

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 1 of 77

SuperH RISC engine C/C++ Compiler Package
 APPLICATION NOTE: [Reference] Additional functions

This document explains features added to each version of the SuperH RISC engine
C/C++ compiler, as well as provides notes on upgrading from an earlier version.

A.1 Features Added between Ver. 1.0 and Ver. 2.0 ... 2

A.2 Features Added between Ver. 2.0 and Ver. 3.0 ... 3

A.3 Features Added between Ver. 3.0 and Ver. 4.1 ... 6

A.4 Features Added between Ver. 4.1 and Ver. 5.0 ... 9

A.5 Features Added between Ver. 5.0 and Ver. 5.1 ... 11

A.6 Features Added between Ver. 5.1 and Ver. 6.0 ... 13

A.7 Features Added between Ver. 6.0 and Ver. 7.0 ... 15

A.8 Features Added between Ver. 7.0 and Ver. 7.1 ... 28

A.9 Features Added between Ver. 7.1 and Ver. 8.0 ... 40

A.10 Features Added between Ver. 8.0 and Ver. 9.0 ... 41

A.11 Features Added between Ver. 9.0 and Ver. 9.1 ... 43

A.12 Features Added between Ver. 9.1 and Ver. 9.2 ... 52

B. Notes on Version Upgrade.. 74
B.1 Guaranteed Program Operation ... 74
B.2 Compatibility with Earlier Version ... 75

Website and Support <website and support,ws>.. 76

Revision Record <revision history,rh> .. 76

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 2 of 77

 A.1 Features Added between Ver. 1.0 and Ver. 2.0
Table A.1 summarizes the features added to version 2.0 of the SHC compiler.

Table A.1 Summary of Features Added to Version 2.0 of the SHC Compiler
No. Feature Description

1 Support for SH7600 Series
In addition to the SH7000 Series, objects can be
created which use instructions for the SH7600
Series as well.

2 Position-independent code
SH7600 Series objects can be created with
program sections assigned to arbitrary
addresses.

3 Specification of output area for
character strings

An option can be used to select whether to place
character string data in a constant section
(ROM) or in a data section (RAM).

4 Comment nesting An option is supported to specify whether
comments are nested or not.

5 Optimize for speed or for size
An option is provided to specify whether to
optimize for speed or for size at time of object
creation.

6 Support for section name switching
By using #pragma instructions midway through a
program, object output section names can be
switched.

7 mac embedded function
An embedded function is supported for
performing multiply-and-accumulate operations
on two arrays using the MAC instruction.

8 Embedded functions for system calls
Embedded functions are supported for making
direct system calls to the ITRON-specification
OS HI-SH7.

9 Single-precision elementary function
library

A single-precision elementary function library is
supported.

10 char-type bit fields char-type bit fields are supported.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 3 of 77

A.2 Features Added between Ver. 2.0 and Ver. 3.0
Table A.2 summarizes the features added to version 3.0 of the SHC compiler.

Table A.2 Summary of Features Added to Version 3.0 of the SHC Compiler
No. Feature Description

1 Strengthened optimization
Optimization performance was greatly enhanced.
Also, provisions were made for selective use of the
option to optimize for speed or for size.

2 SH-3 support

An option was provided for generating objects for the
SH-3, and the little-endian format characteristic of the
SH-3 was also supported. Also, an SH-3 data prefetch
instruction was supported as an embedded function.

3 Extension of compiler limits
The number of files that can be compiled at once, the
maximum nesting levels for include files, and other
compiler limits were extended.

4
Support for Japanese
character codes in character
strings

Provisions were added for character string data
containing shift-JIS and EUC Japanese character codes.

5 Specification of options using
files

Files can be used to specify command line options.

6 Utilization of the SH-2 divider Division operation code is generated which makes use of
the SH-2 divider.

7 Inline expansion Specifications can be added for inline expansion of user
routines written in C and assembly languages.

8 Use of short address
specifications

Variables can be specified for short addressing, including
two-byte addresses and GBR-relative data.

9 Control of register save/restore
operations

Statements can be added to suppress register
save/restore operations, to improve function speed and
size.

(1) Strengthened optimization

Optimization in ver. 3.0 provides options for emphasizing speed (the -SPEED option) and size (the -SIZE option), and
both types of optimization have been reinforced.

To enhance speed, loop optimization has been improved and inline expansion employed to improve execution speed by
about 10%, achieving an execution speed of 1 MIPS/MHz.

In order to reduce program size, instructions which shrink code size are generated and overlapping processing is
combined for significant improvements, to cut object size by approximately 20%. And, by using expansion features
introduced in ver.3.0 (8. Use of short address specifications, and 9. Control of register save/restore operations), object
size can be further reduced.

(2) SH-3 support

In addition to the SH-1 and SH-2, objects can now be created for the SH-3 (using the -CPU=SH3 option). Also, the
following features for the SH-3 are supported.

(a) An -ENDIAN option (-ENDIAN=BIG or LITTLE) corresponding to a feature for setting the order of bits in
memory is supported.

(b) A prefetch extended embedded function for generating a cache prefetch instruction (PREF) is supported.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 4 of 77

(3) Extension of compiler limits

Compiler limits were extended as indicated in the following table.

Table A.3 Extended Compiler Limits
No. Description Ver.2.0 Ver.3.0

1 Number of source programs that can be
compiled at once

16 files unlimited

2 Number of source code lines per file 32,767 lines 65535
lines

3 Number of source code lines in an entire
compiled unit

32,767 lines unlimited

4 Maximum number of #include nesting levels 8 levels 30 levels

(4) Support for Japanese character codes in character strings

Shift-JIS and EUC Japanese character codes can also be included in programs as character string data.

When input codes are shift-JIS (-SJIS option), output codes are also shift-JIS; when input codes are EUC (-EUC
option), output codes are also EUC.

However, the graphical user interface currently does not support display of Japanese character code data.

(5) Specification of options using files

By using the -SUBCOMMAND option to specify a file name, options can be included in the specified file rather than
on the command line. As a result, numerous complex options need not be entered on the command line each time.

(6) Utilization of the SH-2 divider

The following options are supported to enable use of the SH-2 divider.

(a) Objects which do not use the divider can be generated through the -DIVISION=CPU option.
(b) Objects which use the divider can be generated by using the -DIVISION=PERIPHERAL option. During use of the

divider, interrupts are disabled.
(c) Objects which use the divider can be generated through the -DIVISION=NOMASK option. This assumes that the

divider will not be used during interrupt processing.

(7) Inline expansion

(a) Inline expansion of C functions
When the -SPEED option is used, the compiler automatically inline-expands small functions. Also, by using the -INLINE
option, the maximum size of functions for inline expansion can be modified. Inline expansion can also be explicitly specified
using a #pragma statement. The "#pragma inline" statement specifies inline expansion of a user function written in C.

Example (inline expansion of C function):

#pragma inline(func) main()

int func(int a,int b) {

{ i=func(10,20); /* expanded to i=(10+20)/2 */

 return(a+b)/2; }

}

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 5 of 77

(b) Inline expansion of an assembler function

The "#pragma inline_asm" option can be used to specify inline expansion of user functions written in assembly
language. However, when using "#pragma inline_asm" for inline expansion, the output of the compiler is assembly
language source code. In such cases debugging at the C language level is not possible.

Example (inline expansion of an assembler function):

#pragma inline_asm(rotl)

int rotl(int a)

{

 ROTL R4

 MOV R4,R0

}

main()

{

 i=rotl(i); /* set the variable i in the register R4, and expand the code for the function rotl

*/

}

(8) Use of short address specifications

(a) Specifying two-byte address variables
Using the "#pragma abs16(<variable name>)" statement, variables can be specified for assignment to an address range
addressable using two bytes (-32768 to 32767). By this means, the size of an object referring to such a variable can be
reduced.

(b) Specification of GBR base variables
Using the "#pragma gbr(<variable name>)" statement, a variable can be specified for referencing in GBR-relative
addressing mode. By this means, the size of an object referencing this variable can be reduced, and memory-based bit
manipulation instructions specific to the GBR-relative addressing mode can be employed.

(9) Control of register save/restore operations

The "#pragma noregsave(<function name>)" statement can be used to suppress register save/restore operations at the
entry and exit points of functions. This can be used to produce fast, compact functions without register save/restore
overhead. A function for which "#pragma noregsave" is specified cannot be called by ordinary functions, but can be
called by C language functions which are specified explicitly (using "#pragma regsave") for calling a function for
which "#pragma noregsave" has been specified.

By using "#pragma noregsave" with functions which are executed frequently, program size can be reduced and speed of
execution increased.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 6 of 77

A.3 Features Added between Ver. 3.0 and Ver. 4.1
The features added to version 4.1 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Register assignment of external variables

The "#pragma global_register(<variable name>=<register number>)" statement can be used to assign external variables
to registers.

(2) Cache-savvy optimization

An "-align16" option is supported for assigning labels with 16-byte alignments, for efficient use of cache memory and
fetch instructions.

(3) Strengthened inline expansion feature

A feature was added such that, when as a result of inline expansion a function is itself no longer used, it is deleted.
Functions which are not themselves necessary after inline expansion should be declared using "static". Similarly, static
functions which are not called or referenced by address are deleted.

Examples:

 #pragma inline(func) #pragma inline(func)

 int a; int a;

 static int func(){ /* func() function is itself deleted */

 a++;

 }

 main(){ main(){

 func(); a++; /* inline expansion

 } }

(4) Recursive inline expansion

A feature was added for recursive inline expansion of functions. The depth of recursion can be specified using the
"-nestinline" option.

(5) Option for loop expansion optimization

The "-loop" and "-noloop" options can be used to specify whether or not loop processing is expanded in optimization,
independently of the "-speed" and "-size" options. (These options are invalid when the option to omit optimization is
specified.)

(6) Option for two-byte-address variables

Previously, variables with two-byte addresses had to be specified individually using the "#pragma abs16" statement,
but now an "-abs16" option enables specification for all variables at once. The option "-abs16=run" specifies two-byte
addresses only for runtime routines; "-abs16=all" specifies two-byte addresses for all variables and functions, including
runtime routines.

(7) Upper byte of function return value guaranteed

Previously, the upper byte of values returned by functions in the (unsigned) char and short types was not guaranteed.
By specifying the "-rtnext" option, the upper byte of the return value is now guaranteed (the upper byte of R0 is sign-
extended or zero-extended).

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 7 of 77

(8) More complete listing files

Compared with previous versions, the information contained in object lists and assembly lists is now more complete
and easier to read.

By the simultaneously output in statement units of C source and assembly language source in a list file, the
correspondence between them is easier to grasp (using the "-show=source,object" option).

(in addition, the default for the "-show" option was changed from source to nosource.)

A list of runtime routine names used in a function has been added, as information for computing the amount of stack
space used by the function.

The data loaded by an instruction for data loading from a constant pool is added as a comment.

Examples:

1: float x;

2: func(){

3: x/=1000;

4: }

Listing file

func.c 1 float x;

func.c 2 func(){*(a) Simultaneous output of C source and assembly language
 code

000000 _func: ; function: func

 ; frame size=4

 ; used runtime library name:

 ; divs *(b) Runtime routine name

000000 4F22 STS.L PR,@-R15

func.c 3 x/=1000;

000002 D404 MOV.L L216+2,R4 ; x

000004 D004 MOV.L L216+6,R0 ; H'447A0000 *(c) Load data

000006 D305 MOV.L L216+10,R3 ; __divs

000008 430B JSR @R3

00000A 6142 MOV.L @R4,R1

func.c 4 }

00000C 4F26 LDS.L @R15+,PR

00000E 000B RTS

000010 2402 MOV.L R0,@R4

000012 L216:

000012 00000002 .RES.W 1

000014 <00000000> .DATA.L _x

000018 447A0000 .DATA.L H'447A0000

00001C <00000000> .DATA.L __divs

000000 _ x: ; static: x

000000 00000004 .RES.L 1

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 8 of 77

(9) More complete error messages

By specifying the "-message" option to output information messages, programming errors can be checked more easily.

Examples:

1: void func(){

2: int a;

3: a++;

4: sub(a);

5: }

Information messages

line 3: 0011 (I) Used before set symbol: "a" (reference of undefined auto variable)

line 4: 0200 (I) No prototype function (no prototype declaration)

In addition, the identifier, token or number causing the error is added to the message to make it easier to find the error
location.

Examples:

: 2118 (E) Prototype mismatch "identifier"

: 2119 (E) Not a parameter name "identifier"

: 2201 (E) Cannot covert parameter "number"

: 2225 (E) Undeclared name "identifier"

: 2500 (E) Illegal token "token"

(10) Automatic conversion of Japanese character codes

When a character string containing either EUC or shift-JIS Japanese character codes is output to an object file, the
Japanese character codes are automatically converted to the encoding specified by an encoding option.

(a) An "-outcode=euc" option causes automatic conversion to EUC codes.
(b) An "-outcode=sjis" option results in automatic conversion to shift-JIS codes.

(11) Specification of CPU type by an environment variable

It is now possible to use an environment variable instead of a command line option to specify the CPU type.

