

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 1 of 117

SuperH RISC engine C/C++ Compiler Package
APPLICATION NOTE: [Compiler use guide] C Coding Guide (Using DSP)

This document explains usage and gives precautions for DSP (SH2-DSP, SH3-DSP,
SH4AL-DSP), for the SuperH RISC engine C/C++ Compiler V.9.

Table of contents

1. SH-DSP Features.. 2

2. DSP Library ... 6
2.1 Summary ... 6
2.1.1 Data Format... 7
2.1.2 Efficiency ... 8
2.2 Details of DSP library function... 8
2.2.1 Fast Fourier transform... 8
2.2.2 Window Functions ... 34
2.2.3 Filters... 38
2.2.4 Convolution and Correlation.. 62
2.2.5 Other.. 72
2.3 Performance of the DSP Library ... 99

3. DSP-C Specifications .. 105
3.1 Fixed-Point Data Type... 105
3.2 Memory Qualifier ... 108
3.3 Saturation Qualifier.. 111
3.4 Circular Qualifier.. 113
3.5 Type Conversion ... 114

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 2 of 117

1. SH-DSP Features
The SH-DSP core is provided with a DSP unit which performs 16-bit fixed-point operations and is ideal for:

• Multiply-and-accumulate operations
• Repeated processing
It is thus capable of performing at high speed the JPEG processing, audio processing, and filter processing required for
multimedia operations.

In previous SH cores (the SH-1 core example in figure 1.1), the performance of multiply-and-accumulate operations
were determined by the three cycles constituting the multiplier operation time in pipeline operation. Even if the
multiplier operation time were improved to a single cycle, however, stalling of the pipeline would occur due to
instruction data transfer, so that the long-term average time would be 2.5 cycles.

In the SH-DSP core, the DSP unit operation time is a single cycle, and an X bus/Y bus is provided as the data bus, so
that multiply-and-accumulate operations take just one cycle (figure 1.2). Here the long-term average time is also one
cycle.

Example of pipeline operation

Figure 1.1 Multiple-and-Accumulate Instruction Executed in SH Core

clrmac
mac.w @r4+,@r5+
mac.w @r4+,@r5+
mac.w @r4+,@r5+
mac.w @r4+,@r5+
rts
sts macl,r0

EX

 WB :Write-back

:Execution/
address calculation

MA :Memory access IF :Instruction fetch
(32 bits)

ID :Decode

if :Instruction fetch
(with no bus cycles)

mul :Multiplier operation

Code example

if ID MA EX

ID

EX

EX MA MA ID

 MA

mul

 WB

IF EX MA MA

mul mul

mul mul

mul mul mul

mul mul mul

if

if ID

ID

if

ID

ID

mul

 MA

 MA

 MA

 MA

EX

 EX

EX

IF

IF

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 3 of 117

ALU operation + Multiplication +
X memory data
transfer

+
Y memory data
transfer

Code example

Instruction 1 MOVX.W@R4+,X0 MOVY.W@R6+,Y0

Instruction 2 PMULSX0,Y0,M0 MOVX.W@R4+,X1 MOVY.W@R6+,Y1

Instruction 3 PADD A0,M0,A0 PMULSX1,Y1,M1 MOVX.W@R4+,X0 MOVYW@R6+,Y0

Instruction 4 PADD A0,M1,A0 PMULS X0,Y0,M0 MOVX.W@R4+,X1 MOVYW@R6+,Y1

Example of pipeline operation

Instruction 1 IF ID EX MA DSP

Instruction 2 IF ID EX MA DSP

Instruction 3 IF ID EX MA DSP

Instruction 4 IF ID EX MA DSP

Figure 1.2 Multiply-and-Accumulate Instruction Executed in SH-DSP Core

One instruction

:DSP unit operation

:Memory access

:Execution address

:Decode

:Instruction fetch IF

EX

ID DSP

MA

MOVX
MOVY PMULS PADD

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 4 of 117

Further, the SH-DSP core is equipped with hardware mechanisms to reduce disruption of the pipeline due to repeated
processing.

In previous SH cores, conditional branching was used for loop processing. Conditional branching acts to disrupt
pipelines, adding to processing overhead.

In the SH-DSP core there is a zero-overhead mechanism which reduces to zero the pipeline disruption due to this loop
processing. Simply by setting the loop start and finish addresses and number of loops, loop processing is completed
without performing conditional branching. Many critical software operations depend on loop processing; this is a
hardware mechanism which is effective in speeding software execution.

.

Figure 1.3 Repetition Processing

MOV #30,R1;
instr0;
instr1;
instr2;
instr3;
instr4;
instr5;

SH core

Repeated in

30 times

LOOP

Overhead

DT R1;
BF LOOP;

SH-DSP core

LDRS RptStart ;Sets RptStart address

LDRE RptEnd ;Sets RptEnd address

SETRC #30 ;Sets the number
of repetitions

Repeated in 30 times

 instr0;
RptStart :instr1;

 instr2;
 instr3;
 instr4;

RptEnd :instr5;

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 5 of 117

The SH-DSP core is able to execute in parallel five instructions, as shown in figure 1.4: condition evaluation, ALU
operations, signed multiplication, X memory access, and Y memory access. By combining these instructions, various
multiply-and-accumulate operations can be performed at high speed.

Execution condition ALU operation Signed multiplication X memory access Y memory access

Figure 1.4 DSP Instructions (Parallel Instructions)

----: Unconditional

DCT:DC=1

DCF:DC=0

PADD
PSUB

PADD PCLR

PNEG PLDS

PCOPY PSTS

PINC PSUB

PDEC

PSHA

PSHL

PAND

POR

PXOR

PDMSB

PADDC PMULS

PSUBC PSHA#

PCMP PSHL#

PRND

PABS

 PMULS MOVX.W

 NOPX

 MOVY.W

 NOPY

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 6 of 117

2. DSP Library

2.1 Summary
This section explains the digital signal processing (DSP) library that can be used with SH2-DSP and SH3-DSP
(henceforward jointly referred to simply as SH-DSP) This library includes standard DSP functions, and by using them
singly or consecutively, DSP operations can be performed.

This library includes the following functions.

• Fast Fourier transforms
• Window functions
• Filters
• Convolution and correlation
• Other

The functions in this library are, with the exception of fast Fourier transforms and filters, reentrant.

When using this library, include the files shown in table 2.1. In addition, as shown in table 2.2, link to the library
corresponding to the CPU and compile options.

When this library is called on, if the function finishes normally, EDSP_OK is returned as the value, and if an error
occurs, EDSP_BAD_ARG or EDSP_NO_HEAP is returned as the value. For the details of return values, refer to the
explanation of each function.

Table 2.1 Include Files for Use with the DSP Library

Type of library Description Include file
<ensigdsp.h> DSP Library The library performs DSP operations
<filt_ws.h>*1

Note: 1. When using filter functions, include them only once in the user program.

Table 2.2 DSP Library List

CPU Option Library Name
-pic=0 shdsplib.lib SH2-DSP
-pic=1 shdsppic.lib
-pic=0 -endian=big sh3dspnb.lib
-pic=1 -endian=big sh3dsppb.lib
-pic=0 -endian=littl

e
sh3dspnl.lib

SH3-DSP
SH4AL-DSP

-pic=1 -endian=littl
e

sh3dsppl.lib

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 7 of 117

2.1.1 Data Format
This library handles data as signed 16-bit fixed point numbers. Signed 16-bit fixed point numbers, as shown in (a) in
figure 2.1, are of the data format where the point is fixed to the right side of the most significant bit (MSB), and values
from -1 to 1-2-15 can be expressed.

