
 APPLICATION NOTE

R01AN0302EJ0101 Rev. 1.01 Page 1 of 41
Oct. 15, 2010

SH7670 Group
Example of Setting for Transmission of Ethernet Frames

Summary
This application note describes an example of settings for connecting the Ethernet controller of the SH7670, SH7671,
SH7672, and SH7673.

Target Device
SH7670 MCU

Contents

1. Introduction.. 2

2. Description of the Sample Application .. 3

3. Sample Program Listing.. 3

4. References .. 40

R01AN0302EJ0101
Rev. 1.01

Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 2 of 41
Oct. 15, 2010

1. Introduction

1.1 Specifications
• In this sample program, ten Ethernet frames are received. After the transmission of each frame is completed,

transmission of the next proceeds.
• The frame transmission complete interrupt is used to judge whether frame transmission has been completed or not.

1.2 Module Used
• Ethernet controller (EtherC)
• Ethernet controller direct memory access controller (E-DMAC)
• Interrupt controller (INTC)
• I2C bus interface 3 (IIC3)
• Pin function controller (PFC)

1.3 Applicable Conditions
MCU SH7670
Operating Frequency Internal clock: 200 MHz
 Bus clock: 66.6 MHz
 Peripheral clock: 33.3 MHz
Integrated Development
Environment

Renesas Electronics
High-performance Embedded Workshop Ver.4.03.00

C Compiler Renesas Electronics SuperH RISC engine Family
C/C++ compiler package Ver.9.01 Release 01

Compiler Options Default setting in the High-performance Embedded Workshop
(-cpu=sh2afpu -fpu=single -debug -gbr=auto -global_volatile=0 -opt_range=all
-infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1)

1.4 Related Application Notes
For more information, refer to the following application notes:

• SH7670 Group Example of Initialization
• SH7670 Group Example of Setting for Automatic Negotiation by Ethernet PHY-LSI
• SH7670 Group Example of Setting for Reception of Ethernet Frames

SH7670 Group Example of Setting for Transmission of Ethernet Frames

2. Description of the Sample Application
This sample application employs an Ethernet controller (EtherC) and a direct memory access controller for Ethernet
controller (E-DMAC).

2.1 Operational Overview of Module Used
Be sure to use the EtherC and E-DMAC modules to handle Ethernet communications for this LSI. The EtherC module
controls the transmission and reception of Ethernet frames. E-DMAC specifically handles DMA transfer between its
transmission/reception FIFO and data-storage areas (buffers) specified by the user.

2.1.1 Overview of the EtherC
This LSI has an on-chip Ethernet controller (EtherC) conforming to the Ethernet or the IEEE802.3 MAC (Media Access
Control) layer standard. Connecting a physical-layer LSI (PHY-LSI) complying with this standard enables the Ethernet
controller (EtherC) to perform transmission and reception of Ethernet/IEEE802.3 frames. This LSI has one MAC layer
interface.

The Ethernet controller is connected to the direct memory access controller for Ethernet controller (E-DMAC) inside
this LSI, and carries out high-speed data transfer to and from the memory.

Figure 1 shows a configuration of the EtherC.

E-DMAC

EtherC

E-DMAC interface

MAC

Receive
controller

Transmit
controller

Command status
interface

MII

PHY

Figure 1 Configuration of EtherC

R01AN0302EJ0101 Rev. 1.01 Page 3 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 4 of 41
Oct. 15, 2010

2.1.2 Overview of the EtherC Transmitter
The EtherC transmitter assembles the transmit data on the frame and outputs to MII when there is a transmit request
from the E-DMAC. The data transmitted via the MII is transmitted to the lines by PHY-LSI. Figure 2 shows the state
transition of the EtherC transmitter.

The following describes the flow of operations in transmission.

1. When the transmit enable (TE) bit of the EtherC mode register (ECMR) is set, the EtherC transmitter enters the idle

state.
2. (A) When a request for transmission is issued by the transmitter E-DMAC while half-duplex transfer has been

selected, the EtherC module attempts to detect a carrier. If it does not detect a carrier, the EtherC module sends the
preamble to the RMII after a transmission delay equivalent to the time required by the frame interval. If a carrier is
detected, the EtherC module waits until the carrier disappears and then sends the preamble to the RMII after a
transmission delay equivalent to the time required by the frame interval.
(B) Full-duplex transfer does not require carrier detection, so if this is selected, the preamble is sent as soon as the
request for transmission is issued by the E-DMAC. In continuous transmission, however, the preamble is sent from
the frame which has been transmitted at the last minute surely after a transmission delay equivalent to the time
required by frame interval.

3. The EtherC transmitter sends the start frame delimiter (SFD), data, and cyclic redundancy check (CRC) code in
sequence. At the end of transmission, the transmitter E-DMAC generates a frame transmission complete (TC)
interrupt. If a collision occurs or the EtherC transmitter enters the carrier-not-detected state, an interrupt
corresponding to the given state will be generated.

4. The EtherC transmitter enters the idle state and then, if there are more data for transmission, continues to transmit.

SH7670 Group Example of Setting for Transmission of Ethernet Frames

Reset

TE set

FDPX: Full Duplex

HDPX: Half Duplex

SFD: Start Frame Delimiter

CRC: Cyclic Redundancy Check

FDPX

Notes: 1. Transmission retry processing includes both jam transmission that depends on collision

 detection and the adjustment of transmission intervals based on the back-off algorithm.

 2. Transmission is retried only when data of 512 bits or less (including the preamble and

 SFD) is transmitted. When a collision is detected during the transmission of data greater

 than 512 bits, only jam is transmitted and transmission based on the back-off algorithm

 is not retried.

TE reset

Failure of 15

retransfer attempts

or collision

after 512-bit time

Collision

Collision

Normal transmission

Carrier

detection

Carrier

detection

SFD

transmission

Data

transmission

CRC

transmission

Retransfer

processing*
1

Carrier

detection

Start of transmission

(preamble transmission)Idle

Carrier

non-detection

Carrier

non-detection
Carrier

detection

HDPX

FDPX

HDPX
Retransfer

initiation

Transmission

halted

Error detection

Error

Error

Error

Error

notification

Collision*
2

Collision*
2

Figure 2 EtherC Transmitter State Transitions

R01AN0302EJ0101 Rev. 1.01 Page 5 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

2.1.3 Overview of the E-DMAC

This LSI includes a direct memory access controller (E-DMAC) directly connected to the Ethernet controller (EtherC).
The E-DMAC transfers data for transmission and reception between transmit/receive FIFO in the E-DMAC and data
storage location (transmit/receive buffer) specified by the user using DMA transfer. Directly writing data to or reading
data from the transmit/receive FIFO by the CPU is not possible. During DMA transfer, the E-DMAC refers to
information called transmit and receive descriptors (details to be described in the next section); these are placed in
memory by the user. The E-DMAC reads the descriptor information before transmitting or receiving an Ethernet frame,
and follows the descriptor in reading data for transmission from the transmission buffer or writing received data to the
receiving buffer. By setting up a number of consecutive descriptors (a descriptor list), it is possible to execute the
consecutive transfer of multiple Ethernet frames. This E-DMAC function lightens the load on the CPU and enables
efficiency in data transfer control.

Figure 3 shows the configuration of the E-DMAC, and of the related descriptors and buffers.