Environment variable specification

 SHCPU=SH1 (equivalent to the "-cpu=sh1" option)

 SHCPU=SH2 (equivalent to the "-cpu=sh2" option)

 SHCPU=SH3 (equivalent to the "-cpu=sh3" option)

(12) Option to treat double data types as float types

By using the "-double=float" option, data declared as the double type can be read as the float type. In programs where
the precision of the double type is not required, execution speed can be improved without the need to modify the source
code.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 9 of 77

A.4 Features Added between Ver. 4.1 and Ver. 5.0
The features added to version 5.0 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Extension of the number of characters in a line

The limit on the number of characters in a single logical line was extended from 4,096 characters to 32,768 characters.

(2) Removal of the limit on compiler source lines

The limit of 65,535 lines in a single file for compiling was removed. However, that part of the file exceeding 65,535
lines cannot be debugged.

(3) Compatibility with SH-4 instructions

This compiler version is also compatible with the SH-4, to maintain compliance with the SH Family of CPUs. By using
the "-cpu=sh4" option, SH-4 objects can be generated.

(4) Addition of a normalize mode

By using the "-denormalize=on|off" option, it is possible to choose whether to handle non-normalized numbers or set
them to zero. This is valid only when "-cpu=sh4" is used.

However, when "-denormalize=on", if a non-normalized number is input to the FPU, an exception occurs. Hence an
exception handler must be written to handle processing of non-normalized numbers.

(5) Addition of a rounding mode

By using the "-round=nearest|zero" option, it is possible to choose whether to round to zero or to the nearest number.
This is valid only when "-cpu=sh4" is used.

(6) Compatibility of compiler option environment variable with SH-4

Instead of using command line options to specify the CPU, the environment variable "SHCPU" can be used to specify
the SH-4, by setting "SHCPU=SH4".

(7) Compatibility with the SH-2E

By using the "-cpu-sh2e" option, objects for the SH-2E can be generated.

(8) Compatibility of compiler option environment variable with SH-2E

Instead of using command line options to specify the CPU, the environment variable "SHCPU" can be used to specify
the SH-2E, by setting "SHCPU=SH2E".

(9) Use of extensions to distinguish between C and C++ files

By selective use of the shc and shcpp commands, the compiler enables determination of the syntax used. Now, C++
files can be compiled based on file extensions or an options even when using the shc command. For details refer to the
table below.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 10 of 77

Table A.4 Conditions for Determining Compiling Syntax

Command Option Extension of File
for Compiling

Syntax Used in
Compiling

shcpp Arbitrary Arbitrary Compiled as C++
-lang=c Compiled as C
-lang=cpp

Arbitrary
Compiled as C++

*.c Compiled as C shc
No -lang
option *.cpp, *.cc, *.cp,

*.CC Compiled as C++

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 11 of 77

A.5 Features Added between Ver. 5.0 and Ver. 5.1
The features added to version 5.1 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Support for the SH3-DSP library

In addition to the older SH-DSP, support is now also available for libraries that can be applied to SH3-DSP.

(2) Support for embedded C++ language

Support is now available for embedded C++ language specification, which is the C++ specification compatible with
embedded systems.

• Support for bool-type
• Multiple inheritance warnings
• Support for embedded C++ language class libraries
(3) Support for inter-module optimization functions

Implements the following optimization, and generates objects with optimal size/speed.

With this optimization, size is reduced by approximately 10%, and execution speed is improved by 7 to 8%.

• Reduction of superfluous register save/restore code
• Deletion of unreferenced variables/functions
• Routinization of common codes
• Optimization of function call codes
(4) Improved compiling speed

Fast compiling speed has been achieved through improved optimization processing.

A maximum of double speed, and an average speed increase of 130% has been achieved.

(5) Extension of limits

• The limit on command line length has been extended from 256 to 4,096.
• The limit on file name length has been extended from 128 to 251.
• The limit on character string literal length has been extended from 512 to 32,767.
(6) Strengthened optimization

The various kinds of optimization for improving object performance have been strengthened.

(7) Support for C++ comments

In the C language, use of "//" comments is now possible.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 12 of 77

(8) Changes to the integrated environment (PC version)

The older PC integrated environment HIM (Hitachi Integration Manager) has been replaced by the new integrated
environment HEW (High-performance Embedded Workshop).

The following functions have been added, as compared with HIM.

Project generator
Automatically generates header files that define peripheral I/Os for each CPU.
Combination interface with the version management tools
Supports the interface with the version management tools provided by the third party.
Hierarchy project support
Can define multiple subprojects in a project and hierarchically manage them.
Network support
Provides development environment under WindowsNT CSS.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 13 of 77

A.6 Features Added between Ver. 5.1 and Ver. 6.0

The features added to version 6.0 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Relaxation of limits

Limits for source programs and command lines have been greatly relaxed.

• File name length: 251 bytes → No limit
• Symbol length: 251 bytes → No limit
• Number of symbols: 32,767 symbols → No limit
• Number of source program rows: C/C++: 32,767 rows, ASM: 65,535 rows → No limit
• C program character string length: 512 characters → 32,766 characters
• Assembly program row length: 255 characters → 8,192 characters
• Subcommand file row length: ASM: 300 bytes, optlnk: 512 bytes → No limit
• Number of parameters for the Optimizing Linkage Editor rom option: 64 parameters → No limit
(2) Hyphens (-) in directory names and filenames

Hyphens (-) can now be specified in directory names and filenames

(3) Elimination of copyright notice

By specifying the logo/nologo option, it is now possible to specify whether or not to display a copyright notice.

(4) Error message prefixes

Along with support for the error help function in the Integrated Development Environment, the start of error messages
in the compiler and Optimizing Linkage Editor have been ascribed prefixes.

(5) Addition of fpscr options

If the cpu=sh4 option is specified, and the fpu option is not specified, it is now possible to specify whether to guarantee
the FPSCR register precision mode before and after calling on the function.

(6) #pragma extensions

#pragma extensions can now be written without ().

(7) Addition of embedded functions

trace functions have been added.

(8) Addition of implicit declarations

_ _HITACHI_ _ and _ _HITACHI_VERSION_ _ are implicitly declared with #define.

(9) static label name

In order that static labels inside the file can be referenced by #pragma inline_asm, the label name has been changed to _
_$ (name). However, it is displayed as _(name) in the linkage list.

(10) Extension and changes to the language specification

• Errors when unions are initialized have been eliminated.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 14 of 77

Example:

union{

char c[4];

} uu={{'a','b','c'}};

• It is now possible to substitute a structure and make a declaration at the same time.
Example:

struct{

int a, int b;

} s1

void test()

{

struct S s2=s1;

}

• The boundary alignment of bool-type data is now 4 bytes.
• Exception processing and template functions are now supported as the C++ language specification.
• The C preprocessor is now ANSI/ISO compliant.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 15 of 77

A.7 Features Added between Ver. 6.0 and Ver. 7.0
From the SuperH RISC engine C/C++ Compiler Ver.7.0 algorithm and code generation has been greatly improved.
So the options and generated codes are much different from those of Ver.6.0.
The features added to version 7.0 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) External access optimization function (map option support)

This function performs optimization of external variable access and function branch instructions based on the allocated
address of the variables and functions at linkage. Optimization is implemented by recompiling the external symbol
allocation information files which are output (specified to map option) by the Optimizing Linkage Editor at the time of
the first linkage.

(2) Automatic generation of GBR relative access code (gbr option support)

If gbr=auto is specified, the compiler automatically generates GBR settings and GBR relative access code. Before and
after a function call, the GBR value is guaranteed. However, GBR-related embedded functions cannot be used.

(3) Strengthened speed/size selection options

speed/size selection options (shift, blockcopy, division, approxdiv options) have been added, and it is now possible to
make finer size/speed adjustments.

(4) Strengthened functions for embedded systems

• Addition of embedded functions
Double precision multiplication, SWAP instruction, LDTLB instruction, NOP instruction

• Addition and change of #pragma extension
Support for #pragma entry entry function specification and SP setting
Support for #pragma stacksize stack size specification
Support for #pragma interrupt sp=<variable>+<constant> and sp=&<variable>+<constant>

• Support for section operators
Supports functions of coding the size references in C language.

• Relaxation of address cast errors
Errors of cast expressions with regard to address initialization when initializing external variables have been relaxed.

(5) Improved libraries

• Support for reentrant libraries
If the reent option is specified with the Library Creation Tool, a reentrant library is generated.

• The units of the malloc reserve size and the number of input and output files has been made variable.
It is now possible to specify the malloc reserve size with _sbrk_size, and the number of input and output files with
_nfiles in the initial settings of the C/C++ library functions. This substantially reduces RAM capacity.
If this specification is omitted, the malloc reserve size is 520, and the number of input and output files is 20.

• Support for easy I/O
If the nofloat option is specified with the Library Creation Tool, floating point conversions are not supported, and a
small I/O routine is generated.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 16 of 77

(6) Addition of optimization options (V7.0.06)

• Added Options
The following shows the options added to Ver.7.0.06. Uppercase letters indicate the abbreviations and characters
underlined indicate the defaults.

Table A.5 Added options
 Item Command Line Format Specification
1 Treatment of global

variables
GLOBAL_Volatile = { 0 |

 1 }

Treat global variables as non-volatile-qualified
except variables which are volatile-qualified

Treats global variables as volatile-qualified

2 Optimizing range of
global variables

OPT_Range = {All |

 NOLoop |

 NOBlock }

Optimizes all the global variables in a whole
function

Suppresses a motion of global variables out of a
loop or optimization of a loop control variable

Suppresses an optimization of the global variables
cross over a branch or a loop

3 Deletion of vacant
loops

DEL_vacant_loop ={ 0 |

 1}

Suppresses a deletion of a vacant loop

Deletes a vacant loop

4 Specification of
maximum unroll
factor

MAX_unroll = <numeric
value>
<numeric value>:1-32

Specifies the maximum number of loop unroll
factor

Default : 1
(when the speed or loop option is specified, the
default is 2)

5 Deletion of
assignments before
an infinite loop

INFinite_loop = {0 |

 1 }

Suppresses a deletion of assignments to global
variables before an infinite loop

Deletes assignments to global variables before
an infinite loop

6 Allocation of global
variable

GLOBAL_Alloc = {0 |

 1 }

Suppresses register allocation of global
variables

Allocates registers of global variables

7 Allocation of
struct/union
member

STRUCT_Alloc = {0 |

 1 }

Suppresses register allocation of struct or union
members

Allocates registers to struct or union members

8 Propagation of
const-qualified
variable

CONST_Var_propagate = {0
|

1 }

Suppresses the propagation of variables which
are const-qualified

Propagates variables which are const-qualified

9 IInline expansion of
constant load

CONST_Load = {Inline |

 Literal }

Performs inline expansion of constant load

Loads constant data from literal pool

Default : When size is specified, up to
two or three instructions are expanded

1
0

Scheduling of
instructions

SChedule = {0 |

 1 }

Suppresses instruction scheduling

Schedules instructions

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 17 of 77

Treatment of global variables

GLOBAL_Volatile

Optimize[Details][Global variables][Treat global variables as volatile qualified]

Command Line Format

GLOBAL_Volatile = { 0 | 1 }

Description

When global_volatile=0 is specified, the compiler optimizes accesses of the global variables which are non-volatile-
qualified. So a count or an order of accesses to global variables may differ from that of the C/C++ program.

When global_volatile=1 is specified, all the global variables are treated as volatile-qualified. So a count or an order of
accesses to global variables may be the same as that of the C/C++ program.

The default for this option is global_volatile=0.

Remarks

When global_volatile=1 is specified, schedule=0 becomes the default.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 18 of 77

Optimizing range of global variables

OPT_Range

Optimize[Details][Global variables][Specify optimizing range :]

Command Line Format

OPT_Range = { All | NOLoop | NOBlock }

Description

When opt_range=all is specified, the compiler optimizes accesses to all the global variables in a function.

When opt_range=noloop is specified, the compiler does not optimize accesses to the global variables which are used
in a loop or a loop conditional expression.

When opt_range=noblock is specified, the compiler does not optimize accesses to the global variable cross over a
branch or a loop.

The default for this option is opt_range=all.

Example

(1) Example of optimization across a branch (opt_range=all or noloop is specified)

 int A,B,C;

 void f(int a) {

 A = 1;

 if (a) {

 B = 1;

 }

 C = A;

 }

 <source image after optimizing>

 void f(int a) {

 A = 1;

 if (a) {

 B = 1;

 }

 C = 1; /* Deletes reference of variable A and propagates A=1 */

 }

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 19 of 77

(2) Example of optimization against loop (opt_range=all is specified)

 int A,B,C[100];

 void f() {

 int i;

 for (i=0;i<A;i++) {

 C[i] = B;

 }

 }

 <source image after optimizing>

 void f() {

 int i;

 int temp_A, temp_B;

 temp_A = A; /* Remove reference of variable A used in loop conditional expression */

 temp_B = B; /* Remove reference of variable B in a loop */

 for (i=0;i<temp_A;i++) { /* Delete reference of variable A */

 C[i] = temp_B; /* Delete reference of variable B */

 }

 }

Remarks

Whenever opt_range=noloop is specified, max_unroll=1 becomes the default.
Whenever opt_range=noloblock is specified, max_unroll=1, const_var_propagate=0, and
global_alloc=0 becomes the default.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 20 of 77

Deletion of vacant loops

DEL_vacant_loop

Optimize[Details][Miscellaneous][Delete vacant loop]

Command Line Format

DEL_vacant_loop = { 0 | 1 }

Description

When del_vacant_loop=0 is specified, the compiler does not delete a vacant loop.

