
 APPLICATION NOTE

R01AN0303EJ0101 Rev. 1.01 Page 1 of 39
Oct. 15, 2010

SH7670 Group
Example of Setting for Reception of Ethernet Frames

Summary
This application note describes an example of settings for connecting the Ethernet controller of the SH7670, SH7671,
SH7672 and SH7673.

Target Device
SH7670 MCU

Contents

1. Introduction.. 2

2. Description of the Sample Application .. 3

3. Sample Program Listing.. 19

4. References .. 38

R01AN0303EJ0101
Rev. 1.01

Oct. 15, 2010

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 2 of 39
Oct. 15, 2010

1. Introduction

1.1 Specifications
• In this sample program, ten Ethernet frames are received. Every time an Ethernet frame is received, the frame-

received interrupt is used to initiate copying of the frame to a user buffer.

1.2 Module Used
• Ethernet controller (EtherC)
• Ethernet controller direct memory access controller (E-DMAC)
• Interrupt controller (INTC)
• I2C bus interface 3 (IIC3)
• Pin function controller (PFC)

1.3 Applicable Conditions
MCU SH7670
Operating Frequency Internal clock: 200 MHz
 Bus clock: 66.6 MHz
 Peripheral clock: 33.3 MHz
Integrated Development
Environment

Renesas Electronics
High-performance Embedded Workshop Ver.4.03.00

C Compiler Renesas Electronics SuperH RISC engine Family
C/C++ compiler package Ver.9.01 Release 01

Compiler Options Default setting in the High-performance Embedded Workshop
(-cpu=sh2afpu -fpu=single -debug -gbr=auto -global_volatile=0 -opt_range=all
-infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1)

1.4 Related Application Notes
For more information, refer to the following application notes:

• SH7670 Group Example of Initialization
• SH7670 Group Example of Setting for Automatic Negotiation by Ethernet PHY-LSI
• SH7670 Group Example of Setting for Transmission of Ethernet Frames

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 3 of 39
Oct. 15, 2010

2. Description of the Sample Application
• This sample application employs an Ethernet controller (EtherC) and a direct memory access controller for Ethernet

controller (E-DMAC).

2.1 Operational Overview of Module Used
Be sure to use the EtherC and E-DMAC modules to handle Ethernet communications for this LSI. The EtherC module
controls the transmission and reception of Ethernet frames. E-DMAC specifically handles DMA transfer between its
transmission/reception FIFO and data-storage areas (buffers) specified by the user.

2.1.1 Overview of the EtherC
This LSI has an on-chip Ethernet controller (EtherC) that conforms to the Ethernet or the IEEE802.3 MAC (Media
Access Control) layer standard. Connecting a physical-layer LSI (PHY-LSI) complying with this standard enables the
EtherC to perform transmission and reception of Ethernet/IEEE802.3 frames. The EtherC with this on-chip LSI has one
MAC layer interface. The Ethernet controller is connected to the direct memory access controller for Ethernet controller
(E-DMAC) inside this LSI, and carries out high-speed data transfer to and from the memory.

Figure 1 shows a configuration of the EtherC.

E-DMAC

EtherC

E-DMAC interface

MAC

Receive
controller

Transmit
controller

Command status
interface

MII

PHY

Figure 1 Configuration of the EtherC

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 4 of 39
Oct. 15, 2010

2.1.2 Overview of the EtherC Receiver
The EtherC receiver separates the frame of data which have been input from the MII (Media Independent Interface) into
preamble, SFD (Start Frame Delimiter), data and CRC (Cyclic Redundancy Check) code. Then it outputs the portion
other than preamble, SFD and CRC code to the receiver E-DMAC. Figure 2 shows the state transitions of the EtherC
receiver. The flow of operations in reception is described below.

1. When the receive enable (RE) bit of the EtherC mode register (ECMR) is set, the EtherC receiver enters the idle

state.
2. When the start frame delimiter (SFD) is detected after the preamble of a frame to be received, the EtherC receiver

starts processing for reception. A frame with an invalid pattern is discarded.
3. In normal mode, the EtherC receiver starts reception of data (i) if the destination MAC address matches the

receiver’s own address, (ii) in the case of a broadcast frame, and (iii) in the case of multicast frame. If promiscuous
mode has been specified, the EtherC receiver starts reception of data irrespective of the frame type.

4. After a frame has been received from the MII, the EtherC receiver carries out a CRC of the frame data. The result is
indicated as a status bit in the descriptor after the frame of data has been written to memory. If an error is found, the
error state is reported to the EtherC/E-DMAC status register (EESR).

5. After one frame has been received, the EtherC receiver enters the idle state in readiness for receiving the next frame.

Reset

RE set

RE reset

[Legend]

 SFD: Start Frame Delimiter

 CRC: Cyclic Redundancy Check

Note: * The error frame also transmits data to the buffer.

Preamble

detection SFD

reception

RX-DV negation

Own destination address

or broadcast

or multicast

or promiscuous

End of

reception

Error

notification*

Receive error

detection

Receive error

detection

Normal reception

Reception

halted

Illegal carrier

detection

Idle
Start of frame

reception

Destination address

reception

Error

detection

Data

reception

CRC

reception

Wait for SFD

reception

Promiscuous and other

station destination address

SFD

non-reception

Figure 2 State Transmissions of the EtherC Receiver

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 5 of 39
Oct. 15, 2010

2.1.3 Overview of the E-DMAC
This LSI includes a direct memory access controller (E-DMAC) directly connected to the Ethernet controller (EtherC).
The E-DMAC transfers data for transmission and reception between transmit/receive FIFO in the E-DMAC and data
storage location (transmit/receive buffer) specified by user using DMA transfer. Directly writing data to or reading data
from the transmit/receive FIFO by the CPU is not possible. During DMA transfer, the E-DMAC refers to information
called transmit and receive descriptors (details to be described in the next section); these are placed in memory by the
user. The E-DMAC reads the descriptor information before transmitting or receiving an Ethernet frame, and follows the
descriptor in reading data for transmission from the transmission buffer or writing received data to the receiving buffer.
By setting up a number of consecutive descriptors (a descriptor list), it is possible to execute the consecutive transfer of
multiple Ethernet frames. This E-DMAC function lightens the load on the CPU and enables efficiency in data transfer
control.

Figure 3 shows the configuration of the E-DMAC, and of the related descriptors and buffers.