The E-DMAC has the following features;
• Equipped with two independent on-chip DMACs for transmission and reception
• The load on the CPU is reduced by means of a descriptor management system
• Transmit/receive frame status information is indicated in descriptors
• Block transfer by using DMA (16-byte units) achieves efficient utilization of the system bus
• Supports one-frame/one-descriptor, one-frame/multi-frame (multi-buffer) operation (see section 2.1.5)

EtherC

E-DMAC

Transmit DMAC

Internal
bus

interface

Descriptor
information

Transmit
FIFO

Receive DMAC

Descriptor
information

Receive
FIFO

Internal bus

Transmit
descriptor

Transmit
buffer

Receive
descriptor

Receive
buffer

External memory

This LSI

External bus
interface

Figure 3 Configuration of E-DMAC, and Descriptors and Buffers

R01AN0302EJ0101 Rev. 1.01 Page 6 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 7 of 41
Oct. 15, 2010

2.1.4 Overview of E-DMAC Descriptors

When the E-DMAC performs DMA transfer, it employs descriptor information that includes the storage address for the
data for transfer, etc. There are two types of descriptors: transmit descriptors and receive descriptors. When the TR bit
in the E-DMAC transmit request register (EDTRR) is set to 1, the E-DMAC automatically starts reading a transmit
descriptor. When the RR bit in the E-DMAC receive request register (EDRRR) is set to 1, the E-DMAC automatically
starts reading a receive descriptor. The user must enter information related to the DMA transfer of Ethernet data in the
transmit/receive descriptors before the transfer can proceed. After transmission or reception of an Ethernet frame has
been completed, the E-DMAC switches the descriptor active/inactive bit (TACT bit for transmission, RACT bit for
reception) to the inactive setting and indicates the result of transmission or reception in the status bits (TFS26 to TFS0
for transmission, RFS26 to RFS0 for reception).
Descriptors are placed in readable and writable memory, and the address where the first descriptors start (the addresses
of the first descriptors of each type to be read by the E-DMAC) are set in the transmit descriptor list address register
(TDLAR) and receive descriptor list address register (RDLAR). When multiple descriptors are set up in a descriptor
list, the descriptors are placed in contiguous address ranges in accord with the descriptor length as indicated by bits
DL1 and DL0 in the E-DMAC mode register (EDMR).

SH7670 Group Example of Setting for Transmission of Ethernet Frames

2.1.5 Overview of Transmit Descriptors

Figure 4 shows the relationship between a transmit descriptor and a transmit buffer.

In order from its first address, a receive descriptor consists of TD0, TD1, TD2 (each is a 32-bit unit), and padding. TD0
indicates whether the descriptor is active or inactive, describes the configuration of the descriptor, and contains state
information. TD1 indicates the size of the transmit buffer to which the descriptor refers, and the length of the transmit
frame (TDL). TD2 indicates the address where the transmission buffer starts. The length of padding is determined by
the descriptor length as specified by bits DL0 and DL1 in the EDMR register.

According to the settings of transmit descriptors, either a single descriptor or multiple descriptors can specify a single
frame of transmit data (one frame/one descriptor and one frame/multi-descriptor, respectively). As an example where
the one frame/multi-descriptor type of setting may be useful, multiple descriptors might be set up for data in Ethernet
frames which are used in transmission every time. Specifically, data for the destination and source addresses within the
Ethernet frame may be shared among multiple descriptors, with the remaining data stored in individual buffers.

RBL

RBA

Padding (4/20/52 bytes)*

RDL

Valid transmit data

T
A
C
T

T
D
L
E

T
F
P
1

T
F
E

31 30 29

T
F
P
0

28 27 26 0

31

31 0

16

Transmit descriptor

Transmit buffer

TFS26 to TFS0TD0

TD1

TD2

First address

Size of

valid transmit data

Size of

transmit buffer

Note: Padding sizes are set as follows according to descriptor length specified by bits DL0 and 1 in register EDMR;

 When the descriptor length = 16 bytes, padding size = 4 bytes.

 When the descriptor length = 32 bytes, padding size = 20 bytes.

 When the descriptor length = 64 bytes, padding size = 52 bytes.

Figure 4 Relationship between Transmit Descriptor and Transmit Buffer

R01AN0302EJ0101 Rev. 1.01 Page 8 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

2.1.6 Example of Setting Transmit Descriptors
Figure 5 shows an example (one frame/one descriptor) where three transmit descriptors and three areas of the transmit
buffer are in use. In this case, a single frame is transmitted in response to a single request for transmission. The transmit
descriptors are simplified in the figure, with only TD0 being shown. Numbers (1), (2), etc. in the figure indicate the
sequence of execution.

The Settings are as follows.

1. Due to one-frame/one-descriptor operation, the TFP1 and TFP0 bits of all descriptors are set to B'11.
2. Bits TACT, TFE, and TFS26 to TFS0 of individual descriptors are all set to 0 as the initial value.
3. In the first and second descriptors, the TDLE bit is set to 0. The TDLE bit of the third descriptor is set to 1, so the E-

DMAC reads the first descriptor on completion of processing of the third descriptor. Settings like this can be used to
arrange descriptors in a ring structure.

4. Although the following settings have been left out of figure 5, the data length of the transmission buffer referred to
by the respective descriptors is set in TDL, and the addresses where individual areas of the transmit buffer start are
set in TBA.

5. Since only one frame is transmitted in response to each request in this example, only the TACT bit of the first
descriptor is set to 1 for the first transmission. For the next transmission, only the TACT bit of the second descriptor
is set to 1.

Transmit descriptor

Transmit buffer

(1)

(2)

(3)

(4)

(5)

(6)

T
D
L
E

T
F
P
1

T
F
P
0

T
A
C
T

T
F
E

TFS26 to TFS0

0 1 10 0 0

1st

2nd

3rd

(omitted)

0 1 10 0 0

(omitted)

1 1 10 0

0

0

0

0

0

0 0

(omitted)

• •

• •

• •

Figure 5 Relationship between Transmit Descriptor and Transmit Buffer

R01AN0302EJ0101 Rev. 1.01 Page 9 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 10 of 41
Oct. 15, 2010

2.1.7 Operation of the Sample Program
When the setting of the TE bit of the EtherC mode register (ECMR) is 1 and 1 is written to the transmit request (TR) bit
in the E-DMAC transmit request register (EDTRR), the transmission section of the E-DMAC is activated. After a
software reset of the EtherC and E-DMAC modules, the E-DMAC reads the descriptor indicated by the transmit
descriptor list address register (TDLAR). If the setting of the TACT bit of that descriptor is 1 (active), the E-DMAC
reads the frame of data for transmission in sequence from the first address for the transmit buffer as specified by TD2 of
the transmit descriptor, and transfers it to the EtherC module.

The EtherC module creates a frame for transmission and starts transmitting it to the RMII. After DMA transfer
equivalent to the buffer length specified in the descriptor, the value of the TFP bits determines further processing in the
way described below.

• TFP = B'00 or B'10 (frame continuation):
Writing back to the descriptor (to write 0 to the TACT bit) proceeds after the DMA transfer. The TACT bit of the
next descriptor is then read.

• TFP = B'01 or B'11 (frame end):
Writing back to the descriptor (to write 0 to the TACT bit or to write state information) proceeds after transmission
of the frame is complete (writing of 0 or status to the TACT bit). The TACT bit of the next descriptor is then read.

If the TACT bit read from the next descriptor is 1, transmission of frames continues and the descriptor itself is read. If
the TACT bit read from the next descriptor is 0 (inactive), the E-DMAC sets the TR bit in EDTRR to 0, and
transmission ends. When 1 is written to the TR bit after its setting was 0, the transmission section of the E-DMAC is
reactivated. In this case, however, the descriptor that is read will be that which follows the last descriptor to have been
used in transmission.

Figure 6 shows an example of the flow of transmission (in the one-frame/one-descriptor and multiple-descriptor cases).

SH7670 Group Example of Setting for Transmission of Ethernet Frames

This LSI + memory E-DMAC Transmit FIFO EtherC Ethernet

initialize EtherC/E-DMAC

Set the registers
of EtherC/E-DMAC

Set transmit descriptor
and buffer

Initiate data transmission

Reading of
transmit descriptor

Frame transmission

Transmission
completed

Transmit descriptor write-back

Reading of the next

transmit descriptor

Subsequently repeated
for the next frame of data

for transfer

Transfer of data for transmission

Supplementary Notes

EtherC/E-DMAC initialization: Both modules are software reset by setting the SWR bit in the EDMR to 1.