When del_vacant_loop=1 is specified, the compiler deletes a vacant loop.

The default for this option is del_vacant_loop=0.

Remarks

Note that the default differs between version 7.0.04 and 7.0.06.
Up to V7.0.04 : Delete vacant loop
V7.0.06 or later : Does not delete vacant loop

Specification of maximum unroll factor

MAX_unroll

Optimize[Details][Miscellaneous][Specify maximum unroll factor :]

Command Line Format

MAX_unroll = <numeric value>

Description

Specifies the maximum unroll factor when a loop is expanded.

The <numeric value> accepts a decimal number from 1 to 32. If < numeric value > is specified out of the range, an
error will occur.

When the speed or loop option is specified, the default for this option is max_unroll=2.

Otherwise the default for this option is max_unroll=1.

Remarks

Whenever opt_range=noloop or opt_range=noblock is specified, the default for this option is max_unroll=1.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 21 of 77

Deletion of assignments before an infinite loop

INFinite_loop

Optimize[Details][Global variables]

[Delete assignment to global variables before an infinite loop]

Command Line Format

INFinite_loop = { 0 | 1 }

Description

When infinite_loop=0 is specified, the compiler does not delete an assignment to a global variable before an infinite
loop.

When infinite_loop=1 is specified, the compiler deletes an assignment before an infinite loop to a global variable
which is not referred to in the infinite loop.

The default for this option is infinite_loop =0.

Example

 int A;

 void f()

 {

 A = 1; /* Assignment to variable A */

 while(1) {} /* Variable A is not referred in a loop */

 }

 <source image when specified infinite_loop=1)

 void f()

 {

 /* Delete assignment to variable A */

 while(1) {}

 }

Remarks

Note that the default differs between version 7.x (up to V7.0.04) and 7.0.06 or later.
Up to V7.0.04 : Deletes an assignment before an infinite loop to a global variable which is not
 referred to in the infinite loop
V7.0.06 or later : Does not delete an assignment to a global variable before an infinite loop

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 22 of 77

Allocation of global variable

GLOBAL_Alloc

Optimize[Details][Global variables][Allocate registers to global variables :]

Command Line Format

GLOBAL_Alloc = { 0 | 1 }

Description

When global_alloc=0 is specified, the compiler does not allocate registers to global variables.

When global_alloc=1 is specified, the compiler allocates registers to global variables.

The default for this option is global_alloc=1.

Remarks

When opt_range=noblock is specified, global_alloc=0 becomes the default.

When optimize=0 is specified, note that the default differs between version 7.x (up to V.7.0.04) and 7.0.06 or later.

 Up to V7.0.04 : Allocates registers to global variables

 V7.0.06 or later : Does not allocate registers to global variables

Allocation of struct/union member

STRUCT_Alloc

Optimize[Details][Miscellaneous][Allocate registers to struct/union members]

Command Line Format

STRUCT_Alloc = { 0 | 1 }

Description

When struct_alloc=0 is specified, the compiler does not allocate registers to struct or union members.

When struct_alloc=1 is specified, the compiler allocates registers to struct or union members.

The default for this option is struct_alloc=1.

Remarks

When either opt_range=noblock or global_alloc=0, and struct_alloc=1 is specified, the compiler

allocates registers only to local struct or union members.

When optimize=0 is specified, note that the default differs between version 7.x (up to V7.0.04) and 7.0.06 or later.

 Up to V7.0.04 : Allocate registers to struct or union members

 V7.0.06 or later : Does not allocate registers to struct or union members

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 23 of 77

Propagation of const-qualified variable

CONST_Var_propagate

Optimize[Details][Global variables][Propagate variables which are const qualified :]

Command Line Format

CONST_Var_propagate = { 0 | 1 }

Description

When const_var_propagate=0 is specified, the compiler does not propagate global variables which

are const-qualified.

When const_var_propagate=1 is specified, the compiler propagates global variables which are

const-qualified.

The default for this option is const_var_propagate=1.

Example

 const int X = 1;

 int A;

 void f() {

 A = X;

 }

 <source image when specified const_var_propagate=1>

 void f() {

 A = 1; /* Propagates X=1 */

 }

Remarks

When opt_range=noblock is specified, the default for this option is const_var_propagate=0.

Variables which are const-qualified in C++ program are always propagated even if

const_var_propagate=0 is specified.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 24 of 77

Inline expansion of constant load

CONST_Load

Optimize[Details][Miscellaneous][Load constant value as :]

Command Line Format

CONST_Load = { Inline | Literal }

Description

When const_load=inline is specified, the load of all the 2-byte constant data or some 4-byte constant data is expanded.

When const_load=literal is specified, all the 2-byte or 4-byte constant data are loaded from literal pool.

The default for this option is below.

 When the speed option is specified:

 The default is const_load=inline.

 When the size or nospeed option is specified:

 If 2-byte or 4-byte constant data can be expanded into 2 or 3 instructions respectively,

 const_load=inline is applied.

 Otherwise the default is const_load=literal.

Example

 int f() {

 return (257);

 }

(1) When const_load=inline or speed option is specified:

 MOV #1,R0 ; R0 <- 1

 SHLL8 R0 ; R0 <- 256 (1<<8)

 RTS

 ADD #1,R0 ; R0 <- 257 (256+1)

(2) When const_load=literal, size or nospeed is specified:

 MOV.W L11,R0

 RTS

 NOP

 L11:

 .DATA.W H'0101

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 25 of 77

Scheduling of instructions

SChedule

Optimize[Details][Global variables][Schedule instructions :]

Command Line Format

SChedule = { 0 | 1 }

Description

When schedule=0 is specified, the compiler does not schedule instructions. They will be executed in the order written in the
C/C++ program.

When schedule=1 is specified, the compiler schedules instructions paying attention to the pipeline or superscalar (only SH-4)
mechanism.

The default for this option is schedule=1.

Remarks

When opt_range=noblock is specified, schedule=0 becomes the default.

• The default in optimize=0

When optimize=0 is specified, the defaults of the added options are shown below.

 global_volatile=0

 opt_range=noblock

 del_vacant_loop=0

 max_unroll=1

 infinite_loop=0

 global_alloc=0

 struct_alloc=0

 const_var_propagate=0

 const_load=literal

 schedule=0

The defaults of the following options differ from optimize=1.

 optimize=0 optimize=1
opt_range noblock all

global_alloc 0 1
struct_alloc 0 1

const_var_propagate 0 1
const_load literal Depending on

speed/size/nospeed
schedule 0 1

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 26 of 77

• Compatibility in V7 (up to V7.0.04)
The defaults of the following options differ between version 7.x (up to V.7.0.04) and 7.0.06 or later.

(i) Deletion of a vacant loop (del_vacant_loop)

 Up to V7.0.04 : Deletes a vacant loop

 V7.0.06 or later : Does not delete a vacant loop

(ii) Deletion of an assignment before an infinite loop (infinite_loop)

 Up to V7.0.04 : Deletes an assignment before an infinite loop to global variable which is not referred to in the infinite
loop

 V7.0.06 or later : Does not deletes assignment to global variable before an infinite loop

The specification of the following with optimize=0 differs between version 7.x (up to V.7.0.04) and 7.0.06 or later.

(i) Allocation of global variables (global_alloc)

 Up to V7.0.04 : Allocates global variables to registers

 V7.0.06 or later : Does not allocate global variables to registers

(ii) Allocation of struct or union members (struct_alloc)

 Up to V7.0.04 : Allocates struct or union members to registers

 V7.0.06 or later : Does not allocate struct or union members to registers

• System of Optimization
The levels of the optimization of global variables are shown below. When one of those levels is selected in HEW, the
options related to the optimization of global variables can be controlled together.

The level is set at Optimize[Details][Level :].

(i) Level 1

All the optimizations of global variables are suppressed.

 global_volatile=1

 opt_range=noblock

 infinite_loop=0

 global_alloc=0

 const_var_propagate=0

 schedule=0

(ii) Level 2

The optimizations of global variables which are not volatile-qualified are done within a basic block

(sequence of instructions which have no labels or branches except at beginning or end).

 global_volatile=0

 opt_range=noblock

 infinite_loop=0

 global_alloc=0

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 27 of 77

 const_var_propagate=0

 schedule=1

(iii) Level 3

All the optimizations of global variables which are non-volatile-qualified are done.

 global_volatile=0

 opt_range=all

 infinite_loop=0

 global_alloc=1

 const_var_propagate=1

 schedule=1

(iv) Custom

User specifies these options according to the programs.

When level 1, level 2, or level 3 is specified, above-mentioned options cannot be changed separately.

• The followings are features added to Optimizing Linkage Editor.
(7) Support for wild cards

It is possible to specify wild cards for input files and start option section names.

(8) Search path

It is possible to specify search paths for multiple input files and library files with the environment variable
(HLNK_DIR).

(9) Separate output of load modules

It is possible to perform separate output of absolute load module files.

(10) Changed error levels

The error level for messages for information, warnings, and error levels, and whether or not to output them can be
changed individually.

(11) Support for binary and HEX

It is now possible to input and output binary files.

In addition, it is now possible to choose to output in the Intel HEX format.

(12) Output of the stack capacity usage information

With the stack option, it is possible to output data files for the stack analysis tools.

(13) Debug information deletion tool

With the strip option, it is possible to delete just the debug information within the load module files and library files.

The features added to version 7.1 of the SuperH RISC engine C/C++ Optimizing Linkage Editor are summarized below.

(14) Output external symbol allocation information files (map option support)

If the map option is specified, the compiler generates an external symbol allocation information file to be used for
external variable access optimization.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 28 of 77

A.8 Features Added between Ver. 7.0 and Ver. 7.1
• The features added to version 7.1 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Strengthened optimization

(a) Deletion of EXTU immediately after MOVT

Deletes the unnecessary EXTU immediately after MOVT.
(As nothing besides 1 or 0 can be set, EXTU is unnecessary)

Before optimization After optimization
_f:
MOV.L L12+2,R6 ;
_a1
MOV.B @R6,R0
TST #128,R0
MOVT R0
EXTU.B R0,R0

_f:
MOV.L L12+2,R6 ;
_a1
MOV.B @R6,R0
TST #128,R0
MOVT R0

As nothing besides 1 or 0 can be set for R0, EXTU is unnecessary.

(b) Deletion of EXTU after a right shift of a zero extended register

Even if a zero extended register is zero extended after a right shift, the value does not change so it is deleted.

Before optimization After optimization
f:
 MOV.L L13+2,R2;
_a2
 MOV #1,R5
 MOV.W @R2,R6
 EXTU.W R6,R6
 MOV R6,R2
 SHLR2 R2
 SHLR R2
 EXTU.W R2,R2
 CMP/GE R5,R2
 :

f:
 MOV.L L13+2,R2;
_a2
 MOV #1,R5
 MOV.W @R2,R6
 EXTU.W R6,R6
 MOV R6,R2
 SHLR2 R2
 SHLR R2
 CMP/GE R5,R2
 :

As the upper 2 bytes are zero-cleared with EXTU, the value does not change
even if EXTU is performed again.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 29 of 77

(c) Unifying consecutive AND

If ANDs to the same variable are made consecutively, they are grouped into 1 AND.

Before optimization After optimization
_f:
 MOV.L L11+2,R6 ;
_a5
 MOV.B @R6,R0
 AND #3,R0
 RTS
 AND #1,R0

_f:
 MOV.L L11+2,R6 ;
_a5
 MOV.B @R6,R0
 RTS
 AND #1,R0

Grouped into 1 AND.

(d) Bit field comparison and combination

Unifies evaluation (TST#n, R0) of multiple bit fields.

Before optimization After optimization
_f:
 :
 MOV R4,R0
 TST #64,R0
 BF L12
 TST #32,R0
 BF L12
 MOV R6,R0
 :

_f:
 :
 MOV R4,R0
 TST #96,R0
 BF L12
 MOV R6,R0
 :

Unifies the criteria of the bit fields, and replaces them with 1 evaluation.

(e) Deletion of EXTS of consecutive EXTS+EXTU

After EXTS, if EXTU of the same size is executed, EXTS is unnecessary so it is deleted.

Before optimization After optimization
_f:
 :
 EXTS.B R6,R2
 EXTU.B R2,R0
 :

_f:
 :
 EXTU.B R6,R0
 :

EXTU is executed on a value from EXTS, so EXTS is unnecessary.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 30 of 77

(f) Deletion of MOVT(+XOR)+EXTU+CMP/EQ

Deletes the unnecessary MOVT(+XOR)+EXTU+CMP/EQ after TST, and makes a conversion so as to reference the T
bit with a direct branch instruction.