In this library, transfer of data uses the short type of data format. Therefore, when using this library from C/C++
programs, it is necessary to express data in signed 16-bit fixed point numbers.

Example: +0.5 expressed as a signed 16-bit fixed point number is H’4000. Therefore, the short type actual
parameter passed to the library function is H’4000.

Internal operations within this library use signed 32-bit fixed point numbers and signed 40-bit fixed point numbers.
Signed 32-bit fixed point numbers, are of the data format as shown in (b) in figure 2.1, and values from -1 to 1-2-31 can
be expressed. Signed 40-bit fixed point numbers, are of the data format with an additional 8-bit guard bit as shown in
(c) in figure 2.1, and values from -28 to 28-2-31 can be expressed.

The multiplication results of signed 16-bit fixed point numbers are saved as signed 32-bit fixed point numbers. With
fixed point multiplication using DSP instructions, only in the case of H’8000 x H’8000 is it necessary to be careful in
case overflow occurs. In addition, the least significant bit (LSB) of multiplication results is normally 0. When the
multiplication results are used in the next operation, the upper 16 bits are removed, and the result is converted to a
signed 16-bit fixed point number. In this case, there is a possibility that underflow or reduced accuracy may occur.

In multiply-and-accumulate operations of this library, addition results are saved as signed 40-bit fixed point numbers.
Be careful that overflow does not occur when performing addition.

If an overflow occurs when performing an operation, a correct result will not be obtained. In order to prevent overflows,
it is necessary to perform scaling of coefficients or of input data. Scaling functions are built into this library. For the
details of scaling, refer to the explanation of each function.

Figure 2.1 Data Format

S :Sign bit
▲ :Point

(a) Signed 16-bit fixed point numbers (-1 to 1-2-15)

0

 S

15 14

(b) Signed 32-bit fixed point numbers (-1 to 1-2-31)

030 31

S

(c) Signed 40-bit fixed point numbers (-28 to 28-2-31)

0 30 31 32

39

Guard bit

S

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 8 of 117

2.1.2 Efficiency
The functions in this library are optimized to execute at high speed on SH-DSP.
In order to use the library efficiently, when deciding the memory map of the system in development, observe the
following two recommendations as far as possible.

• Allocate memory that supports 32-bit read for 1 cycle for program code segments.
• Allocate memory that supports 16-bit (or 32-bit) read and write for 1 cycle for data segments.

If the microcomputer to be used has 32-bit memory built in of sufficient capacity to allocate the library code and data, it
is best to allocate it to the 32-bit memory. If it is necessary to use other memory, follow the above recommendation as
far as possible.

2.2 Details of DSP library function
2.2.1 Fast Fourier transform
(1) List of functions

Table 2.3 List of DSP Library Functions (Fast Fourier Transform)

No. Type Function
Name

Description

1 not-in-place complex
number FFT

FftComplex Performs not-in-place complex
number FFT

2 not-in-place
real-number FFT

FftReal Performs not-in-place real-number
FFT

3 not-in-place inverse
complex number FFT

IfftComplex Performs not-in-place inverse
complex number FFT

4 not-in-place inverse
real-number FFT

IfftReal Performs not-in-place inverse
real-number FFT

5 in-place complex
number FFT

FftInComplex Performs in-place complex number
FFT

6 in-place real number
FFT

FftlnReal Performs in-place real-number FFT

7 in-place inverse
complex number FFT

IfftInComplex Performs in-place inverse complex
number FFT

8 in-place inverse
real-number FFT

IfftInReal Performs in-place inverse
real-number FFT

9 logarithmic absolute
value

LogMagnitude Converts complex number data into
logarithmic absolute values

10 FFT rotation factor
generation

InitFft Generates FFT rotation factors

11 FFT rotation factor
release

FreeFft Releases the memory used to store
FFT rotation factors

Note: For details on not-in-place and in-place, refer to “(5) FFT structure”.

The factors use the scaling defined by the user to execute forward direction high speed Fourier transforms and reverse
direction high speed Fourier transforms.
Forward direction Fourier transforms are defined using the following equations.

n

N

0n

Nnj2s
n xe2y ⋅= ∑

=

π−−

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 9 of 117

Here, s represents the number of stages for performing scaling, and N represents the number of data elements.
Reverse direction Fourier transforms are defined using the following equations.

n

N

0n

Nnj2s
n xe2y ⋅= ∑

=

π−

For details on scaling, refer to “(4) Scaling”.

(2) Complex number data array format
FFT and IFFT complex number data arrays are allocated to X memory for real numbers and to Y memory for
imaginary numbers. However, the allocation of real number FFT output data and real number IFFT input data
differs. If the arrays in which real numbers and imaginary numbers are stored are defined as x and y respectively,
the real number component of the DC component goes into x[0], and rather than the imaginary number component
of the DC component, the real number component of the Fs/2 component goes into y[0] (the DC component and
Fs/2 component are both real numbers, and the imaginary number component is 0).

(3) Real number data array format
There are 3 kinds of FFT and IFFT real number data array formats as follows.

• Stored in a single array, and allocated to an arbitrary memory block.
• Stored in a single array, and allocated to X memory.
• Divided into 2 arrays for storage. The size of each array is N/2, and the first half of the array is allocated

to X memory, and the second half is allocated to Y memory.
Only the first specification method is available for FftReal. The user can select the second or third methods for
IfftReal, FftInReal, and IfftInReal.

(4) Scaling
The signal strength of base 2 FFT doubles at each stage, and peak signal amplitude also doubles. For this reason,
when converting to a high intensity signal there is a possibility that overflows may occur. However, by halving the
signal at each stage (this is called ‘scaling’), overflows can be prevented. However, if excessive scaling is
implemented, there is a possibility that unnecessary quantization noise may occur.
The optimal balance of scaling between overflows and quantization noise depends greatly on the characteristics of
the input signals. In order to prevent overflows with spectra with large peaks in the signals, maximum scaling is
necessary, but with impulse signals, scaling is hardly required at all.
Performing scaling at every stage is the safest method. If the intensity of the input data is less than 230, overflows
can be prevented using this method. With this library, scaling can be specified for each stage. Therefore, by
specifying scaling precisely, the impact of overflows and quantization noise can be suppressed to the minimum.
In order to specify the method of scaling, each FFT function parameter includes ‘scale’. ‘scale’ corresponds to each
stage from the least significant bit to each individual bit. If the corresponding scale bit is set to 1, at every stage,
division by 2 is executed.
In order to increase execution speed, base 4 FFT is used in this library. ‘scale’ corresponds to each stage from the
least significant bit to each two bits. If either one bit is set to 1, division by 2 is executed. If both bits are set to 1,
division by 4 is executed. In other words, this is the same as if two base 2 FFT stages are replaced with one base 4
FFT stage. However, with base 4 FFT, there is a greater possibility that quantization noise will occur than with base
2 FFT.
An example of ‘scale’ is shown below.

• When scale = H’FFFFFFFF (or size-1), scaling is performed for all base 2 FFT stages. If the intensity of
all the input data is less than 230, overflow will not occur.