EtherC/E-DMAC settings: 1 is written to the TE bit in the ECMR and the TR bit in the EDTRR.

Initiation of transmission: This is done by the above action (writing 1 to the TE bit in the ECMR and TR bit in the EDTRR).

Reading of transmit descriptor: The E-DMAC automatically reads the transmit descriptor

Transfer of data for transmission: The E-DMAC performs DMA transfer to write the data for transmission to the transmit FIFO.

Transmit descriptor write-back: The E-DMAC writes 0 to the TACT bit and writes the transmission state information

 to the transmit descriptor.

Figure 6 Sample Flow of Transmission

R01AN0302EJ0101 Rev. 1.01 Page 11 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

2.1.8 Procedure for Setting Module Used
This section describes an example of fundamental settings for reception of the Ethernet frames.
Figures 7 and 8 show an example of flowchart for setting the reception of Ethernet frames.

• The entire transmit-descriptor list is initialized.

 TD0: Bit TACT is set to 1 (valid).

 Bit TDLE is set to 1 in the last descriptor (and 0 in the others).

 Setting is not required for bit TFP because this item is written back by the E-DMAC.

 TD1: Bit RBL sets the maximum transmission byte length in the corresponding transmit buffer.

 Setting is not required for bit TDL because ‘‘this item is written back by the E-DMAC.

 TD2: Specifies the start address of the transmit buffer corresponding to each descriptor.

 The transmit buffer start address must be aligned with a longward boundary.

 When SDRAM is connected, it must be aligned with a 16-byte boundary.

 Padding area: This area is not used by the E-DMAC, but is freely available to the user.

START

• The EtherC and E-DMAC modules are reset by software.

 by writing the SWR bit in E-DMAC mode register.

 Access to all Ethernet-related registers is prohibited while

 the software reset is being executed (w‘hich takes 64 cycles of internal bus clock).

Set the transmit descriptor list

address register (TDLAR)

Reset the EtherC/E-DMAC

Make an initial setting

of the transmit discriptor

Clear the transmit descriptor to 0

Clear the transmit buffer to 0

Initialize the management pointer

of the transmit descriptor

• Areas of transmit descriptors on memory is cleared.

• Areas of transmit buffers on memory is cleared.

• Initializes pointer variable that manages the current descriptor.

 The start address of the transmit descriptor list is set as the inital value.

• Sets the start address of the transmit descriptor list.

 Lower-order bits are set as follows according to the specified descriptor length.

 16-byte boundary: TDLA[3:0] = 0000

 32-byte boundary: TDLA[4:0] = 00000

 64-byte boundary: TDLA[5:0] = 000000

 Actual memory areas are also allocated on corresponding boundaries.

Set the E-DMAC mode register

(EDMR)

• Slects whether or not the endian format is converted on data transfer by the E-DMAC.

• Decriptor length is set.

1

• Sets the capacity of the transmit FIFO and receive FIFO.

 The setting is H'00000707, which selects the maximum capacity of 512 bytes.

• Specifies the threshold for data in the transmit FIFO at which the first transmission is started.

 In store-and-forward mode, this is set to H'00000000. Lowering the threshold value improves

 throughput, but this requires care to avoid an underflow of data for transmission.
Set the transmit FIFO threshold

register (TMCR)

Set the IPG register (IPGR)
• Sets the gap between packets.

 The setting is H'14 which selects a gap of 96 bit periods.

Set the FIFO depth register

(FDR)

Set the transmit interrupt register

(TRIMD)

• The setting of the TIS bit in this register determines notification or non-notification of the completion

 of write-back for each transmitted frame. The TIS bit is set to 1, selecting notification of the completion

 of write-back for each transmitted frame.

Figure 7 Example of a Flowchart for Ethernet Settings (1)

R01AN0302EJ0101 Rev. 1.01 Page 12 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

END

Set the EtherC mode

register (ECMR)

Set the EtherC/E-DMAC status interrupt

permission register (EESIPR)

Set the interrupt priority register

(IPRC)

Set the EtherC interrupt

permission register (ECSIPR)

• Set whether CRC error frame is received as an error or not.

• Magic Packet detection is enebled if required.

• Internal/external loopback is specified if requied.

• Specify full duplex or half duplex mode

 The result of automatic negotiation by the PHY-LSI is reflected.

• Priority level of the E-DMAC-related interrupt is set.

 Bits 11 to 8 in the IPRC are set. The setting H'0 indicates the priority level 0 (requested mask),

 and H'F indicates the priority level 15 (the maximum level).

• Settings are made to the following bits: the link signal change interrupt enable,

magic packet detection interrupt enable, and illegal carrier detection interrupt enable.

Set ECIIP in EESIPR to 1 when this interrupt is used.

• Interrupts to all the bits in the EtherC/E-DMAC status register (EESR) are enabled.

Set the frame for transmission

 in the transmit buffer

Initiate transission

• The setting to enable the transmission of data associated with the current descriptor is made.

 The position within the frame for transmission is set in the TFP

 (the setting is three for one frame/one descriptor).

 The data length of a tranmit frame is set in the TDL ‘

 The length in bytes of the frame for transmission is set in the TDL.

 The TACT bit is set to1 (this bit is the last to be set)

TACT = 0?

Yes

No • Check that operations for the current descriptor are not in progress.

 Use the descriptor management pointer for transmission to check that the

 TACT bit is cleared to 0 and the transmission has been completed or aborted.

1

Clear EtherC/E-DMAC

status register (EESR)

Clear EtherC status register

(ECSR)
• The register is cleared to 0 by writing 1 to all of its bits

• The register is cleared to 0 by writing 1 to all of its bits

• Either full duplex or half duplex transfer method is obtained from the

 result of automatic negotiation by PHY-LSI

Automatic negotiation
completed?

Yes

No

Obtain the duplex mode

• When automatic negotiation is enabled, wait until it is completed

Enables data transmission • Transmission of data is enabled by setting the TE bit in the ECMR to 1.

• Data for transmission are set in buffer associated with the current descriptor.

Update the descriptor

management pointer

• The pointer is updated from the current descriptor to the next descriptor.

• The TR bit in EDTRR is set to 1 initiating tranmission

Set the transmit descriptor

Figure 8 Example of a Flowchart for Ethernet Settings (2)

R01AN0302EJ0101 Rev. 1.01 Page 13 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

2.2 Operation of the Sample Program
This sample program employs the EtherC and the E-DMAC modules to transmit 10 Ethernet frames from the host
personal computer at the other end. In this sample program, there are four transmit descriptors, and four areas of the
transmit buffer each with 1,520 bytes.
Transmit descriptors are used in a ring structure. The frame transmit complete interrupt (TC) is used to determine when
the transmission of one frame is completed and to start transmission of the next.
Data for transmission in the Ethernet frame (i.e., the frame with the exception of the preamble, start frame delimiter
(SFD), and CRC section) needs to be prepared. The destination and source MAC addresses in the header must be
changed to the MAC addresses of the devices in use. Note that the EtherC module does not check the source MAC
address.

Figure 9 shows operating environment of the sample program, and figure 10 shows a format of the Ethernet frame.

Host personal computer

Evaluation board for the SH7619

Ethernet cross cable

MAC address: 01-23-45-67-89-AB (e.g.) 00-0E-35-18-34-FA (e.g.)

IP address: 192.168.0.164 (e.g.) 192.168.0.5 (e.g.)

Direction of data transmission

Figure 9 Operating Environment of the Sample Program

Unit: bytes

Preamble SFD

MAC

destination

address

MAC

source

address

Data section CRC

Stored data in transmitting buffer: 60 to 1514 bytes

Type/

length

1 6 6 2 46 to 1500 47

Figure 10 Ethernet Frame Format

R01AN0302EJ0101 Rev. 1.01 Page 14 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

2.3 Definition of Descriptors Used in the Sample Program
The E-DMAC does not use the padding area of a descriptor; this area is freely available to the user. In this sample
program, this area is used to specify the address where the next descriptor starts, and this in conjunction with software
is used to arrange the descriptors in a ring structure.
Figure 11 shows the definition of the transmit-descriptor structure in the sample program and an example of how the
array of transmit descriptors is used.