The E-DMAC has the following features;
• Equipped with two independent on-chip DMACs for transmission and reception
• The load on the CPU is reduced by means of a descriptor management system
• Transmit/receive frame status information is indicated in descriptors
• Block transfer by using DMA (16-byte units) achieves efficient utilization of the system bus.
• Supports one-frame/one-descriptor, one-frame/multi-frame (multi-buffer) operation (see section 2.1.5)

EtherC

E-DMAC

Transmit DMAC

Internal
bus

interface

Descriptor
information

Transmit
FIFO

Receive DMAC

Descriptor
information

Receive
FIFO

Internal bus

Transmit
descriptor

Transmit
buffer

Receive
descriptor

Receive
buffer

External memory

This LSI

External bus
interface

Figure 3 Configuration of E-DMAC, and Descriptors and Buffers

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 6 of 39
Oct. 15, 2010

2.1.4 Overview of E-DMAC Descriptors

When the E-DMAC performs DMA transfer, it employs descriptor information that includes the storage address for the
data for transfer, etc. There are two types of descriptors: transmit descriptors and receive descriptors. When the TR bit
in the E-DMAC transmit request register (EDTRR) is set to 1, the E-DMAC automatically starts reading a transmit
descriptor. When the RR bit in the E-DMAC receive request register (EDRRR) is set to 1, the E-DMAC automatically
starts reading a receive descriptor. The user must enter information related to the DMA transfer of Ethernet data in the
transmit/receive descriptors before the transfer can proceed. After transmission or reception of an Ethernet frame has
been completed, the E-DMAC switches the descriptor active/inactive bit (TACT bit for transmission, RACT bit for
reception) to the inactive setting and indicates the result of transmission or reception in the status bits (TFS26 to TFS0
for transmission, RFS26 to RFS0 for reception).
Descriptors are placed in readable and writable memory, and the address where the first descriptors start (the addresses
of the first descriptors of each type to be read by the E-DMAC) are set in the transmit descriptor list address register
(TDLAR) and receive descriptor list address register (RDLAR). When multiple descriptors are set up in a descriptor
list, the descriptors are placed in contiguous address ranges in accord with the descriptor length as indicated by bits
DL1 and DL0 in the E-DMAC mode register (EDMR).

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 7 of 39
Oct. 15, 2010

2.1.5 Overview of Receive Descriptors

Figure 4 shows the relationship between a receive descriptor and a receive buffer.

In order from its first address, a receive descriptor consists of RD0, RD1, RD2 (each is a 32-bit unit), and padding. RD0
indicates whether the descriptor is active or inactive, describes the configuration of the descriptor, and contains state
information. RD1 indicates the size of the receiving buffer (RBL) to which the descriptor refers, and the length of the
received frame (RDL). RD2 indicates the address where the receiving buffer starts. The length of padding is determined
by the descriptor length as specified by bits DL0 and DL1 in the EDMR register.

According to the settings of receive descriptors, either a single descriptor or multiple descriptors can specify a single
frame of received data (one frame/one descriptor and one frame/multi-descriptor, respectively). In one frame/multi-
descriptor cases, multiple descriptors are prepared in advance to form a descriptor list. If a frame is longer than the
setting of the descriptor’s RBL field, the E-DMAC uses the next descriptor in the sequence to continue transferring the
frame to the receiving buffer. For example, if the E-DMAC receives an Ethernet frame with 1,514 bytes while the RBL
of each descriptor is 500 bytes, the received Ethernet frame is transferred to the receiving buffer in 500-byte portions
until the final 14 bytes that remain are transferred to the fourth buffer.

RBL

RBA

Padding (4/20/52 bytes)*

RDL

Valid received data

R
A
C
T

R
D
L
E

R
F
P
1

R
F
E

31 30 29

R
F
P
0

28 27 26 0

31

31 0

16

Receive descriptor

Receiving buffer

RFS26 to RFS0RD0

RD1

RD2

First address

Size of

valid received data

Size of

receiving buffer

Note: Padding sizes are set as follows according to descriptor length specified by bits DL0 and 1 in register EDMR;

 When the descriptor length = 16 bytes, padding size = 4 bytes.

 When the descriptor length = 32 bytes, padding size = 20 bytes.

 When the descriptor length = 64 bytes, padding size = 52 bytes.

Figure 4 Relationship between Receive Descriptor and Receiving Buffer

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 8 of 39
Oct. 15, 2010

2.1.6 Example of Setting Receive Descriptors

Figure 5 shows an example where three receive descriptors and three areas of the receiving buffer are in use. Each
area of the receiving buffer has a size of 1,520 bytes, and operation is of the one-frame/one-descriptor type. The receive
descriptors are simplified in the figure, with only RD0 being shown. Numbers (1), (2), etc. in the figure indicate the
sequence of execution.

1. Bits RFP1, RFP0, RFE, and RFS26 to RFS0 of all descriptors are set to 0.
2. In the first and second descriptors, the RDLE bit is set to 0. The RDLE bit of the third descriptor is set to 1, so the

E-DMAC reads the first descriptor on completion of processing of the third descriptor. Settings like this can be used
to arrange descriptors in a ring structure.

3. Although the following settings for each of the descriptors have been left out of figure 5, prior to the start of
reception, the RBL of RD1 is set for a size of each area of the receiving buffer, 1,520 bytes, and the RBA of RD2 is
set to the address where the corresponding area of the receiving buffer starts.

4. To enable continuous reception, the RACT bit of each descriptor is set to 1.

The next section describes the details on the procedure in receiving operation.

Receive descriptor

Receiving buffer

(1)

(2)

(3)

(4)

(5)

(6)

R
D
L
E

R
F
P
1

R
F
P
0

R
A
C
T

R
F
E RFS26 to RFS0

0 0 01 0 0

1st

2nd

3rd

(omitted)

0 0 01 0 0

(omitted)

1 0 01 0

0

0

0

0

0

0 0

(omitted)

• •

• •

• •

Figure 5 Relationship between Receive Descriptor and Receiving Buffer

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 9 of 39
Oct. 15, 2010

2.1.7 Operation of the Sample Program
When the setting of the reception enable (RE) bit of the EtherC mode register (ECMR) is 1, and 1 is written to the
receive request (RR) bit in the E-DMAC receive request register (EDRRR), the reception section of the E-DMAC is
activated. After a software reset of the EtherC and E-DMAC modules, the E-DMAC reads the descriptor indicated by
the receive descriptor list address register (RDLAR), and enters the reception-standby state if the setting of the RACT
bit is 1 (active). If the EtherC module then receives a frame addressed to itself (the address of the frame allows for
reception by the EtherC module), it stores the received data in the receive FIFO. If the setting of the RACT bit of the
receive descriptor is 1, the received data are transferred to the receiving buffer specified by RD2 (if the setting of the
RACT bit is 0 (inactive), the RR bit is cleared to 0 and E-DMAC operation for reception is halted). If the received
frame contains more data than the buffer length given by RD1, the E-DMAC writes back to the descriptor when the
buffer is full (to set RFP = B'10 or B'00), and then reads the next descriptor.
When reception of the frame is completed or is suspended because of any kind of error, the E-DMAC writes back to the
current descriptor (to set RFP = B'11 or B'01). If continuous reception has been selected (i.e. cases where the setting of
the receive enable control (RNC) bit in the receiving method control register (RMCR) is 1), the E-DMAC then reads
the next descriptor and enters the reception-standby state if the setting of the RACT bit is 1. If continuous reception has
not been selected (i.e. cases where the setting of the RNC bit in the RMCR is 0), the RR bit in EDRRR is cleared to 0
and E-DMAC operation for reception is halted. If the RR bit is again set to 1, the E-DMAC reads the descriptor which
follows the last descriptor to have been used in reception, and then enters the reception-standby state.
Figure 15 shows an example of the flow of reception (in the one-frame/one-descriptor and continuous-reception cases).

This LSI + memory E-DMAC Receive FIFO EtherC Ethernet

initialize EtherC/E-DMAC

Set the registers
of EtherC/E-DMAC

Set receive descriptor
and receiving buffer

Initiate data reception

Start of reception
descriptor read

Frame reception

Reception
completed

Receive descriptor write-back

Next round of descriptor read

(ready to receive the next frame)

repeated in sequence

Received data transfer

Figure 6 Sample Reception Flowchart

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 10 of 39
Oct. 15, 2010

2.1.8 Procedure for Setting Module Used
This section describes an example of fundamental settings for reception of the Ethernet frames.
Figures 7 and 8 show an example of flowchart for setting the reception of Ethernet frames.

