
 APPLICATION NOTE

R01AN0769EJ0101 Rev.1.01 Page 1 of 33
Jun. 15, 2012

SH7216 Group
Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

Introduction
This application note describes an example to update the program codes by reprogramming the on-chip flash memory in
user program mode using the MMC in the SH7216.

The features of the example to update the program codes in this application note are described below.

• Reprograms in the on-chip flash memory area using the program file data for updating in Motorola S-record format
which is stored in the MMC.

• Reboots after reprogramming (updating) to execute the updated program.
• Checksum is implemented to handle the failure on reprogramming caused by the unintentional processing

disruption and other causes.

Target Device
SH7216

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN0769EJ0101
Rev.1.01

Jun. 15, 2012

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 2 of 33
Jun. 15, 2012

Contents

1. Specifications .. 3

2. Operation Conditions... 4

3. Related Application Notes... 4

4. Peripheral Functions ... 5
4.1 Flash Memory .. 5
4.2 On-chip Flash Memory Dedicated Sequencer (FCU).. 6
4.3 Serial Communication Interface with FIFO (SCI)... 7
4.4 Watchdog timer (WDT) .. 7
4.5 Renesas Serial Peripheral Interface (RSPI) .. 7

5. Hardware... 8
5.1 Pins Used... 8

6. Software .. 9
6.1 Operation Overview ... 9

6.1.1 Section Assignment .. 9
6.1.2 On-chip Flash Memory Reprogramming Operation Overview ... 10
6.1.3 From a Start-up to a Normal Operation .. 11
6.1.4 Flash Memory Reprogramming Event Processing by IRQ6 Input...................................... 11
6.1.5 Receiving Program File for Updating Stored in MMC .. 11
6.1.7 Processing after Data Analysis and Data Reprogramming.. 13
6.1.8 Communication Control Sequence... 14

6.2 File Composition .. 15
6.3 List of Constants .. 15
6.4 List of Structures and Unions... 16
6.5 List of Variables ... 17
6.6 Functions.. 18
6.7 Function Specification.. 19
6.8 Processing Flowcharts... 24

6.8.1 Main Processing ... 24
6.8.2 Flash Memory Reprogramming Event Processing... 25
6.8.3 Data Analysis Processing... 27
6.8.4 Checksum verification Processing.. 28
6.8.5 Text Binary Translation Processing.. 29

7. Operation Overview... 30

8. Sample Code... 33

9. Reference Documents... 33

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 3 of 33
Jun. 15, 2012

1. Specifications
In this application, program is updated by reprogramming the on-chip flash memory using user program mode.

The program in the on-chip flash memory area is reprogrammed by the program file for updating in Motorola S-record
format that is stored in the MMC. After reprogramming, the watchdog timer resets the flash memory to execute the
updated program.

Table 1 lists the peripheral functions for use and their applications. Figure 1 shows the system configuration.

Table 1 Peripheral Functions and Their Applications

Peripheral Function Application
Flash memory (on-chip flash memory) Program storage area
Sequencer dedicated to the on-chip flash memory
(FCU)

Reprogram the on-chip flash memory

Serial communication interface including FIFO
(SCIF)

Message communication

Renesas serial peripheral interface (RSPI) Read from the MMC
Watchdog timer (WDT) Reboot the system after reprogramming

Host PC

SH7216

VT100
Compatible

terminal software

FCU

SCIF

PE6/RxD3
PE5/TxD3

On-chip RAM

Store the received data
for reprogramming the

flash memory

Flash memory

Responded
message

RS-232C

Command/Data

R
ea
d

Reprogram

RSPI

PA3/RSPCK
PA4/MOSI
PA5/MISO

Data
MMC

Figure 1 System Configuration

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 4 of 33
Jun. 15, 2012

2. Operation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2 Operation Conditions

Item Contents
MCU used SH7216
Operating frequency Internal clock (Iφ): 200MHz

Bus clock (Bφ): 50MHz
Peripheral clock (Pφ): 50MHz

Operating voltage 3.3V (Vcc)
Integrated development
environment

Renesas Electronics Corporation
High-performance Embedded Workshop Ver.4.08.00
Renesas Electronics Corporation
SuperH RISC engine family C/C++ compiler package V.9.03 Release 00

C compiler

Compile options:
-cpu=sh2afpu -fpu=single
 -include="$(WORKSPDIR)\inc","$(WORKSPDIR)\src\mmc"
-object="$(CONFIGDIR)\$(FILELEAF).obj" -debug -ifunc -gbr=auto
 -chgincpath -errorpath -global_volatile=0 -opt_range=all -infinite_loop=0
 -del_vacant_loop=0 -struct_alloc=1 - nologo

Operating mode User program mode
Communication setting in
the terminal software

• 9600bps
• Data length: 8 bits
• Parity: None
• One stop bit
• Flow control: None

Sample code version 1.00
Board used R0K572167C001BR (CPU board)

R0K572167B000BR (expansion board)
Tool used VT100 compatible terminal software
Media used HITACHI MultiMediaCardTM (32MB)

3. Related Application Notes
For additional information associated with this document, refer to the following application notes.

• SH7216 Group Example of Initialization (document No.: REJ06B0899-0101)
• SH Family Simple Flash API for SH2 and SH2A (document No.: R01AN0719ER)
• SH7216 Group Updating Program Code by Reprogramming On-chip Flash Memory in User Program Mode

(document No.: R01AN0686EJ)
• SH7216 Group Accessing MultiMediaCard Using the Renesas Serial Peripheral Interface

(document No.: R01AN0039EJ)

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 5 of 33
Jun. 15, 2012

4. Peripheral Functions
This chapter provides supplementary information on peripheral functions used in this application note. Refer to the
SH7216 Group User’s Manual: Hardware for basic information.