• When scale = H’55555555, scaling is performed for every other base 2 FFT stage.
• When scale = 0, scaling is not performed.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 10 of 117

These scale values are defined as ensigdsp.h, EFFTALLSCALE(H’FFFFFFFF), EFFTMIDSCALE(H’55555555),
and EFFTNOSCALE(0)

(5) FFT structure
The FFT structures of this library are of 2 kinds, not-in-place FFT, and in-place FFT
With not-in-place FFT, the input data is removed from RAM, FFT is executed, and the output result is stored in
another place in RAM specified by the user.
On the other hand, with in-place FFT, the input data is removed from RAM, FFT is executed, and the output result
is stored in the same place in RAM. If this method is used, execution time for the FFT is increased, but the memory
space used can be decreased.
When using other FFT functions with input data, use not-in-place FFT. In addition, when seeking to conserve
memory space, use in-place FFT.

(6) Explanation of each function
(a) not-in-place complex number FFT
• Description:
• Format:
int FftComplex (short op_x[], short op_y[],
 const short ip_x[], const short ip_y[], long size, long scale)

• Parameters:
 op_x[] Real number component of output data
 op_y[] Imaginary number component of output data
 ip_x[] Real number component of input data
 ip_y[] Imaginary number component of input data
 size FFT size
 scale Scaling specification

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •size < 4
 •size is not a power of 2
 •size > max_fft_size

• Explanation of this function:
Executes a complex number fast Fourier transform.

• Remarks:
As this function performs not-in-place, provide input arrays and output arrays separately. For details on allocation of
complex number data arrays, refer to “(2) Complex number data array format”. Before calling on this function, call on
InitFft, and initialize the rotation factor and max_fft_size. For details on scaling, refer to “(4) Scaling”. ‘scale’ uses the
lower log2 (size) bit. This function is not reentrant.

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 11 of 117

#define MAX_FFT_SAMP 64

#define MIN_CFFT_SIZE 4

long ip_scale=0xffffffff;

long size = MIN_CFFT_SIZE;

#pragma section X

short ip_x[MAX_FFT_SAMP];

short op_x[MAX_FFT_SAMP];

#pragma section Y

short ip_y[MAX_FFT_SAMP];

short op_y[MAX_FFT_SAMP];

#pragma section

/* Data for cycle counting */

#define TWOPI 6.283185307 /* data */

void main()

{

 int i,j;

 long n_samp;

 n_samp=MAX_FFT_SAMP; /* data */

 for (j = 0; j < n_samp; j++){

 ip_x[j] = cos(j * TWOPI/n_samp) * 8188;

 ip_y[j] = sin(j * TWOPI/n_samp) * 8188;

 }

 if(InitFft(n_samp) != EDSP_OK){

 printf("Initfft != err end");

 }

 if(FftComplex(op_x,op_y,ip_x,ip_y,n_samp,EFFTALLSCALE) != EDSP_OK){

 printf("FftComplex error¥n");

 }

 FreeFft();

 for(i=0;i<n_samp;i++){

 printf("[%d] op_x=%d op_y=%d ¥n",i,op_x[i],op_y[i]);

 }

}

Variables placed in X or Y
memory are defined by a
pragma section within the
section.

FFT initialization function;
Initialization is performed for the number of
data elements. This is required. The
number of data elements is equal to the
FFT data size, and must be a power of 2.

Data creation for FFT

This frees the table used in FFT calculations. If this is
not done, memory resources are wasted. If FFT is to
be performed again using the same number of data
elements, the FFT function is used again without
executing FreeFft.

Variables placed in X or Y memory
are defined by a pragma section
within the section.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 12 of 117

(b) not-in-place real number FFT
Description:

• Format:
int FftReal (short op_x[], short op_y[], const short ip[],
 long size, long scale)

• Parameters:
 op_x[] Real number component of positive output data
 op_y[] Imaginary number component of positive output data
 ip[] Real number input data
 size FFT size
 scale Scaling specification

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •size < 8
 •size is not a power of 2
 •size > max_fft_size

• Explanation of this function:
Executes a real number fast Fourier transform.

• Remarks:
size/2 positive output data is stored in op_x and op_y. Negative output data is the conjugate complex number of
positive output data. In addition, as the values of output data of 0 and FS/2 are real numbers, the real number output
with FS/2 is stored in op_y[0].
As this function performs not-in-place, provide input arrays and output arrays separately.
For details on allocation of complex number and real number data arrays, refer to “(2) Complex number data array
format” and “(3) Real number data array format”.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 13 of 117

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define VLEN 64

#define TWOPI 6.28318530717959

/* global data declarations */

#pragma section X

short output_x[VLEN];

#pragma section Y

short output_y[VLEN];

#pragma section

void main()

{

 short i;

 int k;

 short input[VLEN];

 short output[VLEN];

/* generate two sinusoids */

 k = VLEN / 8;

 for (i = 0; i < VLEN; i++)

 input[i] = floor(16383 * cos(TWOPI * k * i / VLEN) + 0.5);

 k = VLEN * 3 / 8;

 for (i = 0; i < VLEN; i++)

 input[i] += floor(16383 * cos(TWOPI * k * i / VLEN) + 0.5);

/* do FFT */

 if (InitFft(VLEN) != EDSP_OK)

 printf("InitFft problem¥n");

 if (FftReal(output_x, output_y, input, VLEN, EFFTALLSCALE) != EDSP_OK)

 printf("FftReal problem¥n");

 FreeFft();

}

Variables placed in X or Y
memory are defined by a
pragma section within the
section.

FFT initialization function;

Initialization is performed for the number of
data elements. This is required. The number
of data elements is equal to the FFT data
size, and must be a power of 2.

Creation of data for FFT

This frees the table used in FFT
calculations. If this is not done, memory
resources are wasted. If FFT is to be
performed again using the same number
of data elements, the FFT function is used
again without executing FreeFft.

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 14 of 117

(c) not-in-place inverse complex number FFT
Description:

• Format:
int IfftComplex (short op_x[], short op_y[],
 short ip_x[], const short ip_y[],
 long size, long scale)

• Parameters:
 op_x[] Real number component of output data
 op_y[] Imaginary number component of output data
 ip_x[] Real number component of input data
 ip_y[] Imaginary number component of input data
 size Inverse FFT size
 scale Scaling specification

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •size < 4
 •size is not a power of 2
 •size > max_fft_size

• Explanation of this function:
Executes a complex number inverse fast Fourier transform.

• Remarks:
As this function performs not-in-place, provide input arrays and output arrays separately.
For details on allocation of complex number data arrays, refer to “(2) Complex number data array format”.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 15 of 117

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_IFFT_SIZE 16

#define TWOPI 6.283185307 /* data */

long ip_scale=8188;

#pragma section X

short ipi_x[MAX_IFFT_SIZE]; /* input array */

short opi_x[MAX_IFFT_SIZE]; /* normal output array */

#pragma section Y

short ipi_y[MAX_IFFT_SIZE];

short opi_y[MAX_IFFT_SIZE];

#pragma section

void main()

{

 int i,j;

 long scale;

 long max_size;

 max_size=MAX_IFFT_SIZE;/* data */

 for (j = 0; j < max_size; j++){

 ipi_x[j] = cos(j * TWOPI/max_size) * ip_scale;

 ipi_y[j] = sin(j * TWOPI/max_size) * ip_scale;

 }

 if(InitFft(max_size) != EDSP_OK){

 printf("InitFft error end ¥n");

 }

 else {

 if(FftInComplex(ipi_x, ipi_y, max_size,EFFTALLSCALE) != EDSP_OK){

 printf("FftInComplex err end ¥n");

 }

 for (j = 0; j < max_size; j++){

 opi_x[j]=0;

 opi_y[j]=0;

 }

Variables placed in X or Y memory are defined by
a pragma section within the section.