Array of the transmit descriptors (ring structure)

First address of the second descriptor

First address of the third descriptor

First address of the fourth descriptor

First descriptor

Second descriptor

Third descriptor

First address of the first descriptor

Fourth descriptor

Definition of structure

of the transmit descriptor

typedef struct tag_edmac_send_desc

{

 TD0 td0;

 TD1 td1;

 TD2 td2;

 struct tag_edmac_send_desc*pNext;

} EDMAC_SEND_DESC;

Figure 11 Definition of Transmit Descriptor and Usage Example of Transmit Descriptor Array

R01AN0302EJ0101 Rev. 1.01 Page 15 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

2.4 Sequence of Processing by the Sample Program
Figures 12 to15 show the flow of processing in the sample program. Although descriptors and the various registers of
the EtherC and E-DMAC modules are initially set up for reception, processing for reception is not performed.
For details on the automatic negotiation function phy_autonego, see the application note “SH7670 Example of Setting
for Automatic Negotiation by Ethernet PHY-LSI (REJ06B0800)”.

START

Success?

Main function

main

LAN open

lan_open

Success ?

END

LAN close

lan_close

Yes

No

No

Yes

Transmission of the Ethernet frame
lan_recv

transmission

of 10 frames ?

Yes

No

Figure 12 Flow of Handling in the Sample Program (1)

R01AN0302EJ0101 Rev. 1.01 Page 16 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

START

LAN open function
lan_open

Reset the EtherC/E-DMAC registers
lan_reg_reset

Obtain result of automatic negotiation
phy_autonegophy_autonego

Create descriptors
lan_desc_create

Success?
No

Yes

Set the EtherC/E-DMAC registers
lan_reg_set

OPEN_OK OPEN_NG

START

LAN close function
lan_close

Set interrupt priority

of the E-DMAC to 0

Reset the EtherC/E-DMAC registers
lan_reg_reset

CLOSE_OK

Release the EtherC/E-DMAC

from module standby

Set the EtherC/E-DMAC

module standby

Set the MAC address
lan_set_mac

Figure 13 Flow of Handling in the Sample Program (2)

R01AN0302EJ0101 Rev. 1.01 Page 17 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

START

EtherC/E-DMAC reset function

lan_reg_reset

END

Set the SWR bit in the

E-DMAC mode register (EDMR)

Wait for over 64 bus clock cycles

START

Function for initialization of

transmit/receive descriptor
lan_desc_create

END

Make initial settings

for the transmit descriptor

Clear the descriptor area to 0

Clear the transmit and receive

buffers to 0

Function for EtherC/E-DMAC register setting

lan_reg_set

START

END

Set the transmit descriptor list

address register (TDLAR)

Set the E-DMAC mode register

(EDMR)

Set the receive descriptor list

address register (RDLAR)

Set the transmit FIFO threshold

register (TFTR)

Set the FIFO depth register

(FDR)

Set the E-DMAC operation

control register (EDOCR)

Set the receive frame length register

(RFLR)

Set the MAC address low

register (MALR)

Set the transmit/receive status

copy enable register (TRSCER)

Set the receivinig method

control register (RMCR)

Set the EtherC mode register

(ECMR)

Set the MAC address high

register (MAHR)

Set the IPG setting register

(IPGR)

Set the transmit interrupt register

(TRIMD)

Set the EtherC/E-DMAC

status register (EESR)

Set the EtherC/E-DMAC status

interrupt enable register (EESIPR)

Clear the EtherC status register

(ECSR)

EtherC interrupt enable register

(ECSIPR)

Set the interrupt priority register 12

(IPR12)

Enable operation for

transmitting and receiving

A

A

Make initial settings

for the receive descriptor

Initialize pointers

for descriptor mangement

Figure 14 Flow of Handling in the Sample Program (3)

R01AN0302EJ0101 Rev. 1.01 Page 18 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

START

Ethernet frame transmit function

lan_send

TACT = 0?

Copy the frame specified by argument
to the transmit buffer

Set data length to the TD1 in TDL

Set 1 to the TR bit in the EDTRR register
and initiate transmission

Yes

No

Turn on the flag indicating
transmission in progress

Is the flag indicating
transmission
turned off?

1 ms?

Wait for 100 µs

TACT= 0?

400 ms?

Yes

No

No

Yes

Yes

No

No

Yes
Update pointers

 for descriptor management

Set 1 to the TD0 in TACT

SEND_OK SEND_NG

The TACT bit is periodically monitored for safety,

altough this is normally unnecessary.

If transmission is halted for safety for a given period of time,

the error code is returned.

Figure 15 Flow of Handling in the Sample Program (4)

R01AN0302EJ0101 Rev. 1.01 Page 19 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

START

Interrupt function

INT_EDMAC_EINT0

END

Read and clear the EtherC/E-DMAC

status register (EESR)

Transmission-related

interrupts occur?

Yes

No

Clear the EtherC/E-DMAC

status register (EESR)

Transmit interrupt handling

lan_send_handler

Receive interrupt handling

lan_recv_handler

EtherC status interrupt handling

lan_etherc_handler

Reception-related

interrupts occur?

Yes

No

EtherC-related

interrupts occur?

Yes

No

Function for transmit interrupt handling

lan_send_handler

START

Clear the flag indicating transmission

END

Figure 16 Flow of Handling in the Sample Program (5)

R01AN0302EJ0101 Rev. 1.01 Page 20 of 41
Oct. 15, 2010

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 21 of 41
Oct. 15, 2010

3. Sample Program Listing

3.1 Sample program list "main.c" (1)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2007(2010) Renesas Electronics Corporation. All rights reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7671 Sample Program

* File Name : main.c

* Abstract : Setting for Transmission of Ethernet Frames

* Version : 1.00.01

* Device : SH7671

* Tool-Chain : High-performance Embedded Workshop (Ver.4.03.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.01 Release01).

* OS : None

* H/W Platform: M3A-HS71(CPU board)

* Description :

**

* History : Jul.04,2007 ver.1.00.00

* : Apr.07,2010 ver.1.00.01 Changed the company name and device name

*""FILE COMMENT END""**/

#include "iodefine.h"

#include "defs.h"

#include "ether.h"

/* **** Prototype Declaration **** */

void main(void);

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 22 of 41
Oct. 15, 2010

3.2 Sample program list "main.c" (2)
52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

/* **** Variable Declaration **** */

static unsigned char s_frame[] = {

 0xff,0xff,0xff,0xff,0xff,0xff, /* Destination MAC address */

 0x00,0x01,0x02,0x03,0x04,0x05, /* Source MAC address (00:01:02:03:04:05)*/

 0x08,0x06, /* Type (ARP) */

 0x00,0x01, /* +--H/W type= Ethernet */

 0x08,0x00, /* +--Protocol type= IP */

 0x06,0x04, /* +--HW/protocol address length */

 0x00,0x01, /* +--OPCODE= request */

 0x00,0x01,0x02,0x03,0x04,0x05, /* +--Source MAC address (00:01:02:03:04:05) */

 0xc0,0xa8,0x00,0x03, /* +--Source IP address (192.168.0.3) */

 0x00,0x00,0x00,0x00,0x00,0x00, /* +--Inquiry MAC address */

 0xc0,0xa8,0x00,0x05, /* +--Inquiry IP address (192.168.0.5) */

};

/*""FUNC COMMENT""***

 * ID :

 * Outline : Ethernet transmission sample program main function

 *---

 * Include : #include "iodefine.h"

 *---

 * Declaration : void main(void)

 *---

 * Function : On-chip ethernet controller (EtherC) and the dynamic memory access controller

 * : (E-DMAC)for the ethernet controller is used to transmit Ethernet frame.