4.1 Flash Memory
The data received from the MMC are stored in the on-chip flash memory using the SH2, SH2A simple flash API.

The SH7216 includes the flash memory (user MAT) to store program codes. The flash memory varies according to the
capacity as 1Mbyte, 768Kbytes, and 512Kbytes.

The user MAT is divided in the 8-Kbyte, 64-Kbyte, and 128-Kbyte blocks. User MATs are erased by these block units
in user program mode.

Writing in the on-chip flash memory is enabled only in the erased area in multiples of 256bytes. The 256-byte
boundary address is used for the programming start address.

In this application, the block 04 (H'0000 8000 to H'0000 9FFF) is allocated for updating data. The last 256byte area in
this block (H'0000 9F00 to H'0000 9FFF) is used for checksum verification. The backup programs are stored in the
block 05 (H'0000 A000 to H'0000 BFFF).

From now on, the block as the erase unit is described as "EB". For example, "EB04" represents the block 04 for erasing.

Figure 2 shows the user MAT block configuration.

8Kbytes x 8

64Kbytes x 7

64Kbytes x 2

128Kbytes

128Kbytes x 2

EB00

EB07

EB08

EB14

EB15

EB16

EB17

EB18

EB19

H'0000 0000

H'0000 FFFF
H'0001 0000

H'0007 FFFF
H'0008 0000

H'0009 FFFF
H'000A 0000

H'000B FFFF
H'000C 0000

H'000F FFFF

51
2K

by
te

s
76

8K
by

te
s

1M
by

te

～
～

Address Erase blockUser MAT

Figure 2 User MAT Block Configuration

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 6 of 33
Jun. 15, 2012

4.2 On-chip Flash Memory Dedicated Sequencer (FCU)
SH2, SH2A simple flash API uses the flash memory sequencer (FCU) for writing/erasing data in the on-chip flash
memory.

To use the FCU, the firmware for FCU (FCU firm) needs to be transferred to the FCURAM area. After that, writing
to/erasing from the on-chip flash memory is enabled by issuing the FCU command.

Figure 3 shows the block diagram in the on-chip flash memory.

FPMON ROM memory MAT
User MAT: 1Mbyte, 768Kbytes,
 or 512Kbytes
User boot MAT: 32Kbytes

FCU RAM

FMODR
FASTAT
FAEINT

ROMMAT
FCURAME
FSTATR0

P bus

Operating modeFWE pin
Mode pins

 [Legend]
 FPMON: Flash pin monitor register
 FMODR: Flash mode register
 FASTAT: Flash access status register
 FAEINT: Flash access error interrupt enable register
 ROMMAT: ROM MAT select register
 FCURAME: FCURAM enable register
 FSTATR0, 1: Flash status registers 0 and 1
 FENTRYR: Flash P/E mode entry register
 FPROTR: Flash protect register
 FRESETR: Flash reset register
 FCMDR: FCU command register
 FCPSR: FCU processing switch register
 FPESTAT: Flash P/E status register
 PCKAR: Peripheral clock notification register
 FIFE: Flash interface error interrupt

FSTATR1
FENTRYR
FPROTR

FRESETR
FCMDR
FCPSR

FPESTAT
PCKAR

FCU

ROM

FIFE

ROM cache

Figure 3 On-chip Flash Block Diagram

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 7 of 33
Jun. 15, 2012

4.3 Serial Communication Interface with FIFO (SCI)
The SCIF is available for two types of serial communication modes: the asynchronous communication mode and the
clock synchronous communication mode. Each channel includes 16-stage transmit/receive FIFO register independently,
which enables efficient and high-speed continuous communication.

For the details, refer to the "Section 17 Serial Communication Interface with FIFO (SCIF)" in the "SH7214 Group,
SH7216 Group User’s Manual: Hardware".

4.4 Watchdog timer (WDT)
This application uses a watchdog timer to reset the flash memory after rewriting a sample code in it.

For the details, refer to the "Section 15 Watchdog timer (WDT)" in the "SH7214 Group, SH7216 Group User’s Manual:
Hardware".

4.5 Renesas Serial Peripheral Interface (RSPI)
This application uses the RSPI to access the MMC in SPI mode, and to perform the SPI communication. The RSPI is
capable of full-duplex synchronous, high-speed serial communication function with multiple processors and peripheral
devices.

For the details, see the "Section 18 Renesas Serial Peripheral Interface (RSPI) " in the "SH7214 Group, SH7216 Group
User’s Manual: Hardware".

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 8 of 33
Jun. 15, 2012

5. Hardware

5.1 Pins Used
Table 3 lists the pins used in this application and their functions.

Table 3 Pins Used and Their Functions

Pin Name I/O Function
PA3/RSPCK Output RSPI clock output
PA4/MOSI Output RSPI master transmit data
PA5/MISO Input RSPI slave transmit data
PE5/TxD3 Output SCIF serial data output
PE6/RxD3 Input SCIF serial data input

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 9 of 33
Jun. 15, 2012

6. Software

6.1 Operation Overview
This application reprograms data in the area in the on-chip flash memory using the program file data for updating in the
Motorola S-record format sent from the MMC. The operation overview is described in this section.

6.1.1 Section Assignment
An access to the on-chip flash memory is disabled when reprogramming is in progress in the on-chip flash memory.
Therefore, all the programs to be used during reprogramming the on-chip flash memory need to be transferred to the
areas outside the on-chip flash memory. When assigning the section in this application, all the programs that are used
during reprogramming are set to be transferred to the on-chip RAM. The details on the section assignment, refer to the
"Section 3.4 SH7216 Group, SH7239 Series" in the "Simple Flash API for SH2 and SH2A".