Creation of data for FFT (data
used to execute FftComplex)

FFT initialization function;

Initialization is performed
for the number of data
elements. This is required.
The number of data
elements is equal to the
FFT data size, and must
be a power of 2.

This processing performs FFT
calculations and uses the results as input
values for an inverse FFT function;
normally it is not necessary.

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 16 of 117

 if(IfftComplex(opi_x, opi_y, ipi_x, ipi_y, max_size,

 EFFTALLSCALE)!= EDSP_OK){

 printf("IfftComplex err end ¥n");

 }

 for (j = 0; j < max_size; j++){

 printf("[%d] opi_x=%d op_y=%d ¥n",j, opi_x[j],opi_y[j]);

 }

 FreeFft();

 }

}

This frees the table used in FFT calculations. If this is
not done, memory resources are wasted. If FFT is to be
performed again using the same number of data
elements, the FFT function is used again without
executing FreeFft.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 17 of 117

(d) not-in-place real number inverse FFT
Description:

• Format:
int IfftReal (short op_x[], short scratch_y[],
 const short ip_x[], const short ip_y[], long size,
 long scale, int op_all_x)

• Parameters:
 op_x[] Real number output data
 scratch_y[] Scratch memory or real number output data
 ip_x[] Real number component of positive input data
 ip_y[] Imaginary number component of positive input data
 size Inverse FFT size
 scale Scaling specification
 op_all_x Allocation specification of output data

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •size < 8
 •size is not a power of 2
 •size > max_fft_size
 •op_all_x ≠ 0 or 1

• Explanation of this function:
Executes a real number inverse fast Fourier transform.

• Remarks:
Store size/2 positive input data in ip_x and ip_y. Negative input data is the conjugate complex number of positive input
data. In addition, as the values of input data of 0 and FS/2 are real numbers, store the real number input with FS/2 in
ip_y[0].|
The format of output data is specified with op_all_x. If op_all_x=1, all output data is stored in op_x. If op_all_x=0, the
first size/2 output data is stored in op_x, and the remainder of the size/2 output data is stored in scratch_y.
As this function performs not-in-place, provide input arrays and output arrays separately.
For details on allocation of complex number and real number data arrays, refer to “(2) Complex number data array
format” and “(3) Real number data array format”.
Store size/2 data in ip_x and ip_y respectively. size or size/2 data is stored in op_x depending on the value of op_all_x.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 18 of 117

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_IFFT_SIZE 16

#define TWOPI 6.283185307 /* data */

long ip_scale=8188;

#pragma section X

short ipi_x[MAX_IFFT_SIZE]; /* input array */

short opi_x[MAX_IFFT_SIZE]; /* normal output array */

#pragma section Y

short ipi_y[MAX_IFFT_SIZE];

short opi_y[MAX_IFFT_SIZE];

#pragma section

void main()

{

 int i,j;

 long scale;

 long max_size;

 max_size=MAX_IFFT_SIZE;/* data */

 for (j = 0; j < max_size; j++){

 ipi_x[j] = cos(j * TWOPI/max_size) * ip_scale;

 }

 if (InitFft(max_size) != EDSP_OK){

 printf("InitFft error end ¥n");

 }

 else {

 if(FftInReal(ipi_x, ipi_y, max_size,EFFTALLSCALE,1) != EDSP_OK){

 printf("FftInReal err end ¥n");

 }

if(IfftReal(opi_x, opi_y, ipi_x, ipi_y, max_size, EFFTALLSCALE,1)!=

 EDSP_OK){

 printf("IfftReal err end ¥n");

 }

 for (j = 0; j < max_size; j++){

 printf("[%d] opi_x=%d op_y=%d ¥n",j, opi_x[j],opi_y[j]);

 }

Variables placed in X or Y memory are defined by
a pragma section within the section.

Creation of data for FFT (data used to
execute FftReal)

FFT initialization function;

Initialization is performed for the
number of data elements. This is
required. The number of data
elements is equal to the FFT data
size, and must be a power of 2.
Also required for inverse FFT.

This processing performs FFT
calculations and uses the results
as input values for an inverse FFT
function; normally it is not
necessary.

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 19 of 117

 FreeFft();

 }

}

This frees the table used in FFT calculations. If this is
not done, memory resources are wasted. If FFT is to be
performed again using the same number of data
elements, the FFT function is used again without
executing FreeFft.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 20 of 117

(e) in-place complex number FFT
Description:

• Format:
int FftInComplex (short data_x[], short data_y[],
 long size, long scale)

• Parameters:
 data_x[] Real number component of input data
 data_y[] Imaginary number component of input and output data
 size FFT size
 scale Scaling specification

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •size < 4
 •size is not a power of 2
 •size > max_fft_size

• Explanation of this function:
Executes an in-place complex number fast Fourier transform.

• Remarks:
For details on allocation of complex number data arrays, refer to “(2) Complex number data array format”.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 21 of 117

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_FFT_SAMP 64

#define TWOPI 6.283185307 /* data */

long ip_scale=0xffffffff;

#pragma section X

short ip_x[MAX_FFT_SAMP];

#pragma section Y

short ip_y[MAX_FFT_SAMP];

#pragma section

void main()

{

 int i,j;

 long max_size;

 long n_samp;

 n_samp=MAX_FFT_SAMP;

 max_size=n_samp;/* data */

 for (j = 0; j < n_samp; j++){

 ip_x[j] = cos(j * TWOPI/n_samp) * ip_scale;

 ip_y[j] = sin(j * TWOPI/n_samp) * ip_scale;

 }

 if(InitFft(max_size) != EDSP_OK){

 printf("InitFft error¥n");

 }

 if(FftInComplex(ip_x, ip_y, n_samp,EFFTALLSCALE) != EDSP_OK){

 printf("FftInComplex error¥n");

 }

 FreeFft();

 for(i=0;i<max_size;i++){

 printf("[%d] ip_x=%d ip_y=%d ¥n",i,ip_x[i],ip_y[i]);

 }

}

Variables placed in X or Y memory are defined by a
pragma section within the section.

Data creation for FFT

FFT initialization function;

Initialization is performed for the number of
data elements. This is required. The
number of data elements is equal to the
FFT data size, and must be a power of 2.

This frees the table used in FFT calculations. If
this is not done, memory resources are wasted.
If FFT is to be performed again using the same
number of data elements, the FFT function is
used again without executing FreeFft.

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 22 of 117

(f) in-place real number FFT
Description:
• Format:

int FftInReal (short data_x[], short data_y[], long size,
 long scale, int ip_all_x)

• Parameters:
 data_x[] Real number data when input, and real number component of the positive output

 data when output
 data_y[] Real number data or unused for input, and imaginary number component of the

 positive output data when output
 size FFT size
 scale Scaling specification
 ip_all_x Allocation specification of input data

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •size < 8
 •size is not a power of 2
 •size > max_fft_size
 •ip_all_x ≠ 0 or 1

• Explanation of this function:
Executes an in-place real number fast Fourier transform.

