Summary
This document describes a common case of setting up the bus state controller (BSC) in the form of a practical example of connection between flash memory and a normal space of the SH7670/SH7671/SH7672/SH7673.

Target Device
SH7670 MCU

Contents

1. Introduction .. 2
2. Description of the Sample Application .. 3
3. Sample Program Listing .. 9
4. References .. 11
1. Introduction

1.1 Specifications

- 8-MB NOR-type flash memory (4 Mwords × 16 bits) is connected, with a 16-bit data bus width, to the SH7670.
- The bus state controller (BSC) of the SH7670 is used to set up conditions for the execution of read and write operations.

1.2 Module Used

- Bus state controller (BSC)

1.3 Applicable Conditions

<table>
<thead>
<tr>
<th>MCU</th>
<th>SH7670</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Frequency</td>
<td>Internal clock: 200 MHz</td>
</tr>
<tr>
<td></td>
<td>Bus clock: 66.6 MHz</td>
</tr>
<tr>
<td></td>
<td>Peripheral clock: 33.3 MHz</td>
</tr>
<tr>
<td>Integrated Development Environment</td>
<td>Renesas Electronics</td>
</tr>
<tr>
<td>C Compiler</td>
<td>Renesas Electronics SuperH RISC engine Family</td>
</tr>
<tr>
<td></td>
<td>C/C++ compiler package Ver.9.01 Release 01</td>
</tr>
<tr>
<td>Compiler Options</td>
<td>Default setting in the High-performance Embedded Workshop (-cpu=sh2afpu -fpu=single -debug -gbr=auto -global_volatile=0 -opt_range=all -infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1)</td>
</tr>
</tbody>
</table>

1.4 Related Application Notes

For more information, refer to the following application notes:

- SH7670 Group Example of Initialization
2. Description of the Sample Application

2.1 Operational Overview of Function Used

The BSC of SH7670 is used to control externally connected flash memory. Table 1 shows the specifications of the flash memory used in this sample program.

<table>
<thead>
<tr>
<th>Item</th>
<th>Flash Memory Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Type No.</td>
<td>S29GL064A90TFIR4 (manufactured by SPANSION)</td>
</tr>
<tr>
<td>Configuration</td>
<td>8 Mbytes (4 Mwords × 16 bits × 1)</td>
</tr>
<tr>
<td>Access Time</td>
<td>At random access: 90 ns (Max)</td>
</tr>
<tr>
<td></td>
<td>At page read: 25 ns (Max)</td>
</tr>
<tr>
<td>Boot Block</td>
<td>Bottom boot</td>
</tr>
</tbody>
</table>

Table 1 Flash Memory Specifications Used in this Sample Program

Figure 1 is the memory map. Specifications to suit the type of memory to be connected and set up the corresponding data bus width are made per CS space. In this sample program, flash memory is connected to the CS0 space.
SH7670 Group

Example of BSC Flash Memory Connection

Figure 2 shows an example of a circuit used to connect flash memory.

SH7670 is connected to S29GL064A90TFIR4 with a 16-bit data bus width. To set up the S29GL064A90TFIR4 to operate with a data-bus width of 16 bits, the BYTE pin is fixed to the high level. To set up the CS0 space of the SH7670 for the same bus width, the MD_BW pin is fixed to the low level. As pins A22 to A17 of the SH7670 are set up as port pins immediately after power is supplied, these pins are pulled down.

Table 2 shows pin functions of the SH7670. Pins A22 to A17 are initially set for operation as I/O pins. The pin-function controller (PFC) must thus be used to switch the functions of these pins.

