
 APPLICATION NOTE

R01AN2201EJ0100 Rev. 1.00 Page 1 of 26

August 20, 2014

SH7216 Group
USB Function Module: USB Communication Class Application Note

Introduction

This document explains how to implement the system applied to the USB communication class as an application
example for the SH7216 Group’s USB function module. This document and the sample program described are
examples of the USB function module, and are therefore not guaranteed by Renesas.

Target Device

This example supports the following device.

- SH7216 Group

R01AN2201EJ0100
Rev. 1.00

August 20, 2014

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 2 of 26

August 20, 2014

Contents

1. Overview ... 3
1.1 Functions Used .. 3
1.2 Applicable Conditions .. 3
1.3 Related documents .. 3

2. Applications .. 4
2.1 Features ... 4
2.2 USB Communication via the USB Function Module .. 5
2.3 Detecting a Connection to the USB Host ... 6
2.4 Control Transfer ... 7
2.5 Bulk Transfer .. 16

3. System Example of the USB Communication Class .. 20
3.1 Overview .. 20
3.2 Operation Flow ... 21
3.3 Serial Communication .. 22
3.4 Environment Setting ... 25

4. Reference Documents .. 26

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 3 of 26

August 20, 2014

1. Overview

This document explains how to use the SH7216 USB function module, and how to implement the system applied to the
USB communication class as an application example for the USB function module.

1.1 Functions Used
 Interrupt controller (INTC)
 Pin function controller (PFC)
 USB function module (USB)
 Serial communication interface (SCI)

1.2 Applicable Conditions
MCU SH7216

Operating frequency Internal clock: 200 MHz

 Bus clock: 50 MHz

 Peripheral clock: 50 MHz

 MTU2S clock: 100 MHz

 AD clock: 50 MHz

Integrated development environment Renesas Electronics High-performance Embedded Workshop,
 Ver. 4.07.00

C compiler Renesas Electronics SuperH RISC engine Family
 C/C++ Compiler Package, Ver. 9.03.00, Release 02

Compile options High-performance Embedded Workshop default settings
 (-cpu=sh2afpu -fpu=single

- include="$(WORKSPDIR)\inc","$(WORKSPDIR)\src\inc"
-object="$(CONFIGDIR)\$(FILELEAF).obj" -debug -gbr=auto -fpscr=safe
-chgincpath -errorpath -global_volatile=0 -opt_range=all -infinite_loop=0
-del_vacant_loop=0 -struct_alloc=1 –nologo)

1.3 Related documents
The following application note is related to this application note. Refer to it as necessary in conjunction with this
application note.

 SH7216 Group USB Function Module: USB Mass Storage Class Application Note (REJ06B0897)
 SH7216 Group USB Function Module: USB HID Class Application Note (REJ06B0898)
 SH7216 Group Protocol Conversion between Ethernet and USB Application Note (R01AN0066EJ)
 SH7216 Group USB Multifunction Operation of USB Function Module Application Note (R01AN0294EJ)
 SH7216 Group Using USB to Reprogram Flash Memory in User Program Mode Application Note (R01AN0316EJ)
 SH7216 Group Peripheral LibUSB Demo Application Note (R01AN0889EJ)

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 4 of 26

August 20, 2014

2. Applications

This sample program uses the USB function module to execute the control IN, control OUT, bulk IN, and bulk OUT
transfers. The sample program also converts USB to serial signals and vice versa based on the USB communication
class.

2.1 Features
The USB function module has an embedded USB 1.1 compliant USB Device Controller (UDC) and operates the USB
protocols automatically.
Figure 2.1 is a block diagram of the USB function module.

On-chip
peripheral bus

FIFO

Protocol
processor Transceiver

Status and
control registers

USD+

USD-

USB function module

[Interrupt request signal]
USI0, USI1

[DMA/DTC transfer
request signal]
USBRXI0, USBTXI0
USBRXI1, USBTXI1

USB clock (48 MHz)

Figure 2.1 Block Diagram of USB

The features of the on-chip USB function module of the SH7216 are as follows.

 Automatic processing of USB protocol
 Automatic processing of USB standard commands for endpoint 0 (Some commands need to be processed through

the software.)
 Transfer speed: Full speed
 Interrupt requests: Generation of interrupt signals needed for USB transmission and reception
 Clock: External input clock generated by USB oscillator (48 MHz)
 Low-power mode
 Integrated bus transceiver
 Endpoint configurations: There are ten mounted endpoints for each transfer mode, and transfers data in the control

transfer, bulk OUT transfer, bulk IN transfer, and interrupt transfer to the USB host. Table 2.1 shows those
configurations.