• The entire receive-descriptor list is initialized.

 RD0: Bit RACT is set to 1 (valid).

 Bit RDLE is set to 1 in the last descriptor (and 0 in the others).

 Setting is not required for bit RFP because this item is written back by the E-DMAC.

 RD1: Bit RBL sets the maximum reception byte length in the corresponding receiging buffer.

 Setting is not required for bit RDL because this item is written back by the E-DMAC.

 RD2: Specifies the start address of the receiving buffer corresponding to each descriptor.

 The receive buffer start address must be aligned with a longward boundary.

 When SDRAM is connected, it must be aligned with a 16-byte boundary.

 Padding area: This area is not used by the E-DMAC, but is freely available to the user.

START

• The EtherC and E-DMAC modules are reset by software.

 by writing the SWR bit in E-DMAC mode register.

 Access to all Ethernet-related registers is prohibited while

 the software reset is being executed (which takes 64 cycles of internal bus clock).

Set the receive descriptor list

address register (RDLAR)

Reset the EtherC/E-DMAC

Make an initial setting

of the receving discriptor

Clear the receive descriptor to 0

Clear the receiving buffer to 0

Initialize the management pointer

of the receive descriptor

• Areas of receive descriptors on memory is cleared.

• Areas of receiving buffers on memory is cleared.

• Initializes pointer variable that manages the current descriptor.

 The start address of the receive descriptor list is set as the inital value.

• Set the start address of the receive descriptor list.

 Lower-order bits are set as follows according to the specified descriptor length.

 16-byte boundary: RDLA[3:0] = 0000

 32-byte boundary: RDLA[4:0] = 00000

 64-byte boundary: RDLA[5:0] = 000000

 Actual memory areas are also allocated on corresponding boundaries.

Set the E-DMAC mode register

(EDMR)

• Slects whether or not the endian format is converted on data transfer by the E-DMAC.

• Decriptor length is set.

1

Set the FIFO depth register

(FDR)

• The depth of the transmit FIFO and receive FIFO is set.

 To select the maximum depth of 512 KB, the value is 0x00000707.

Set the receiving method control

register (RMCR)

• This setting is made to indicate whether frame reception is continued or not.

 When continuous reception after receiving one frame is desired, the setting is 1.

 When continuous reception after receiving one frame is not desired, the setting is 0.

Automatic negotiation

completed?

Yes

No

• When automatic negtiation is enabled, wait for its completion.

Figure 7 Example of Flowchart for Ethernet Setting (1)

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 11 of 39
Oct. 15, 2010

END

Set the EtherC mode

register (ECMR)

Set the EtherC/E-DMAC status interrupt

permission register (EESIPR)

Set the interrupt priority register

(IPR12)

Set the EtherC interrupt

permission register (ECSIPR)

• Set whether a frame with a CRC error is received as a frame with an error or not.

• Magic Packet detection is enebled if required.

• Internal/external loopback is specified if requied.

• The EtherC transfer method is specified.

 The result of automatic negotiation by the PHY-LSI is reflected.

• Priority level of the E-DMAC-related interrupt is set.

 Bits 15 to 12 in the IPR12 are set. The setting 0x0 indicates the priority level 0 (requested mask),

 and 0xF indicates the priority level 15 (the maximum level).

• Settings are made to the following bits: the link signal change interrupt enable,

magic packet detection interrupt enable, and illegal carrier detection interrupt enable.

• Interrupts to all the bits in the EtherC/E-DMAC status register (EESR) are enabled.

Initiate data reception

1

Clear the EtherC/E-DMAC

status register (EESR)

Clear the EtherC status

register (ECSR)
• The register is cleared to 0 by writing 1 to all of its bits.

• The register is cleared to 0 by writing 1 to all of its bits.

• From the result of automatic negotiation by PHY-LSI,

 specify either full-duplex or half-duplex mode as EtherC transfer method.
Obtain the duplex mode

Enables data reception • Reception of data is enabled by setting the RE bit in the ECMR to 1.

Set the MAC address high

register (MAHR)
• The highest-order 32 bits of the 48-bit MAC address are set.

 ex.) When the MAC address 01-23-45-67-89-AB (in hexadecimal) → 0x01234567

• The lowest-order 16 bits of the 48-bit MAC address are set.

 ex.) When the MAC address is 01-23-45-67-89-AB (in hexadecimal) → 0x000089AB

Set the receive frame length

register (RFLR)

• The maximum frame length is set.

 This setting must be made if frames with lengths greater 1518 bytes, including the CRC,

 are to be received.

• Reception of data is enabled by setting the RR bit in the EDRRR to 1.

Set the MAC address low

register (MALR)

Figure 8 Example of Flowchart for Ethernet Setting (2)

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 12 of 39
Oct. 15, 2010

2.2 Operation of the Sample Program
This sample program employs the EtherC and the E-DMAC modules to receive 10 Ethernet frames from the host
personal computer at the other end. In this sample program, there are four receive descriptors, and four areas of the
receiving buffer each with 1,520 bytes. The receive enable control (RNC) bit in the receiving method control register
(RMCR) is set to 1 to enable continuous reception operations. Every time an interrupt related to reception such as frame
reception (FR), etc. is generated, the RFE bit (bit 27 in the RD0) of the receive descriptor is checked, and if no errors
are found (i.e. RFE = 0) the single frame of data in the receiving buffer is copied to the user buffer. The corresponding
descriptor is then initialized in readiness for its next round of reception. If an error is found (i.e. RFE = 1), data in the
receiving buffer are not copied to the user buffer but the corresponding descriptor is initialized.
Additionally, data other than the preamble, SFD, and CRC in the Ethernet frame are transferred to the receiving buffer.
Figure 9 shows operating environment of the sample program, and figure 10 shows a format of the Ethernet frame.

Host personal computer

Evaluation board for the SH7670

Ethernet cross cable

MAC address: 01-23-45-67-89-AB (ex.) 00-0E-35-18-34-FA (ex.)

IP address: 192.168.0.164 (ex.) 192.168.0.5 (ex.)

direction of data reception

Figure 9 Operating Environment of the Sample Program

Unit: byte

Preamble SFD
MAC

destination

address

Data section CRC

Transferred data in receiving buffer: 60 to 1514 byte

Type/

length

1 6 6 2 46 to 1500 47

MAC

source

address

Figure 10 Ethernet Frame Format

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 13 of 39
Oct. 15, 2010

2.3 Definition of Descriptors Used in the Sample Program
The E-DMAC does not use the padding area of a descriptor, this area is freely available to the user. In this sample
program, this area is used to specify the address where the next descriptor starts, and this in conjunction with software
is used to arrange the descriptors in a ring structure.
Figure 11 shows the definition of the receive-descriptor structure in the sample program and an example of how the
array of receive descriptors is used.

Definition of structure

of the receive descriptor

typedef struct tag_edmac_recv_desc

{

 RD0 rd0;

 RD1 rd1;

 RD2 rd2;

 struct tag_edmac_recv_desc * pNext;

}EDMAC_RECV_DESC;

First address of the second descriptor

Array of the receive descriptors (ring structure)

First address of the third descriptor

First address of the fourth descriptor

First address of the first descriptor

First descriptor

Second descriptor

Third descriptor

Fourth descriptor

Figure 11 Definition of Receive Descriptor and Usage Example of Receive Descriptor Array

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 14 of 39
Oct. 15, 2010

2.4 Sequence of Processing by the Sample Program
Figures 12 to 16 show flows of handling the sample program. For details on the automatic negotiation function
phy_autonego, see the application note “SH7670 Example of Setting for Automatic Negotiation by Ethernet PHY-LSI
(REJ06B0800)”.