• Remarks:
The format of input data is specified with ip_all_x. If ip_all_x=1, all input data is removed from data_x. If ip_all_x=0,
the first half of size/2 input data is removed from data_x, and the second half of size/2 input data is removed from
data_y.
After execution of this function, size/2 positive output data is stored in data_x and data_y. Negative output data is the
conjugate complex number of positive output data. In addition, as the values of output data of 0 and FS/2 are real
numbers, the real number output with FS/2 is stored in data_y[0].
For details on allocation of complex number and real number data arrays, refer to “(2) Complex number data array
format” and “(3) Real number data array format”.
Store size/2 data in data_y. size or size/2 data is stored in data_x depending on the value of ip_all_x.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 23 of 117

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_FFT_SAMP 64

#define TWOPI 6.283185307 /* data */

long ip_scale=8188;

/*long ip_scale=0xffffffff;*/

#pragma section X

short ip_x[MAX_FFT_SAMP];

#pragma section Y

short ip_y[MAX_FFT_SAMP];

#pragma section

void main()

{

 int i,j;

 long max_size;

 long n_samp;

 int ip_all_x;

 n_samp=MAX_FFT_SAMP;

 max_size=n_samp;/* data */

 for (j = 0; j < n_samp; j++){

 ip_x[j] = cos(j * TWOPI/n_samp) * ip_scale;

 ip_y[j] = 0;

 }

 if(InitFft(max_size) != EDSP_OK){

 printf("InitFft error¥n");

 }

 ip_all_x = 1;

 if(FftInReal(ip_x, ip_y, n_samp,EFFTALLSCALE ,ip_all_x) != EDSP_OK){

 printf("FftInReal error¥n");

 }

Variables placed in X or Y
memory are defined by a
pragma section within the
section.

FFT initialization function;

Initialization is performed for the number of data
elements. This is required. The number of data
elements is equal to the FFT data size, and
must be a power of 2.

Data creation for FFT

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 24 of 117

 FreeFft();

 for(i=0;i<max_size;i++){

 printf("[%d] ip_x=%d ip_y=%d ¥n",i,ip_x[i],ip_y[i]);

 }

}

This frees the table used in FFT calculations. If this is not done,
memory resources are wasted. If FFT is to be performed again
using the same number of data elements, the FFT function is used
again without executing FreeFft.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 25 of 117

(g) in-place complex number inverse FFT
Description:
• Format:

int IfftInComplex (short data_x[], short data_y[],
 long size, long scale)

• Parameters:
 data_x[] Real number component of input data
 data_y[] Imaginary number component of input and output data
 size Inverse FFT size
 scale Scaling specification

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •size < 4
 •size is not a power of 2
 •size > max_fft_size

• Explanation of this function:
Executes an in-place complex number inverse fast Fourier transform.

• Remarks:
For details on allocation of complex number data arrays, refer to “(2) Complex number data array format”.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 26 of 117

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_IFFT_SIZE 16

#define TWOPI 6.283185307 /* data */

long ip_scale=8188;

#pragma section X

short ipi_x[MAX_IFFT_SIZE]; /* input array */

#pragma section Y

short ipi_y[MAX_IFFT_SIZE];

#pragma section

void main()

{

 int i,j;

 long scale;

 long max_size;

 max_size=MAX_IFFT_SIZE;/* data */

 for (j = 0; j < max_size; j++){

 ipi_x[j] = cos(j * TWOPI/max_size) * ip_scale;

 ipi_y[j] = sin(j * TWOPI/max_size) * ip_scale;

 }

 if(InitFft(max_size) != EDSP_OK){

 printf("InitFft error end ¥n");

 }

 else {

 if(FftInComplex(ipi_x, ipi_y, max_size,EFFTALLSCALE) != EDSP_OK){

 printf("FftInComplex err end ¥n");

 }

 if(IfftInComplex(ipi_x, ipi_y, max_size,EFFTALLSCALE) != EDSP_OK){

 printf("IfftInComplex err end ¥n");

 }

 for (j = 0; j < max_size; j++){

 printf("[%d] ipi_x=%d ip_y=%d ¥n",j, ipi_x[j],ipi_y[j]);

Variables placed in X or Y memory are defined
by a pragma section within the section.

Data creation for FFT (data
used as input for
FftInComplex)

FFT initialization function;
Initialization is performed for the number
of data elements. This is required. The
number of data elements is equal to the
FFT data size, and must be a power of 2.
Also required for inverse FFT.

This processing performs FFT
calculations and uses the results as
input values for an inverse FFT
function; normally it is not necessary.

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 27 of 117

 }

 FreeFft();

 }

}

This frees the table used in FFT calculations. If this is
not done, memory resources are wasted. If FFT is to
be performed again using the same number of data
elements, the FFT function is used again without
executing FreeFft.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 28 of 117

(h) in-place real number inverse FFT
Description:
• Format:
int IfftInReal (short data_x[], short data_y[], long size,
 long scale, int op_all_x)

• Parameters:
 data_x[] Real number component of positive input data when input, and real number data
 when output
 data_y[] Imaginary number component of positive input data when input, and real number
 data when output or unused
 size Inverse FFT size
 scale Scaling specification
 op_all_x Allocation specification of output data

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •size < 8
 •size is not a power of 2
 •size > max_fft_size
 •op_all_x ≠ 0 or 1

• Explanation of this function:
Executes an in-place real number inverse fast Fourier transform.

• Remarks:
Store size/2 positive input data in data_x and data_y. Negative input data is the conjugate complex number of positive
input data. In addition, as the values of input data of 0 and FS/2 are real numbers, store the real number input with FS/2
in data_y[0].
The format of output data is specified with op_all_x. If op_all_x=1, all output data is stored in data_x. If op_all_x=0,
the first half of the size/2 output data is stored in data_x, and the second half of the size/2 output data is stored in data_y.
For details on allocation of complex number and real number data arrays, refer to “(2) Complex number data array
format” and “(3) Real number data array format”.
Store size/2 data in data_y. size or size/2 data is stored in data_x depending on the value of op_all_x.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 29 of 117

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_IFFT_SIZE 16

#define TWOPI 6.283185307 /* data */

long ip_scale=8188;

#pragma section X

short ipi_x[MAX_IFFT_SIZE]; /* input array */

#pragma section Y

short ipi_y[MAX_IFFT_SIZE];

#pragma section

void main()

{

 int i,j;

 long scale;

 long max_size;

 max_size=MAX_IFFT_SIZE;/* data */

 for (j = 0; j < max_size; j++){

 ipi_x[j] = cos(j * TWOPI/max_size) * ip_scale;

 }

 if(InitFft(max_size) != EDSP_OK){

 printf("InitFft error end ¥n");

 }

 else {

 if(FftInReal(ipi_x, ipi_y, max_size,EFFTALLSCALE,1) != EDSP_OK){

 printf("FftInReal err end ¥n");

 }

 if(IfftInReal(ipi_x, ipi_y, max_size, EFFTALLSCALE,1) != EDSP_OK){

 printf("IfftInReal err end ¥n");

 }

 for (j = 0; j < max_size; j++){

 printf("[%d] ipi_x=%d ip_y=%d ¥n",j, ipi_x[j],ipi_y[j]);

 }

 FreeFft();

 }

}

Variables placed in X or Y memory
are defined by a pragma section
within the section.

Data creation for FFT (data
used as input for FftInReal)

FFT initialization function;

Initialization is performed for the
number of data elements. This is
required. The number of data
elements is equal to the FFT data
size, and must be a power of 2.
Also required for inverse FFT

This frees the table used in FFT calculations. If this is not
done, memory resources are wasted. If FFT is to be
performed again using the same number of data elements,
the FFT function is used again without executing FreeFft.