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 5 of 26

August 20, 2014

Table 2.1 Endpoint Configurations

Endpoint Name Transfer Type Max. Packet Size
FIFO Buffer

Capacity
DMA

Transfer
Endpoint 0 EP0s Setup 8 bytes 8 bytes

EP0i Control-in 16 bytes 16 bytes
EP0o Control-out 16 bytes 16 bytes

Endpoint 1 EP1 Bulk-in 64 bytes 64 2 (128) bytes Possible
Endpoint 2 EP2 Bulk-out 64 bytes 64 2 (128) bytes Possible
Endpoint 3 EP3 Interrupt-in 16 bytes 16 bytes
Endpoint 4 EP4 Bulk-in 64 bytes 64 2 (128) bytes Possible
Endpoint 5 EP5 Bulk-out 64 bytes 64 2 (128) bytes Possible
Endpoint 6 EP6 Interrupt-in 16 bytes 16 bytes
Endpoint 7 EP7 Bulk-in 64 bytes 64 bytes
Endpoint 8 EP8 Bulk-out 64 bytes 64 bytes
Endpoint 9 EP9 Interrupt-in 16 bytes 16 bytes

2.2 USB Communication via the USB Function Module
As an example of using the USB function module for USB communication, the sample program implements the USB
communication features listed in the table below.

Table 2.2 USB Communication Functions

USB Communication Features Description

Detect a connection to the USB host The port pulls up the D+ pin to detect a connection.

Control transfer
Decodes requests, processes the Data stage and Status stage of the
USB request transmitted from the USB host in the control transfer.

Bulk IN/OUT transfers Executes bulk IN/OUT transfers.

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 6 of 26

August 20, 2014

2.3 Detecting a Connection to the USB Host
A connection to the USB host is detected using the cable connect interrupt (the BRST bit in the USBIFR0 register). The
cable connect interrupt occurs when a USB device cable is connected to the USB host. After the user configures the
MCU, the sample program pulls up the USB data bus D+ pin using the general output port. The USB host recognizes
that a USB device is connected by the pull-up. Figure 2.2 shows an operation flow of the sample program.

Yes

Connects a cable

USB Function (Hardware) Sample Program (Software)

Cable is not connected
VBUS = 0

UDC core is reset

USB cable is connected

Pulls up D+ pin

Releases the UDC core reset

No

Detectes bus reset
USBIFR0/BRSY = 1
Bus reset interrupt

Waits for receiving
the setup command

Clears SW flags and buffers

Clears the bus reset flag
USBIFR0/BRST = 0

Clears all EP FIFOs

ActBusReset

Configures the MCU

Initializes the SCI module

Initializes the USB operation

USBIFR0/BRST interrupt

Set CPG

Set Power-Down Mode

Set PFC

Set INTC
USB and SCI1

Initializes work area

- Set USB to active
- Configures End Point
Set USBEPIR register
- Configures the interrupt
Set USBIER0 to USBIER2 and
USBISR0 to USBISR4 registers

Operation start

Operation end

Reset Start

SciInit

UsbInit

Set SCI clock source

Set SCI communication
parameter

Set SCI interrupt

Set_SMR

InitBulkMem

SetUsbModule

Clears the interrupt mask level

Pull-up enabled
D+ pin (PB15) to High

UsbStart

Main loop

Figure 2.2 Detecting a Connection to the USB Host

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 7 of 26

August 20, 2014

2.4 Control Transfer
A control transfer is a USB transfer that uses the endpoint 0 as the default pipe and must be supported by all USB
devices. The USB host issues a USB standard request to the USB device and configures the device. A control transfer
can be used to issue a class- or vendor-specific request command.
A control transfer is composed of a Setup stage, Data stage (not in all cases), and Status stage. The Data stage consists
of multiple bus transactions. Control transfers are supported via bi-directional communication flow, according to the
data direction of the Data stage. A control OUT transfer is the data flow from the USB host to the USB device during
the Data stage. A control IN transfer is the data flow from the USB device to the USB host during the Data stage. The
Data stage is completed when the USB host transmits a token whose data direction is inverted to the previous data
stages.
The Status stage is the stage that transmits the inverted token to the USB host. Figure 2.3 shows the Data direction in
the Data stage and Figure 2.4 shows each the control transfer stage configuration.

USB host

Control OUT transfer

USB device

Data

USB host

Control IN transfer

USB device

Data

Figure 2.3 Data Direction in the Data Stage

Control IN transfer

SETUP IN IN IN… OUTStages

Control OUT transfer

SETUP OUT OUT OUT… INStages

Control transfer without data

SETUP INStages

Setup stage Data stage Status stage

Multiple transactions

Data direction inverted

Figure 2.4 Control Transfer Stage Configuration

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 8 of 26

August 20, 2014

The USB function module decodes the request, and automatically processes the Data stage and Status stage according
to the USB standard request. Some of the USB standard requests, class requests, and vendor requests should be
executed by the software.
The sample program executes the Get Descriptor command, which is the USB standard request to be processed by the
software and the conversion between USB and serial communication as the typical example of the USB communication
class. To convert USB communication into serial communication, the sample program executes USB communication
class requests. Table 2.3 lists USB commands and processing in the sample program.
When the sample program receives a USB command that it does not support, it returns a STALL handshake.