START

Success?

Main function

main

LAN open

lan_open

END

LAN close

lan_close

Yes

No

Reception of the Ethernet frame

lan_recv

reception

of 10 frames?

Yes

No

Figure 12 Flow of Handling in the Sample Program (1)

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 15 of 39
Oct. 15, 2010

START

LAN opem function

lan_open

Reset the EtherC/E-DMAC registers

lan_reg_reset

Obtain result of automatic negotiation

phy_autonego

Create descriptors

lan_desc_create

Success?
No

Yes

Set the EtherC/E-DMAC registers

lan_reg_set

OPEN_OK OPEN_NG

START

LAN close function

lan_close

Set interrupt priority

of the E-DMAC to 0

Reset the EtherC/E-DMAC registers

lan_reg_reset

CLOSE_OK

Release the EtherC/E-DMAC

from module standby

Set the MAC address

lan_set_mac

Set the EtherC/E-DMAC

module standby

Figure 13 Flow of Handling in the Sample Program (2)

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 16 of 39
Oct. 15, 2010

START

EtherC/E-DMAC reset function

lan_reg_reset

END

Set the SWR bit in the

E-DMAC mode register (EDMR)

Wait for over 64 bus clock cycles

START

Function for initialization of

transmit/receive descriptor
lan_desc_create

END

Make initial settings

for the transmit descriptor

Clear the descriptor area to 0

Clear the transmission and receiving

buffers to 0

Function of EtherC/E-DMAC register setting

lan_reg_set

START

END

Set the transmit descriptor list

address register (TDLAR)

Set the E-DMAC mode register

(EDMR)

Set the receive descriptor list

address register (RDLAR)

Set the transmit FIFO threshold

register (TFTR)

Set the FIFO depth register

(FDR)

Set the E-DMAC operation

control register (EDOCR)

Set the receive frame length register

(RFLR)

Set the MAC address low

register (MALR)

Set the transmit/receive status

copy enable register (TRSCER)

Set the receivinig method

control register (RMCR)

Set the Ether‘‘C mode register

(ECMR)

Set the MAC address high

register (MAHR)

Set the IPG register

(IPGR)

Set the transmit interrupt register

(TRIMD)

Set the EtherC/E-DMAC

status register (EESR)

Set the EtherC/E-DMAC status

interrupt permission register (EESIPR)

Clear the EtherC status register

(ECSR)

EtherC interrupt permission register

(ECSIPR)

Set the interrupt priority register 12

(IPR12)

Enable operation for

transmitting and receiving

A

A

Initiate data reception

Make initial settings

for the receive descriptor

Initialize pointers

for descriptor mangement

Figure 14 Flow of Handling in the Sample Program (3)

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 17 of 39
Oct. 15, 2010

START

Function of Ethernet frame reception

lan_recv

END

Set so the descriptor

is capable of receivinig data again

No

RFE = 0?

(No error?)

Yes

No

Copy received data

to user buffer

Receive interrupt

counter > 0

Yes

Initiate data reception

Set the number of received bytes

to return value

Disable interrupts

Release from inhibit of interrupts

Decrement the receive

interrupt counter

Mask the error flag

in the descriptor

Set the return value

to the error indicator (0)

Update pointers

for descriptor management

Figure 15 Flow of Handling in the Sample Program (4)

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 18 of 39
Oct. 15, 2010

START

Interrupt function

INT_EDMAC_EINT0

END

Read and clear the EtherC/E-DMAC

status register (EESR)

Transmission-related

interrupts occur?

Yes

No

Clear the EtherC/E-DMAC

status register (EESR)

Transmit interrupt handling

lan_send_handler

Receive interrupt handling

lan_recv_handler

EtherC status interrupt handling

lan_etherc_handler

Yes

No

Yes

No

Function for receive interrupt handling

lan_recv_handler

START

Increment the receive interrupt counter

END

Reception-related

interrupts occur?

EtherC-related

interrupts occur?

Figure 16 Flow of Handling in the Sample Program (5)

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 19 of 39
Oct. 15, 2010

3. Sample Program Listing

3.1 Sample program list "main.c" (1)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2007(2010) Renesas Electronics Corporation. All rights reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7671 Sample Program

* File Name : main.c

* Abstract : Sample Ethernet Reception Setting

* Version : 1.00.01

* Device : SH7671

* Tool-Chain : High-performance Embedded Workshop (Ver.4.03.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.01 Release01).

* OS : None

* H/W Platform: M3A-HS71(CPU board)

* Description :

**

* History : Jul.04,2007 ver.1.00.00

* : May 10,2010 ver.1.00.01 Changed the company name and device name

*""FILE COMMENT END""**/

#include "iodefine.h"

#include "defs.h"

#include "ether.h"

/* **** Prototype Declaration **** */

void main(void);

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 20 of 39
Oct. 15, 2010

3.2 Sample program list "main.c" (2)
52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

/* **** Variable Declaration **** */

#pragma section ETH_BUFF /* Allocated in SDRAM since capacity is large */

typedef struct{

 unsigned char frame[SIZE_OF_BUFFER];

 int len;

 unsigned char wk[12];

}USER_BUFFER;

static USER_BUFFER recv[10];

#pragma section

/*""FUNC COMMENT""***

 * ID :

 * Outline : Ethernet reception sample program main function

 *---

 * Include : #include "iodefine.h"

 *---

 * Declaration : void main(void)

 *---

 * Function : Ethernet frames are received using on-chip Ethernet controller (EtherC)

 * : and dynamic memory access controller (E-DMAC) for Ethernet controller.

 * : The RTL8201CP from REALTEK is used for PHY module.

 * : Multiple planes of receive discriptor is used for continuous reception.

 *---

 * Argument : void

 *---

 * ReturnValue : void

 *---

 * Notice :

 *""FUNC COMMENT END""***/

void main(void)

{

 int i,j;

 int ret;

 /* ==== Ethernet initial setting ==== */

 ret = lan_open();

 if(ret == OPEN_OK){

 /* ==== Start reception of 10 frames ==== */

 for(i=0; i<10; i++){

 /* ---- Reception ---- */

 recv[i].len = lan_recv(recv[i].frame);

 if(recv[i].len == 0){

 i--;

 }

 }

 }

 /* ==== Ethernet transmission/reception halted ==== */

 lan_close();

}

/* End of file */

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 21 of 39
Oct. 15, 2010

3.3 Sample program list "ether.c" (1)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2008(2010) Renesas Electronics Corporation. All rights reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7671 Sample Program

* File Name : ether.c

* Abstract : Example of setting for reception of Ethernet frames

* Version : 1.00.01

* Device : SH7671

* Tool-Chain : High-performance Embedded Workshop (Ver.4.03.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.01 Release01).