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 30 of 117

(i) Logarithmic absolute value
Description:
• Format:
int LogMagnitude (short output[], const short ip_x[],
 const short ip_y[], long no_elements,
 float fscale)

• Parameters:
 output[] Real number output z
 ip_x[] Input real number component x
 ip_y[] Input imaginary number component y
 no_elements Number of output data elements N
 fscale Output scaling coefficient

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •no_elements > 32767
 •|fscale| > 215/(10log102

31)

• Explanation of this function:
Calculates the logarithmic absolute value of complex number input data in decibel units, and writes the scaling results
in the output array.

• Remarks:
z(n)=10fscale ⋅ log10(x(n)2+y(n)2) 0 ≤ n < N
For details on allocation of complex number data arrays, refer to “(2) Complex number data array format”.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 31 of 117

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_IFFT_SIZE 16

#define TWOPI 6.283185307 /* data */

long ip_scale=8188;

#pragma section X

short ipi_x[MAX_IFFT_SIZE]; /* input array */

#pragma section Y

short ipi_y[MAX_IFFT_SIZE];

#pragma section

void main()

{

 int i,j;

 long scale;

 long max_size;

 short output[MAX_IFFT_SIZE];

 max_size=MAX_IFFT_SIZE;/* data */

 for (j = 0; j < max_size; j++){

 ipi_x[j] = cos(j * TWOPI/max_size) * ip_scale;

 }

 if(InitFft(max_size) != EDSP_OK){

 printf("InitFft error end ¥n");

 }

 else {

 if(FftInReal(ipi_x, ipi_y, max_size,EFFTALLSCALE,1) != EDSP_OK){

 printf("FftInReal err end ¥n");

 }

 if(LogMagnitude(output, ipi_x,ipi_y, max_size/2, 2) != EDSP_OK){

 printf("LogMagnitude err end ¥n");

 }

 for (j = 0; j < max_size/2; j++){

 printf("[%d] output=%d ¥n",j, output[j]);

 }

 FreeFft();

 }

}

Variables placed in X or Y memory
are defined by a pragma section
within the section.

This frees the table used in FFT calculations.

If this is not done, memory resources are wasted. If FFT is
to be performed again using the same number of data
elements, the FFT function is used again without executing
FreeFft. This is not directly related to LogMagnitude.

Data creation for FFT

FFT function;
Creates data used by the
LogMagnitude function.

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 32 of 117

(j) Rotation factor generation
Description:

• Format:
int InitFft (long max_size)

• Parameters:
 max_size Maximum size of the required FFT

• Returned value:
 EDSP_OK Successful
 EDSP_NO_HEAP The memory space that can be obtained with malloc is insufficient
 EDSP_BAD_ARG In any of the following cases
 •max_size < 2
 •max_size is not a power of 2
 •max_size > 32,768

• Explanation of this function:
Generates the rotation factor (1/4 size) to be used by the FFT function.

• Remarks:
The rotation factor is stored in the memory obtained by malloc.
When the rotation factor is generated, the max_fft_size global variable is updated. max_fft_size shows the maximum
capacity size of the FFT.
Be sure to call on this function once before calling on the first FFT function.
Make max_size 8 or more.
The rotation factor is generated by the conversion size specified by max_size. Use the same rotation factor when
executing a FFT function with a smaller size than max_size.
The address of the rotation factor is stored inside the internal variable. Do not access this with the user program.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 33 of 117

(k) Rotation factor release
Description:
• Format:

void FreeFft (void)

• Parameters:
 None

• Returned value:
 None

• Explanation of this function:
Releases the memory used to store the rotation factors.

• Remarks:
Make the max_fft_size global variable 0. When executing the FFT function again after executing FreeFft, be sure to
execute InitFft first.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 34 of 117

2.2.2 Window Functions
(1) List of functions

Table 2.4 DSP Library Function List (Window Functions)

No. Type Function
Name

Description

1 Blackman window GenBlackman Generates a Blackman window.
2 Hamming window GenHamming Generates a Hamming window.
3 Hanning window GenHanning Generates a Hanning window.
4 Triangular window GenTriangle Generates a triangular window.

(2) Explanation of each function
(a) Blackman window
Description:

• Format:
int GenBlackman (short output[], long win_size)

• Parameters:
 output[] Output data W(n)
 win_size Window size N

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG win_size ≤ 1

• Explanation of this function:
Generates a Blackman window, and outputs to output.

• Remarks:
Use VectorMult when applying this window to actual data.
The function to be used is shown below.

 0 ≤ n < N

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define MAXN 10

void main()

{

 int i;

 long len;

 short output[MAXN];

 len=MAXN ;

 if(GenBlackman(output, len) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 for(i=0;i<len;i++){

 printf("output=%d ¥n",output[i]);

 }

}

 Include header

() ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ π

+⎟
⎠
⎞

⎜
⎝
⎛ π

−−=
N
n4

cos08.0
N
n2

cos5.042.012)n(W 15

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 35 of 117

(b) Hamming window
Description:

• Format:
int GenHamming (short output[], long win_size)

• Parameters:
 output[] Output data W(n)
 win_size Window size N

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG win_size ≤ 1

• Explanation of this function:
Generates a Hamming window, and outputs to output.

• Remarks:
Use VectorMult when applying this window to actual data.
The function to be used is shown below.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define MAXN 10

void main()

{

 int i;

 long len;

 short output[MAXN];

 len=MAXN ;

 if(GenHamming(output, len) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 for(i=0;i<len;i++){

 printf("output=%d ¥n",output[i]);

 }

}

 Include header

() ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ π

−−=
N
n2

cos46.054.0 12)n(W 15 0 ≤ n < N

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 36 of 117

(c) Hanning window
Description:

• Format:
int GenHanning (short output[], long win_size)

• Parameters:
 output[] Output data W(n)

 win_size Window size N

• Returned value:
 EDSP_OK Successful

 EDSP_BAD_ARG win_size ≤ 1

• Explanation of this function:
Generates a Hanning window, and outputs to output.

• Remarks:
Use VectorMult when applying this window to actual data.

The function to be used is shown below.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define MAXN 10

void main()

{

 int i;

 long len;

 short output[MAXN];

 len=MAXN ;

 if(GenHanning(output, len) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 for(i=0;i<len;i++){

 printf("output=%d ¥n",output[i]);

 }

}

() ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ π

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

N
n2

cos1
2

12
nW

15

0 ≤ n < N

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 37 of 117

(d) Triangular window
Description:

• Format:
int GenTriangle (short output[], long win_size)

• Parameters:
 output[] Output data W(n)
 win_size Window size N

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG win_size ≤ 1

• Explanation of this function:
Generates a triangular window, and outputs to output.