Table 4 lists the programs and the sections to be used during reprogramming the on-chip flash memory in this
application. For the details on processing in each programs, see the sections "6.6 Functions", "6.7 Function
Specification", and "6.8 Processing Flowcharts".

Table 4 Programs and Sections Used during Reprogramming On-chip Flash Memory

Program Function Name ROM Section
Name

RAM Section Name

Flash memory reprogramming
processing

rom_write
Enter_PE_Mode
Exit_PE_Mode
R_FlashErase
R_FlashWrite

PFRAM RPFRAM

For the failure in reprogramming (updating) caused by an unintentional interruption in the on-chip flash memory, this
application allocates the separate section area to store the backup programs. The identical program processing are stored
in the reprogramming area and the extra storage area in their default setting before receiving data. Table 5 shows the
correspondence between these areas.

Table 5 Correspondence between Reprogramming Area and Extra Area

Area Start Address (Block) Stored Function ROM Section Name
Reprogramming
area

H’0000 8000（EB04） flash_write_sample MasterPRG

Extra area H’0000 A000（EB05） flash_write_spare SparePRG

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 10 of 33
Jun. 15, 2012

6.1.2 On-chip Flash Memory Reprogramming Operation Overview
 Figure 4 shows the on-chip flash memory reprogramming overview in this application.

Interrupt vector table

Data reception processing

Flash memory reprogramming event
processing

Reprogramming area
Checksum data storage area

FCU firmware area

H'0000 0010

H'0040 2000

FCURAM area

On-chip RAM area

H'80FF 8000

H'FFF8 0000

Transfer to the on-chip RAM
area at start-up

Instruct the FCU to
reprogram the

on-chip flash memory

Reprogram the on-chip
flash memory by the

FCU firmware

①

②

③

Transfer the FCU firmware to
the FCURAM area

④
Extra area

H'0000 A000

H'0000 8000

Interrupts handling
Main processing

Text binary translation processing
Fixed-cycle LED blinking port

controlling

On-chip flash memory area

Check sum verification processing

Figure 4 Operation Overview of Reprogramming the On-chip Flash Memory

1. After clearing the reset, transfers the program specified in dbsct.c (the ROM section) to the on-chip RAM area.

2. Transfers the firmware in the on-chip flash memory dedicated sequencer (FCU) for reprogramming the on-chip flash
memory from the FCU firmware area to the FCURAM area.

3. Instructs the FCU firmware transferred to the FCURAM area to reprogram the on-chip flash memory. (In this
application, calling the simple flash API instructs the FCU firmware to perform reprogramming.)

4. Executes reprogramming the on-chip flash memory by the FCU firmware.

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 11 of 33
Jun. 15, 2012

6.1.3 From a Start-up to a Normal Operation
Starting up the system through necessary initializations in the main processing, transmit the message, "Generate IRQ6
interrupt for transition to flash programming event" to the host PC. Then, call the "checksum verification processing"
function to determine by using checksum if the program codes in the reprogramming area (EB04) do not contain any
defects.

For checksum verification, this application uses the "program code size" and the "checksum data" which is given by
single-byte size in the program. In the checksum verification processing function, the data sizes are added from the
start address (H'0000 8000) in the reprogramming area by single-byte size for the same number of times as the program
size times. When comparing the result of this addition with the checksum verification data calculated at receiving a data
(stored in the last 256-byte area in EB04; details are referred to in the following section), if these data make a match, the
program in the reprogramming area is executed. If they make a mismatch, the program in the extra area is executed.
Note that a dummy checksum data has been stored in the reprogramming area to make a match in checksum test
without fail at an initial start-up.

The initially stored program blinks the LED using a compare match timer (CMT). It calls the "fixed-cycle LED blinking
port controlling" function in the compare match interrupt that is generated in 100ms cycle to update the LED blinking
display pattern.

6.1.4 Flash Memory Reprogramming Event Processing by IRQ6 Input
When the IRQ6 interrupt is generated by the IRQ6 input (detects a trailing edge /pushes the IRQ6 switch on the board)
according to the message transmitted to the host PC, the processing is transited to the flash memory reprogramming
event processing.

In the flash memory reprogramming event processing, firstly, the message "--> IRQ6 detected!" is transmitted to erase
the reprogramming area, EB04. Then, the message "Send subroutine code to update program in Motorola S-record
format Check card insert " is transmitted to the host PC to switch to standby state waiting for the MMC insertion.

When the MMC insertion is detected, the program file data in Motorola S-record format for updating stored in the root
directory is read. After reading by the sectors, the after mentioned data analysis is performed for every single byte to
store data in the write data storage buffer (write buffer). Furthermore, after analyzing one-sector data, the data in the
write buffer is stored in the on-chip flash memory. This processing is repeated until the final data is stored in the on-
chip flash memory. Additionally, in this application, the write buffer has double structure. Writing in the on-chip flash
memory is carried by a single-buffer unit.

6.1.5 Receiving Program File for Updating Stored in MMC
This application searches and reads the specified file (a.mot) from the MMC formatted in the FAT file system. As the
sample codes in this application do not include the FAT library, they have the restrictions described in Table 7.

Table 6 MMC Restrictions

Item Contents Description
FAT type FAT16 Does not support FAT12 and FAT32
Sector size 512bytes
File name a.mot Make sure to save program files for updating in this

name.
File path H:\\a.mot Varies depending on the environment in the host PC

as “H” is the drive number. Save the file in the root
directory.