Before optimization After optimization
_f:
 :
 TST #4,R0
 MOVT R0
 MOV.L L23+6,R6 ;
_st2
 XOR #1,R0
 EXTU.B R0,R0
 CMP/EQ #1,R0
 MOV.B @R6,R0
 BF L16
 :

_f:
 :
 TST #4,R0
 MOV.L L23+6,R6;
_st2
 MOV.B @R6,R0
 BT L16
 :

Directly references the T bit.

(g) AND #imm, R0+CMP/EQ #imm, R0 → TST #imm, R0

Replaces AND #imm, R0+CMP/EQ #imm, R0 with TST #imm, R0.

Before optimization After optimization
L17:
 MOV.B @R6,R0
 AND #1,R0
 CMP/EQ #1,R0
 BF L19
 MOV.B @R5,R0
 AND #1,R0

L17:
 MOV.B @R6,R0
 TST #1,R0
 BT L19
 MOV.B @R5,R0
 AND #1,R0

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 31 of 77

(h) Deletion of EXTU when comparing (==) unsigned char and constant

Deletes the unnecessary EXTU when comparing the unsigned char and constant immediately after the load.

Before optimization After optimization
_f:
 MOV.L L11,R6 ;
_b
 MOV.B @R6,R2
 MOV #-
128,R6; H'FFFFFF80
 EXTU.B R6,R6
 EXTU.B R2,R2
 CMP/EQ R6,R2
 MOVT R2
 MOV.L L11+4,R6 ;
_a
 RTS
 MOV.B R2,@R6

_f:
 MOV.L L11,R6 ;
_b
 MOV.B @R6,R2
 MOV #-
128,R6; H'FFFFFF80
 CMP/EQ R6,R2
 MOVT R2
 MOV.L L11+4,R6 ;
_a
 RTS
 MOV.B R2,@R6

Deletes the unnecessary extension.

(i) Deletion of extension after LOAD / before STORE of bit field

Deletes the unnecessary extension of the bit field after LOAD and before STORE.

Before optimization After optimization
_f:
 MOV.L L11+2,R6;_st
 MOV.B @R6,R2
 EXTU.B R2,R0
 OR #128,R0
 :

_f:
 MOV.L L11+2,R6;_st
 MOV.B @R6,R2
 OR #128,R0
 :

Deletes the unnecessary extension.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 32 of 77

(j) Deletion of copy when evaluating switch-case

Deletes the copy of the value when performing each case evaluation of switch statements.

Before optimization After optimization
_f:

 :
 MOV R0,R2
 MOV R2,R0
 CMP/EQ #1,R0
 BT L24
 CMP/EQ #2,R0
 BT L26
 MOV R2,R0
 CMP/EQ #3,R0
 BT L28
 MOV R2,R0
 CMP/EQ #4,R0
 BT L30
 MOV R2,R0
 :

_f:

 :
 MOV R0,R2
 MOV R2,R0
 CMP/EQ #1,R0
 BT L24
 CMP/EQ #2,R0
 BT L26
 CMP/EQ #3,R0
 BT L28
 CMP/EQ #4,R0
 BT L30
 :

Deletes the unnecessary copy.

(k) Unifying consecutive OR

If ORs to the same variable are made consecutively, they are grouped into 1 OR.

Before optimization After optimization
_f:
 MOV.L L11+2,R6 ;
_a5
 MOV.B @R6,R0
 OR #3,R0
 RTS
 OR #1,R0

_f:
 MOV.L L11+2,R6 ;
_a5
 MOV.B @R6,R0
 RTS
 OR #3,,R0

Grouped into 1 OR.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 33 of 77

(l) Deletion of EXTS immediately in front of AND #imm,R0 or TST #imm,R0

Deletes the unnecessary extension immediately in front of;

(i) AND #imm,R0
(ii) TST #imm,R0

Before optimization After optimization
_f:
 :
 EXTS.B R6,R0
 AND #32,R0
 :

_f:
 :
 AND #32,R0
 :

_f:
 :
 EXTS.B R6,R0
 TST #32,R0
 :

_f:
 :
 TST #32,R0
 :

Deletes the unnecessary extension.

(m) Deletion of EXTU of consecutive EXTU+EXTS

After EXTU, if EXTS of the same size is executed, EXTU is unnecessary so it is deleted.

Before optimization After optimization
_f:
 :
 EXTU.B R6,R2
 EXTS.B R2,R0
 :

_f:
 :
 EXTS.B R6,R0
 :

EXTS is executed on a value from EXTU, so EXTU is unnecessary.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 34 of 77

(n) Deletion of EXTU immediately after XOR #imm,R0(OR,AND) after MOVT

Deletes the unnecessary EXTU immediately after;

(i) XOR #imm,R0

(ii) OR #imm,R0

(iii) AND #imm,R0

after MOVT

Before optimization After optimization
 :
MOVT R0
XOR #1,R0
RTS
EXTU.B R0,R0

 :
MOVT R0
RTS
XOR #1,R0

MOVT R0
OR #2,R0
RTS
EXTU.B R0,R0

 :
MOVT R0
RTS
OR #2,R0

 :
MOVT R0
AND #1,R0
RTS
EXTU.B R0,R0

 :
MOVT R0
RTS
AND #1,R0

Deletes the unnecessary extension.

(o) Deletion of unnecessary EXTS when making comparison

Deletes redundant EXTS re-output when comparing registers after sign expansion.

Before optimization After optimization
_f:
 :
 EXTS.B R6,R6
 CMP/GT R6,R2
 BF L13
 :

_f:
 :
 CMP/GT R6,R2
 BF L13
 :

If R6 is already extended previously, EXTS is unnecessary.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 35 of 77

(p) Disabling (immediately) of allocation of constant values to registers

Disables allocation of functional parameter constants (-128 to 127) to registers.

Before optimization After optimization
_f:
 PUSH R14
 :
 MOV.B #127,R14
 :
 MOV.B R14,R4
 BSR sub
 :
 POP R14

_f:

 :

 :
 MOV.B #127,R4
 BSR sub
 :

Loads directly constant values #127 to parameter registers without allocating to
registers.

(q) Strengthened DT instructions

Performs DT instruction for variables allocated to registers.

Before optimization After optimization
_f:
 MOV.L L16+2,R6; _x
 MOV.L @R6,R2
 ADD #-1,R2
 TST R2,R2
 BT/S L12
 :

_f:
 MOV.L L16+2,R6; _x
 MOV.L @R6,R2
 DT xxxx R2 xxxx
 BT/S L12
 :

Performs DT instruction.

(r) Improved literal output position

Precision of instruction size calculation when deciding literal data output position is improved, and it is possible to
output the literal data output position later.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 36 of 77

(s) Deletion of 1byte&=1byte redundant EXTU

Deletes the unnecessary EXTU when 1byte&=1byte.

Before optimization After optimization
_f:
 :
 MOV.B @(R0,R7),R6
 MOV.B @R5,R2
 EXTU.B R6,R6
 AND R6,R2
 MOV.B R2,@R5
 MOV.B @R14,R2
 :

_f:
 :
 MOV.B @(R0,R7),R6
 MOV.B @R5,R2
 AND R6,R2
 MOV.B R2,@R5
 MOV.B @R14,R2
 :

Deletes the unnecessary extension.

(t) 2 byte literal expansion

Prevents the same code from being expanded twice.

Before optimization After optimization
_f:
 MOV.L L13+4,R4 ; _b
 SHLL8 R0
 ADD #-48,R0
 MOV.W @(R0,R4),R2
 MOV #8,R0
 SHLL8 R0
 ADD #-46,R0
 EXTU.W R2,R6
 MOV.W @(R0,R4),R2
 MOV #8,R0
 SHLL8 R0
 ADD #-44,R0
 EXTU.W R2,R5
 MOV.W @(R0,R4),R2

_f:
 MOV.L L13+4,R4 ; _b
 SHLL8 R0
 ADD #-48,R0
 MOV.W @(R0,R4),R2
 MOV #8,R0
 SHLL8 R0
 ADD #-46,R0
 EXTU.W R2,R6
 MOV.W @(R0,R4),R2
 ADD #2,R0
 EXTU.W R2,R5
 MOV.W @(R0,R4),R2

Prevents the same code from being expanded twice.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 37 of 77

(u) Improving expansion of loop condition determination

If size is given priority, copying of loop determination is not executed when performing loop condition determination.

Before optimization After optimization (v7) After optimization (v7.1)
while (cond) {
 :
}

if (cond) {
 do {
 :
 } while (cond);
}

 goto L1;
 do {
 :
L1:;
 } while (cond);

cond appears in one place rather than in two places.

(v) Elimination of redundant if statement condition determination

When the result of the first if statement makes the later if statement unnecessary, the later if statement is eliminated.

Before optimization After optimization
if (cond)
 t=65;
 else
 t=67;
 if (t == 65)
 fx();
 else
 fy();

if (cond) {
 t=65;
 fx();
 } else {
 t=67;
 fy();
 }

When the result of the first if statement makes the later if statement
unnecessary, the later if statement is eliminated.

(w) Direct operations of temporary variables

Disables substitution to redundant temp variables, and changes the operation sequence of the equation.

Before optimization After optimization
k = i + prime;
p = flags + k;

p = i + prime + flags;

k is not used later so superfluous substitution to temp is not executed.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 38 of 77

(x) Post increment addressing

Uses MOV.L @Rm+,Rn for the LOAD 4-byte variable.

Before optimization After optimization
 :
L11:
 MOV.L @R5,R2
 ADD #4,R5
 DT R6
 ADD R2,R4
 BF L11
 :

 :
L11:
 MOV.L @R5+,R2
 DT R6
 ADD R2,R4
 BF L11
 :

Executes MOV.L @Rm+,Rn with one instruction.

(y) Improving loop termination conditions

Relaxes conditions for performing optimization of loop termination, and makes optimization easy to apply.

Before optimization After optimization
int a, b;
func() {
 unsigned short sx;

 for (sx=0; sx<1; sx++) {
 a++;
 b++;
 f();
 }
}

int a, b;
func() {

 a++;
 b++;
 f();

}

Performs loop termination.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 39 of 77

(z) Optimization of 1-bit evaluation

Groups conditional expressions that reference multiple bit fields of 1-bit width into 1, and generates code that
simultaneously performs fetching and comparison of values using bit AND.

Before optimization After optimization
struct S {
 char bit0:1;
 char bit1:1;
 char bit2:1;
 char bit3:1;
}ss1;
if((ss1.bit0|ss1.bit1|ss1.bit2)!=
0){
 :
 :
}

struct S {
 char bit0:1;
 char bit1:1;
 char bit2:1;
 char bit3:1;
}ss1;
if ((*(char *)&ss1 & 0xe0)!= 0){
 :
 :
}

Simultaneously performs fetching and comparison using AND.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 40 of 77

A.9 Features Added between Ver. 7.1 and Ver. 8.0
The features added to version 8.0 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Supporting new CPUs

SH-4A and SH4AL-DSP are now supported.

(2) Expanding and changing the language specifications

• SP-C is now supported.
• The long long and unsigned long long types are now supported.
(3) Improving the built-in functions

• Adding the built-in functions for DSP
Absolute value, MSB detection, arithmetic shift, round-off operation, bit pattern copy, modulo addressing setup,
modulo addressing cancellation, and CS bit setting

• Adding the built-in functions for SH-4A and SH4AL-DSP
Sine and cosine calculation, reciprocal of the square root, instruction cache block invalidation, instruction cache
block prefetch, and synchronization of data operations

• Adding and changing the #pragma extension
#pragma ifunc Suppressing the saving or recovery of the floating-point register
#pragma bit_order Specifying the order of bit fields
#pragma pack Specifying the alignment number for the structure, union, or class

(4) Automatic selection of the size of the enumerated type (supporting the auto_enum option)

The enumerated type is processed as a smallest type that can contain the enumerated type.

(5) Specifying the alignment number for the structure, union, or class members (supporting the pack option)

The alignment number for the structure, union, or class members can be specified.

(6) Specifying the order of bit fields (supporting the bit_order option)

The order of the bit field members can be specified.

(7) Changing the error level (supporting the change_message option)

The error level for information and warning messages can be changed for each message.

(8) Deregulation of limitations

The maximum allowable number of switch statements is now increased to 2048.

(9) Supporting a fixed point for the DSP library

A fixed point for the DSP library is now supported.

(10) Inter-file inline expansion functionality (supporting the File_inline option)

Inline expansion of functions between files can now be specified.

(11) Compact placement of data within sections (supporting the Data_dtuff option)

Support has been added for functionality that performs linkage by compacting the free space that occurs when section
border adjustment for each compile unit is performed. This functionality can be specified to decrease the overall size
for data sections.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 41 of 77

A.10 Features Added between Ver. 8.0 and Ver. 9.0
• The features added to version 9.0 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Support for New CPUs

The SH-2A and SH2A-FPU are supported.