Table 2.3 USB Commands and Processing in the Sample Program

USB Command Type Processing in the Sample Program

Clear Feature
Get Configuration
Get Interface
Get Status
Set Address
Set Configuration
Set Feature
Set Interface

USB
standard
request

The hardware decodes the command, and executes the Data
stage and the Status stage automatically. The software does
no operation.

Get Descriptor

The software decodes the command, and executes the Data
stage and the Status stage.

Set Line Coding
Set Control Line State
Send Break
Get Line Coding

USB
communication

class
request

Other USB commands - The software returns a STALL handshake.

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 9 of 26

August 20, 2014

2.4.1 Setup Stage
The Setup stage is composed of one setup transaction. The USB host sends a setup token or data packet (USB
command), then returns a handshake in response to the data packet (USB command) that the USB device received.
Figure 2.5 shows the setup transaction sequence. The USB function module automatically executes the Setup stage,
Data stage, and Status stage in response to the USB requests (with some exceptions). If the received request is not a
USB standard request, the USB function module holds the received request in the EP0s data register (USBEPDR0s),
and generates the setup request receive complete interrupt using the SETUPTS bit in the USBIFR1 register.
The sample program reads the USB request held in the data register (USBEPDR0s) during the interrupt, and decodes
the USB request to determine how to process subsequent stages. If the decoded USB request is a request to execute the
control IN transfer, the sample program writes the first data to transfer to the USB host in the EP0i FIFO and the
interrupt is completed. Figure 2.6 shows an operation flow of the sample program. The function (DecComCommand)
processes USB communication class requests in the sample program.

Figure 2.5 Setup Transaction Sequence

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 10 of 26

August 20, 2014

USB Function (Hardware)

Receives a command in EP0s

Processed by hardware
automatically?

Completed

Sets the setup request
receive complete flag

Clears the setup request
Receive complete flag

SETUPTS = 0

Acquires a USB command

Set the EP0S read complete flag
EP0sRDFN = 1

GetPacket

Class
command?

DecComCommands

Supported standard
command?

Prepares GetDescriptor data

Supported class
command?

Set STALL state

STALL state?

Transfer direction?

Set TRANS_IN stateSet TRANS_OUT state

Yes

Yes

No

No

Yes

NoYes

No

Set the interrupt enable bit
for control IN transfer

EP0iTSE = EP0oTSE = 1

Set the interrupt enable bit
for control OUT transfer

EP0iTSE = EP0oTSE = EP0iTRE = 1

Writes data to FIFO

PutPacket

Operation end

Yes

No

IN (Device to host)

OUT (Host to device)

Disables interrupt

Set STALL
USBEPSTL/EP0STL = 1

DecStandardCommand

Therafter,
ActControl internal operation

Hardware processes
each subsequently stage
automatically.

Judged by bit 6 and 5 in
bmRequest
Class command is
bit[6:5] = 01 Operates the following

commands.
Set Line Coding,
Set Control Line State,
Send Break
Get line Coding

Operates only
GetDescriptor command

EpInfo[0].PresentState = STALL

Is EpInfo[0].PresentState STALL?

Judged by bit7 in
bmRequest

Executes the ActControl
function in the USBIFR1
interrupt handler.

Operation Start

Call ActControl

Receives the EP0 setup token

Completed

Sample Program（Software）

（USBIFR1 interrupt）

USBIFR1/SETUPTS
interrupt

Set STALL state

Figure 2.6 Setup Stage Operation Flow

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 11 of 26

August 20, 2014

2.4.2 Data Stage
The Data stage of the control IN transfer is composed of single or multiple data transactions. The Data stage of the
control IN transfer is composed of one data IN transaction. This is called “Data IN stage processing”. The Data stage of
the control OUT transfer is composed of one data OUT transaction. This is called “Data OUT stage processing”.