<table>
<thead>
<tr>
<th>SH7670 Pin</th>
<th>Input/Output</th>
<th>Initial Pin Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A22 to A17</td>
<td>Output</td>
<td>I/O port (PA22 to PA17)</td>
<td>Address bus</td>
</tr>
<tr>
<td>A16 to A1</td>
<td>Output</td>
<td>A16 to A1</td>
<td>Address bus</td>
</tr>
<tr>
<td>D15 to D0</td>
<td>Input/output</td>
<td>D15 to D0</td>
<td>Data bus</td>
</tr>
<tr>
<td>RD</td>
<td>Output</td>
<td>RD</td>
<td>Read pulse signal (read data output enable signal)</td>
</tr>
<tr>
<td>WE0</td>
<td>Output</td>
<td>WE0</td>
<td>Indicates byte writing on D7 to D0</td>
</tr>
<tr>
<td>CS0</td>
<td>Output</td>
<td>CS0</td>
<td>Chip selection</td>
</tr>
<tr>
<td>MD_BW</td>
<td>Input</td>
<td>MD_BW</td>
<td>Selects initial values for the data-bus width in the CS0 space. This cannot be changed after a power-on reset.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MD_BW</th>
<th>Data Bus Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16 bits</td>
</tr>
<tr>
<td>1</td>
<td>8 bits</td>
</tr>
</tbody>
</table>

Figure 2 Sample Circuit for the Connection of Flash Memory
2.2 Procedure for Setting of Functions Used

Table 3 gives an example of the bus state controller settings. For details on the individual registers, please refer to the section on the bus state controller in the SH7670 Group Hardware Manual.

Figure 3 shows an example of the procedure for setting up the bus state controller.

Table 3 Example of Bus State Controller Setting

<table>
<thead>
<tr>
<th>Name of Register</th>
<th>Address</th>
<th>Setting Value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS0 space bus control register (CSOBCR)</td>
<td>H'FFFC0004</td>
<td>H'10000 0400</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWW[2:0] = B'001:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Idle period in cycles for insertion between writing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and reading and between writing and writing: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWRWD[2:0], IWRWS[2:0], IWRRD[2:0],</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TYPE[2:0] = B'000: Normal space</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENDIAN = "0": Arranged in big endian</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BSZ[1:0] = B'10: 16-bit data bus width</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: Values written to the BSZ[1:0] bits (bits to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>specify data bus width) in this register will be</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ignored. Please set the MD_BW pin to specify</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the width of the data bus in the CS0 space.</td>
</tr>
</tbody>
</table>

CS0 space wait control register (CSOWCR)	H'FFFC0028	H'00000 0AC1	SW[1:0] = B'01:
			Delay from address and CS0 assertion to RD or
			WE assertion in cycles: 1.5
			WR[3:0] = B'0101:
			Number of access-wait cycles: 5
			WM = B'1: Ignore external wait input
			HW[1:0] = B'01:
			Delay from RD or WE negation to address and
			CS0 negation in cycles: 1.5

Figure 3 Example of the Procedure for Setting up the Bus State Controller (CS0 Space)

- **START**

- Set pin function controller (PFC)
 - [Function] Select multiplexed pins

- Set the CS0 space bus control register (CSOBCR)
 - [Function] Setting of the number of idle cycles to be inserted
 - Setting type of memory
 - Endian setting
 - Data bus width specification (ignored for CS0)

- Set the CS0 space wait control register (CSOWCR)
 - [Function] Setting of the delay cycles from address and CS0 assertion to RD or WEn assertion
 - Setting of the number of cycles to wait for access
 - Specification of external wait mask
 - Setting of the delay in cycles from RD or WEn negation to address and CS0 negation

- **END**
2.3 Operation of the Sample Program

In this sample program, we set the numbers of wait cycles required to support the access speed of the memory unit (S29GL064A90TFIR4) to be connected. The SH7670 establishes a frequency of 66.67 MHz (tcyc = 15 ns) as an operating condition for the bus clock. For the AC characteristics of the SH7670 and S29GL064A90TFIR4, please refer to the datasheets for the individual devices.

The settings for wait cycles in this sample program are as follows.