An option and a #pragma extension are added to use TBR in the SH-2A and SH2A-FPU.

(2) Extension and Change of Language Specifications

• The following items conform to the ANSI standard.
⎯ Array index
int iarray[10], i=3;

i[iarray] = 0; /* Same as iarray[i] = 0; */

⎯ union bit field specification enabled
union u {

int a:3;

};

⎯ Constant operation
static int i=1||2/0; /* Error is changed to warning for zero division */

⎯ Addition of library and macro
strtoul, FOPEN_MAX

• The following items conform to the ANSI standard when the strict_ansi option is specified, which may cause a
difference in results between Ver. 9 and earlier versions.
⎯ unsigned int and long operations
⎯ Associativity of floating-point operations

• The variables with register storage class specification are preferentially allocated to registers when the
enable_register option is specified.

(3) Enhancement of Intrinsic Functions

• Intrinsic functions for SH-2A and SH2A-FPU are added.
Saturation operations and TBR setting and reference

• Intrinsic functions for instructions that cannot be written in C are added.
Reference and setting of the T bit, extraction of the middle of registers connected,addition with carry, subtraction with
borrow, sign inversion, 1-bit division, rotation, and shift.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 42 of 77

(4) Loosening Limits on Values

The following limits are loosened.

• Nesting level in a combination of repeat statements (while, do, and for) and select statements (if and
 switch): 32 levels -> 4096 levels

• Number of goto labels allowed in one function: 511 -> 2,147,483,646
• Nesting level of switch statements: 16 levels -> 2048 levels
• Number of case labels allowed in one switch statement: 511 -> 2,147,483,646
• Number of parameters allowed in a function definition or function call: 63 ->2,147,483,646
• Length of section name: 31 bytes -> 8192 bytes
• Number of sections allowed in #pragma section in one file: 64 -> 2045

(5) Extension of Memory Space Allocation

More detailed settings can be made for memory space allocation.

• abs16/abs20/abs28/abs32 option
• #pragma abs16/abs20/abs28/abs32

(6) Specification of Absolute Address for Variables (support for #pragma address)

An absolute address can be specified for an external variable.

(7) Extension of Optimization for External Variable Access (support for smap option)

Optimization is applied to access to external variables defined in the file to be compiled. Recompilation, which is
required for the map option, is not necessary.

(8) Improvement in Precision of Mathematics Library

The precision of operation using the mathematics library is improved, which may cause a difference in results between
Ver. 9 and earlier versions.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 43 of 77

A.11 Features Added between Ver. 9.0 and Ver. 9.1
Additional output mode for debugging information (optimize=debug_only)
The optimize=debug_only option can be specified to always allow local variable information to be referenced during
debugging. Optimization related to deletion of each statement can also be completely prevented, and break points can
be set for each statement in the C source code. Since performance may degrade when this option is used to generate
objects compared to when optimize=0 (no optimization) is specified, we recommend that it only be used temporarily
during debugging.

 [optimize=0] [optimize=debug_only]

New additional specification for interrupts (SH-3, SH3-DSP, SH-4, SH-4A, SH4AL-DSP)
The following interrupt specification and embedded function have been added to allow executionally efficient interrupt
functions to be coded using the C language.

Interrupt specification
#pragma interrupt sr_rts - Specifies register bank switching and RTS instruction return

This performs termination in the RTS instruction. This generates a save code for only the register used within
the function, and sets the RB bit and BL bit of the SR register at the end of the function.

#pragma interrupt bank - Specifies the interrupt handling function
If the sr_jsr() embedded function exists, a save code for the SSR/SPC register is generated, and a save code is
generated for the register used in the function.

#pragma interrupt rts - Specifies RTS instruction return
This performs termination in the RTS instruction, and suppresses save code output for SSR/SPC and registers
R0 - R7.
A save code is generated for the register used in the function

Embedded function
sr_jsr(void * func, int imask) - Embedded function for controlling multiple interrupts

This clears the RB bit and BL bit for the SR register, sets imask for the interrupt mask, and calls the func
function.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 44 of 77

Example 1: When multiple interrupts are permitted

Example 2: When multiple interrupts are not permitted

C source code

// Handling function declaration
#pragma interrupt (func(bank))
void func(void);

// Interrupt function declaration
#pragma interrupt (sub（rts))
void sub(void);

// Function definition
void func(void){
 :
 sub();
 :
}

void sub(void){
 :
}

Generated code
_func

 STS.L PR,@-R15

 :
 MOV.L L12,R14 ; _sub
 JSR @R14
 NOP
 :
 LDS.L @R15+,PR
 RTE
 NOP

_sub:

 MOV.L R14,@-R15
 MOV.L R13,@-R15
 :
 MOV.L @R15+,R13
 RTS
 MOV.L @R15+,R14

Registers other than R0 to R7 used within the
function are saved. Since no sr_jsr() embedded
function exists, SPC/SSR is not saved.

Registers other than R0 to R7 used within the
function are restored.

Registers other than R0 to R7 used within the
function are saved.

Registers other than R0 to R7 used within the
function are restored.

When interrupt occurs, RB=1 and BL=1

RB=0, BL=0 and IMASK=8
changed

C source code

#include <machine.h>

// Handling function declaration

#pragma interrupt (func(bank))

void func(void);

// Interrupt function declaration

#pragma interrupt (sub（sr_rts))

void sub(void);

// Function definition

void func(void){

 :

 /* RB=0,RL=0

 Setting the interrupt level

 to 8 and calling sub() */

 sr_jsr(sub,8);

 :

}

void sub(void){

 :

}

Generated code
_func

 MOV.L R14,@-R15
 STS.L PR,@-R15
 STC SSR,@-R15
 STC SPC,@-R15
 :
 STC SR,R6
 MOV.L L12+6,R1 ; H'CFFFFF0F
 MOV #-128,R4 ; H'FFFFFF80
 EXTU.B R4,R4
 MOV.L L12+10,R14 ; _sub
 AND R1,R6
 OR R4,R6
 LDC R6,SR
 JSR @R14
 NOP
 :
 LDC @R15+,SPC
 LDC @R15+,SSR
 LDS.L @R15+,PR
 MOV.L @R15+,R14
 RTE
 NOP

_sub:

 MOV.L R0,@-R15
 MOV.L R1,@-R15
 :
 STC SR,R0
 MOV.L L12+2,R1 ; H'30000000
 OR R1,R0
 MOV.L @R15+,R1
 LDC R0,SR
 RTS
 LDC.L @R15+,R0_BANK

Save of registers other than R0 to R7 used in the
function and SPC/SSR

The sub() function is called, RB=1 and
BL=1 are set, and then returned.

Restoration of registers other than R0 to R7
used in the function and SPC/SSR

When this is called from func(), RB=0
and BL=0 are set.

Save of only the registers used in the function

RB=1 and BL=1 are set, and only
the registers used in the function
are restored.

Because RB=1 is set

When interrupt occurs, RB=1 and BL=1

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 45 of 77

Additional range checking omission function for conversion between floating-point decimals and integers -
simple_float_conv option (SH-2E, SH2A-FPU, SH-4, SH-4A)

The simple_float_conv option can be specified to generate code to omit range checking for the converted value for
conversion between unsigned integers and floating-point decimals.

This option can be used when the pre-conversion value is an integer from 0 to 2147483647, or a floating-point decimal
from 0.0 to 2147483647.0. Keep in mind that the conversion results are not guaranteed when the pre-conversion value
is out of range.

Example of generated code:

 MOV #79,R2 ; 0x0000004F
 SHLL8 R2
 SHLL16 R2 ; 0x4F000000
 LDS R2,FPUL
 FSTS FPUL,FR8
 FCMP/GT FR4,FR8
 BT L12
 FADD FR8,FR8 ; when f ≥ 0x4F000000,
 FSUB FR8,FR4 ; value before set is (f - 0x4F800000)

L12:
 FTRC FR4,FPUL ; Conversion from float to signed long
 STS FPUL,R0

 FTRC FR4,FPUL ; Conversion from float to signed long
 STS FPUL,R0

C source code

unsigned long func(float f)

{

 return((unsigned int)f);

}

When option is not used

When option is used

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 46 of 77

Additions and changes to existing functionality and specifications

(a) Extension of the division=cpu=inline option (SH-2A, SH2A-FPU)
division=cpu=inline can now be used even for cpu=sh2a|sh2afpu.
When division=cpu=inline is specified for SH-2A or SH2A-FPU, constant division is converted to multiplication
and expanded inline, and variable division uses the DIVS or DIVU instruction. This is to improve the speed at
which constant division is calculated, but keep in mind that object size may increase. If the speed or nospeed option
(optimizing speed or size and speed) is specified, the division=cpu=inline option becomes the default.

Example of generated code:

(b) Extension of targets for embedded functions for cache block operation (SH-4)
The embedded functions for cache block operations ocbi(), ocbp(), and ocbwb(), can now be used with SH-4.

(c) Changes to the #pragma inline specification
The specification for the inline option for functions for which #pragma inline is specified has been changed.
Old specification:

If the inline option is specified, functions with #pragma inline specified follow the value set for the inline option.
(Note)

If the speed option (optimization on speed) is specified, inline=20 is specified by default.
New specification:

Inline expansion is performed for functions with #pragma inline specified, regardless of the value set for the
inline option.

(d) Displaying options within sub-commands in the compile list

If a sub-command file is specified during compilation, the options specified in the sub-command file are now output
to the compile list. This means that when the Renesas Integrated Development Environment (High-performance
Embedded Workshop) is used to output the compile list, compile options are output to the compile list.

C source code

unsigned long A;
int func(void){
 A = A/10;
}

cpu=sh2a, division=cpu=inline
_func:
 MOV.L L11,R5 ; _A
 MOV.L @R5,R6 ; A
 MOV #10,R0 ; H'0000000A
 DIVU R0,R6
 RTS
 MOV.L R6,@R5 ; A

cpu=sh2a, division=cpu=runtime
_func:
 MOV.L L11,R5 ; _A
 MOV.L L11+4,R1 ; H'CCCCCCCD
 MOV.L @R5,R6 ; A
 DMULU.L R6,R1
 STS MACH,R2
 SHLR2 R2
 SHLR R2
 MOV.L R2,@R5 ; A
 RTS
 MOV.L R2,@R5 ; A

Cycle count: 12
Size: 0x1C

Cycle count: 38
Size: 0x10

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 47 of 77

Performance improvements for the mathematical function library (SH-1, SH-2, SH2-DSP, SH-2A, SH-3, SH3-
DSP, SH4AL-DSP)

Object sizes have been reduced and calculation speed and accuracy have been improved for the sinf, cosf, tanf, expf,
logf, sqrtf, and atanf mathematical functions for floating point decimals.

Note that since the calculation accuracy has been improved, the calculation results from these mathematical functions
may differ from those in Ver. 9.00.

Benchmark comparison V. 9.00 / V. 9.01 (cycle count)

Library function V.9.00 – SH-2 V.9.01– SH-2 V.9.00 – SH-2A V.9.01– SH-2A
sinf 2497 477 1001 169
cosf 2434 465 954 162
tanf 3196 705 1806 274
atanf 3160 515 1602 218
logf 3816 491 1720 232
sqrtf 1018 236 562 109
expf 4432 469 1463 192

Improved debugging information

(e) Referenced parameters
The case in which "Not available now" is displayed for a variable when a function is entered has been improved.

(f) Variables for which #pragma address is specified
Variables using #pragma address can now be referenced as symbols.

(g) Delection of unnecessary type information
Debugging information for types not referenced in C/C++ source files has been deleted to decrease object file size.

Improved messages

(h) Information messages for uninitialized variables
When an uninitialized variable is used in C source code, the message "C0011 (I) Used before set symbol : variable-
name in function-name" is now output. "C5549 (I) Variable "variable-name" is used before its value is set" is output
to the C++ source code.

(i) Information messages for paths without return statements
The message "C0017 (I) Missing return statement" is output now even when there are multiple function entrances
and only one path is missing a return statement.

Contents added and improved in the optimization linkage editor

(j) Optimization suppression functionality by section (supported from V.9.01 of the optimization linker, and
V.9.00R04(a) of the package)
The section_forbid option can now be used to suppress inter-module operation by section.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 48 of 77

(k) Improved overlay functionality (supported from V.9.01 of the optimization linker, and V.9.00R04(a) of the
package)
Parentheses "()" can now be used for the start option. This allows more complex overlay positioning than previous
versions.

Examples:

When .obj files are input in the following order (the parentheses contain the section for each .obj)

 tp1.obj(A,D1,E) -> tp2.obj(B,D3,F) -> tp3.obj(C,D2,E,G)

(1) -start=A,B,C,D*/400,E:F:G/8000

 0x400 0x8000

- The E, F, and G sections separated by ":" are allocated to the same address.
- Sections specified by wildcards (sections starting with "D" in this example) are allocated in the order input.
- Items within sections of the same name (section E in this example) are allocated in the order in which

objects are input.