File size Within 1-cluster size Cannot read files striding multiple clusters.
Detective entry in root
directory

Within 1 sector May not detect correctly when many files are stored in
the root directory besides the program file for updating
as only the first sector in the root directory is detected.

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 12 of 33
Jun. 15, 2012

6.1.6 Data Analysis
When a data is received for one sector size from the MMC, the data is stored in the buffer by the single-byte size.
Detecting the linefeed code, the data stored in the analysis buffer is determined to be as a record filling one row.
Through the data analysis processing described below, the necessary data for updating is extracted.

The first character in the analysis buffer is checked if it is "S". If it is "S", the data is regarded as Motorola S-record
format. Then the second character is to be analyzed. If the first character is not "S", the data is determined to be invalid,
and another data is stored from the start of the analysis buffer.

Figure 5 shows the Motorola S-record format data. Referring to it, the data analysis processing is explained below. The
data shown in the Figure 5 is colored according to the functions.

S00E000073616D706C6520206D6F74DF
S11380007FFC04E0420AE50001E00014E725664332
S113801076F6E065E23F315903F434510076267078
S11380208061242084642F62C90FCB30806466F29F
S11380308465C90FCB30806506E042008466C90FB1
S1138040CB3080668466C9F0CB0380668467C90F31
S1138050CB3080678467C9F0CB0380670000BEBB68
S1138060816C00005F5D816D06E0420000005F5D91

S10B82C000090009000B7F0412
S9030000FC

～

Figure 5 Sample Data in Motorola S-record Format

• In the first row, the second character 0 in red indicates a header record which contains no program data. When

receiving a header record, the processing returns to standby state until the next record is received in the second row.

• When the second row is verified as the Motorola S-record format by the first character "S" in black, the second
character 1 in red indicates that the second row is a data record. In the Motorola S-record format, the second
character from the top given by numeral in red indicates the record type.

• The third and forth characters in blue indicate 1-byte record length in hexadecimal notation. The four characters
from the fifth to eighth in green indicate the lower 2bytes in the storage address to store the initial data in the
record.

• The ninth character and later in orange represent the data part that indicates 1byte with every two characters. In
data analysis processing, every set of two characters after ninth character in orange is converted in a binary data
(the "text binary translation processing" function is called). The converted 1byte data is stored in the write buffer
sequentially. At the same time, the 1byte data is added (as a checksum verification data) to the previous data for
checksum test after conversion, and furthermore the number of the data is counted as the program code size. When
this processing is repeated before the last two characters in black, the data analysis processing ends

• 9 in the second character in the record data indicates the end of the record. See the last row in Figure 5. When
determining the record end, the reception processing is not performed and analysis processing is terminated. The
data reception ends without storing the received data. However, at this time, if the data size in the write buffer is
smaller than 256bytes which is the unit for flash memory writing, H'FF should be added till the data size reaches
256bytes.

In this application, the write buffer has double structure of 256-byte size. Every time a write buffer is filled with the
256-byte data, the storage is switched to the other write buffer in the data analysis processing. When one of the write

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 13 of 33
Jun. 15, 2012

buffers becomes full, flash memory write is enabled, and the buffer data is written in the on-chip flash memory when
the data analysis processing ends.

6.1.7 Processing after Data Analysis and Data Reprogramming
When determining the end of record by data analysis processing, and writing all the received data in the on-chip flash
memory, the data calculated at data analysis for checksum verification is written in the on-chip flash memory. The
checksum data includes a program code size and a checksum data for 2bytes each. In this application, the checksum
data is stored in the last 256byte area (H'0000 7F00 to H'0000 7FFF) in the reprogramming area (EB04). But only
4bytes in this area are used practically. The program code size is stored in the area, H'0000 9F00 to H'0000 9F01, and
the checksum data, in the area, H'0000 9F02 to H'0000 9F03.

After writing the data for checksum verification, a watchdog timer is set. The program becomes standby state waiting
for a reset by timer counter overflow.

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 14 of 33
Jun. 15, 2012

6.1.8 Communication Control Sequence
Figure 6 shows the communication control sequence in this application.

SH7216 Host PC

Initialization processings

Checksum verification
processing

Execute a program
in the reprogramming

area (EB03) or
in the extra area (EB04).

"Generate IRQ6 interrupt
for transition

 to flash programming event."

Input IRQ6

"--> IRQ6 detected!"

Erase the flash memory
(EB04)

"Send subroutine code to update
program in Motorola S-record format.

Check card insert"

Receive a file data

Write in the flash
memory

Write a checksum data

Repeat till
receiving the

end record

Reset by WDT

1

1

Transmit a message

Display the message on
the terminal screen

Transmit a message

Display the message on the
terminal screen

Transmit the message

Display the message on the
terminal screenStandby for

data reception

Flash memory
reprogramming event

MMC detection

Figure 6 Communication Control Sequence

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 15 of 33
Jun. 15, 2012

6.2 File Composition
Table 7 lists the file compositions in this application. Note that the files created automatically in the integrated
development environment are excluded on the list.