1. Extension of CS assertion period
 — Delay cycle (Th) from address and CS0 assertion to RD and WE0 assertion
 In this sample program, the delay cycle is set to 1.5 cycles (Th = 1.5). The equation below confirms that this setting satisfies the tCS (chip enable setup time) requirement of the S29GL064A90TFIR4.
 \[t_{CS} \text{ (Min)} \leq tcyc \times (Th - 0.5) + t_{WED1} \text{ (Min)} - t_{CSD1} \text{ (Max)} \]
 — Delay cycle (Tf) from RD and WE0 negation to the address and CS0 negation
 In this sample program, the delay cycle is set to 1.5 cycles (Tf = 1.5). The equation below confirms that this setting satisfies the tAH (address hold time) requirement of the S29GL064A90TFIR4.
 \[t_{AH} \text{ (Min)} \leq tcyc \times (Tw + 2 + (Tf - 0.5)) + t_{AD1} \text{ (Min)} - t_{WED1} \text{ (Max)} \]

2. Access wait cycle
 Wait cycle (Tw) between T1 and T2 cycles. In this sample program, the setting is 5 cycles (Tw = 5).
 The equations below confirm that this setting satisfies the bus-timing requirement of the S29GL064A90TFIR4 and SH7670.
 — tRDS1 (read data setup time 1) of SH7670
 \[t_{RDS1} \text{ (Min)} \leq tcyc \times (Tw + 2 + (Th - 0.5)) - t_{AD1} \text{ (Max)} - t_{ACC} \]
 \[t_{RDS1} \text{ (Min)} \leq tcyc \times (Tw + 2 + (Th - 0.5)) - t_{CSD1} \text{ (Max)} - t_{CE} \]
 \[t_{RDS1} \text{ (Min)} \leq tcyc \times (Tw + 2) - t_{RSD} \text{ (Max)} - t_{OE} \]
 — tRDH1 (read data hold time 1)
 \[t_{RDH1} \text{ (Min)} \leq t_{OH} \text{ (Min)} \]
 — tRC (read cycle time) of S29GL064A90TFIR4
 \[t_{RC} \text{ (Min)} \leq tcyc \times (Tw + 2 + (Th - 0.5)) + (Tf - 0.5) \]
 — tWC (write cycle time) of S29GL064A90TFIR4
 \[t_{WC} \text{ (Min)} \leq tcyc \times (Tw + 2 + (Th - 0.5)) + (Tf - 0.5) \]
 — tAS (address setup time) of S29GL064A90TFIR4
 \[t_{AS} \text{ (Min)} \leq tcyc \times (Tw + 2 + (Th - 0.5)) + (Tf - 0.5) \]
 — tWP (write pulse width) of S29GL064A90TFIR4
 \[t_{WP} \text{ (Min)} \leq tcyc \times (Tw + 1) \]
 — tDS (data setup time) of S29GL064A90TFIR4
 \[t_{DS} \text{ (Min)} \leq tcyc \times (Tw + 1 + (Th - 0.5)) - t_{WDD1} \text{ (Max)} + t_{WED1} \text{ (Min)} \]
 — tDH (data hold time) of S29GL064A90TFIR4
 \[t_{DH} \text{ (Min)} \leq t_{WDH3} \text{ (Min)} \]

3. Wait between access cycles
 Wait between access cycles is the wait setting for insertion between consecutive rounds of access. In this sample program, 1 cycle (Taw = 1) is set as the number of cycles to wait between cycles of writing and reading or of writing and writing.
 The equation below confirms that this satisfies the tWPH (H write pulse width) requirement of the S29GL064A90TFIR4.
 \[t_{WPH} \text{ (Min)} \leq tcyc \times (1 + (Th - 0.5) + (Tf - 0.5) + Taw) \]
Figure 4 shows the timing of flash memory reading when $Th = 1.5$, $Tw = 4$ and $Tf = 1.5$ with the bus clock running at 66.67 MHz (the settings are not the same as those in the sample program).

Figure 4 Timing of Flash Memory Reading (with the bus clock at 66.67 MHz)
Figure 5 shows the timing of flash memory writing when \(T_h = 1.5 \), \(T_w = 4 \), \(T_f = 1.5 \) and wait between write-write cycles \((T_w) = 1 \) with the bus clock running at 66.67 MHz (the settings are not the same as those in the sample program).