(1) Data IN Stage
First, the USB host sends an IN token. When the USB device receives the IN token, it sends a data packet to the USB
host and waits for an ACK handshake from the USB host. If the USB device cannot send a data packet when it receives
the IN token, it returns a NAK handshake to the USB host. Figure 2.7 shows the data IN transaction sequence.
When the USB function module receives an IN token without valid data in the EP0iFIFO, it automatically returns a
NAK handshake to the USB host. When the module receives an IN token with valid data in the EP0iFIFO, it sends the
data in the EP0iFIFO to the USB host and waits for an ACK handshake from the USB host. When the USB function
module receives an ACK handshake, it generates the data transmit complete interrupt using the EP0iTS bit in the
USBIFR0 register. On the contrary, when the module receives an OUT token that indicates the Data IN stage has been
completed, it generates the data receive complete interrupt using the EP0oTS bit in the USBIFR0 register.
The sample program identifies the type of the interrupt while it is being processed. When it is the data receive complete
interrupt (the EP0oTS bit in the USBIFR0 register), the sample program advances to the Status stage. When it is the
data transmit complete interrupt (the EP0iTS bit in the USBIFR0 register), data that should be sent to the USB host was
written in the EP0iFIFO, and the sample program waits for the next interrupt. Figure 2.8 shows an operation flow of the
Data IN stage by the sample program.

Figure 2.7 Data IN Transaction Sequence

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 12 of 26

August 20, 2014

Set EP0i transmit flag
(USBIFR1/EP0iTS=1) USBTRG0/EP0iPKTE=1

USBIFR1/EP0iTS interrupt

No

Yes

Sends data to the host

No

Yes

NAK

Clears USBIFR1/EP0iTS
interrupt flag

Executes the Status stage
of the control IN transfer

Writes data to
USBEP0i data register

When data direction changes,
the Data stage is completed
and advance to the Status stage.

Yes

No

Reading EP0sFIFO
completed?

Valid data in the EP0iFIFO?

ActControlIn

PutPacket

Data receive
complete interrupt?
(USBIFR1/EP0oTS)

Receives the EP0 IN Token

Set EP0sRDFN bit

Set EP0iPKTE bit

When set EP0iPKTE to 1,
data in the EP0iFIFO is
validated.

Waits for ACKReturns NAK to the host

Completed

Operation start

Operation end

USB Function (Hardware) Sample Program（Software）

（USBIFR1 interrupt）
Executes the ActControlIn
function in the USBIFR1
interrupt handler.

Call ActControlIn via ActControlInOut

Figure 2.8 Data IN Stage Operation Flow

(2) Data OUT Stage
The USB host sends an OUT token and a data packet. The USB device receives the OUT token first, then receives the
data packet, and then returns an ACK handshake. When the USB device cannot receive the data packet after it receives
the OUT token, it ignores subsequent data packets, and returns a NAK handshake. When the USB host receives the
NAK handshake, it tries to resend the OUT token and data packet. Figure 2.9 shows the Data OUT transaction sequence.
When the USB function module cannot receive data packets, when it receives the OUT token, it automatically discards
the subsequent data packet and returns a NAK handshake to the USB host. When it receives the OUT token, when it can
accept data, it holds the data packet from the USB host in the EP0oFIFO and returns an ACK handshake to the USB
host. After the USB function module transmits an ACK handshake, it generates the data receive complete interrupt
using the EP0oTS bit in the USBIFR1 register. When the function module receives the IN token that indicates the Data
OUT stage is completed, it generates the IN token receive interrupt using the EP0iTR bit in the USBIFR1 register.
The sample program identifies the type of the interrupt while it is being processed. When it is not the data receive
complete interrupt (the EP0oTS bit in the USBIFR1 register), the sample program advances to the Status stage. When it
is the data receive complete interrupt (the EP0oTS bit in the USBIFR1 register), the sample program reads data in the
EP0oFIFO, sets the EP0oFIFO read complete bit, and waits for the next interrupt to be generated. Figure 2.10 shows an
operation flow of Data OUT stage by the sample program.

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 13 of 26

August 20, 2014

Idle

OUT

Idle

Token

Data

HandshakeACK NAK STALL

DATA0/1

Packet issued by the host

Packet issued by the device

Figure 2.9 Data OUT Transaction Sequence

Figure 2.10 Data OUT Stage Operation Flow

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 14 of 26

August 20, 2014

2.4.3 Status Stage
The direction of the data transaction in the Status stage differs from that of the Data stage; the data OUT transaction is
executed during the Status stage of the control IN transfer, and the data OUT transaction is executed during the Status
stage of the control OUT transfer.

(1) Status Stage of the Control IN Transfer
The USB host sends an OUT token and a 0-byte data packet. The USB device first receives the OUT token and then
receives the 0-byte data packet. Then, it returns an ACK handshake to the USB host.
The USB function module receives the OUT token and the 0-byte data packet, and automatically sends an ACK
handshake to the USB host. Then, the USB function module generates the data receive complete interrupt using the
EP0oTS bit in the USBIFR1 register.
The sample program set the EP0oFIFO read complete bit (USBTRG0/EP0oRDFN) during an interrupt to wait for the
next interrupt. Figure 2.11 shows an operation flow of the Status stage (control IN transfer) by the sample program.