Table 7 File Composition

File Outline Remarks

main.c

Main processing, Checksum verification
processing, Flash memory reprogramming
event processing, Data reception processing,
Fixed-cycle LED blinking port control

Functions called by interrupts are
also allocated

intprg.c
Interrupts handling Calls interrupts handling functions

by IRQ6 input and compare
match

vecttbl.c Interrupt vector table ---

Flash_API_SH7216.c Simple flash API For reprogramming on-chip flash
memory by FCU firmware

Flash_API_SH7216.h Simple flash API header file ditto
siochar.c
lowsrc.c

SCIF controlling Used for RS-232C communication

port_LED_sample.c
Sample program for updating The initial program to be stored in

a reprogramming area and an
extra area

mmc_api.c MMC driver API Allocates API to use the MMC
driver

mmc.h MMC driver header file ditto

mmc_cmd.c MMC command handling Allocates functions for MMC
command handling

mmc_cmd.h MMC command handling header file ditto

mmc_spi_bus.c MMC SPI mode processing Allocates functions to control the
MMC in SPI mode

mmc_spi.h MMC SPI mode processing header file ditto
mmc_time.c Software timer controlling --

io_rspi_sh7216.c RSPI controlling Allocates functions for SPI
communication

6.3 List of Constants
Table 8 lists the constants used in the sample code.

Table 8 Constants Used in the Sample Code

Constant Name Setting Value Contents
SLOT0 0 Slot number of the MMC
BLOCK_4 4 Block number in the reprogramming area
MAX_SCT_SIZE 512 Buffer size for reading sector data in the MMC
BUFFER_SIZE 256 Buffer size for flash data writing
LED_PATTERN_NUM 10 Number of LED blinking display pattern

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 16 of 33
Jun. 15, 2012

6.4 List of Structures and Unions
Figure 8 shows the list of the structures and unions used in the sample code.

/* ---- Structures to control FAT Information ---- */
typedef struct{

unsigned char fat_type; /* 4/6:FAT16, 11:FAT32 */
unsigned long mmc_bsr_area; /* First sector in the BSR area */
unsigned long mmc_fat_area; /* First sector in the FAT area*/
unsigned long mmc_rdir_area; /* First sector in the root directory */
unsigned long mmc_data_area; /* First sector in the data area */
unsigned short sctsz; /* Sector size (byte count) */
unsigned char clussz; /* Cluster size (sector count) */
unsigned short fatsz; /* FAT area size (sector count) */
unsigned char fatnum; /* Number of FAT areas */
unsigned short rdirnum; /* Entry counts in the root directory */
unsigned char f_entry[32]; /* Entry information in the target file */
unsigned short f_clusno; /* First cluster number in the target file */
unsigned long f_filesz; /* Target file size */

}MMC_FSYS;

Figure 7 Structures and Unions

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 17 of 33
Jun. 15, 2012

6.5 List of Variables
Table 9 lists the global variables. Table 10 lists the const type variables.

Table 9 Global Variables

Type Variable Name Contents Function Used
MMC_FSYS mmc_fsys Structure to save the received FAT

file system information
int_fcu_flash_write
smpl_fopen
search_file

unsigned char mmc_ReadDataBuff0 Analysis data storage buffer 0
(array)

analyze_read_data

unsigned char mmc_ReadDataBuff1 Analysis data storage buffer 1
(array)

analyze_read_data

unsigned char sct_buff MMC sector receive buffer (array) int_fcu_flash_write
smpl_fopen

int f_WriteDataBuff0_Full Write buffer 0 full flag analyze_read_data
int_fcu_flash_write

int f_WriteDataBuff1_Full Write buffer 1 full flag analyze_read_data
int_fcu_flash_write

int f_status_EndRecord End record reception flag analyze_read_data
int_fcu_flash_write

int cnt_store_ReadData Analysis data storage counter analyze_read_data
int cnt_store_WriteDataBuff Write data storage counter analyze_read_data
int cnt_led_wink LED blinking display pattern counter int_cmt_led_control
unsigned short chksm_size Program code size of a write data analyze_read_data

int_fcu_flash_write
unsigned short chksm_data Checksum data of a write data analyze_read_data

int_fcu_flash_write
unsigned short chksm_Mem Dummy data for checksum

verification in the reprogramming
area at the initial start-up (array)

―

unsigned short cmt_LedPattern LED blinking display pattern data in
the reprogramming area and the
extra storage area at the initial start-
up

int_cmt_led_control

Table 10 const-Type Variables

Type Variable Name Contents Function Used
const char msg_VT100_ClearScreen VT100 compatible ESC sequence main
const char msg_StartComment IRQ6 input request message main
const char msg_IRQ6_Detected IRQ6 input detection message int_fcu_flash_write
const char msg_Motorola_format File transmit request message in

the Motorola S-record format
int_fcu_flash_write

const char msg_MMC_Attach MMC card insertion request
message

int_fcu_flash_write

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 18 of 33
Jun. 15, 2012

6.6 Functions
Table 11 lists the functions used in this application.

Table 11 Functions

Function Name Outline
main Main processing
io_init_irq6 IRQ6 initialization processing
check_sum_check Checksum verification in the reprogramming area
hex2bin Text binary translation processing
INT_IRQ6 IRQ6 interrupt handling
INT_CMT_CMI0 CMT (channel 0) compare match interrupt handling
analyze_read_data Data analysis processing
int_cmt_led_control Fixed-cycle LED blinking port controlling
int_fcu_flash_write Flash memory reprogramming event processing
smpl_fopen MMC file information obtaining
search_file Directory entry detection
swapl 4-byte swapping
swapw 2-byte swapping
io_output_msg Message output processing
flash_write_sample (1) CMT Initialization for a 100ms fixed-cycle timer
flash_write_spare An identical program as flash_write_sample (1)

(stored in the extra area)
mmc_init_driver MMC initialization in MMC driver
mmc_attach Attach confirmation in MMC driver
mmc_read_data Data read processing in MMC driver
R_FlashErase Erasing in simple flash API
R_FlashWrite Data writing in simple flash API

Note: (1) The sample program to be updated at the initial start-up. This program is stored in the
reprogramming area.