* OS : None

* H/W Platform: M3A-HS71(CPU board)

* Description :

**

* History : Mar.05,2008 ver.1.00.00

* : May 10,2010 ver.1.00.01 Changed the company name and device name

*""FILE COMMENT END""**/

#include "machine.h"

#include "string.h"

#include "iodefine.h"

#include "defs.h"

#include "phy.h"

#include "ether.h"

#include "siic.h"

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 22 of 39
Oct. 15, 2010

3.4 Sample program list "ether.c" (2)
53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

/* **** Macro definition **** */

#define DEVADDR_EEPROM 0 /* Dependence on the pin allocation of the EEPROM */

#define ROMADDR_MAC 0 /* Location for storage of the MAC address in the EEPROM */

#define DEFAULT_MAC_H 0x00010203 /* For debugging */

#define DEFAULT_MAC_L 0x00000405

#define MACSET_OK 0

#define MACSET_NG -1

/* **** Prototype declaration **** */

void main(void);

void lan_send_handler(unsigned long status);

static void lan_desc_create(void);

static void lan_reg_reset(void);

static void lan_reg_set(int link);

static int lan_set_mac(void);

/* **** Declaration of variables **** */

/* ---- Descriptor ---- */

#pragma section ETH_DESC /* Allocated to a 16-byte boundary */

static volatile TXRX_DESCRIPTOR_SET desc; /* Descriptor area */

#pragma section

/* ---- Buffer ---- */

#pragma section ETH_BUFF /* Allocated to a 16-byte boundary */

static volatile TXRX_BUFFER_SET buf; /* Area for transmission/reception buffer */

#pragma section

/* ---- MAC address ---- */

static unsigned long my_macaddr_h;

static unsigned long my_macaddr_l;

/* ---- Other ---- */

static volatile int c_recv = 0; /* received frame counter */

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 23 of 39
Oct. 15, 2010

3.5 Sample program list "ether.c" (3)
83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

/*""FUNC COMMENT""***

* ID :

* Outline : Ethernet open function

*---

* Include : #include "iodefine.h"

* : #include "phy.h"

* : #include "ether.h"

*---

* Declaration : int lan_open(void)

*---

* Function : Initializes E-DMAC, EtherC, PHY, and buffer memory.

* : Initialization required for Ethernet is performed within this function,

* : and it enables operations for transmission/reception.

* : If the setting to enable transmission/reception operations is not

* : possible, an error code is returned.

*---

* Argument : void

*---

* ReturnValue : OPEN_OK(0) : Success in opening

* : OPEN_NG(-1): Failure in opening

*---

* Notice :

*""FUNC COMMENT END""***/

int lan_open(void)

{

 int link;

 /* ==== PFC setting ==== */

 // PORT.PBCRL1.BIT.PB6MD = 1; /* Setting for usage on the DK30686 board */

 PORT.PCCRH1.WORD = 0x0155; /* EtherC function */

 PORT.PCCRL1.WORD = 0x5555;

 PORT.PCCRL2.WORD = 0x5555;

 /* ==== Release of EtherC/EDMAC from module standby ==== */

 CPG.STBCR4.BIT.MSTP40 = 0;

 /* ==== Stop EtherC and E-DMAC === */

 lan_reg_reset();

 /* ==== Initialize buffer memory ==== */

 lan_desc_create();

 /* ==== Acquire the MAC address ==== */

 lan_set_mac();

 /* ==== Setting of EtherC and E-DMAC ==== */

 link = phy_autonego(); /* Confirm duplex mode */

 if(link == NEGO_FAIL){

 return OPEN_NG; /* fail in opening */

 }

 else{

 lan_reg_set(link);

 }

 return OPEN_OK;

}

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 24 of 39
Oct. 15, 2010

3.6 Sample program list "ether.c" (4)
133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

/*""FUNC COMMENT""***

* ID :

* Outline : Function to close the Ethernet link

*---

* Include : #include "iodefine.h"

* : #include "ether.h"

*---

* Declaration : int lan_close(void)

*---

* Function : Stops EDMAC or EtherC.

* : Also stops supply of the clock signals to EDMAC and EtherC.

*---

* Argument : void

*---

* ReturnValue : int CLOSE_OK(0): Success in closing

* : CLOSE_NG(-1): Failure in closing

*---

* Notice :

*""FUNC COMMENT END""***/

int lan_close(void)

{

 int i;

 /* ==== Reset the EtherC and E-DMAC === */

 lan_reg_reset();

 /* ==== Stop the EtherC and E-DMAC === */

 CPG.STBCR4.BIT.MSTP40 = 1;

 /* ==== Disable interrupts related to E-DMAC === */

 INTC.IPR12.BIT._ETC = 0;

 return CLOSE_OK;

}

/*""FUNC COMMENT""***

* ID :

* Outline : Ethernet frame reception function

*---

* Include : #include "ether.h"

* : #include "iodefine.h"

*---

* Declaration : int lan_recv (unsigned char *addr)

*---

* Function : Copies a received frame to the specified buffer.

* : If there is no received frame, a loop is set up to wait for one.

* : Processing should proceed until the number of received frames is

* : the same as the number of descriptors.

*---

* Argument : unsigned char addr: I : First address of the buffer

* : : where received frames are to be stored

*---

* ReturnValue : int : Number of bytes in the received frame (or 0 for error in reception)

*---

* Notice :

*""FUNC COMMENT END""***/

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 25 of 39
Oct. 15, 2010

3.7 Sample program list "ether.c" (5)
187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

int lan_recv(unsigned char *addr)

{

 int i;

 int pri;

 int ret = 0;

 EDMAC_RECV_DESC *p;

 /* ==== Wait for reception ==== */

 while (c_recv <= 0){

 ;/* wait */

 }

 /* ==== Decrement the interrupt count ==== */

 pri = INTC.IPR12.BIT._ETC; /* Exclusive control (interrupt disabled) */

 INTC.IPR12.BIT._ETC = 0;

 --c_recv;

 INTC.IPR12.BIT._ETC = pri;

 /* ==== Copy the received frame ==== */

 p = desc.pRecv_end;

 if(p->rd0.BIT.RFE == 0){

 memcpy(addr, p->rd2.RBA, p->rd1.RDL);

 ret = p->rd1.RDL;

 }

 /* ---- Receive error ---- */

 else{

 p->rd0.LONG &= 0x70000000; /* Processing for the error flags*/

 ret = 0; /* 0 for error in reception */

 }

 /* ==== Restore the descriptor to the state where reception is possible" ====*/

 p->rd0.BIT.RACT = 1;

 /* ---- Initiate data reception ---- */

 if(EDMAC.EDRRR.BIT.RR == 0){ /* 0 must be read before writing 1 */

 EDMAC.EDRRR.BIT.RR = 1;

 }

 /* ==== Update the current pointer value ==== */

 desc.pRecv_end = p->pNext;

 return ret;

}

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 26 of 39
Oct. 15, 2010

3.8 Sample program list "ether.c" (6)
227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

/*""FUNC COMMENT""***

* ID :

* Outline : Construction function for descriptors

*---

* Include : #include "ether.h"

*---

* Declaration : static void lan_desc_create (void)

*---

* Function : Initializes the transmission/reception buffer and descriptor

* : required for the Ethernet link. One frame/one buffer is assumed.