 * : RTL8201CP from REALTEK is used for the PHY module.

 * : Multiple planes of transmit scripter is used for continuous transmission.

 *---

 * Argument : void

 *---

 * ReturnValue : void

 *---

 * Notice : Mac address acquired from EEPROM is not reflected on the transmission frame.

 *""FUNC COMMENT END""***/

void main(void)

{

 int i;

 int ret;

 /* ==== Ethernet initial setting ==== */

 ret = lan_open();

 if(ret == OPEN_OK){

 /* ==== 10-frame transmission start ==== */

 for(i=0; i<10; i++){

 /* ----transmission ---- */

 ret = lan_send(s_frame, sizeof(s_frame));

 if(ret != SEND_OK){

 break;

 }

 }

 }

 /* ==== Ethernet transmission and reception stop ==== */

 lan_close();

}

/* End of file */

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 23 of 41
Oct. 15, 2010

3.3 Sample program list "ether.c" (1)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2008(2010) Renesas Electronics Corporation. All rights reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7671 Sample Program

* File Name : ether.c

* Abstract : Setting for Transmission of Ethernet Frames

* Version : 1.00.01

* Device : SH7671

* Tool-Chain : High-performance Embedded Workshop (Ver.4.03.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.01 Release01).

* OS : None

* H/W Platform: M3A-HS71(CPU board)

* Description :

**

* History : Mar.05,2008 ver.1.00.00

* : Apr.07,2010 ver.1.00.01 Changed the company name and device name

*""FILE COMMENT END""**/

#include "machine.h"

#include "string.h"

#include "iodefine.h"

#include "defs.h"

#include "phy.h"

#include "ether.h"

#include "siic.h"

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 24 of 41
Oct. 15, 2010

3.4 Sample program list "ether.c" (2)
53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

/* **** Macro declaration **** */

#define DEVADDR_EEPROM 0 /* Depends on the EEPROM PIN setting */

#define ROMADDR_MAC 0 /* MAC address storage location in EEPROM */

#define DEFAULT_MAC_H 0x00010203 /* For debugging */

#define DEFAULT_MAC_L 0x00000405

#define MACSET_OK 0

#define MACSET_NG -1

/* **** Prototype declaration **** */

void main(void);

void lan_send_handler(unsigned long status);

static void lan_desc_create(void);

static void lan_reg_reset(void);

static void lan_reg_set(int link);

static int lan_set_mac(void);

/* **** Variable declaration **** */

/* ---- Discriptor ---- */

#pragma section ETH_DESC /* Allocate to 16-byte boundary */

static volatile TXRX_DESCRIPTOR_SET desc; /* Descriptor area */

#pragma section

/* ---- Buffer ---- */

#pragma section ETH_BUFF /* Allocate to 16-byte boundary */

static volatile TXRX_BUFFER_SET buf; /* Transmit/receive buffer area */

#pragma section

/* ---- MAC address ---- */

static unsigned long my_macaddr_h;

static unsigned long my_macaddr_l;

/* ---- Others ---- */

static volatile int f_send = 0; /* Transmitting flag */

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 25 of 41
Oct. 15, 2010

3.5 Sample program list "ether.c" (3)
84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

/*""FUNC COMMENT""***

* ID :

* Outline : Ethernet open function

*---

* Include : #include "iodefine.h"

* : #include "phy.h"

* : #include "ether.h"

*---

* Declaration : int lan_open(void)

*---

* Function : Initialize E-DMAC, EtherC, PHY, and buffer memory

* : Initialization required for Ethernet is done within the function, and

* : transmit/receive is enabled. If this fails, an error is returned.

*---

* Argument : void

*---

* ReturnValue : OPEN_OK(0) : Open successful

* : OPEN_NG(-1) : Open failed

*---

* Notice :

*""FUNC COMMENT END""***/

int lan_open(void)

{

 int link;

 /* ==== PFC setting ==== */

// PORT.PBCRL1.BIT.PB6MD = 1; /* Setting for using the DK30686 board */

 PORT.PCCRH1.WORD = 0x0155; /* EtherC function */

 PORT.PCCRL1.WORD = 0x5555;

 PORT.PCCRL2.WORD = 0x5555;

 /* ==== Release EtherC/EDMAC module standby mode ==== */

 CPG.STBCR4.BIT.MSTP40 = 0;

 /* ==== EtherC,E-DMAC halted === */

 lan_reg_reset();

 /* ==== Buffer initialization ==== */

 lan_desc_create();

 /* ==== Acquire MAC address ==== */

 lan_set_mac();

 /* ==== EtherC,E-DMAC setting ==== */

 link = phy_autonego(); /* Check duplex mode */

 if(link == NEGO_FAIL){

 return OPEN_NG; /* OPEN failed */

 }

 else{

 lan_reg_set(link);

 }

 return OPEN_OK;

}

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 26 of 41
Oct. 15, 2010

3.6 Sample program list "ether.c" (4)
132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

/*""FUNC COMMENT""***

* ID :

* Outline : Ethernet close function

*---

* Include : #include "iodefine.h"

* : #include "ether.h"

*---

* Declaration : int lan_close(void)

*---

* Function : EDMAC/EtherC EDMAC/EtherC halted

* : Clock supply to EDMAC/EtherC stops

*---

* Argument : void

*---

* ReturnValue : int CLOSE_OK(0) : Close successful

* : CLOSE_NG(-1) : Close failed

*---

* Notice :

*""FUNC COMMENT END""***/

int lan_close(void)

{

 int i;

 /* ==== Reset EtherC,E-DMAC === */

 lan_reg_reset();

 /* ==== EtherC,E-DMAC halted === */

 CPG.STBCR4.BIT.MSTP40 = 1;

 /* ==== E-DMAC-related interrupts are disabled=== */

 INTC.IPR12.BIT._ETC = 0;

 return CLOSE_OK;

}

/*""FUNC COMMENT""***

* ID :

* Outline : Frame transmission function

*---

* Include : #include "ether.h"

* : #include "iodefine.h"

*---

* Declaration : int lan_send(unsigned char *addr, int flen)

*---

* Function : Specified frame is copied and transmitted to the buffer registered

* : in the transmit descriptor. Wait processing continues until transmission

* : is completed. For safety, EDMAC is periodically monitored.

*---

* Argument : None

*---

* ReturnValue : SEND_OK(0) : Registration successful

* : SEND_NG(-1) : Registration failed

*---

* Notice :

*""FUNC COMMENT END""***/

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 27 of 41
Oct. 15, 2010

3.7 Sample program list "ether.c" (5)
185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

int lan_send(unsigned char *addr, int flen)

{

 int i;

 int t1ms = 0;

 int t400ms = 0;

 /* ==== Check that data is not being transmitted ==== */

 while(desc.pSend_top->td0.BIT.TACT == 1){

 ;/* wait */

 }

 /* ==== Set the flag for transmission in process ==== */

 f_send = 1; /* Clear by transmit-end interrupt */

 /* ==== Updated transmit descriptor ==== */

 memcpy(desc.pSend_top->td2.TBA, addr, flen); /* Transmitted data */

 if(flen < 60){ /* Minimum frame of 60 bytes */

 memcpy((desc.pSend_top->td2.TBA)+flen, 0, 60-flen); /* Padding */

 flen = 60;

 }

 desc.pSend_top->td1.TDL = flen; /* Data length" */

 desc.pSend_top->td0.BIT.TACT = 1; /* Transmission enabled */

 /* ==== Activate if transmission is stopped ==== */

 if(EDMAC.EDTRR.BIT.TR == 0){ /* Check by reading data */

 EDMAC.EDTRR.BIT.TR = 1;

 }

 /* ==== Check transmission completion ==== */

 while(f_send){

 for(i=LOOP_100us; i>0; i--){

 ;/* 100us wait */

 }

 /* ---- Check descriptor when 1 ms elapsed ---- */

 if(++t1ms > 10){

 t1ms = 0;

 if(desc.pSend_top->td0.BIT.TACT == 0){

 break;

 }

 }

 /* ---- If 400 ms has elapsed judge that EDMAC operation stopped ---- */

 if(++t400ms > 4000){

 t400ms = 0;

 return SEND_NG;

 }

 }

 /* ==== Update current pointer ==== */

 desc.pSend_top = desc.pSend_top->pNext;

 return SEND_OK;

}

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 28 of 41
Oct. 15, 2010

3.8 Sample program list "ether.c" (6)
235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

/*""FUNC COMMENT""***

* ID :

* Outline : Descriptor configuration function

*---

* Include : #include "ether.h"

*---

* Declaration : static void lan_desc_create(void)

*---

* Function : Initialize transmit/receive buffer required for Ethernet and

* : initialize descriptor. One frame/one buffer is assumed.