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 19 of 33
Jun. 15, 2012

6.7 Function Specification
This section describes the specification of functions used in the sample code.

main
Outline Main processing
Header None
Declaration void main(void)
Description After initialization processing, transmits the IRQ6 input request message to the host PC

for a checksum test. According to the checksum test result, executes the program
placed in the reprogramming area or in the extra storage area.

Argument None
Returned Value None
Remarks

io_init_irq6
Outline IRQ6 initialization processing
Header None
Declaration void io_init_irq6(void)
Description Initializes the IRQ6. After setting the pin PA20 function to the IRQ6 input, set to detect

the interrupt request on trailing edge of IRQ6 input by the interrupt controller. Then, sets
the interrupt priority level for the IRQ6.

Argument None
Returned Value None
Remarks

check_sum_check
Outline Checksum verification in the reprogramming area
Header None
Declaration int check_sum_check(void)
Description Calculates sum values from the start address (H'0000 8000) in the reprogramming area

based on the program code size and checksum data stored in the end 256byte area
(H'0000 9F00 to H'0000 9FFF) in the reprogramming area to test the match.

Argument None
Returned Value • 0: checksum matched

• 1: checksum mismatched
Remarks In this application, a dummy checksum data (chksm_Mem) is stored in advance in the

last 256byte area in the reprogramming area so to make a match in the checksum test
at the initial start-up.

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 20 of 33
Jun. 15, 2012

hex2bin
Outline Text binary translation processing
Header None
Declaration int hex2bin(unsigned char upper, unsigned char lower)
Description Converts the text data in two characters to 1byte of binary data.

When the text data given to the argument is 0 to 9 or A to F, they are regarded as valid
data, and are converted to the binary notation as H'0 to H'F.
4-bit left shifting the converted result of the first argument (upper), and getting the logical
sum with the converted result of the second argument (lower), returns the result as the
1byte of binary data.

Argument • First argument : upper
• Second argument: lower

A text data for the upper four bits
A text data for the lower four bits

Returned Value • 0 to 255: 1byte of binary data
• -1: improper input data

Remarks

INT_IRQ6
Outline IRQ6 interrupt handling
Header None
Declaration void INT_IRQ6(void)
Description Executes a flash reprogramming event processing (int_fcu_flash_write function).
Argument None
Returned Value None
Remarks

INT_CMT_CMI0
Outline CMT (channel 0) compare match interrupt handling
Header None
Declaration void INT_CMT_CMI0(void)
Description Executes a fixed-cycle LED blinking port controlling (int_cmt_led_control function)
Argument None
Returned Value None
Remarks Used for LED blinking in the sample code.

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 21 of 33
Jun. 15, 2012

analyze_read_data
Outline Data analysis processing
Header None
Declaration void analyze_read_data(unsigned char ch)
Description Stores the argument data in the analysis data storage buffer (a analysis buffer), and

extracts the necessary data for updating.
When receiving the linefeed code (“\r” or “\n”), the data that have been stored in the
analysis buffer is recognized to have filled one-row. Furthermore, if the record data is in
the Motorola S-record format, extracts the write data from the record.
When extracting the write data, converts the write data in the text format by the two-
character unit into 1byte of binary data, and stores it in the write data storage buffer (a
write buffer in the dual structure). In multiplying 256bytes, the write buffer for storing is
switched alternately.
For checksum verification after a flash memory writing, adds a binary translated write
data, and counts the number of the total write data.
Receiving the end record in the Motorola S-record format, if the stored data count is
below 256bytes in the write buffer, adds H'FF until the data count reaches 256byte size.

Argument unsigned char ch Data in characters for analysis
Returned Value None
Remarks

int_cmt_led_control
Outline Fixed-cycle LED blinking port controlling
Header None
Declaration void int_cmt_led_control(void)
Description Clears the CMT (channel 0) compare match interrupt source flag to change the port

output pattern for the fixed-cycle LED blinking at ports PE9 and PE11 to PE15.
Argument None
Returned Value None
Remarks

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 22 of 33
Jun. 15, 2012

int_fcu_flash_write
Outline Flash memory reprogramming event processing
Header None
Declaration void int_fcu_flash_write(void)
Description Erases the reprogramming area (EB04) after serial-transmitting the messages to the

host PC. Once erased the reprogramming area, the program becomes standby state
waiting for the MMC insertion. When detecting the MMC insertion, reads the program file
for updating to analyzes data.
When the data analysis processing shows that the write data storage buffer is full and
enabled to write, the buffer data is written in the on-chip flash memory.
After detecting the end record by the data analysis processing, and finishing writing the
reception data in the on-chip flash memory, writes the data (program code size and
check sum data) for checksum verification which was calculated when analyzing the
data in the end 256byte area (H'0000 7F00 to H'0000 7FFF) in the reprogramming area
(EB04).
Then, sets a watchdog timer, and waits for a reset by a timer counter overflow.

Argument None
Returned Value None
Remarks

smpl_fopen
Outline Open the update program
Header None
Declaration int smpl_fopen(const char *fname, const char *mode)
Description Searches for the FAT file system information in the MMC to detect the area that the

updated program is stored. The detected information is stored in the structure variable,
mmc_fsys.

