™), sectop("'R™) }

23 };

24 #pragma section $BSEC

25 static const struct {

26 _UBYTE *b_s; /* First address of non-initialized data section */

27 _UBYTE *b_e; /* Last address of non-initializaed data section */

28 } BTBL[] = {

29 { __sectop('B"), _ secend(''B"™) }

30 };

REJ06B0848-0200/Rev.2.00 December 2009 Page 32 of 37

REN ESNS SH7730 Group

SH7730 Example of Initialization

5. Sample Program Listing: "sh7730.c"

©O© 00O ~NOO U WNPRE

Qoo a oo aoduaadb DSBS DMDAEDINDMIAEOMWWWWWWWWWNNNDNNNNNNNNRPERPRRPEPRPERPEPRERELR
OO ~NOOUPRARWNPOOONOODUDMNWNPOOONOOOAODMAMWNRPOOWONOOOOPMNMWNPOOONOOOOUDMWNLEDO

/*"""FILE COMMENT' " "*****x*x*x*x* Technical reference data

* System Name : SH7730 Sample Program

* File Name : sh7730.c

* Abstract : Sample Program for the SH7730 Initialization

* Version : Ver 1.00

* Device : SH7730

* Tool-Chain : SuperH RISC engine Standard Toolchain Ver.9.1.1.0
* 0S - None

* H/W Platform : The SH-4A evaluation board AP-SH4A-1A is

* available from AlphaProject Co., Ltd.

* Description : Sample program for SH7730 initialization

* -

* Operation

* Disclaimer

* :

* Copyright (C) 2008. Renesas Technology Corp., All Rights Reserved.
*

* History : 27.May.2008 Ver. 1.00 First Release

""E1LE COMMENT END'" /
#include <machine.h>

#include "iodefine.h"

//#include '""typedefine.h"

#ifdef __ cplusplus

//#include <ios> // Remove the comment when you use i0s

// _SINT ios_base::Init::init_cnt; // Remove the comment when you use i0S
#endif

void main(void);

#ifdef _ cplusplus
extern "C" {
void abort(void);

b
#endif

/*"""FUNC COMMENT""*
* 1D

Outline : “main” function

Include

Declaration : void main(void)

Description : “main” function of the sample program

Argument I none

Return Value I none

Calling Functions :

"""FUNC COMMENT END'* /
void main(void)

{

L S B N N I

}

#ifdef _ cplusplus
void abort(void)

{

3
#endif

REJ06B0848-0200/Rev.2.00 December 2009 Page 33 of 37

SH7730 Group
u {EN ESAS SH7730 Example of Initialization

6. Sample Program Listing: "intprg.c"

{
}

/* H"1CO NMI */
void INT_NMI(void)

.Snip..

1 /*""FILE COMMENT'"'******xxx** Technical reference data
2 * System Name: SH7730 Sample Program
3 * File Name: intprg.c
4 * Abstract: Sample Program of the SH7730 Initialization
5 * Version: Ver 1.00
6 * Device: SH7730
7 * Tool-Chain: SuperH RISC engine Standard Toolchain Ver.9.1.1.0
8 * 0S: None
9 * H/W Platform: The AP-SH4A-1A board from AlphaProject Co., Ltd.
10 * Description: This is a sample program for the SH7730 initialization.
11 * intprg.src has been changed to the C language.
12 *
13 * Operation:
14 * Disclaimer:
15 *
16 * Copyright (C) 2008. Renesas Technology Corp., All Rights Reserved.
17 *
18
19 * History: 27 .May.2008 Ver. 1.00 First Release
20 **""'E1LE COMMENT END' /
21 #include <machine.h>
22 #include "iodefine.h"
23
24 /* —-—- RAM allocation variable declaration --- */
25
26 #pragma section IntPRG
27 /* H"040 Data TLB miss exception(read) */
28 void INT_TLB_MISS_READ_EXP(void)
29 {
30 }
.Snip..

REJ06B0848-0200/Rev.2.00 December 2009 Page 34 of 37

SH7730 Group
u {EN ESAS SH7730 Example of Initialization

5.

Documents for Reference

Software Manual
SH-4A Software Manual (REJO9B0003)

Hardware Manual
SH7730 Group Hardware Manual (REJO9B0359)

Application Note
SuperH RISC engine C/C++ Compiler Package Application Note: [Introduction guide] Sample File Guide for SH-3,
SH-4, and SH-4A (REJ06J0012)

Development Tool Manuals
Application Note: Flash Memory Download Program for the EL0A-USB Emulator (REJ10J1221)

User’s Manual: SuperH RISC engine C/C++ Compiler, Assembler, Optimizing Linkage Editor Compiler Package
V.9.01 (REJ10J1571)

The most up-to-date versions of the documents are available on the Renesas Technology Website.

REJ06B0848-0200/Rev.2.00 December 2009 Page 35 of 37

LENESANS

SH7730 Group
SH7730 Example of Initialization

Website and Support

Renesas Technology Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

Revision Record

Description

Rev. Date Page Summary

1.00 Mar.27.09 First edition issued

2.00 Dec.24.09 3 The content of compiler options is corrected.
6 The allocation address is corrected.

All trademarks and registered trademarks are the property of their respective owners.

REJ06B0848-0200/Rev.2.00

December 2009

Page 36 of 37

SH7730 Group
u {EN ESAS SH7730 Example of Initialization

Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:

(2) artificial life support devices or systems

(2) surgical implantations

(3) healthcare intervention (e.g., excision, administration of medication, etc.)

(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

© 2009. Renesas Technology Corp., All rights reserved.

REJ06B0848-0200/Rev.2.00 December 2009 Page 37 of 37

	Cover
	Positioning of the Application Note
	SH7730-Related Application Notes
	1. Preface
	1.1 Specifications
	1.2 Modules Used
	1.3 Applicable Conditions

	2. Essential Items for Setting
	2.1 Fundamental Background
	2.1.1 Development Environment
	2.1.2 SH7730 CPU

	2.2 Preparing the Development Environment
	2.2.1 Preparing the Evaluation Board for the SH7730
	2.2.2 Preparing the for Environment: High-performance Embedded Workshop

	2.3 Points for Setting and Caution
	2.3.1 Allocation of Sections
	2.3.2 Stack Settings
	2.3.3 Setting of the Watchdog Timer (WDT)
	2.3.4 Setting of the Floating-Point Status/Control Register (FPSCR)
	2.3.5 Setting of the Bus State Controller (BSC)
	2.3.6 Setting of the Vector Base Register (VBR)
	2.3.7 Memory Initialization (_INITSCT)
	2.3.8 Cache Settings
	2.3.9 Setting of the Status Register (SR)

	3. Description of Sample Application
	3.1 Changes to the Environment Automatically Generated by the High-performance Embedded Workshop
	3.2 Description of the Sample Program
	3.2.1 vhandler.src
	3.2.2 vecttbl.src
	3.2.3 resetprg.c
	3.2.4 stacksct.h
	3.2.5 dbsct.c
	3.2.6 sh7730.c
	3.2.7 intprg.c
	3.2.8 vect.inc

	3.3 Description of Settings in the Sample Program
	3.4 Precautions Regarding the Sample Program
	3.4.1 Allocation of Sections B, R, and S to External Memory and Initialization of Sections by the _INITSCT() Function
	3.4.2 Faster Initialization of Sections
	3.4.3 Running a Program in RAM
	3.4.4 Stack Pointer Addresses

	4. Listing of the Sample Program
	5. Documents for Reference
	Website and Support
	Revision Record
	Notes regarding these materials