*---

* Argument : void

*---

* ReturnValue : void

*---

* Notice :

*""FUNC COMMENT END""***/

static void lan_desc_create(void)

{

 int i;

 /* ==== Descriptor area configuration ==== */

 /* ---- Memory area ---- */

 memset(&desc, 0, sizeof(desc));

 /* ---- Transmit descriptor ---- */

 for(i=0; i<NUM_OF_TX_DESCRIPTOR; i++){

 desc.send[i].td2.TBA = buf.send[i]; /* TD2 */

 desc.send[i].td1.TDL = 0; /* TD1 */

 desc.send[i].td0.LONG= 0x30000000; /* TD0:1frame/1buf, transmission disabled*/

 if(i != (NUM_OF_TX_DESCRIPTOR-1)){ /* pNext */

 desc.send[i].pNext = &desc.send[i+1];

 }

 }

 desc.send[i-1].td0.BIT.TDLE = 1;

 desc.send[i-1].pNext = &desc.send[0];

 /* ---- Receive descriptor ---- */

 for(i=0; i<NUM_OF_RX_DESCRIPTOR; i++){

 desc.recv[i].rd2.RBA = buf.recv[i]; /* RD2 */

 desc.recv[i].rd1.RBL = SIZE_OF_BUFFER; /* RD1 */

 desc.recv[i].rd0.LONG= 0xb0000000; /* RD0:1frame/1buf reception enabled */

 if(i != (NUM_OF_RX_DESCRIPTOR-1)){ /* pNext */

 desc.recv[i].pNext = &desc.recv[i+1];

 }

 }

 desc.recv[i-1].rd0.BIT.RDLE = 1; /* Set the last descriptor */

 desc.recv[i-1].pNext = &desc.recv[0];

 /* ---- Initialize descriptor management information ---- */

 desc.pSend_top = &desc.send[0];

 desc.pRecv_end = &desc.recv[0];

 /* ==== Buffer area configuration ==== */

 /* ---- Clear the area ---- */

 memset(&buf, 0, sizeof(buf));

}

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 29 of 41
Oct. 15, 2010

3.9 Sample program list "ether.c" (7)
289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

/*""FUNC COMMENT""***

* ID :

* Outline : EtherC,E-DMAC registers initialization function

*---

* Include : #include "iodefine.h"

*---

* Declaration : static void lan_reg_reset(void)

*---

* Function : Reset EtherC and E-DMAC registers

* : Secure a reset period of Bf・4 cycles or more within the function

*---

* Argument : void

*---

* ReturnValue : void

*---

* Notice :

*""FUNC COMMENT END""***/

static void lan_reg_reset(void)

{

 volatile int j = 100; /* Wait for Bf・4 cycles */

 /* ---- Software reset ---- */

 EDMAC.EDMR.BIT.SWR = 1;

 /* ---- Secure reset period ---- */

 while(j--){

 /* Wait for Bf・4 cycles */

 }

}

/*""FUNC COMMENT""***

* ID :

* Outline : Setting EhterC,E-DMAC registers

*---

* Include : #include "iodefine.h"

* : #include "phy.h"

* : #include "ether.h"

*---

* Declaration : void lan_reg_set(int link)

*---

* Function : E-DMAC, EtherC initialization

* : Both transmission and reception are enabled by the setting

*---

* Argument : int link : I :Duplex-mode is set to EhterC

* : :Return value of phy_autonego function is used

*---

* ReturnValue : void

*---

* Notice: Execute this function in transmit/receive stopped state after EDMAC software

reset.

*""FUNC COMMENT END""***/

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 30 of 41
Oct. 15, 2010

3.10 Sample program list "ether.c" (8)
337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

static void lan_reg_set(int link)

{

 /* ==== EDMAC ==== */

 EDMAC.EDMR.LONG = 0x00000000; /* Endian not changed (big endian) */

 /* descriptor length is 16 bytes */

 EDMAC.TDLAR = &desc.send[0]; /* Transmit descriptor start */

 EDMAC.RDLAR = &desc.recv[0]; /* Receive descriptor start */

 EDMAC.TRSCER.LONG = 0x00000000; /* Copy all status to descriptor */

 EDMAC.TFTR = 0x00; /* Transmit FIFO threshold: store&forward */

 EDMAC.FDR.BIT.TFD = 1; /* Receive FIFO threshold: store&forward */

 EDMAC.FDR.BIT.RFD = 1; /* Transmit FIFO capacity of 512 bytes */

 EDMAC.RMCR.BIT.RNC = 1; /* Receive FIFO capacity of 512 bytes */

 EDMAC.EDOCR.LONG = 0x00000000; /* Continuous reception enabled */

 EDMAC.FCFTR.LONG = 0x00070000; /* Operation continues on FIFO error */

 EDMAC.TRIMD.BIT.TIS = 1; /* Flow control threshold setting, disabled by EtherC */

 /* ==== EtherC ==== */

 EtherC.ECMR.LONG = 0x00000000; /* Flow control disabled */

 /* CRC frame is recognized as an error */

 /* Magic Packet detection is disabled */

 /* Reception disabled */

 /* Transmission disabled */

 /* No internal loopback */

 /* No external loopback */

 /* Duplex mode (half-duplex mode) */

 /* No promiscuous-mode operation */

 if(link == FULL_TX || link == FULL_10M){

 EtherC.ECMR.BIT.DM = 1; /* Set to full-duplex mode */

 }

 EtherC.MAHR = my_macaddr_h; /* MAC address setting */

 EtherC.MALR = my_macaddr_l;

 EtherC.RFLR = 0x000; /* Maximum receive frame length of 1518 bytes */

 EtherC.IPGR = 0x14; /* Gap between packets (96-bit period) */

 /* ==== Interrupt-related ==== */

 EDMAC.EESR.LONG = 0x47FF0F9F; /* Clear all status (clear by writing 1) */

 EDMAC.EESIPR.LONG = EDMAC_EESIPR_INI_SEND | EDMAC_EESIPR_INI_RECV |

EDMAC_EESIPR_INI_EtherC;

 /* Transmit/receive enable setting */

 EtherC.ECSR.LONG = 0x00000017; /* Transmit/receive and EtherC interrupts enabled */

 EtherC.ECSIPR.LONG = EtherC_ECSIPR_INI; /* Enable interrupts */

 INTC.IPR12.BIT._ETC = 5; /* E-DMAC(EINT0) interrupt priority level */

 /* ==== Set to enable transmission/reception ==== */

 /* ---- EtherC ---- */

 EtherC.ECMR.BIT.RE = 1; /* Reception enabled */

 EtherC.ECMR.BIT.TE = 1; /* Transmission enabled */

 /* ---- E-DMAC ---- */

 if(EDMAC.EDRRR.BIT.RR == 0){

 EDMAC.EDRRR.BIT.RR = 0; /* Reception disabled */

 }

}

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 31 of 41
Oct. 15, 2010

3.11 Sample program list "ether.c" (9)
385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

/*""FUNC COMMENT""***

* ID :