• Remarks:
Use VectorMult when applying this window to actual data.
The function to be used is shown below.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define MAXN 10

void main()

{

 int i;

 long len;

 short output[MAXN];

 len=MAXN ;

 if(GenTriangle(output, len) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 for(i=0;i<len;i++){

 printf("output=%d ¥n",output[i]);

 }

}

() () ⎥
⎦

⎤
⎢
⎣

⎡
+

+−
−−=

1N
1Nn2

1 12nW 15 0 ≤ n < N

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 38 of 117

2.2.3 Filters
(1) List of functions

Table 2.5 DSP Library Function List (Filters)

No. Type Function
Name

Description

1 FIR Fir Performs finite impulse-response filter
processing

2 FIR for single data
elements

Fir1 Performs finite impulse-response filter
processing for a single data element

3 IIR Iir Performs infinite impulse-response filter
processing

4 IIR for single data
elements

Iir1 Performs infinite impulse-response filter
processing for a single data element

5 Double precision IIR Diir Performs double-precision infinite
impulse-response filter processing

6 Double precision IIR for
single data elements

Diir1 Performs double-precision infinite
impulse-response filter processing for a
single data element

7 Adaptive FIR Lms Performs adaptive FIR filter processing
8 Adaptive FIR for single

data elements
Lms1 Performs adaptive FIR filter processing

for a single data element
9 FIR work space

allocation
InitFir Allocates a work space for use by the FIR

filter
10 IIR work space

allocation
InitIir Allocates a work space for use by the IIR

filter
11 Double precision IIR

work space allocation
InitDIir Allocates a work space for use by the

DIIR filter
12 Adaptive FIR work

space allocation
InitLms Allocates a work space for use by the

LMS filter
13 FIR work space release FreeFir Releases the work space allocated by

InitFir
14 IIR work space release FreeIir Releases the work space allocated by

InitIir
15 Double precision IIR

work space release
FreeDIir Releases the work space allocated by

InitDIir
16 Adaptive FIR work

space release
FreeLms Releases the work space allocated by

InitLms
Note: When using any of these functions, include filt_ws.h only once in the user program.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 39 of 117

(2) Coefficient scaling
When executing filter processing, there is a possibility that saturation or quantization noise may occur. These can be
suppressed to the minimum by performing scaling of these filter coefficients. However, it is necessary to perform
scaling giving careful consideration to the impact of saturation and quantization noise. If the coefficient is too large
there is a possibility that saturation may occur. If it is too small, quantization noise may occur.
With the FIR (finite impulse response) filter, saturation will not occur if the filter coefficient is set so that the following
equation is applied.
coeff[i] ≠ H’8000 (for all instances of i)
Σ|coeff| < 224
res_shift = 24
coeff is the filter coefficient, and res_shift is the number of bits shifted to the right at output.
However, when there are many input signals, even if a smaller res_shift value is used (or a bigger coeff value), the
possibility of saturation is slight, and quantization noise can be reduced by a wide margin. In addition, if there is a
possibility that the input value includes H’8000, set all coeff values to be in the range of H’8001 to H’7FFF.
The IIR (infinite impulse response) filter has a recursive structure. For this reason, the scaling method explained above
is not suitable.
The LMS (least mean square) adaptive filter is the same as the FIR filter. However, when adapting the coefficient, there
may be cases where saturation occurs. In this case, make the settings so that H’8000 is not included in the coefficient.

(3) Work space
With digital filters, there is information that must be saved between one process and the next. This information is stored
in memory that can be accessed with the minimum of overhead. With this library, the Y-RAM area is used as the work
space. Before executing filter processing, call on the Init function and initialize the work space.
The work space memory is accessed by the library function. Do not access the work space directly from the user
program.

(4) Using memory
In order to use SH-DSP efficiently, allocate filter coefficients to X memory. Input and output data can be allocated to
arbitrary memory segments.
Allocate filter coefficients to X memory using the #pragma section instruction.
Each filter is allocated to the work space from the global buffer using the Init function. The global buffer is allocated to
Y memory.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 40 of 117

(5) Explanation of each function
(a) FIR
Description:

• Format:
int Fir (short output[], const short input[], long no_samples,
 const short coeff[], long no_coeffs, int res_shift,
 short *workspace)

• Parameters:
 output[] Output data y
 input[] Input data x
 no_samples Number of input data elements N
 coeff[] Filter coefficient h
 no_coeffs Number of coefficients (filter length) K
 res_shift Right shift applied to each output.
 workspace Pointer to the work space

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_samples < 1
 •no_coeffs ≤ 2
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:
Performs finite impulse-response (FIR) filter processing

• Remarks:
The latest input data is saved in the work space. The results of filter processing of input are written to output.

() () () shift_res
1K

0k
2knx khny −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ −= ∑

The results of multiply-and-accumulate operations are saved as 39 bits. Output y(n) is the lower 16 bits fetched from
the res_shift bit right shifted results. When an overflow occurs, this is the positive or negative maximum value.
For details on coefficient scaling, refer to “(2) Coefficient scaling”.
Before calling on this function, call on InitFir, and initialize the work space of the filter.
If the same array is specified for output as for input, input will be overwritten.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 41 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define NFN 8 /* number of functions */

#define FIL_COUNT 32 /* number of data objects */

#define N 32

#pragma section X

static short coeff_x[FIL_COUNT];

#pragma section

short data[FIL_COUNT] = {

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,};

short coeff[8] = {

 0x0c60, 0x0c40, 0x0c20, 0x0c00, 0xf600, 0xf400, 0xf200, 0xf000,};

void main()

{

 short *work, i;

 short output[N];

 int nsamp, ncoeff, rshift;

 /* copy coeffs into X RAM */

 for(i=0;i<NFN;i++) {

 coeff_x[i] = coeff[i];/* Sets coefficient */

 }

 for (i = 0; i < N; output[i++] = 0) ;

 ncoeff = NFN;/* Sets the number of coefficients */

 nsamp = FIL_COUNT;/* set number of samples */

 rshift = 12;

 if (InitFir(&work, ncoeff) != EDSP_OK){

 printf("Init Problem¥n");

 }

 if(Fir(output, data, nsamp, coeff_x, ncoeff, rshift, work) != EDSP_OK){

 printf("Fir Problem¥n");

 }

 if (FreeFir(&work, ncoeff) != EDSP_OK){

 printf("Free Problem¥n");

 }

 for(i=0;i<nsamp;i++){

 printf("#%2d output:%6d ¥n",i,output[i]);

 }

}

Set the filter coefficients in X memory. Since Y
memory is used by the library as the work area to
calculate filter coefficients, Y memory should not
be used.

Set filter coefficients in X
memory as variables.

Filter initialization:
(1) Work area address
(2) Number of coefficients
This is necessary before Fir
function execution. The work area
in Y memory uses (number of
coefficients)*2+8 bytes.

The FreeFir function frees the work
area used for Fir calculations; The
FreeFir function must always be
performed after Fir execution. If this
function is not executed, memory
resources are wasted.

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 42 of 117

(b) FIR for single data elements
Description:

• Format:
int Fir1 (short *output, short input, const short coeff[],
 long no_coeffs, int res_shift, short *workspace)

• Parameters:
 output Pointer to output data y(n)
 input Input data x(n)
 coeff[] Filter coefficient h
 no_coeffs Number of coefficients (filter length) K
 res_shift Right shift applied to each output.
 workspace Pointer to the work space

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_coeffs ≤ 2
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:
Performs finite impulse-response (FIR) filter processing for single data elements.

• Remarks:
The latest input data is saved in the work space. The results of filter processing of input are written to *output.