(2) -start=A,B,C,D1:D2,D3,E,F:G/400

 0x400

- Starting with sections immediately after separation by ":" (A, D2, and G in this example), each start is
allocated to the same address.

(3) -start=A,B,C,(D1:D2,D3),E,(F:G)/400

 0x400

- This is a new method for specifying overlays.
- If the same address placement is enclosed in "()", the same address placement within the "()" is performed as

immediately after the beginning of the section immediately before the "()" (C and E in this case).
- The section immediately after the "()" (E in this case) is placed immediately after the last section enclosed in

"()".
- When the Renesas Integrated Development Environment is used, the new overlay specification method

cannot be performed from Edit, only from Refresh.

 A B C D1 D3 D2 E (tp1.obj) E(tp3.obj)
F
G

 A B C D1
D3 D2 E F

 G

 A B C D1
D3 D2

 E F
 G

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 49 of 77

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 50 of 77

(l) Notification of same-name symbols within a library (supported from V.9.01 of the optimization linker, and
V.9.00R04(a) of the package)
When multiple symbols of the same name (variables or functions with the same name) exist within a library file
used during linkage, the warning message "L1320 (W) Duplicate Symbol "symbol" in "library (module)"" is
displayed. Keep in mind that this message may be output on environments to which the L1320 message wasn't
previously output. Note that since this message is output for all modules containing symbols of the same name, it
may be output frequently. If this makes it difficult to confirm other messages, specify the nomessage=1320 option
to suppress L1320 messages.

Example of message output for V.9.01 and later:

<tp.c> <tp1.c> <tp2.c>

 tp.obj tp1.lib tp2.lib

 Link option:

 optlnk tp.obj -lib=tp1.lib,tp2.lib -start=P/0

 Message output for the above link:

 ** L1320 (W) Duplicate symbol "_f1" in "tp1.lib(tp1)"

 ** L1320 (W) Duplicate symbol "_f1" in "tp2.lib(tp2)"

 ** L1320 (W) Duplicate symbol "_f2" in "tp1.lib(tp1)"

 ** L1320 (W) Duplicate symbol "_f2" in "tp2.lib(tp2)"

void f2();

main()

{

 f2();

}

f1()

{

}

f2()

{

}

f1()

{

}

f2()

{

}

Compile Compile Compile

Make library Make library

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 51 of 77

(m)Functionality to detect redundancy during physical space placement (supported from V.9.02 of the optimization
linker, and V.9.01R00 of the package)
An option (ps_check) has been added to detect objects that overlap when SH3 or SH4 is used and objects overlap
not for logical addresses but in actual memory. This option can be used to terminate linkage processing with an
error, when redundancy is detected.

Example:

In SH4, when an invalid status exists for MMU, 4 GB address spaces are mapped to 512 MB (29 bit) external
memory spaces (the 3 bits beyond the 4 GB addressing are ignored during mapping).
For example, the object overlapping in which the usable U0 space (00000000 to 0x7fffffff) is mapped to
external memory (512 MB) for the user mode can be detected as follows:

-PS_check=00000000-1fffffff,20000000-3fffffff,40000000-5fffffff,60000000-7fffffff

When this option is specified, all 00000000, 20000000, 40000000, and 60000000 locations are placed in the
same location in memory.

 Logical address Physical address

(n) Functionality to specify the byte count for data records (supported from V.9.02 of the optimization linker, and
V.9.01R00 of the package)
The byte_count option can now be used to change the maximum byte count for data records in Intel HEX-format
files.

(o) Functionality to fill in free areas with random numbers (supported from V.9.02 of the optimization linker, and
V.9.01R00 of the package)
Functionality to fill random numbers using an option (space) for specifying free area output has been added.

(p) Extension of options to reduce amount of memory used (supported from V.9.02 of the optimization linker, and
V.9.01R00 of the package)
The option (memory=low) for functionality to reduce the amount of memory used can now be used during library
file creation.

 P_Start
0x40000000

P_Main
0x00002000

P_Start

 P_Main
0x00002000

0x00000000

Check overlap

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 52 of 77

A.12 Features Added between Ver. 9.1 and Ver. 9.2
(1) Aligning branch destination addresses on a 4-byte boundary (#pragma align4, -align4)

A feature that aligns branch destination addresses on a 4-byte boundary has been added. The SH CPU reads instructions
in 32-bit units. Since the basic SH CPU instructions are 16 bits long, the SH CPU can read two instructions
simultaneously when there are consecutive 16-bit instructions. However, if a branch instruction exists, the SH CPU can
simultaneously read two instructions at the branch destination only when the branch destination addresses have been
aligned on a 4-byte boundary. If the branch destination addresses have not been aligned on a 4-byte boundary,
processing efficiency at the branch destination might be degraded. The feature that aligns branch destination addresses
on a 4-byte boundary allows the SH CPU to always read two instructions simultaneously at a branch destination. This
results in fewer memory accesses after a branch, speeding up processing. For CPUs having the superscalar architecture
(e.g., SH-2A, SH2A-FPU, SH-4, SH-4A, and SH4AL-DSP), parallel execution performance of instructions at a branch
destination might also be improved. This feature is particularly effective for branches executed many times, such as a
frequently called function conditional statement and a loop with many iterations.

Instruction 1

…

Instruction 2 Instruction 3

Instruction 4 Instruction 5

Instruction 6 …

16 bits 16 bits

Instruction 1

…

Instruction 2

Instruction 3 Instruction 4

Instruction 5 Instruction 6

…

16 bits 16 bits

NOP

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Memory

Instructions read by
one access

Instruction x

Instruction x

(Instructions 1 to 6 are executed after branching.)

When branch destination addresses are not aligned on a 4-byte boundary (superscalar CPU):

When branch destination addresses are aligned on a 4-byte boundary (superscalar CPU):

Instructions read by
one access

Alignment on a 4-byte boundary
speeds up execution at the branch
destination.

 NOP inserted Instructions that can be read
simultaneously

Simultaneous execution of two
instructions immediately after a
branch is possible.

Instructions that cannot be read
simultaneously

Simultaneous execution of two
instructions immediately after a
branch is not possible.

Pipeline after branching

(Instruction execution)

(Instructions 1 to 6 are executed after branching.)

Memory

Pipeline after branching

(Instruction execution)

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 53 of 77

Since this feature might insert NOP (No Operation) instructions to align branch destination addresses on a 4-byte
boundary, processing efficiency might be adversely affected due to an increase in object size. For this reason, one of the
feature's three scopes can be selected to reduce the negative impact. Since the most effective scope depends on the
program, selection should be made only after trying all three in the user system.

The following shows the formats of the align4 option and #pragma instruction:

• Option : ALIGN4={ALL|LOOP|INMOSTLOOP}
• #pragma : #pragma align4 [(]<function name>=<scope>[,...][)]

Specified keyword
Option #pragma

Scope of alignment on a 4-byte boundary Increase in size

ALL all All branch destination addresses
LOOP loop The start addresses of all loops
INMOSTLOOP inmostloop The start addresses of the innermost loops

To specify the align4 option in HEW, specify the following settings on the C/C++ page in the SuperH RISC engine
Standard Toolchain dialog box:

Category: Select Object.

Details: Click this button to display the Object details dialog box, and specify the following setting on the Code
generation page:

Alignment of branch destination: Select Align4, and a scope.

Large

Small

Selecting All specifies all.
Selecting Loops specifies loop.
Selecting Inner-most loops specifies inmostloop.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 54 of 77

Example:

The following shows an execution example when align4=all is specified for SH-2A.

Sample Source:

int a[64],b[64];
int c;
void main() {
 int i;

 for(i=0;i<64;i++) {
 a[i] = b[i];
 c++;
 }
}

Disassemble List (align4 not specified):

_main:
 MOV.L L13,R7 ; _c
 MOV.L @R7,R6 ; c
 MOV #64,R1 ; H'00000040
 MOV.L L13+4,R4 ; _a
 MOV.L L13+8,R5 ; _b
L11:
 MOV.L @R5+,R0 ; b[]
 DT R1
 ADD #1,R6
 BF/S L11
 MOV.L R0,@R4+ ; a[]
 RTS
 MOV.L R6,@R7 ; c
L13:
 .DATA.L _c
 .DATA.L _a
 .DATA.L _b

Disassemble List (align4=all specified):

_main:
 MOV.L L13+2,R7 ; _c
 MOV.L @R7,R6 ; c
 MOV #64,R1 ; H'00000040
 MOV.L L13+6,R4 ; _a
 MOV.L L13+10,R5 ; _b
 NOP
L11:
 MOV.L @R5+,R0 ; b[]
 DT R1
 ADD #1,R6
 BF/S L11
 MOV.L R0,@R4+ ; a[]
 RTS
 MOV.L R6,@R7 ; c
L13:
 .RES.W 1
 .DATA.L _c
 .DATA.L _a
 .DATA.L _b

The size of the code and the execution speed during execution of the above sample source are as follows:

Code size (bytes) Execution speed (cycles)

CPU type
align4 not
specified

align4=all
specified

align4 not
specified

align4=all
specified

SH-2A 36 38 393 330

Supplementary notes:

• Functions whose branch destination addresses have been aligned on a 4-byte boundary are not optimized during
linkage.

• If both the align4, align16, or align32 option and the #pragma align4 instruction are specified, the #pragma
align4 instruction takes precedence.

• If the align4 option is specified together with the align16 or align32 option, the following error message is output:
C3305 (F) Invalid command parameter "<option name>"

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 55 of 77

• If the #pragma align4 instruction is specified incorrectly, the following error message is displayed:
⎯ When #pragma align4 is specified twice with two different scopes for the same function:

C2806 (E) Multiple #pragma for one function
⎯ When the function specified in #pragma align4 is defined before #pragma align4 is declared:

C2857 (E) Function "<function name>" in #pragma already declared
⎯ When a symbol that is not a function is specified in #pragma align4:

C2858 (E) Illegal #pragma "<identifier>" function type
⎯ When the #pragma align4 specification contains a syntax error:

C2859 (E) Illegal #pragma "<identifier>" declaration

(2) Allocating variables in order of data size in GBR areas ($G0 and $G1 sections) (stuff_gbr)

The stuff_gbr option has been added. When this option is specified, variables with #pragma gbr_base or #pragma
gbr_base1 specified are allocated in specific sections according to variable size. This type of allocation can reduce the
unused area inserted as padding for boundary alignment, thereby conserving memory.

Variables with #pragma gbr_base or #pragma gbr_base1 specified are allocated in different sections based on size,
as shown below. If GBR-relative instructions are output, however, an empty $G0 section is generated even when the
stuff_gbr option is specified.

 stuff_gbr specified
 Variable size (bytes)
 4n 4n + 2 2n + 1

stuff_gbr
not specified

Variable with #pragma gbr_base specified $G0$4 $G0$2 $G0$1 $G0
Variable with #pragma gbr_base1 specified $G1$4 $G1$2 $G1$1 $G1

The stuff_gbr option takes effect only when the gbr=user option is specified. If the gbr=user option is not specified,
the following warning message is displayed and the stuff_gbr option is ignored:

C1301 (W) "stuff_gbr" option ignored

4 bytes

2 bytes 1 byte

4 bytes

1 byte

4 bytes

Padding

Padding

2 bytes

4 bytes

Padding
空

4 bytes

2 bytes

1 byte

4 bytes

1 byte

4 bytes

Padding

2 bytes

4 bytes

1 byte 1 byte

Order of variables when stuff_gbr is not specified: Order of variables when stuff_gbr is specified:

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 56 of 77

A variable with #pragma gbr_base or #pragma gbr_base1 specified is accessed using a MOV instruction based on a
relative value (offset) from the address set in the GBR register. For a variable with #pragma gbr_base specified, the
possible offset is 0 to 127 bytes. For a variable with #pragma gbr_base1 specified, the possible offset differs
depending on the type of the variable. For a variable of type "char" or "unsigned char", which is accessed using the
MOV.B instruction, the possible offset is 128 to 255 bytes. For a variable of type "short" or "unsigned short", which is
accessed using the MOV.W instruction, the possible offset is 128 to 511 bytes. For a variable of type "int", "unsigned
int", "long", "unsigned long", "float", or "double", which is accessed using the MOV.L instruction, the possible offset is
128 to 1023 bytes.

$G0, $G0$1, $G0$2, $G0$4 and sections

$G1 section

MOV.B instruction can
be used

MOV.W
instruction can
be used

127

255

511

1023

MOV.B @(disp,GBR),R0

MOV.W @(disp,GBR),R0

MOV.L instruction
can be used

MOV.L @(disp,GBR),R0

0

$G1$1 section

$G1$2 section

$G1$4 section

128

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 57 of 77

Therefore, each section must be allocated within a specific range as shown in the following table.

Section name Section allocation range
$G0 At the address set in the GBR register.
$G0$1, $G0$2,
or $G0$4

At addresses within 127 bytes of the start address of the $G0 section.

$G1 At the address 128 bytes from the start address of the $G0 section.

$G1$1
At an address within 255 bytes of the start address of the $G0 section following
the $G1 section.

$G1$2
At an address within 511 bytes of the start address of the $G0 section following
the $G1 section.