* Outline : Transmit interrupt function

*---

* Include : #include "iodefine.h"

* : #include "ether.h"

*---

* Declaration : void lan_send_handler(unsigned long status)

*---

* Function : Interrupt handler related to transmission regarding EDMAC(EESR)

* :

*---

* Argument : unsigned long status : I : EESR state (interrupt-enabled bits only)

*---

* ReturnValue : None

*---

* Notice :

*""FUNC COMMENT END""***/

void lan_send_handler(unsigned long status)

{

 /* ==== Clear the flag for transmission in progress ==== */

 f_send = 0;

}

/*""FUNC COMMENT""***

* ID :

* Outline : Interrupt handler related to reception regarding EDMAC (EESSR)

*---

* Include : #include "iodefine.h"

* : #include "ether.h"

*---

* Declaration : void lan_recv_handler(unsigned long status)

*---

* Function : EDMAC(EESR) EESR state (interrupt-enabled bits only)

* :

*---

* Argument : unsigned long status : I : EESR state (interrupt-enabled bits only)

*---

* ReturnValue : none

*---

* Notice : Nothing is done by this sample task

*""FUNC COMMENT END""***/

void lan_recv_handler(unsigned long status)

{

}

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 32 of 41
Oct. 15, 2010

3.12 Sample program list "ether.c" (10)
429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

/*""FUNC COMMENT""***

* ID :

* Outline : EtherC interrupt function

*---

* Include : #include "iodefine.h"

* : #include "ether.h"

*---

* Declaration : void lan_etherc_handler(unsigned long status)

*---

* Function : Interrupt handler regarding EtherC(ECSR)

* :

*---

* Argument : unsigned long status : I : ECSR state (interrupt-enabled bits only)

*---

* ReturnValue : none

*---

* Notice : Nothing is done by this sample task

*""FUNC COMMENT END""***/

void lan_etherc_handler(unsigned long status)

{

}

/*""FUNC COMMENT""***

* ID :

* Outline : MAC address setting

*---

* Include : #include "siic.h"

*---

* Declaration : static int lan_set_mac(void)

*---

* Function : Function to obtain MAC address from EEPROM

*---

* Argument : None

*---

* ReturnValue : MACSET_OK(0) : Acquisition successful

* : MACSET_NG(-1) : Acquisition failed

*---

* Notice :

*""FUNC COMMENT END""***/

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 33 of 41
Oct. 15, 2010

3.13 Sample program list "ether.c" (11)
468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

static int lan_set_mac(void)

{

 volatile int ret, i;

 unsigned char buf[10];

 /* ==== EEPROM driver initial setting ==== */

 siic_Init_Driver();

 /* ==== Read data from EEPROM ==== */

 ret = siic_EepRomRW(DEVADDR_EEPROM, ROMADDR_MAC, 6, buf, SIIC_MODE_EEP_READ);

 if (ret < SIIC_OK) {

 /* ---- Read failed ---- */

 my_macaddr_h = DEFAULT_MAC_H;

 my_macaddr_l = DEFAULT_MAC_L;

 return MACSET_NG;

 }

 do{

 ret = siic_Chk_Eep();

 if(ret < SIIC_OK){

 /* ---- Read failed ---- */

 my_macaddr_h = DEFAULT_MAC_H;

 my_macaddr_l = DEFAULT_MAC_L;

 return MACSET_NG;

 }

 }while(ret != SIIC_OK);

 /* ---- Read successful ---- */

 for(i=0; i<6; i++){

 if(buf[i] != 0xff){

 break;

 }

 }

 if(i == 6){

 /* ---- Set the default value when EEPROM is not set ---- */

 my_macaddr_h = DEFAULT_MAC_H;

 my_macaddr_l = DEFAULT_MAC_L;

 }

 else{

 /* ---- Set the read address ---- */

 my_macaddr_h = buf[0];

 my_macaddr_h <<= 8;

 my_macaddr_h |= buf[1];

 my_macaddr_h <<= 8;

 my_macaddr_h |= buf[2];

 my_macaddr_h <<= 8;

 my_macaddr_h |= buf[3];

 my_macaddr_l = buf[4];

 my_macaddr_l <<= 8;

 my_macaddr_l |= buf[5];

 }

 return MACSET_OK;

}

/* End of file */

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 34 of 41
Oct. 15, 2010

3.14 Sample program list "ether.h" (1)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2007(2010) Renesas Electronics Corporation. All rights reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7671 Sample Program

* File Name : ether.h

* Abstract : Setting for Transmission of Ethernet Frames

* Version : 1.00.01

* Device : SH7671

* Tool-Chain : High-performance Embedded Workshop (Ver.4.03.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.01 Release01).

* OS : None

* H/W Platform: M3A-HS71(CPU board)

* Description :

**

* History : Nov.07,2007 ver.1.00.00

* : Apr.07,2010 ver.1.00.01 Changed the company name and device name

*""FILE COMMENT END""**/

#ifndef _ETHER_H

#define _ETHER_H

/* **** Macro definition **** */

#define NUM_OF_TX_DESCRIPTOR 4

#define NUM_OF_RX_DESCRIPTOR 4

#define NUM_OF_TX_BUFFER 4

#define NUM_OF_RX_BUFFER 4

#define SIZE_OF_BUFFER 1520 /* Must be an integral multiple of 16 */

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 35 of 41
Oct. 15, 2010

3.15 Sample program list "ether.h" (2)
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

#define OPEN_OK 0

#define OPEN_NG -1

#define SEND_OK 0

#define SEND_NG -1

#define CLOSE_OK 0

#define CLOSE_NG -1

#define MIN_FRAME_SIZE 60

#define MAX_FRAME_SIZE 1514

#define EDMAC_EESIPR_INI_SEND 0x44080F00 /* 0x40000000 : Write-back completed *

 * 0x04000000 : Detect transmit suspended *

 * Not used 0x00200000 : Frame transmission completed*

 * 0x00200000 : transmit FIFO underflow *

 * 0x00080000 : Carrier not detected *

 * 0x00000800 : Carrier lost detected *

 * 0x00000400 : Delayed collision detected *

 * 0x00000200 : Transmit retry-over condition*

 * 0x00000100 : Detect reception suspended */

#define EDMAC_EESIPR_INI_RECV 0x0205001F /* 0x02000000 : Detect frame reception *

 * 0x00040000 : Frame reception *

 * 0x00010000 : Receive FIFO overflow *

 * 0x00000010 : Residual bit frame reception*

 * 0x00000008 : Long frame reception *

 * 0x00000004 : Short frame reception *

 * 0x00000002 : PHY-LSI reception error *

 * 0x00000001 : Receive frame CRC error */

#define EDMAC_EESIPR_INI_EtherC 0x00400000 /* 0x00400000 : EtherC status register */

#define EtherC_ECSIPR_INI 0x00000004 /* 0x00000004 : Ling signal change */

/* **** Type definition **** */

/* ==== Transmit descriptor ==== */

typedef union{

 unsigned long LONG;

 struct{

 unsigned int TACT:1; /* Transmit descriptor enabled */

 unsigned int TDLE:1; /* Transmit descriptor end */

 unsigned int TFP :2; /* Location 1, 0 within transmit frame */

 unsigned int TFE :1; /* Transmit frame error */

 unsigned int reserved :23; /* TFS26 to 4 (reserved) */

 unsigned int TFS3:1; /* No carrier is detected (CND bit in EESR) */

 unsigned int TFS2:1; /* Carrier lost is detected (DLC bit in EESR) */

 unsigned int TFS1:1; /* Delayed collision detected during transmission (CD bit in

EESR)*/

 unsigned int TFS0:1; /* Transmit retry over condition (TRO bit in EESR)*/

 }BIT;

}TD0;

typedef struct{

 unsigned short TDL; /* Transmit buffer data length */

 unsigned short reserved;