Writes 1 in the ＥＰ0o read complete bit
(USBTRG0/EP0oRDFN=1)

USBIFR1/EP0oTS interrupt

Clears EP0 related interrupt flag
other than SETUPTS flag

Set the EP0o receive
complete flag

(USBIFR1/EP0oTS=1)

Changes the state to WAIT

ActControlIn

Receives the EP0
OUT token

Completed

Receives a 0 length data from
the host

Operation start

Operation end

ACK

Returns ACK to the host

USB Function (Hardware) Sample Program（Software）

（USBIFR1 interrupt）

Executes the ActControlIn
function in the USBIFR1
interrupt handler.

Call ActControlIn via ActControlInOut

Figure 2.11 Status Stage (Control IN Transfer) Operation Flow

(2) Status Stage of the Control OUT Transfer
The USB host sends an IN token. The USB device sends a 0-byte data packet to the USB host after it receives the IN
token. Then, the USB device waits for an ACK handshake from the USB host.
When the USB function module receives the IN token, it generates the IN token receive interrupt using the EP0iTR bit
in the USBIFR1 register. When the USB function module receives an IN token, when there is no valid 0-byte data
packet in the EP0iFIFO, it automatically returns a NAK handshake to the USB host. When the USB function module
has a valid 0-byte data packet in the EP0iFIFO when it receives the IN token, it sends a 0-byte data packet to the USB
host and waits for an ACK handshake from the USB host. When the USB function module receives the ACK handshake,
it generates the data transmit complete interrupt using the EP0iTS in the USBIFR1 register.
The sample program identifies the type of the interrupt while it is being processed. When it is the data transmit
complete interrupt generated by the EP0iTS in the USBIFR1 register, the sample program clears the interrupt to
complete the control transfer. When it is the IN token receive interrupt generated by the EP0iTR bit in the USBIFR1
register, the sample program enables 0-byte data in the EP0iFIFO by setting the EP0iPKTE bit in the USBTRG1
register to 1, and waits for the next interrupt to be generated. Figure 2.12 shows an operation flow of the Status stage
(control OUT transfer) by the sample program. When the command is a USB communication class command (Set Line
Coding), the sample program calls a SciInit function to process the command.

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 15 of 26

August 20, 2014

IN token receive interrupt

Clears EP0i transmit
complete flag

(USBIFR1/EP0iTS=0)No

Sends a 0 length data to
the host

Set the EP0i transmit
complete flag

(USBIFR1/EP0iTS=1)

Changes the state to
WAIT

No

Yes

USBTRG0/EP0iPKTE=1

Clears ＥＰ0i transfer request flag
(USBIFR0/EP0iTR=0)

SetControlOutContents

Valid data in the
EP0iFIFO?

EP0i transmit
complete interrupt?
（USBIFR1/EP0iTS）

Yes

Receives the EP0 IN
token

SciInit

Disables EP0i transfer request
interrupt

USBIER1/EP0iTR=0

Yes

No

Set EP0iPKTE bit

USBIFR1/EP0iTR interrupt

Set EP0iPKTE bit to
Validate the data in
The EP0iFIFO.

Set Line Coding command
Of the communication

class?

Operation end

Operation start

USBIFR1/EP0iTS
interrupt

Completed

Waits for ACK

NAK

Returns NAK to the host

Initializes SCI operation

USB Function (Hardware) Sample Program（Software）

（USBIFR1 interrupt）

ActControlOut

Executes the ActControlOut
function in the USBIFR1
interrupt handler.

Call ActControlOut via ActControlInOut

Saves control OUT transfer data.

Figure 2.12 Status Stage (Control OUT Transfer) Operation Flow

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 16 of 26

August 20, 2014

2.5 Bulk Transfer
A bulk transfer is used to communicate large amounts of data between the USB host and the USB device. Bulk transfers
are supported via bi-directional communication flow for the data direction. A bulk OUT transfer is the data flow from
the USB host to the USB device, and a bulk IN transfer is the data flow from the USB device to the USB host. Figure
2.13 shows the data directions of the bulk IN and bulk OUT transfers.