Figure 5 Timing of Flash Memory Writing (with the bus clock at 66.67 MHz)
3. Sample Program Listing

3.1 Sample program list "bsc_cs0.c" (1)

```c
/* DISCLA**er
* This software is supplied by Renesas Electronics Corporation and is only
* intended for use with Renesas products. No other uses are authorized.
* This software is owned by Renesas Electronics Corporation and is protected under
* all applicable laws, including copyright laws.
* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES
* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
* DISCLAIMED.
* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS
* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
* Renesas reserves the right, without notice, to make changes to this
* software and to discontinue the availability of this software.
* By using this software, you agree to the additional terms and
* conditions found by accessing the following link:
* http://www.renesas.com/disclaimer
**************************************************************************
* Copyright (C) 2007(2010) Renesas Electronics Corporation. All rights reserved.
* *** Technical reference data **************************
* System Name : SH7671 Sample Program
* File Name   : bsc_cs0.c
* Abstract    : SH7671 Initial Settings
* Version     : 1.00.03
* Device      : SH7671
* Tool-Chain  : High-performance Embedded Workshop (Ver.4.03.00).
* : C/C++ compiler package for the SuperH RISC engine family
* (Ver.9.01 Release01).
* OS          : None
* H/W Platform: M3A-HS71(CPU board)
* Description :
**************************************************************************
* History : Jul.03,2007 ver.1.00.00
* : Dec.18,2009 ver.1.00.01 Updated header comments
* : Apr.07,2010 ver.1.00.02 Changed the company name and device name
* : Oct.08,2010 ver.1.00.03 Changed the copyright
* "FILE COMMENT END"**************************************************************************/
#include "iodefine.h"

void io_init_bsc_cs0(void);
```
3.2 Sample program list "bsc_cs0.c" (2)

```c
#pragma section ResetPRG
/****************************************************************************
* ID            : 
* Outline       : CS0 setting
*------------------------------------------------------------------------------
* Include       : "iodefine.h"
*------------------------------------------------------------------------------
* Declaration   : void io_init_bsc_cs0(void);
*------------------------------------------------------------------------------
* Description   : Pin function controller (PFC) and bus state controller (BSC)
*               : are set, and the access timing to the FlashMemory of CS0 area
*               : is set.
*------------------------------------------------------------------------------
* Argument      : void
*------------------------------------------------------------------------------
* Return Value  : void
*------------------------------------------------------------------------------
* Note          :
**FUNC COMMENT END******************************************************************************/

void io_init_bsc_cs0(void)
{
    /* ==== PFC settings ==== */
    PORT.PACRH1.WORD = 0x1554;  /* Set A17-A22 */

    /* ==== CS0BCR settings ==== */
    BSC.CS0BCR.LONG = 0x10000400UL;
    /* Idle Cycles between Write-read Cycles */
    /* and Write-write Cycles :1idle cycles */
    /* Data Bus Size:16-bit size */

    /* ==== CS0WCR settings ==== */
    BSC.CS0WCR.LONG = 0x00000ac1UL;
    /* Number of Delay Cycles from Adress, */
    /* CS0# Assertion to RD#,WEn Assertion */
    /* :1.5cycles */
    /* Number of Access Wait Cycles:5cycles */
    /* Delay Cycles from RD,WEn# negation to */
    /* Address,CSn# negation:1.5cycles */

    /* End of File */
}
```
4. References

- Software Manual
 SH-2A/SH2A-FPU Software Manual Rev. 3.00
 The latest version of the software manual can be downloaded from the Renesas Electronics website.

- Hardware Manual
 SH7670 Group Hardware Manual Rev. 2.00
 The latest version of the hardware user's manual can be downloaded from the Renesas Electronics website.
Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.
Revision Record

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Nov.19.08</td>
<td>First edition issued</td>
</tr>
<tr>
<td>1.01</td>
<td>Oct.15.10</td>
<td>Changed the sample program (AC Switching Characteristics are removed)</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable.
 When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
 Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fail control and malfunction prevention, appropriate treatment for aging-degradation or any other appropriate measures.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the products quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

6. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

5. When exposing the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any errors incurred by you or third parties arising from the use of these circuits, software, or information.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.