}TD1;

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 36 of 41
Oct. 15, 2010

3.16 Sample program list "ether.h" (3)
105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

typedef struct{

 unsigned char *TBA; /* Address of transmit buffer */

}TD2;

typedef struct tag_edmac_send_desc{

 TD0 td0;

 TD1 td1;

 TD2 td2;

 struct tag_edmac_send_desc *pNext;

}EDMAC_SEND_DESC;

/* ==== xxxxxxxxxxxxxxx ==== */

typedef union{

 unsigned long LONG;

 struct{

 unsigned int RACT:1; /* Receive descriptor enabled */

 unsigned int RDLE:1; /* End of receive descriptor*/

 unsigned int RFP :2; /* Location 1,0 within receive frame */

 unsigned int RFE :1; /* Receive frame error */

 unsigned int reserved1:17; /* TFS26 to 10: reserved */

 unsigned int RFS9:1; /* Receive FIFO overflow (RFOF bit in EESR)*/

 unsigned int reserved2:1; /* Reserved */

 unsigned int RFS7:1; /* Receive multicast frames (RMAF bit in EESR)*/

 unsigned int reserved3:1; /* Reserved */

 unsigned int reserved4:1; /* Reserved */

 unsigned int RFS4:1; /* Residual bits frame receive error (RRF bit in ESESR)*/

 unsigned int RFS3:1; /* Long frame receive error (RTLE bit in EESR)*/

 unsigned int RFS2:1; /* Short frame receive error (RTSP bit in EESR)*/

 unsigned int RFS1:1; /* PHY-LSI receive error (PRE bit in EESR)*/

 unsigned int RFS0:1; /* Receive frame CRC error detected (CERF bit in EESCR)*/

 }BIT;

}RD0;

typedef struct{

 unsigned short RBL; /* Receive buffer length */

 unsigned short RDL; /* Receive data length */

}RD1;

typedef struct{

 unsigned char *RBA; /* Receive buffer address */

}RD2;

typedef struct tag_edmac_recv_desc{

 RD0 rd0;

 RD1 rd1;

 RD2 rd2;

 struct tag_edmac_recv_desc *pNext;

}EDMAC_RECV_DESC;

/*== The whole transmit/receive descriptors (must be allocated in 16-byte boundaries) ==*/

typedef struct{

 EDMAC_SEND_DESC send[NUM_OF_TX_DESCRIPTOR];

 EDMAC_RECV_DESC recv[NUM_OF_RX_DESCRIPTOR];

 EDMAC_SEND_DESC *pSend_top; /* Registration location of transmit descriptors */

 EDMAC_RECV_DESC *pRecv_end; /* Registration location and reception end of transmit

descriptors */

}TXRX_DESCRIPTOR_SET;

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 37 of 41
Oct. 15, 2010

3.17 Sample program list "ether.h" (4)
157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

/* ==== Transmit/receive buffers (must be allocated in 16-byte boundaries) ==== */

/* ---- Definition of all transmit/receive buffer areas ---- */

typedef struct{

 unsigned char send[NUM_OF_TX_BUFFER][SIZE_OF_BUFFER];

 unsigned char recv[NUM_OF_RX_BUFFER][SIZE_OF_BUFFER];

}TXRX_BUFFER_SET;

/* **** Prototype Declaration **** */

int lan_open(void);

int lan_close(void);

int lan_send(unsigned char *addr, int flen);

#endif

/* End of File */

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 38 of 41
Oct. 15, 2010

3.18 Sample program list "intprg_eth.c" (1)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2007(2010) Renesas Electronics Corporation. All rights reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7671 Sample Program

* File Name : intprg_eth.c

* Abstract : interrupt entry function

* Version : 1.00.01

* Device : SH7671

* Tool-Chain : High-performance Embedded Workshop (Ver.4.03.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.01 Release01).

* OS : None

* H/W Platform: M3A-HS71(CPU board)

* Description :

**

* History : Sep.18,2007 ver.1.00.00

* : May 10,2010 ver.1.00.01 Changed the company name and device name

*""FILE COMMENT END""**/

(omitted)

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 39 of 41
Oct. 15, 2010

3.19 Sample program list "intprg_eth.c" (2)
670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

// 171 ETC EINT0

void INT_ETC_EINT0(void)

{

 unsigned long stat_edmac;

 unsigned long stat_EtherC;

 /* ---- Clear the interrupt request flag ---- */

 stat_edmac = EDMAC.EESR.LONG & EDMAC.EESIPR.LONG;

 /* Targets are restricted to allowed interrupts */

 EDMAC.EESR.LONG = stat_edmac;

 /* ==== Transmission-related ==== */

 if(stat_edmac & EDMAC_EESIPR_INI_SEND){

 lan_send_handler(stat_edmac & EDMAC_EESIPR_INI_SEND);

 }

 /* ==== Reception-related ==== */

 if(stat_edmac & EDMAC_EESIPR_INI_RECV){

 lan_recv_handler(stat_edmac & EDMAC_EESIPR_INI_RECV);

 }

 /* ==== EtherC-related ==== */

 if(stat_edmac & EDMAC_EESIPR_INI_EtherC){

 /* ---- Clear the interrupt request flag ---- */

 stat_EtherC = EtherC.ECSR.LONG & EtherC.ECSIPR.LONG;

 /* Targets are restricted to allowed interrupts */

 EtherC.ECSR.LONG = stat_EtherC;

 lan_etherc_handler(stat_EtherC);

 }

}

(omitted)

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 40 of 41
Oct. 15, 2010

4. References
• Software Manual

SH-2A/SH2A-FPU Software Manual Rev. 3.00
The latest version of the software manual can be downloaded from the Renesas Electronics website.

• Hardware Manual
SH7670 Group Hardware Manual Rev. 2.00
The latest version of the hardware user's manual can be downloaded from the Renesas Electronics website.

SH7670 Group Example of Setting for Transmission of Ethernet Frames

R01AN0302EJ0101 Rev. 1.01 Page 41 of 41
Oct. 15, 2010

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 Dec.24.08 — First edition issued
1.01 Oct.15.10 — Changed the sample program (AC Switching Characteristics

are removed)

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Introduction
	1.1 Specifications
	1.2 Module Used
	1.3 Applicable Conditions
	1.4 Related Application Notes

	2. Description of the Sample Application
	2.1 Operational Overview of Module Used
	2.1.1 Overview of the EtherC
	2.1.2 Overview of the EtherC Transmitter
	2.1.3 Overview of the E-DMAC
	2.1.4 Overview of E-DMAC Descriptors
	2.1.5 Overview of Transmit Descriptors
	2.1.6 Example of Setting Transmit Descriptors
	2.1.7 Operation of the Sample Program
	2.1.8 Procedure for Setting Module Used

	2.2 Operation of the Sample Program
	2.3 Definition of Descriptors Used in the Sample Program
	2.4 Sequence of Processing by the Sample Program

	3. Sample Program Listing
	3.1 Sample program list "main.c" (1)
	3.2 Sample program list "main.c" (2)
	3.3 Sample program list "ether.c" (1)
	3.4 Sample program list "ether.c" (2)
	3.5 Sample program list "ether.c" (3)
	3.6 Sample program list "ether.c" (4)
	3.7 Sample program list "ether.c" (5)
	3.8 Sample program list "ether.c" (6)
	3.9 Sample program list "ether.c" (7)
	3.10 Sample program list "ether.c" (8)
	3.11 Sample program list "ether.c" (9)
	3.12 Sample program list "ether.c" (10)
	3.13 Sample program list "ether.c" (11)
	3.14 Sample program list "ether.h" (1)
	3.15 Sample program list "ether.h" (2)
	3.16 Sample program list "ether.h" (3)
	3.17 Sample program list "ether.h" (4)
	3.18 Sample program list "intprg_eth.c" (1)
	3.19 Sample program list "intprg_eth.c" (2)

	4. References