*---

* Argument : void

*---

* ReturnValue : void

*---

* Notice :

*""FUNC COMMENT END""***/

static void lan_desc_create(void)

{

 int i;

 /* ==== Construct the area for the descriptor ==== */

 /* ---- Memory is cleared ---- */

 memset(&desc, 0, sizeof(desc));

 /* ---- Transmit descriptor ---- */

 for(i=0; i<NUM_OF_TX_DESCRIPTOR; i++){

 desc.send[i].td2.TBA = buf.send[i]; /* TD2 */

 desc.send[i].td1.TDL = 0; /* TD1 */

 desc.send[i].td0.LONG= 0x30000000; /* TD0:1frame/1buf, transmission disabled */

 if(i != (NUM_OF_TX_DESCRIPTOR-1)){ /* pNext */

 desc.send[i].pNext = &desc.send[i+1];

 }

 }

 desc.send[i-1].td0.BIT.TDLE = 1;

 desc.send[i-1].pNext = &desc.send[0];

 /* ---- Receive descriptor ---- */

 for(i=0; i<NUM_OF_RX_DESCRIPTOR; i++){

 desc.recv[i].rd2.RBA = buf.recv[i]; /* RD2 */

 desc.recv[i].rd1.RBL = SIZE_OF_BUFFER; /* RD1 */

 desc.recv[i].rd0.LONG= 0xb0000000; /* RD0:1frame/1buf, reception enabled */

 if(i != (NUM_OF_RX_DESCRIPTOR-1)){ /* pNext */

 desc.recv[i].pNext = &desc.recv[i+1];

 }

 }

 desc.recv[i-1].rd0.BIT.RDLE = 1; /* Set the last descriptor */

 desc.recv[i-1].pNext = &desc.recv[0];

 /* ---- Initialize the descriptor management information ---- */

 desc.pSend_top = &desc.send[0];

 desc.pRecv_end = &desc.recv[0];

 /* ==== Construct the buffer area ==== */

 /* ---- Clear the area ---- */

 memset(&buf, 0, sizeof(buf));

}

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 27 of 39
Oct. 15, 2010

3.9 Sample program list "ether.c" (7)
281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

/*""FUNC COMMENT""***

* ID :

* Outline : Function for initializing the EtherC and E-DMAC registers

*---

* Include : #include "iodefine.h"

*---

* Declaration : static void lan_reg_reset(void)

*---

* Function : Resets the registers of EtherC and E-DMAC. This function secures

* : the required reset period of at least 64 bus clock cycles.

*---

* Argument : void

*---

* ReturnValue : void

*---

* Notice :

*""FUNC COMMENT END""***/

static void lan_reg_reset(void)

{

 volatile int j = 100; /* Wait for over 64 cycles of the bus clock */

 /* ---- Software reset ---- */

 EDMAC.EDMR.BIT.SWR = 1;

 /* ---- Secure the reset time ---- */

 while(j--){

 /* Wait for over 64 cycles of the bus clock */

 }

}

/*""FUNC COMMENT""***

* ID :

* Outline : Setting of the EhterC and E-DMAC registers

*---

* Include : #include "iodefine.h"

* : #include "phy.h"

* : #include "ether.h"

*---

* Declaration : void lan_reg_set(int link)

*---

* Function : Initializes the E-DMAC and EtherC modules.

* : Both transmission and reception are enabled.

*---

* Argument : int link : I : Duplex mode makes a setting for EhterC.

* : : Uses the value returned by the phy_autonego function.

*---

* ReturnValue : void

*---

* Notice : This function should be executed only when transmission/reception

* : operations are disabled after E-DMAC has been reset by software.

*""FUNC COMMENT END""***/

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 28 of 39
Oct. 15, 2010

3.10 Sample program list "ether.c" (8)
331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

static void lan_reg_set(int link)

{

 /* ==== EDMAC ==== */

 EDMAC.EDMR.LONG = 0x00000000; /* No endian conversion (big endian) */

 /* 16-byte descriptor length */

 EDMAC.TDLAR = &desc.send[0]; /* Start of the transmission descriptor list */

 EDMAC.RDLAR = &desc.recv[0]; /* Start of the reception descriptor list */

 EDMAC.TRSCER.LONG = 0x00000000; /* Copy all status information to the descriptor */

 EDMAC.TFTR = 0x00; /* Transmission FIFO threshold (store & forward) */

 EDMAC.FDR.BIT.TFD = 1; /* Transmission FIFO capacity (512 bytes) */

 EDMAC.FDR.BIT.RFD = 1; /* Reception FIFO capacity (512 bytes) */

 EDMAC.RMCR.BIT.RNC = 1; /* Consecutive reception is enabled */

 EDMAC.EDOCR.LONG = 0x00000000; /* Operation continues even when an error occurs in the

FIFO */

 EDMAC.FCFTR.LONG = 0x00070000; /* Set the flow control threshold Disabled by EtherC */

 EDMAC.TRIMD.BIT.TIS = 0; /* No notice of write-back completion */

 /* ==== EtherC ==== */

 EtherC.ECMR.LONG = 0x00000000; /* Flow control is disabled */

 /* Recognize the CRC frame as an error */

 /* Magic packet detection is not permitted */

 /* Reception is disabled */

 /* Transmission is disabled */

 /* Internal loopback is not performed */

 /* External loopback is not performed */

 /* Duplex mode (half-duplex) */

 /* Promiscuous mode operation is not performed */

 if(link == FULL_TX || link == FULL_10M){

 EtherC.ECMR.BIT.DM = 1; /* Set the mode as full-duplex */

 }

 EtherC.MAHR = my_macaddr_h; /* Set the MAC address */

 EtherC.MALR = my_macaddr_l;

 EtherC.RFLR = 0x000; /* Maximum length of received frames (1518 bytes) */

 EtherC.IPGR = 0x14; /* Gap between packets (96-bit time) */

 /* ==== interrupt-related ==== */

 EDMAC.EESR.LONG = 0x47FF0F9F; /* Clear all status information (cleared by writing 1) */

 EDMAC.EESIPR.LONG = EDMAC_EESIPR_INI_SEND | EDMAC_EESIPR_INI_RECV |

EDMAC_EESIPR_INI_EtherC;

 /* Enable Transmission/reception and EtherC interrupts */

 EtherC.ECSR.LONG = 0x00000017; /* Clear all status information (cleared by writing 1) */

 EtherC.ECSIPR.LONG = EtherC_ECSIPR_INI; /* Interrupt enabled */

 INTC.IPR12.BIT._ETC = 5;

 /* Assign the fifth priority level to the E-DMAC interrupt (EINT0) */

 /* ==== Setting to enable transmission and reception ==== */

 /* ---- EtherC ---- */

 EtherC.ECMR.BIT.RE = 1; /* Enable reception */

 EtherC.ECMR.BIT.TE = 1; /* Enable transmission */

 /* ---- E-DMAC ---- */

 if(EDMAC.EDRRR.BIT.RR == 0){

 EDMAC.EDRRR.BIT.RR = 1; /* Initiate data reception */

 }

}

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 29 of 39
Oct. 15, 2010

3.11 Sample program list "ether.c" (9)
380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

/*""FUNC COMMENT""***

* ID :

* Outline : Transmit interrupt function

*---

* Include : #include "iodefine.h"

* : #include "ether.h"

*---

* Declaration : void lan_send_handler (unsigned long status)

*---

* Function : The interrupt handler for transmission related to EDMAC (EESR).

*---

* Argument : unsigned long status : I : EESR status (only bits for which

* : interrupts are enabled)

*---

* ReturnValue : none

*---

* Notice : No operation is performed in this sample program.