Argument const char *fname
const char *mode

File name, supports only short file names
Specifies file open (invalid)

Returned Value -1: Error
 0: Normal end

Remarks

search_file
Outline Search for a directory entry
Header None
Declaration int search_file(unsigned char *buff, unsigned char *fname)
Description Searches for the update program in the directory entry.
Argument unsigned char *buff

unsigned char *fname
Buffer that a directory entry is received
File name to search for

Returned Value -1: Error
 0 or larger: Entry number

Remarks

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 23 of 33
Jun. 15, 2012

swapl, swapw
Outline Endian conversion (into long word/ into word)
Header None
Declaration unsigned long swapl(unsigned char *addr)

unsigned short swapw(unsigned char *addr)
Description Reads a little-endian data as a big-endian data
Argument unsigned char *addr First address before conversion
Returned Value Converted data
Remarks

io_output_msg
Outline Message output
Header None
Declaration void io_output_msg(char *msg_string)
Description Outputs a message to the host PC
Argument char *msg_string Message to output
Returned Value None
Remarks

flash_write_sample, flash_write_spare
Outline CMT initialization for 100-ms fixed-cycle timer
Header None
Declaration void flash_write_sample(void), void flash_write_spare(void)
Description Initializes the CMT (channel 0) for the 100ms fixed-cycle timer.

Sets the pin function at ports PE9 and PE11 to PE 15 to output for the fixed-cycle LED
blinking and enables a compare match interrupt.

Argument None
Returned Value None
Remarks

For the details on mmc_init_driver, mmc_attach, mmc_read_data , refer to the Application Note "SH7216 Group
Accessing MultiMediaCard Using the Renesas Serial Peripheral Interface (document No.: R01AN0039EJ)"

For the details on R_FlashErase, R_FlashWrite, see the Application Note "SH Family Simple Flash API for SH2 and
SH2A (document No.: R01AN0719ER) ".

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 24 of 33
Jun. 15, 2012

6.8 Processing Flowcharts
6.8.1 Main Processing
Figure 8 shows the procedure of main processing.

main

Checksum test
check_sum_check

Detect a checksum error?
Yes

No

-- VT100 compatible ESC sequence (clear the terminal screen on the
 host PC)
-- "Generate IRQ6 interrupt for transition to flash programming event."

Initialize the MMC driver
mmc_init_driver

Initialize the IRQ6
io_init_irq6

Transmit a message to the host PC
io_output_msg

Execute programs in the
reprogramming area (EB04)

flash_write_sample

Execute a program in the extra
area (EB05)

flash_write_spare

Figure 8 Main Processing

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 25 of 33
Jun. 15, 2012

6.8.2 Flash Memory Reprogramming Event Processing
Figure 9 and Figure 11 show the procedures of flash memory reprogramming event processing.

int_fcu_flash_write

"--> IRQ6 detected!"

"Send subroutine code to update program in Motorola S-record
format.Check card insert"

Inserted the MMC?
No

Yes

Obtain the first sector in the file data
and the file size

A

Search a file in the MMC
smpl_fopen

Transmit a message to the host PC
io_output_msg

Transmit a message to the host PC
io_output_msg

Erase the reprogramming area (EB04)
R_FlashErase

Detect the MMC attachment
mmc_attach

Figure 9 Flash Memory Reprogramming Event Processing (1)

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 26 of 33
Jun. 15, 2012

A

WDT setting

Yes

Yes

No

No

No

Yes

Completed writing all of the
data?

Completed processing for
one sector?

Yes

No

Analyzed full-size data?

Enable flash writing in the buffer 0?

Enable flash writing in
buffer 1?

Update the flash write address Update the flash write address

Detect the end record?

Yes

No

No

Yes

Read one sector from the MMC
mmc_read_data

Write buffer 0 in the flash memory
R_FlashWrite

Analyze 1byte data
analyze_read_data

Write buffer 1 in the flash memory
R_FlashWrite

Write a checksum data
R_FlashWrite

Update the read sector address

Figure 10 Flash Memory Reprogramming Event processing (2)

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 27 of 33
Jun. 15, 2012

6.8.3 Data Analysis Processing
Figure 11 shows the procedure of data analysis processing.

analyze_read_data

Store the data in the analysis buffer

Linefeed code?

The initial character in the
analysis buffer is "S"

Verify the second
character in the analysis

buffer

return

Write buffer is full?

Increment the write data size
for a checksum test

Switch the write buffer storage

Add H'FF data until the write
buffer becomes full

return

No

Yes

Yes

No

Write buffer is not full?

8 or 9 as an end record

Set the end record detection
flag to 1

No

Yes

No

Yes

Store the convert data in the
write buffer

Add a write data for a
checksum test

Completed data read for
storing in the analysis buffer ?

Read buffer storage data for
the next analysis by 2-byte unit

Yes

No

1 or 2 in data part

Text binary translation
hex2binAnalysis buffer

counter >= 256?
No

Yes

Increment the analysis
buffer counter

Clear the analysis buffer
counter

Analysis buffer counter

Figure 11 Data Reception Processing

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 28 of 33
Jun. 15, 2012

6.8.4 Checksum verification Processing
Figure 12 shows the procedure of a checksum verification.

check_sum_check

Read checksum test data

Does the write data size stay
within the valid range?

Set the start address in the
reprogramming area (EB03)

The added result and the
checksum data match?

An error occurs

return(error)

No error occurs

No

Yes

Yes

No

Read the data in the reprogramming
area and add the data (1byte)

Completed reading for
the write data size?

Increment the read
address in the

reprogramming area

Yes

No

The following data are calculated at the last start-up
(when receiving data) and stored in the last 256-byte
area in the reprogramming area (EB04) (1)

Read the following data:
-- a checksum data
-- write data (program code) size

Check that the result of 8Kbytes minus
256bytes does not exceed 7.75Kbytes

error ← 0 error ← -1

Note: (1) A dummy checksum test data is stored to match the checksum without fail at the first start-up.