USB host

Bulk OUT transfer

USB device

Data

USB host

Bulk IN transfer

USB device

Data

Figure 2.13 Data Direction in the Bulk Transfer

2.5.1 Bulk OUT Transfer
A bulk OUT transfer is composed of single or multiple OUT transactions. The USB host sends an OUT token and a
data packet in the OUT transaction. The USB device receives the out token first, then receives the data packet, and then
returns an ACK handshake. When the USB device receives the OUT token when it is unable to receive data packets, it
ignores subsequent data packets and returns a NAK handshake. When the USB host receives a NAK handshake, it
attempts to resend the OUT token and data packet to the USB device. Figure 2.14 shows the OUT transaction sequence.
When the USB function module receives an OUT token when it is unable to receive data packets, it automatically
discards subsequent data packets and returns a NAK handshake to the USB host. When the USB function module
receives an OUT token when it can accept data packets, it holds the data from the USB host in the EP1FIFO and returns
an ACK handshake to the USB host. Then, the USB function module generates the data receive complete interrupt
using the EP1FULL bit in the USBIFR1 register.
The sample program reads the data in the EP1FIFO and stores it in the bulk OUT transfer RAM during the interrupt, set
the EP1 read complete flag (by setting the EP1RDFN bit in the USBTRG register to 1), and waits for the next interrupt
to be generated. When the interrupt is generated, if there is no area in the EP1FIFO to store data, the sample program
disables the EP1FULL interrupt, and the interrupt process is completed while it is in a suspended state. When serial
communication is used to create an area in the bulk OUT transfer RAM, enabling the EP1FULL interrupt causes the
suspended EP1FULL interrupt to be generated, and moves the data in the EP1FIFO to the bulk OUT transfer RAM in
the interrupt handler, and sets the EP1 read complete flag to wait for the next interrupt to be generated.

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 17 of 26

August 20, 2014

Idle

OUT

Idle

Token

Data

HandshakeACK NAK STALL

DATA0/1

Packet issued by the host

Packet issued by the device

Figure 2.14 Bulk OUT Transaction Sequence

The bulk OUT transfer
RAM is not full?

Get size of the received data
Read USBEPSZ1

Disables EP1FULL
interrupt

USBIER2/EP1FULL=0

Reads data from USBEP1 Data Register
(USBEPDR1) to store it in the bulk OUT

transfer RAM

No

Yes

USBTRG1/EP1RDFN=1

ActBulkOut

GetPacket

When set EP1RDFN to 1,
Reading data from the
EP1FIFO is completed.

Operation start

Operation end

EP1FIFO is not full?

Receives data from the
host

NAK ACK

Returns NAK to the host

Yes

No

Completed

EP1RDFN bit is set when
reading data in the FIFO is
completed.

USBIFR1/EP1FULL interrupt

Receives the EP1 OUT token

EP1FIFO is full
(USBIFR0/EP1FULL=1)

Returns ACK to the host

Suspends EP1FULL interrupt
until allocating the RAM area
can be stored the one packet
data by serial OUT transfer.

Serial OUT transfer

The suspended EP1FULL interrupt
occurs when serial OUT transfer
allocates the RAM area.

Serial OUT transfer

Sends data in the bulk OUT transfer RAM
to the serial device by serial OUT transfer.

USB Function (Hardware) Sample Program（Software）

（USBIFR1 interrupt）

Executes the ActBulkOut
function in the USBIFR1
interrupt handler.

Figure 2.15 Bulk OUT Transfer Operation Flow

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 18 of 26

August 20, 2014

2.5.2 Bulk IN Transfer
A bulk IN transfer consists of single or multiple transactions. The USB host sends an IN token in the IN transaction.
When the USB device receives the IN token, it sends a data packet to the USB host and waits for an ACK handshake
from the USB host. When the USB device receives the IN token when it is unable to send data packets, it returns a
NAK handshake to the USB host. Figure 2.16 shows the IN transaction sequence.
When the USB function module receives an IN token when there is no valid data in the EP2FIFO, it automatically
returns a NAK handshake to the USB host. The USB function module determines if there is any valid data in the
EP2FIFO using the EP2PKTE bit in the USBTRG register. When the module receives the IN token when there is valid
data in the EP2FIFO, the USB function module sends the data in the EP2FIFO to the USB host and waits for an ACK
handshake from the USB host. When the ACK handshake is received, the USB function module sets the data transmit
complete flag using the EP2EMPTY bit in the USBIFR2 register.
The sample program periodically transfers data in bulk transfer mode within the main loop. When the serial
communication generates data in the bulk IN transfer RAM that should be transmitted to the USB host, the sample
program confirms if the EP2FIFO is empty. When the EP2FIFO is empty, the sample program writes the data in the
EP2FIFO, sets the PE2PKTE bit to 1, and enables the data in the EP2FIFO. When the EP2FIFO is not empty, the
sample program is idle and waits for the USB function module to finish transferring data to the USB host.

Figure 2.16 Bulk IN Transaction Sequence

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 19 of 26

August 20, 2014

Figure 2.17 Bulk IN Transfer Operation Flow

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 20 of 26

August 20, 2014

3. System Example of the USB Communication Class

USB to serial conversion system is implemented in this sample program as the USB communication class typical
example.

3.1 Overview
The sample program converts USB to serial using the USB function module and the serial communication interface
(SCI) embedded in the SH7216 MCU. To transfer keyboard-input characters, text files, or binary files, activate the
terminal software both on the USB host (PC in this case), and on the serial device. For example, some characters are
input using the keyboard of the USB host, and the characters are transferred to the serially connected device. On the
other hand, some characters are input using keyboard of the serially connected device for transfer to the USB host.
A system configuration of the USB to serial conversion is shown in Figure 3.1, and Table 3.1 lists its specifications.