*""FUNC COMMENT END""***/

void lan_send_handler(unsigned long status)

{

}

/*""FUNC COMMENT""***

* ID :

* Outline : receive interrupt function

*---

* Include : #include "iodefine.h"

* : #include "ether.h"

*---

* Declaration : void lan_recv_handler (unsigned long status)

*---

* Function : The interrupt handler for reception related to EDMAC (EESR)

*---

* Argument : unsigned long status : I : EESR status (only bits for which

* : interrupts are enabled)

*---

* ReturnValue : none

*---

* Notice :

*""FUNC COMMENT END""***/

void lan_recv_handler (unsigned long status)

{

 c_recv++; /* Increment the counter for the number of reception interrupts*/

}

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 30 of 39
Oct. 15, 2010

3.12 Sample program list "ether.c" (10)
423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

/*""FUNC COMMENT""***

* ID :

* Outline : EtherC interrupt function

*---

* Include : #include "iodefine.h"

* : #include "ether.h"

*---

* Declaration : void lan_etherc_handler(unsigned long status)

*---

* Function : The interrupt handler related to EtherC(ECSR)

*---

* Argument : unsigned long status : I : ECSR status (only bits for which

* : interrupts are enabled)

*---

* ReturnValue : none

*---

* Notice : No operation is performed in this sample program.

*""FUNC COMMENT END""***/

void lan_etherc_handler(unsigned long status)

{

}

/*""FUNC COMMENT""***

* ID :

* Outline : MAC address setting

*---

* Include : #include "siic.h"

*---

* Declaration : static int lan_set_mac(void)

*---

* Function : Obtains the MAC address from the EEPROM

*---

* Argument : none

*---

* ReturnValue : MACSET_OK(0) : Success in obtaining

* : MACSET_NG(-1) : Failure in obtaining

*---

* Notice :

*""FUNC COMMENT END""***/

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 31 of 39
Oct. 15, 2010

3.13 Sample program list "ether.c" (11)
461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

static int lan_set_mac(void)

{

 volatile int ret, i;

 unsigned char buf[10];

 /* ==== Initialization of EEPROM driver ==== */

 siic_Init_Driver();

 /* ==== Reading the EEPROM ==== */

 ret = siic_EepRomRW(DEVADDR_EEPROM, ROMADDR_MAC, 6, buf, SIIC_MODE_EEP_READ);

 if (ret < SIIC_OK) {

 /* ---- Reading failure ---- */

 my_macaddr_h = DEFAULT_MAC_H;

 my_macaddr_l = DEFAULT_MAC_L;

 return MACSET_NG;

 }

 do{

 ret = siic_Chk_Eep();

 if(ret < SIIC_OK){

 /* ---- Reading failure ---- */

 my_macaddr_h = DEFAULT_MAC_H;

 my_macaddr_l = DEFAULT_MAC_L;

 return MACSET_NG;

 }

 }while(ret != SIIC_OK);

 /* ---- Success in reading ---- */

 for(i=0; i<6; i++){

 if(buf[i] != 0xff){

 break;

 }

 }

 if(i == 6){

 /* ---- Set the default value if the EEPROM setting has not been made ---- */

 my_macaddr_h = DEFAULT_MAC_H;

 my_macaddr_l = DEFAULT_MAC_L;

 }

 else{

 /* ---- Set the read address ---- */

 my_macaddr_h = buf[0];

 my_macaddr_h <<= 8;

 my_macaddr_h |= buf[1];

 my_macaddr_h <<= 8;

 my_macaddr_h |= buf[2];

 my_macaddr_h <<= 8;

 my_macaddr_h |= buf[3];

 my_macaddr_l = buf[4];

 my_macaddr_l <<= 8;

 my_macaddr_l |= buf[5];

 }

 return MACSET_OK;

}

/* End of file */

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 32 of 39
Oct. 15, 2010

3.14 Sample program list "ether.h" (1)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2007(2010) Renesas Electronics Corporation. All rights reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7671 Sample Program

* File Name : ether.h

* Abstract : Example of setting for transmission and reception of Ethernet frames

* Version : 1.00.01

* Device : SH7671

* Tool-Chain : High-performance Embedded Workshop (Ver.4.03.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.01 Release01).

* OS : None

* H/W Platform: M3A-HS71(CPU board)

* Description :

**

* History : Jul.04,2007 ver.1.00.00

* : May 10,2010 ver.1.00.01 Changed the company name and device name

*""FILE COMMENT END""**/

#ifndef _ETHER_H

#define _ETHER_H

/* **** Macro definition **** */

#define NUM_OF_TX_DESCRIPTOR 4

#define NUM_OF_RX_DESCRIPTOR 4

#define NUM_OF_TX_BUFFER 4

#define NUM_OF_RX_BUFFER 4

#define SIZE_OF_BUFFER 1520 /* Byte size must be an integer multiple of 16 */

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 33 of 39
Oct. 15, 2010

3.15 Sample program list "ether.h" (2)
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

#define OPEN_OK 0

#define OPEN_NG -1

#define SEND_OK 0

#define SEND_NG -1

#define CLOSE_OK 0

#define CLOSE_NG -1

#define MIN_FRAME_SIZE 60

#define MAX_FRAME_SIZE 1514

#define EDMAC_EESIPR_INI_SEND 0x04280F00

 /* 0x04000000 : Transmission abort detection *

 * 0x00200000 : Transmission of Ethernet frame completed *

 * 0x00080000 : Transmission FIFO underflow *

 * 0x00000800 : Carrier not detected *

 * 0x00000400 : Detection of carrier vanishing *

 * 0x00000200 : Detection of delay collision *

 * 0x00000100 : Transmission retry over */

#define EDMAC_EESIPR_INI_RECV 0x0205001F

 /* 0x02000000 : Detection of reception aborted *

 * 0x00040000 : Reception of Ethernet frame completed *

 * 0x00010000 : Receive FIFO overflow *

 * 0x00000010 : Reception of fraction-bit frames *

 * 0x00000008 : Long frame reception *

 * 0x00000004 : Short frame reception *

 * 0x00000002 : PHY-LSI reception error *

 * 0x00000001 : CRC error in received frame */

#define EDMAC_EESIPR_INI_EtherC 0x00400000 /* 0x00400000 : EtherC status register*/

#define EtherC_ECSIPR_INI 0x00000004 /* 0x00000004 : Link signal change */

/* **** Type definition **** */

/* ==== Transmit descriptor ==== */

typedef union{

 unsigned long LONG;

 struct{

 unsigned int TACT:1; /* Transmission descriptor enabled */

 unsigned int TDLE:1; /* The last transmit descriptor */

 unsigned int TFP :2; /* Position of the frame for transmission: 1, 0 */

 unsigned int TFE :1; /* Transmission frame error */

 unsigned int reserved :23; /* Reservation: TFS26 to 4 */

 unsigned int TFS3:1; /* No carrier detected (EESR to CND bits) */

 unsigned int TFS2:1; /* Detection of carrier vanishing (EESR to DLC bits) * /

 unsigned int TFS1:1;

 /* Detection of delay collision in transmission (EESR to CD bits)*/

 unsigned int TFS0:1; /* Transmission retry over (EESR to TRO bits) */

 }BIT;

}TD0;

typedef struct{

 unsigned short TDL; /* Transmission buffer data length */

 unsigned short reserved;

}TD1;

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 34 of 39
Oct. 15, 2010

3.16 Sample program list "ether.h" (3)
106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

typedef struct{

 unsigned char *TBA; /* Transmission buffer address */

}TD2;

typedef struct tag_edmac_send_desc{

 TD0 td0;

 TD1 td1;

 TD2 td2;

 struct tag_edmac_send_desc *pNext;

}EDMAC_SEND_DESC;