Figure 12 Checksum Verification Processing

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 29 of 33
Jun. 15, 2012

6.8.5 Text Binary Translation Processing
Figure 13 shows the procedure of text binary conversion.

hex2bin

Is the upper numerical data?

Convert the upper to binary data to
store the translated result in the

upper

Is the lower numerical data?

Convert the lower in binary data to
store the result in the lower.

return(upper | lower)

No

Yes

No

Yes

[Argument]
-- Unsigned char upper; text data for the upper 4 bits
-- Unsigned char lower; text data for the lower 4 bits

return(-1)

4-bit left shift the upper upper <<= 4;

Is the upper 0 to 9 or A to F?

Is the lower 0 to 9 or A to F?

Figure 13 Text Binary Translation Processing

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 30 of 33
Jun. 15, 2012

7. Operation Overview
This application uses the VT100 compatible terminal software on the host PC. This chapter describes the processing
example using the hyper terminal which is normally equipped on the Microsoft Windows series.

By starting the hyper terminal, the "Connect To" dialog box appears. Select the icon by typing the name of the
connection. The dialog box shown on he left side in Figure 14 appears. Select the serial port number in the box of
"Connect using", and the property setting dialog box as shown on the right side in Figure 14 appears. Specify the
setting values in he boxes referring to the list in the Table 12.

Figure 14 Hyper Terminal Connection Setting and the Port Setting

Table 12 Port Setting

Port Setting Value
Bits per second 9600
Data bits 8
Parity None
Stop bits 1
Flow control None

After completing the upper setting, connect the host PC to the SH7216 board by the serial cable, RS-232C.

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 31 of 33
Jun. 15, 2012

After setting along with the instruction in the previous page, start the sample code on the SH7216 board, and the
SH7216 transmits the ESC sequence. At this time, the terminal software display is cleared on the host PC. Next, the
SH7216 transmits the message, "Generate IRQ6 interrupt for transition to flash programming event." to the host PC as
shown in the Figure 15.

Figure 15 Hyper Terminal Display at Start-up Sample Code

Then, the SH7216 executes the program stored in the updating area (EB04), which blinks the LED on the board in a
pattern in the fixed 100ms cycle.

Keeping this state and pushing the IRQ6 switch on the SH7216 board, the message, "--> IRQ6 detected!” is transmitted
to the host PC. Once the IRQ6 interrupt is generated, the SH7216 board starts the flash memory reprogramming event
processing to erase the updating area (ES04). When completing erasing the updating area, the SH7216 transmits the
message, "Send subroutine code to update program in Motorola S-record format. Check card insert " to the host PC and
becomes standby state as shown in the Figure 16 to wait for the MMC is inserted.

Figure 16 Terminal Soft Screen when Waiting for a Data

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 32 of 33
Jun. 15, 2012

When the MMC is inserted to the card slot, the SH7216 board extracts the valid data (the program code) to write in the
updating area (EB04). Once the data is received, and program code is written and updated, the SH7216 board writes the
data for a checksum verification in the on-chip flash memory. Then, the SH7216 board sets a dogwatch timer and it
becomes standby state to wait for a reset by the timer counter overflow.

When the watchdog timer restarts the SH7216 board, it executes the updated program. At this time, the LED on the
board gives a different pattern of blinking from the previous pattern.

In case of a failure in the data reception or flash memory reprogramming (updating) before restarting the program, the
SH7216 board determines it as a checksum error when restarting by reset input. In this case, the SH7216 executes the
program in the extra area (EB05).

SH7216 Group Updating Program Code by Reprogramming Flash Memory
in User Program Mode Using MMC

R01AN0769EJ0101 Rev.1.01 Page 33 of 33
Jun. 15, 2012

8. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

9. Reference Documents
Hardware Manual

SH7214 Group, SH7216 Group User’s Manual: Hardware Rev.3.00
The latest version can be downloaded from the Renesas Electronics website.

Development Tool Manual

SuperH C/C++ Compiler Package V.9.04 User’s Manual Rev.1.01
The latest version can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History SH7216 Group Application Note Updating Program Code by
Reprogramming Flash Memory in User Program Mode Using MMC

Description Rev. Date
Page Summary

1.00 Sep. 29, 2011 — First edition issued
1.01 Jun. 15, 2012 — Sample code (simple flash API) revised

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 2.0

	1. Specifications
	2. Operation Conditions
	3. Related Application Notes
	4. Peripheral Functions
	4.1 Flash Memory
	4.2 On-chip Flash Memory Dedicated Sequencer (FCU)
	4.3 Serial Communication Interface with FIFO (SCI)
	4.4 Watchdog timer (WDT)
	4.5 Renesas Serial Peripheral Interface (RSPI)

	5. Hardware
	5.1 Pins Used

	6. Software
	6.1 Operation Overview
	6.1.1 Section Assignment
	6.1.2 On-chip Flash Memory Reprogramming Operation Overview
	6.1.3 From a Start-up to a Normal Operation
	6.1.4 Flash Memory Reprogramming Event Processing by IRQ6 Input
	6.1.5 Receiving Program File for Updating Stored in MMC
	6.1.7 Processing after Data Analysis and Data Reprogramming
	6.1.8 Communication Control Sequence

	6.2 File Composition
	6.3 List of Constants
	6.4 List of Structures and Unions
	6.5 List of Variables
	6.6 Functions
	6.7 Function Specification
	6.8 Processing Flowcharts
	6.8.1 Main Processing
	6.8.2 Flash Memory Reprogramming Event Processing
	6.8.3 Data Analysis Processing
	6.8.4 Checksum verification Processing
	6.8.5 Text Binary Translation Processing

	7. Operation Overview
	8. Sample Code
	9. Reference Documents