Figure 3.1 System Configuration

Table 3.1 System Specification

Features Description

Detect a connection to the USB host The port pulls up the D+ pin to detected by the USB host.

Control transfer
(USB standard request)

(1) Decode requests, processes the Data stage and Status stage of
the USB request transmitted from the USB host in the control
transfer.

(2) Sends the descriptor information to Get Descriptor command to
connect with the USB host as a USB communication class.

(3) Descriptor samples are described in the SetUsbInfo.h file and
those data are send to the USB host.

Control transfer
(USB communication class request)

Supports the following USB communication class commands:
Get Line Coding, Set Line Coding, Set Control Line State, and Send
Break.

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 21 of 26

August 20, 2014

Features Description

Bulk IN/OUT transfer Executes the bulk IN/OUT transfer.

USB to serial data conversion

(1) Sends the received data from the USB host in bulk OUT transfer to
the serial device by serial OUT transfer.
(2) Sends the received data from the serial device by serial IN transfer
to the USB host in bulk IN transfer.

Note:
Table 3.2 lists the default value of the vendor ID and product ID in the device descriptor sample. These values MUST
be changed when applied to the user system.

Table 3.2 Vendor ID and Product ID Sample

ID Value Description

Vendor ID 0x045B Renesas Electronics
Product ID 0x0020 SH7216 USB communication class driver

3.2 Operation Flow
The sample program enters the main loop after initial settings are completed.
When the sample program receives a data packet from the serial device in serial IN transfer, it stores the received packet
in the bulk IN transfer RAM. The stored data is transmitted to the USB host in a bulk IN transfer. For details on bulk IN
transfer, refer to 2.5.2. For details on serial IN transfer, refer to 3.3.2.
When the sample program receives a data packet from the USB host in a bulk OUT transfer, it stores the received data
packet in the bulk OUT transfer RAM. The stored data is transmitted to the serial device in the serial OUT transfer. For
details on the bulk OUT transfer, refer to 2.5.2. For details on serial OUT transfer, refer to 3.3.1.
Figure 3.2 shows the data flow and Figure 3.3 shows an operation flow.

USB host

Bulk OUT transfer

Sample program

Bulk OUT transfer
RAM

256 Byte

Serial device

USB I/F SCI I/F

Serial OUT transfer

Bulk IN transfer
Bulk IN transfer

RAM
256 Byte

USB I/F SCI I/F

Serial IN transfer

Figure 3.2 Data Flow

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 22 of 26

August 20, 2014

Operation start

Initializes SH7216

Initializes SCI operation

Initializes USB operation

Data exists in the bulk IN
transfer RAM?

Data exists in the bulk OUT
transfer RAM?

Yes

Yes

No

No

Stores data in the bulk IN transfer
RAM by the serial IN transfer.
Serial IN transfer is activated by the
interrupt from the SCI.

The data is transferred to the USB host
in the bulk IN transfer.

Transfers data in the bulk IN
transfer

Transfers data by the serial
IN transfer

Stores data in the bulk OUT transfer
RAM in the bulk OUT transfer.
Bulk OUT transfer is activated by the
interrupt from the USB.

ActBulkIn

ActSerialOut

Previous packet in the bulk IN
transfer was max packet size?

Yes

Transfers 0 length data in
the bulk IN transfer

No

The data is transferred to the serial
device by the serial IN transfer.

User select operation to adopt a
standard serial application.
If“ZERO_LENGTH_PACKET”macro
is defined, dashed area operation is
executed

Figure 3.3 Operation Flow

3.3 Serial Communication
This sample program uses a SCI module for serial communication. The serial OUT transfer is executed only when there
is data in the bulk OUT transfer RAM, and the serial IN transfer is executed only by the serial receive interrupt.

3.3.1 Serial OUT Transfer
This sample program uses the ActSerialOut function to execute serial OUT transfer. Data in the bulk OUT transfer
RAM is serially transmitted in serial OUT transfer. When the bulk OUT transfer RAM can store the data by the serial
OUT transfer, the sample program enables the EP1FULL interrupt. When the EP1FULL interrupt is enabled, the
suspended EP1FULL interrupt occurs to transfer data in the bulk OUT transfer. Figure 3.4 shows an operation flow of
the serial OUT transfer.

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 23 of 26

August 20, 2014

Yes

No

Yes

Yes

No

No

Calculates transfer length

SCI1 SCSSR
TDRE=1?

Writes transmit data to SCI1 SCTDR

Clears SCI1 SCSSR TDRE bit to 0

Bulk OUT transfer is
disabled?

The bulk OUT transfer
RAM can allocate the

data area?