/* ==== Receive descriptor ==== */

typedef union{

 unsigned long LONG;

 struct{

 unsigned int RACT:1; /* Reception descriptor enabled */

 unsigned int RDLE:1; /* The last reception descriptor */

 unsigned int RFP :2; /* Position of the receive frame: 1, 0 */

 unsigned int RFE :1; /* Received frame error */

 unsigned int reserved1:17; /* Reservation: TFS26 to 10 */

 unsigned int RFS9:1; /* Reception FIFO overflow (EESR to RFOF bits) */

 unsigned int reserved2:1; /* : Reservation */

 unsigned int RFS7:1; /* Reception of multicast frames (EESR to RMAF bits) */

 unsigned int reserved3:1; /* : Reservation */

 unsigned int reserved4:1; /* : Reservation */

 unsigned int RFS4:1; /* Reception error; frame only contains a fraction of the

 required number of bits (EESR to RRF bits) */

 unsigned int RFS3:1;/*Reception error; excessively long frame (EESR to RTLE bits)*/

 unsigned int RFS2:1;/*Reception error; excessively short frame(EESR to RTSF bits)*/

 unsigned int RFS1:1;/* PHY-LSI reception error (EESR to PRE bits) */

 unsigned int RFS0:1;/* CRC error detected for received frame (EESR to CERF bits)*/

 }BIT;

}RD0;

typedef struct{

 unsigned short RBL; /* Reception buffer length " */

 unsigned short RDL; /* Received data length " */

}RD1;

typedef struct{

 unsigned char *RBA; /* Reception buffer address */

}RD2;

typedef struct tag_edmac_recv_desc{

 RD0 rd0;

 RD1 rd1;

 RD2 rd2;

 struct tag_edmac_recv_desc *pNext;

}EDMAC_RECV_DESC;

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 35 of 39
Oct. 15, 2010

3.17 Sample program list "ether.h" (4)
151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

/*====All transmission/reception descriptors (to be allocated on a 16-byte boundary)====*/

typedef struct{

 EDMAC_SEND_DESC send[NUM_OF_TX_DESCRIPTOR];

 EDMAC_RECV_DESC recv[NUM_OF_RX_DESCRIPTOR];

 EDMAC_SEND_DESC *pSend_top;/*Position where transmission descriptors are registered */

 EDMAC_RECV_DESC *pRecv_end; /* Reception complete/registered position of receive

descriptors */

}TXRX_DESCRIPTOR_SET;

/* ==== Transmission/reception buffer (to be allocated on a 16-byte boundary) ==== */

/* ---- Definition of all transmission/reception buffer areas ---- */

typedef struct{

 unsigned char send[NUM_OF_TX_BUFFER][SIZE_OF_BUFFER];

 unsigned char recv[NUM_OF_RX_BUFFER][SIZE_OF_BUFFER];

}TXRX_BUFFER_SET;

/* **** Prototype declaration **** */

int lan_open(void);

int lan_close(void);

int lan_send(unsigned char *addr, int flen);

#endif

/* End of File */

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 36 of 39
Oct. 15, 2010

3.18 Sample program list "intprg_eth.c" (1)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2007(2010) Renesas Electronics Corporation. All rights reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7671 Sample Program

* File Name : intprg_eth.c

* Abstract : interrupt entry function

* Version : 1.00.01

* Device : SH7671

* Tool-Chain : High-performance Embedded Workshop (Ver.4.03.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.01 Release01).

* OS : None

* H/W Platform: M3A-HS71(CPU board)

* Description :

**

* History : Sep.18,2007 ver.1.00.00

* : May 10,2010 ver.1.00.01 Changed the company name and device name

*""FILE COMMENT END""**/

(omitted)

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 37 of 39
Oct. 15, 2010

3.19 Sample program list "intprg_eth.c" (2)
670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

// 171 ETC EINT0

void INT_ETC_EINT0(void)

{

 unsigned long stat_edmac;

 unsigned long stat_EtherC;

 /* ---- Clear the interrupt request flag ---- */

 stat_edmac = EDMAC.EESR.LONG & EDMAC.EESIPR.LONG;

 /* Targets are restricted to allowed interrupts */

 EDMAC.EESR.LONG = stat_edmac;

 /* ==== Transmission-related ==== */

 if(stat_edmac & EDMAC_EESIPR_INI_SEND){

 lan_send_handler(stat_edmac & EDMAC_EESIPR_INI_SEND);

 }

 /* ==== Reception-related ==== */

 if(stat_edmac & EDMAC_EESIPR_INI_RECV){

 lan_recv_handler(stat_edmac & EDMAC_EESIPR_INI_RECV);

 }

 /* ==== EtherC-related ==== */

 if(stat_edmac & EDMAC_EESIPR_INI_EtherC){

 /* ---- Clear the interrupt request flag ---- */

 stat_EtherC = EtherC.ECSR.LONG & EtherC.ECSIPR.LONG;

 /* Targets are restricted to allowed interrupts */

 EtherC.ECSR.LONG = stat_EtherC;

 lan_etherc_handler(stat_EtherC);

 }

}

(omitted)

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 38 of 39
Oct. 15, 2010

4. References
• Software Manual

SH-2A/SH2A-FPU Software Manual Rev. 3.00
The latest version of the software manual can be downloaded from the Renesas Electronics website.

• Hardware Manual
SH7670 Group Hardware Manual Rev. 2.00
The latest version of the hardware user's manual can be downloaded from the Renesas Electronics website.

SH7670 Group Example of Setting for Reception of Ethernet Frames

R01AN0303EJ0101 Rev. 1.01 Page 39 of 39
Oct. 15, 2010

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 Dec.24.08 — First edition issued
1.01 Oct.15.10 — Changed the sample program (AC Switching Characteristics

are removed)

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Introduction
	1.1 Specifications
	1.2 Module Used
	1.3 Applicable Conditions
	1.4 Related Application Notes

	2. Description of the Sample Application
	2.1 Operational Overview of Module Used
	2.1.1 Overview of the EtherC
	2.1.2 Overview of the EtherC Receiver
	2.1.3 Overview of the E-DMAC
	2.1.4 Overview of E-DMAC Descriptors
	2.1.5 Overview of Receive Descriptors
	2.1.6 Example of Setting Receive Descriptors
	2.1.7 Operation of the Sample Program
	2.1.8 Procedure for Setting Module Used

	2.2 Operation of the Sample Program
	2.3 Definition of Descriptors Used in the Sample Program
	2.4 Sequence of Processing by the Sample Program

	3. Sample Program Listing
	3.1 Sample program list "main.c" (1)
	3.2 Sample program list "main.c" (2)
	3.3 Sample program list "ether.c" (1)
	3.4 Sample program list "ether.c" (2)
	3.5 Sample program list "ether.c" (3)
	3.6 Sample program list "ether.c" (4)
	3.7 Sample program list "ether.c" (5)
	3.8 Sample program list "ether.c" (6)
	3.9 Sample program list "ether.c" (7)
	3.10 Sample program list "ether.c" (8)
	3.11 Sample program list "ether.c" (9)
	3.12 Sample program list "ether.c" (10)
	3.13 Sample program list "ether.c" (11)
	3.14 Sample program list "ether.h" (1)
	3.15 Sample program list "ether.h" (2)
	3.16 Sample program list "ether.h" (3)
	3.17 Sample program list "ether.h" (4)
	3.18 Sample program list "intprg_eth.c" (1)
	3.19 Sample program list "intprg_eth.c" (2)

	4. References