$G1$4
At an address within 1023 bytes of the start address of the $G0 section
following the $G1 section.

If sections are not allocated as explained in the above table, the following error message is output during linkage:

L2330 (E)Relocation size overflow

If the stuff_gbr option is specified in HEW, specify the following settings on the C/C++ page in the SuperH RISC
engine Standard Toolchain dialog box:

Category: Select Object.

Details: Click this button to display the Object details dialog box. On the Code generation2 page, specify the
following setting:

Disposition of variables in $G0/$G1: Select this check box.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 58 of 77

Example:

Sample Source:

#pragma gbr_base(a,b,c,d,e,f,g,h,i)

long a;
short b;
char c;
long d;
char e;
long f;
char g;
short h;
long i;

Disassemble List (stuff_gbr not specified):

 .SECTION $G0,DATA,ALIGN=4
_a: ; static: a
 .DATAB.L 1,0
_b: ; static: b
 .DATAB.W 1,0
_c: ; static: c
 .DATAB.B 1,0
 .RES.B 1
_d: ; static: d
 .DATAB.L 1,0
_e: ; static: e
 .DATAB.B 1,0
 .RES.B 1
 .RES.W 1
_f: ; static: f
 .DATAB.L 1,0
_g: ; static: g
 .DATAB.B 1,0
 .RES.B 1
_h: ; static: h
 .DATAB.W 1,0
_i: ; static: i
 .DATAB.L 1,0

Disassemble List (stuff_gbr specified):

 .SECTION $G0$4,DATA,ALIGN=4
_a: ; static: a
 .DATAB.L 1,0
_d: ; static: d
 .DATAB.L 1,0
_f: ; static: f
 .DATAB.L 1,0
_i: ; static: i
 .DATAB.L 1,0
 .SECTION $G0$2,DATA,ALIGN=2
_b: ; static: b
 .DATAB.W 1,0
_h: ; static: h
 .DATAB.W 1,0
 .SECTION $G0$1,DATA,ALIGN=1
_c: ; static: c
 .DATAB.B 1,0
_e: ; static: e
 .DATAB.B 1,0
_g: ; static: g
 .DATAB.B 1,0

Boundary adjustment area: 5 bytes

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 59 of 77

Note:

For a union, structure, or array, use care in specifying the section allocation address. If a union, structure, or array is
specified in #pragma gbr_base1, a link error might occur even when sections have been allocated as explained above.
For example, if #pragma gbr_base1 is specified for "char x[4]" as shown in the following sample source, although 4-
byte array "x" is allocated in the $G1$4 section, the MOV.B instruction is used when array "x" is referenced. Therefore,
to prevent a linkage error, the offset of the $G1$4 section in which array "x" is allocated must be within 128 to 255
bytes, not within 128 to 1023 bytes.

Sample Source:

#pragma gbr_base1(x)

char x[4];

void func(void)
{
 x[0] = 1;
}

Disassemble List:

 .SECTION P,CODE,ALIGN=4
_func: ; function: func
 MOV #1,R0 ; H'00000001
 RTS
 MOV.B R0,@(_x-(STARTOF $G0),GBR); x[]
 .SECTION $G1$4,DATA,ALIGN=4
_x: ; static: x
 .DATAB.B 4,0
 .SECTION $G0,DATA,ALIGN=4

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 60 of 77

(3) Preventing inline expansion in C++ (cpp_noinline)

C++-specific inline expansion can now be prevented by specifying the cpp_noinline option. There are the following
two types of C++-specific inline expansion:

• Inline expansion of a function with specifier inline

Sample Source:

int x;
inline int func(int a){
 return a * 3;
}
void g(void){
 x = func(x);
}

After Inline Expansion:

void g(void) {
 x = x * 3;
}

• Inline expansion of a member function defined in a class

Sample Source:

class A {
 int cx, cy;
public:
 int func() {
 return cx + cy;
 }
};
int g(class A a) {
 return = a.func();
}

After Inline Expansion:

int g(class A a) {
 return (a.cx + a.cy);
}

Specifying the cpp_noinline option does not prevent the following types of inline expansion, which are also effective
in C:

• Automatic inline expansion of a function performed by specifying the inline option
• Inline expansion of a function performed by specifying #pragma inline

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 61 of 77

To specify the cpp_noinline option in HEW, specify the following settings on the C/C++ page in the SuperH RISC
engine Standard Toolchain dialog box:

Category: Select Optimize.

Details: Click this button to display the Optimize details dialog box. On the Inline page, specify the following setting:

Doesn't expand C++ inline functions: Select this check box.

 (4) Added or changed specifications for existing features

(a) Changes to the inline expansion suppression conditions that apply when #pragma inline is specified
The inline expansion suppression conditions that apply when #pragma inline is specified have been changed.
Previously, the increase rate for the size of the function to be inline-expanded was used as a condition for
suppressing inline expansion. This condition has now been abolished. However, the other conditions, such as
increase of compilation time and increase of memory usage, still exist. Accordingly, functions with #pragma inline
specified are not always inline-expanded.
Note that if the scope option, which takes effect by default, is used to divide the scope of optimization, inline
expansion might be suppressed. In this case, specifying the noscope option ensures that inline expansion is
performed.

(b) Prototype declaration for intrinsic functions
Prototype declaration for intrinsic functions is now also performed in C.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 62 of 77

(5) Improved messages

(a) Changes to the message for division by zero
For a function that includes an expression whose divisor is zero, the following warning message is now output:

C1501 (W) Division by zero

Sample Source:

int a,b;

void main(){
 a = b/0; /* C1501 (W) Division by zero */
}

Error Message:

test.c(4) : C1501 (W) Division by zero

Supplementary note:
In C++, the following warning message is output:

C5039 (W) Division by zero

(6) Enhanced optimization

(a) Instruction expansion for "long long" type operations
Optimization has been enhanced so that an "(unsigned) long long" operation that was hitherto processed by calling a
runtime routine is now processed by instructions. Note that this enhancement applies conditionally. If one or more
of the necessary conditions is not satisfied, a runtime routine call is used. The following shows the conditions.
Division and modulo operations

All of the following conditions must be satisfied:
• The low-order 32 bits of the divisor are 0s that are constants.
• The CPU is SH-2A or SH2A-FPU. Alternatively, the divisor is not 0.
• The high-order 32 bits of the divisor are not "-1" (not 0xFFFFFFFF00000000 in a "signed long long"

operation).
• An option for which "Instruction expansion" is indicated in the following table has been specified:

CPU Division method selection

Execution speed/
size optimization

Instruction
expansion/
runtime routine

SH-1 - - Runtime routine
SH-2A or SH2A-FPU - - Instruction expansion

division=cpu=inline - Instruction expansion
speed Instruction expansion
nospeed Instruction expansion division=cpu
size Runtime routine

Other CPUs

division=cpu=runtime - Runtime routine

Comparison operation
The expression is an inequality (<, >, <=, or >=) with 0 or an equality (== or !=).

Shift operation

The number of shifted bits is the constant 1, 8, 16, or 32.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 63 of 77

Cast operation
The cast is from a type other than "float" and "double". Alternatively, the cast is to a type other than "float" and
"double".

Example:

With the SH-2, an addition operation of type "long long" is expanded to instructions as follows.

Sample Source:

long long x, y;
long long func(void) {
 return x + y;
}

Disassemble List Generated in V.9.1:

_func:
 STS.L PR,@-R15
 MOV.L L11+2,R4 ; _y
 MOV.L @(4,R4),R1 ; (part of)y
 MOV.L @R4,R2 ; (part of)y
 MOV.L R1,@-R15
 MOV.L R2,@-R15
 MOV.L L11+6,R6 ; _x
 MOV.L @(4,R6),R4 ; (part of)x
 MOV.L @R6,R5 ; (part of)x
 MOV.L R4,@-R15
 MOV.L R5,@-R15
 MOV.L @(20,R15),R7
 MOV.L L11+10,R2 ; __add64
 JSR @R2
 MOV.L R7,@-R15
 ADD #20,R15
 LDS.L @R15+,PR
 RTS
 NOP
L11:
 .RES.W 1
 .DATA.L _y
 .DATA.L _x
 .DATA.L __add64

Disassemble List Generated in V.9.2:

_func:
 MOV.L L11+2,R1 ; _x
 MOV.L L11+6,R5 ; _y
 MOV.L @(4,R1),R4 ; (part of)x
 MOV.L @(4,R5),R7 ; (part of)y
 MOV.L @R1,R6 ; (part of)x
 MOV.L @R5,R1 ; (part of)y
 CLRT
 ADDC R7,R4
 MOV.L @R15,R2
 ADDC R1,R6
 MOV.L R6,@R2
 RTS
 MOV.L R4,@(4,R2)
L11:
 .RES.W 1
 .DATA.L _x
 .DATA.L _y

The following table shows the code size and execution speed of the sample source when x = 1 and y = 1.

Code size (bytes) Execution speed (cycles)
CPU type V9.1 V9.2 V9.1 V9.2
SH-2 50 34 77 27

(b) Use of CLIP instructions (SH-2A and SH2A-FPU)

The SH-2A or SH2A-FPU provides saturation value comparison instructions (CLIPS.B, CLIPS.W, CLIPU.B, and
CLIPU.W). Before the enhancement, intrinsic functions (clipsb(), clipsw(), clipub(), and clipuw()) had to be used to
generate these instructions. Now, these instructions are generated during saturation evaluation processing without
the intrinsic functions.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 64 of 77

Example:

In the following example, the CLIPS.B instruction is generated.

Sample Source (1):

void func(long a) {
 …
 if (a > 127) {
 a = 127;
 }
 else if (a < -128) {
 a = -128;
 }
 …
}

Sample Source (2):

void func(long a) {
 …
 if (a > 127) {
 a = 127;
 }
 if (a < -128) {
 a = -128;
 }
 …
}

Sample Source (3):

void func(long a) {
 …
 a = (a < 127) ? a : 127;
 a = (a > -128) ? a : -128;
 …
}

Sample Source (4):

void func(long a) {
 …
 a = (a < 127) ? ((a > -128) ? a : -128) : 127;
 …
}

Disassemble List:

_func:
 …
 CLIPS.B R4 ; a
 …

• In the following example, the CLIPU.B instruction is generated.

Sample Source (1):

void func(unsigned long a) {
 …
 if (a > 255) {
 a = 255;
 }
 …
}

Sample Source (2):

void func(unsigned long a) {
 …
 a = (a < 255) ? a : 255;
 …
}

Disassemble List:

_func:
 …
 CLIPU.B R4 ; a
 …

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 65 of 77

• In the following example, the CLIPS.W instruction is generated.

Sample Source (1):

void func(long a) {
 …
 if (a > 32767) {
 a = 32767;
 }
 else if (a < -32768) {
 a = -32768;
 }
 …
}

Sample Source (2):

void func(long a) {
 …
 if (a > 32767) {
 a = 32767;
 }
 if (a < -32768) {
 a = -32768;
 }
 …
}

Sample Source (3):

void func(long a) {
 …
 a = (a < 32767) ? a : 32767;
 a = (a > -32768) ? a : -32768;
 …
}

Sample Source (4):

void func(long a) {
 …
 a = (a < 32767) ? ((a > -32768) ? a : -32768) :
32767;
 …
}

Disassemble List:

_func:
 …
 CLIPS.W R4 ; a
 …

• In the following example, the CLIPU.W instruction is generated.

Sample Source (1):

void func(unsigned long a) {
 …
 if (a > 65535) {
 a = 65535;
 }
 …
}

Sample Source (2):

void func(unsigned long a) {
 …
 a = (a < 65535) ? a : 65535;
 …

Disassemble List:

_func:
 …
 CLIPU.W R4 ; a
 …

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 66 of 77

The following table lists the saturation comparison instructions and the variable types for which a instruction is
generated during saturation evaluation.

Instruction Variable type for which the instruction is generated
CLIPS.B long, int, and short
CLIPU.B unsigned long, unsigned int, and unsigned short
CLIPS.W long and int
CLIPU.W unsigned long and unsigned int

Supplementary notes:

• The CLIPS.B and CLIPS.W instructions are generated even when upper-limit evaluation and lower-limit evaluation
are performed in reverse order.

• A saturation comparison instruction is generated even when a comparison operator that includes an equal sign (such
as ">=") is used for upper-limit evaluation or lower-limit evaluation.

• A saturation comparison instruction is generated when there is assignment of the upper-limit value or lower-limit
value. However, no instruction is generated when the upper-limit value or lower-limit value is directly returned by
using the "return" statement.

• A saturation comparison instruction is not generated when there is processing that does not assign the upper-limit
value or lower-limit value to the variable subject to saturation evaluation, such as assignment to a variable that is
not related to saturation evaluation.

(7) Major improvements to the optimizing linkage editor

(a) Display of the total section size of ROM and RAM areas (total_size and show=total_size)
(Optimizing Linker 9.03 and later, and Package V.9.01 Release 01 and later)
Specifying the total_size option outputs the total section size information to the standard output. The output
information is categorized into three types. If the total size information needs to be output to the linkage list file, use
the show=total_size option.