Enables EP1FULL interrupt
USBIER2/EP1FULLE=1

ActSerialOut

ExSerialOut

Operation start

Operation end

The suspended EP1FULL interrupt
occurs when EP1FULL interrupt is
enabled by the serial OUT transfer.

Sample Program（Software）

（Serial OUT transfer）

Transfer length is
more than 40byte?

Set transfer length to 40byteNo

Yes

Figure 3.4 Serial OUT Transfer Operation Flow

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 24 of 26

August 20, 2014

3.3.2 Serial IN Transfer
Serial IN communication is activated by the serial receive interrupt and executed by the ActSerialIn function. The
sample program stores serially-received data in the RAM for the bulk IN transfer. When the RAM is full, the sample
program transmits Xoff in serial communication to disable the serial IN communication. Figure 3.5 shows an operation
flow of the Serial IN Communication.

Yes

No

SCI1 RIE, SCI1 TE, or SCI1 RE interrupt occurs

ActSerialIn

Reads the received data from Receive Data Register
(SCI1 SCRDR)

Operation start

Writes the received data in the
bulk IN transfer RAM

Remaining bulk IN
transfer RAM area is not

more than 64byte

Disables the serial IN communication
(Transfers Xoff in the serial OUT transfer)

Operation end

Sample Program（Software）

（Serial IN transfer）

Reads SCSSR register but for TEND bit

Framing error
occurred?

No

Yes

Parity error
occurred?

No

Yes

SCI1 SCSSR FER bit = 1?

SCI1 SCSSR PER bit = 1?

Clears received data register full flag
(SCI1 SCSSR RDRF bit)

Overrun error
occurred?

No

Yes

Clears overrun flag
(SCI1 SCSSR ORER bit = 0)

SCI1 SCSSR ORER bit = 1?

Error end

Error end

Figure 3.5 Serial IN Transfer Operation Flow

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 25 of 26

August 20, 2014

3.4 Environment Setting
Use a USB cable to connect the SH7216 CPU board (R0K572167C001BR) to the PC1. Then, use an RS-232C serial
cable to connect the SH7216 CPU board to the PC2 (cross-connect). PC1 behaves as the USB host and PC2 behaves as
the serial device. Figure 3.6 shows the USB to serial conversion environment.

Figure 3.6 USB to Serial Conversion Environment

3.4.1 INF Files
After the sample program is loaded and written to the SH7216 CPU board and is connected to the PC1 with a USB
cable for the first time, the device driver needs to be installed on the USB host computer. Install the Windows®
standard USB communication class device driver (usbser.sys) as the device driver.
INF file is used for the driver installation. This sample program includes following INF files in the inf directory.
(1) RN_CommClass_32.inf

Windows® 2000, Windows® XP, Windows® Vista 32bit, and Windows® 7 32bit.
(2) RN_CommClass_64.inf

Windows® Vista 64bit and Windows® 7 64bit.

Note:
VID_045B and PID_0020 MUST be changed according to the Vendor ID and Product ID set in the device descriptor.
Table 3.3 shows the default values.

Table 3.3 Vendor ID and Product ID in the INF File

Value Description

VID_045B Indicates the Vendor ID = 0x045B.
PID_0020 Indicates the Product ID = 0x0020.

SH7216 Group USB Communication Class Application Note

R01AN2201EJ0100 Rev. 1.00 Page 26 of 26

August 20, 2014

3.4.2 Parameter Setting of Serial Application
You need to set the parameter of the serial applications (terminal 1 and terminal 2) on the PC. Table 3.4 lists the settings.

Table 3.4 Parameter Setting

Items Description

Connection Select the port number connected to an RS-232C serial cable or a USB cable.
Bit rate (B) 115,200 bps

Data bits (D) 8
Parity (P) None

Stop bit (S) 1
Flow control (F) Xon/Xoff

4. Reference Documents

User’s Manual: Hardware
SH7214 Group, SH7216 Group User’s Manual: Hardware Rev.4.00 (R01UH0230EJ0400)

User’s Manual: Software
SH-2A, SH2A-FPU User’s Manual: Software Rev.3.00 (REJ09B0051)

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

A-1

REVISION HISTORY
SH7216 Group USB Function Module:

USB Communication Class Application Note

Rev. Date
Description

Page Summary

1.00 Aug 20, 2014 — First edition issued.
- - —

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

	1. Overview
	1.1 Functions Used
	1.2 Applicable Conditions
	1.3 Related documents

	2. Applications
	2.1 Features
	2.2 USB Communication via the USB Function Module
	2.3 Detecting a Connection to the USB Host
	2.4 Control Transfer
	2.5 Bulk Transfer

	3. System Example of the USB Communication Class
	3.1 Overview
	3.2 Operation Flow
	3.3 Serial Communication
	3.4 Environment Setting

	4. Reference Documents
	Website and Support