RAMDATA SECTION: Total size of the RAM sections (bytes)
ROMDATA SECTION: Total size of the ROM sections other than program sections (bytes)
PROGRAM SECTION: Total size of the program sections (bytes)

A section subject to the ROM support function (rom option) uses areas in both the transfer source (ROM) and
destination (RAM). Therefore, the size of such sections is included in both the RAMDATA SECTION and
ROMDATA SECTION values.
The following table lists the compiler's default sections and their section types.

Default section name Section Counted as
P Program section PROGRAM SECTION
C Constant section ROMDATA SECTION
D Initialized data section ROMDATA SECTION

R (when HEW is used)
Initialized data section (destination)
(when the ROM support function is used) RAMDATA SECTION

B Uninitialized data section RAMDATA SECTION
S Stack section RAMDATA SECTION

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 67 of 77

The following are output examples:
⎯ The total_size option (standard output)

RAMDATA SECTION: 00000808 Byte(s)
ROMDATA SECTION: 0000041c Byte(s)
PROGRAM SECTION: 00000358 Byte(s)

⎯ The show=total_size option (linkage list file)

*** Total Section Size ***

RAMDATA SECTION: 00000808 Byte(s)
ROMDATA SECTION: 0000041c Byte(s)
PROGRAM SECTION: 00000358 Byte(s)

When these options are used in HEW, specify them as follows:
⎯ The total_size option (standard output)

In the SuperH RISC engine Standard Toolchain dialog box, on the Link/Library page, specify the
following settings:
Category: Select Other.
Displays total section size: Select this check box.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 68 of 77

⎯ The show=total_size option (linkage list file)
In the SuperH RISC engine Standard Toolchain dialog box, on the Link/Library page, specify the
following settings:
Category: Select List.
Show total section size: Select this check box.

(b) Calculating and outputting the CRC value (crc)
The CRC (Cyclic Redundancy Check) value for the area specified in the crc option can now be calculated and
output to the specified address. From the output CRC value, whether the data in the embedded system and the data
during generation match can be checked. The following shows the format of the crc option:
-CRc = <suboption>

<suboption>: <address where the result is output>=<target range>[/<polynomial expression>]
<address where the result is output>: <address>
<target range>: <start address>-<end address>[,...]
<polynomial expression> : { CCITT | 16 }

A CRC is performed for the specified range of addresses from low to high, and the result is output to the specified
address. For a polynomial expression, either CRC-CCITT or CRC-16 can be selected (the default is CRC-CCITT).
Polynomial expression:
 CRC-CCITT
 X^16+X^12+X^5+1
 Bit representation: 10001000000100001
 CRC-16
 X^16+X^15+X^2+1
 Bit representation: 11000000000000101

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 69 of 77

When this option is used with HEW, specify the following settings:
In the SuperH RISC engine Standard Toolchain dialog box, on the Link/Library page, specify the following
settings:
Category: Select Output.
Type of output file: Select Hew via absolute or Stype via absolute.
Show entries for: Select Generate CRC code.
CRC code: Select CRC-CCITT or CRC-16.
Output address: Specify the address to which the CRC calculation result will be output.
CRC calculation range: Use the Add, Modify, and Remove buttons to specify the range of addresses for
which a CRC will be performed.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 70 of 77

To output information about the output of the CRC result, specify the following settings on the Link/Library page
in the SuperH RISC engine Standard Toolchain dialog box.
To output a message to the standard output:
Category: Select Other.
User defined options: Select HEX/Stype/Binary, and add the following entry:
 -message

When the above settings are specified and the crc option is specified, the following message is output to the
standard output:

L0500 (I) Generated CRC code at "address"

To output the information to the linkage list:
Category: Select Other.
User defined options: Select HEX/Stype/Binary, and add the following entry:

 -list="$(CONFIGDIR)\$(PROJECTNAME)_crc.map"

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 71 of 77

When the crc option is specified, the CRC result and the output destination address are output to the linkage list
(project name: _crc.map) as follows:

CODE: CRC result
ADDRESS: Output destination address

Example:

optlnk *.obj -form=stype -start=P1,P2/1000
 -crc=1FFE=1000-1FFD
 -output=flmem.mot

When options are set as shown above, the CRC result is output to "flmem.mot", which will be created.

If the ROM image generated with the above option settings is written to the computer's ROM, a CRC is performed
for the range from 0x1000 to 0x1FFD, and the result is compared with the result that has been output to the ROM
image. If these two results are a match, that range in the generated ROM image file and that range in the ROM
image on the computer are identical.

*** CRC code ***

CODE : 5db6
ADDRESS : 00002ffe

P1

P2

Unused

0x1000

P1

P2

Calculated with
0xFF

Destination

P1

P2

CRC result

0x1000

0x1FFE to 0x1FFF

Link result CRC (flmem.mot)

0x1000

0x1FFE

0x2000

CRC Compare

0x1FFD

CRC result

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 72 of 77

The following shows sample programs that perform a CRC. By comparing the CRC result for the ROM image
obtained by this sample program with the CRC result written to ROM, consistency of the data written to ROM can
be confirmed.
⎯ Polynomial expression CRC-CCITT

Sample Source:

typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned long uint32_t;
uint16_t CRC_CCITT(uint8_t *pData, uint32_t iSize)
{
 uint32_t ui32_i;
 uint8_t *pui8_Data;
 uint16_t ui16_CRC = 0xFFFFu;
 pui8_Data = (uint8_t *)pData;
 for(ui32_i = 0; ui32_i < iSize; ui32_i++)
 {
 ui16_CRC = (uint16_t)((ui16_CRC >> 8u) |
 ((uint16_t)((uint32_t)ui16_CRC << 8u)));
 ui16_CRC ^= pui8_Data[ui32_i];
 ui16_CRC ^= (uint16_t)((ui16_CRC & 0xFFu) >> 4u);
 ui16_CRC ^= (uint16_t) ((ui16_CRC << 8u) << 4u);
 ui16_CRC ^= (uint16_t)(((ui16_CRC & 0xFFu) << 4u) << 1u);
 }
 ui16_CRC = (uint16_t)(0x0000FFFFul &
 ((uint32_t)~(uint32_t)ui16_CRC));
 return ui16_CRC;
}

⎯ Polynomial expression CRC-16

Sample Source:

#define POLYNOMIAL 0xa001
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned long uint32_t;

uint16_t CRC16(uint8_t *pData, uint32_t iSize)
{
 uint16_t crcdData = (uint16_t)0;
 uint32_t data = 0;
 uint32_t i,cycLoop;
 for(i=0;i<iSize;i++){
 data = (uint32_t)pData[i];
 crcdData = crcdData ^ data;
 for (cycLoop = 0; cycLoop < 8; cycLoop++) {
 if (crcdData & 1) {
 crcdData = (crcdData >> 1) ^ POLYNOMIAL;
 } else {
 crcdData = crcdData >> 1;
 }
 }
 }
 return crcdData;
}

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 73 of 77

Supplementary note:

Note the following points when the crc option is used:
⎯ A CRC is not performed in the order in which target ranges are specified. Instead, it is performed from the

lowest address to the highest address.
⎯ If multiple absolute files are input, the following warning message is output and the crc option is disabled:

L1000 (W) Option "crc" ignored
⎯ The target ranges must not include the CRC result output address. If the target ranges include the CRC result

output address, the following error message is output:
L2022 (E) Address ranges overlap in option "option" : "address range"

⎯ The crc option takes effect when form=hexadecimal or form=stype is specified as the output format. If an
entry other than these is specified, the following error message is output:

L2004 (E) Option "crc" cannot be combined with option "form=<output format>”
⎯ If the output range is specified with the output option, the CRC result output address must be included in the

output range. If the CRC result output address is not included in the output range, the following error message is
output:

L1181 (W) Fail to write "CRC Code"
⎯ The CRC calculation assumes that the unused area in a specified target range is 0xFF unless a value is specified

by the space option. If random or a value of 2 bytes or more is specified, the following error message is
output:

L2004 (E) Option "crc" cannot be combined with option "space=<value> "

Restrictions:

If an overlay area is used, do not specify the crc option.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 74 of 77

B. Notes on Version Upgrade
This section describes notes when the version is upgraded from the earlier version (SuperH RISC engine C/C++
Compiler Package Ver. 6.x or lower).

B.1 Guaranteed Program Operation
When the version is upgraded and program is developed, operation of the program may change. When the program is
created, note the followings and sufficiently test your program.

(1) Programs Depending on Execution Time or Timing

C/C++ language specifications do not specify the program execution time. Therefore, a version difference in the
compiler may cause operation changes due to timing lag with the program execution time and peripherals such as the
I/O, or processing time differences in asynchronous processing, such as in interrupts.

(2) Programs Including an Expression with Two or More Side Effects

Operations may change depending on the version when two or more side effects are included in one expression.

Example

a[i++]=b[i++]; /* i increment order is undefined. */

f(i++,i++) ; /* Parameter value changes according to increment order. */
 /* This results in f(3, 4) or f(4, 3) when the value of i is 3. */

(3) Programs with Overflow Results or an Illegal Operation

The value of the result is not guaranteed when an overflow occurs or an illegal operation is performed. Operations may
change depending on the version.

Example

int a, b;

x=(a*b)/10; /* This may cause an overflow depending on the value range of a and b. */

(4) No Initialization of Variables or Type Inequality

When a variable is not initialized or the parameter or return value types do not match between the calling and called
functions, an incorrect value is accessed. Operations may change depending on the version.

 File 1: File 2:

The information provided here does not include all cases that may occur. Please use this compiler prudently, and
sufficiently test your programs keeping the differences between the versions in mind.

int f(double

d)

{

:

}

int g(void)

{

f(1);

}

The parameter of the caller
function is the int type, but the
parameter of the callee function
is the double type. Therefore, a
value cannot be correctly
referenced.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 75 of 77

B.2 Compatibility with Earlier Version
The following notes cover situations in which the compiler (Ver. 5.x or lower) is used to generate a file that is to be
linked with files generated by the earlier version or with object files or library files that have been output by the
assembler (Ver. 4.x or lower) or linkage editor (Ver. 6.x or lower). The notes also covers remarks on using the existing
debugger supplied with the earlier version of the compiler.

(1) Object Format

The standard object file format has been changed from SYSROF to ELF. The standard format for debugging
information has also been changed to DWARF2.

When object files (SYSROF) output by the earlier version of the compiler (Ver. 5.x or lower) or assembler (Ver. 4.x or
lower) are to be input to the optimizing linkage editor, use a file converter to convert it to the ELF format. However,
relocatable files output by the linkage editor (extension: rel) and library files that include one or more relocatable files
cannot be converted.

(2) Point of Origin for Include Files

When an include file specified with a relative directory format was searched for, in the earlier version, the search would
start from the compiler’s directory. In the new version, the search starts from the directory that contains the source file.

(3) C++ Program

Since the encoding rule and execution method were changed, C++ object files created by the earlier version of the
compiler cannot be linked. Be sure to recompile such files.

The name of the library function for initial/post processing of the global class object, which is used to set the execution
environment, has also been changed. Refer to section 9.2.2, Execution Environment Settings, and modify the name, in
the SuperH RISC engine C/C++ Conpiler, Assembler, Optimizing Linkage Editor User's Manual.

(4) Abolition of Common Section (Assembly Program)

With the change of the object format, support for a common section has been abolished.

(5) Specification of Entry via .END (Assembly Program)

Only an externally defined symbol can be specified with .END.

(6) Inter-module Optimization

Object files output by the earlier version of the compiler (Ver. 5.x or earler) or the assembler (Ver. 4.x or earler) are not
targeted for inter-module optimization. Be sure to recompile and reassemble such files so that they are targeted for
inter-module optimization.

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 76 of 77

Website and Support <website and support,ws>
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision Record <revision history,rh>
Description

Rev.

Date Page Summary

1.00 June.1.07 — First edition issued
2.00 April.1.08 52 Addition

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

APPLICATION NOTE

REJ06J0019-0200/Rev.2.00 April 2008 Page 77 of 77

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2008. Renesas Technology Corp., All rights reserved.

	A.1 Features Added between Ver. 1.0 and Ver. 2.0
	A.2 Features Added between Ver. 2.0 and Ver. 3.0
	A.3 Features Added between Ver. 3.0 and Ver. 4.1
	A.4 Features Added between Ver. 4.1 and Ver. 5.0
	A.5 Features Added between Ver. 5.0 and Ver. 5.1
	A.6 Features Added between Ver. 5.1 and Ver. 6.0
	A.7 Features Added between Ver. 6.0 and Ver. 7.0
	A.8 Features Added between Ver. 7.0 and Ver. 7.1
	A.9 Features Added between Ver. 7.1 and Ver. 8.0
	A.10 Features Added between Ver. 8.0 and Ver. 9.0
	A.11 Features Added between Ver. 9.0 and Ver. 9.1
	A.12 Features Added between Ver. 9.1 and Ver. 9.2
	B. Notes on Version Upgrade