() () () shift_res
1K

0k
2knx khny −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ −= ∑

The results of multiply-and-accumulate operations are saved as 39 bits. Output y(n) is the lower 16 bits fetched from
the res_shift bit right shifted results. When an overflow occurs, this is the positive or negative maximum value.
For details on coefficient scaling, refer to “(2) Coefficient scaling”.
Before calling on this function, call on InitFir, and initialize the work space of the filter.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 43 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define NFN 8 /* number of functions */

#define MAXSH 25

#define N 32

#pragma section X

static short coeff_x[NFN];

#pragma section

short data[32] = {

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400};

short coeff[8] = {

 0x0c60, 0x0c40, 0x0c20, 0x0c00, 0xf600, 0xf400, 0xf200, 0xf000};

void main()

{

 short *work, i;

 short output[N];

 int ncoeff, rshift;

 /* copy coeffs into X RAM */

 for(i=0;i<NFN;i++) {

 coeff_x[i] = coeff[i];/* Sets coefficient */

 }

 for (i = 0; i < N; output[i++] = 0) ;

 rshift = 12;

 ncoeff = NFN;/* Sets the number of coefficients */

 if (InitFir(&work, NFN) != EDSP_OK){

 printf("Init Problem¥n");

 }

 for(i=0;i<N;i++) {

 if(Fir1(&output[i], data[i], coeff_x, ncoeff, rshift, work) !=

 EDSP_OK){

 printf("Fir1 Problem¥n");

 }

 printf(" output[%d]=%d ¥n",i,output[i]);

 }

 if (FreeFir(&work, NFN) != EDSP_OK){

 printf("Free Problem¥n");

 }

}

Set the filter coefficients in X memory.
Since Y memory is used by the library as
the work area to calculate filter
coefficients, Y memory should not be
used.

Set filter coefficients in X memory
as variables.

Filter initialization:
(1) Work area address
(2) Number of coefficients
This is necessary before Fir1
function execution. The work
area in Y memory uses (number
of coefficients)*2+8 bytes.

Fir1 means that the number of data
elements that are set to the Fir function is 1.
When executing Fir1 multiple times, the Init
Fir and FreeFir functions must be executed
before and after the for statement
respectively.

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 44 of 117

(c) IIR
Description:

• Format:
int Iir (short output[], const short input[], long no_samples,
 const short coeff[], long no_sections, short *workspace)

• Parameters:
 output[] Output data yK-1
 input[] Input data x0
 no_samples Number of input data elements N
 coeff[] Filter coefficient
 no_sections Number of secondary filter sections K
 workspace Pointer to the work space

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_samples < 1
 •no_sections < 1
 •a0k < 0
 •a0k > 16

• Explanation of this function:
Performs infinite impulse-response (IIR) filter processing.

• Remarks:
This filter is configured whereby a secondary filter, or biquad, is linked to the K number tandem. Additional scaling is
performed with the output of each biquad. The filter coefficient is specified with a signed 16-bit fixed point number
The output of each biquad is subject to the following equation.
dk(n)=[a1kdk(n-1)+a2kdk(n-2)+215x(n)] ⋅ 2-15
yk(n)=[b0kdk(n)+b1kdk(n-1)+b2kdk(n-2)] ⋅ 2-a0k
The input xk (n) for k is the output yk-1 (n) of the previous section. The input of the first section (k=0) is read from input.
The output of the last section (k=K-1) is written to output.
Set coeff in the following order of coefficients.
a00, a10, a20, b00, b10, b20, a01, a11, a21, b01 ... b2K-1
The a0k item is the number of bits for right shift to be performed on the output of the biquad for k.
Each biquad performs a 32-bit multiply-and-accumulate operation. The output of each biquad is the lower 16 bits
fetched from the 15-bit or a0k right shifted results. When an overflow occurs, this is the positive or negative maximum
value.
Before calling on this function, call on InitIir, and initialize the work space of the filter.
If the same array is specified for output as for input, input will be overwritten.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 45 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define K 4

#define NUMCOEF (6*K)

#define N 50

#pragma section X

static short coeff_x[NUMCOEF];

#pragma section

static short coeff[24] = {15, 19144, -7581, 5301, 10602, 5301,

 15, -1724,-23247, 13627, 27254, 13627,

 15, 19144, -7581, 5301, 10602, 5301,

 15, -1724,-23247, 13627, 27254, 13627};

static short input[50] = {32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000 };

void main()

{

 short *work, i;

 short output[N];

 for(i=0;i<NUMCOEF;i++) {

 coeff_x[i] = coeff[i];

 }

 if (InitIir(&work, K) != EDSP_OK){

 printf("Init Problem¥n");

 }

 if (Iir(output, input, N, coeff_x, K, work) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 if (FreeIir(&work, K) != EDSP_OK){

 printf("Free Problem¥n");

 }

 for(i=0;i<N;i++){

 printf("#%2d output:%6d ¥n",i,output[i]);

 }

}

Set the filter coefficients in X memory. Since
Y memory is used by the library as the work
area to calculate filter coefficients, Y memory
should not be used.

Six filter coefficients should be
set in one section. The leading
element in a section is the
number of right-shifts, and is not
a filter coefficient.

Filter initialization:
(1) Work area address
(2) Number of filter sections
This is necessary before Iir function
execution. The work area in Y memory
uses ((number of filter sections)*2*2)
bytes.

The FreeIir function frees the work area used for Iir
calculations; The FreeIir function must always be performed
after Iir execution. If this function is not executed, memory
resources are wasted.

Include header

Set filter coefficients in X
memory as variables.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 46 of 117

(d) IIR for single data elements
Description:

• Format:
int Iir1 (short *output, short input, const short coeff[],
 long no_sections, short *workspace)

• Parameters:
 output Pointer to output data yK-1(n)
 input Input data x0 (n)
 coeff[] Filter coefficient
 no_sections Number of secondary filter sections K
 workspace Pointer to the work space

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_sections < 1
 •aok < 0
 •aok > 16

• Explanation of this function:
Performs infinite impulse-response (IIR) filter processing for single data elements.

• Remarks:
This filter is configured whereby a secondary filter, or biquad, is linked to the K number tandem. Additional scaling is
performed with the output of each biquad. The filter coefficient is specified with a signed 16-bit fixed point number.
The output of each biquad is subject to the following equation.
dk(n)=[a1kdk(n-1)+a2kdk(n-2)+215x(n)] ⋅ 2-15
yk(n)=[b0kdk(n)+b1kdk(n-1)+b2kdk(n-2)] ⋅ 2-a0k
The input xk (n) for k is the output yk-1 (n) of the previous section. The input of the first section (k=0) is read from input.
The output of the last section (k=K-1) is written to output.
Set coeff in the following order of coefficients.
a00, a10, a20, b00, b10, b20, a01, a11, a21, b01 ... b2K-1
The a0k item is the number of bits for right shift to be performed on the output of the biquad for k.
Each biquad performs a 32-bit saturation operation. The output of each biquad is the lower 16 bits fetched from the
15-bit or a0k right shifted results. When an overflow occurs, this is the positive or negative maximum value.
Before calling on this function, call on InitIir, and initialize the work space of the filter.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 47 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define K 4

#define NUMCOEF (6*K)

#define N 50

#pragma section X

static short coeff_x[NUMCOEF];

#pragma section

static short coeff[24] = {15, 19144, -7581, 5301, 10602, 5301,

 15, -1724,-23247, 13627, 27254, 13627,

 15, 19144, -7581, 5301, 10602, 5301,

 15, -1724,-23247, 13627, 27254, 13627};

static short input[50] = {32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000 };

short keisu[5]={ 1,2,20,4,5 };

void main()

{

 short *work, i;

 short output[N];

 for(i=0;i<NUMCOEF;i++) {

 coeff_x[i] = coeff[i];

 }

 if (InitIir(&work, K) != EDSP_OK){

 printf("Init Problem¥n");

 }

 for(i=0;i<N;i++){

 if (Iir1(&output[i], input[i], coeff_x, K, work) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 printf("output[%d]:%d ¥n" ,i,output[i]);

 }

 if (FreeIir(&work, K) != EDSP_OK){

 printf("Free Problem¥n");

 }

}

Set the filter coefficients in X memory. Since Y
memory is used by the library as the work area
to calculate filter coefficients, Y memory should
not be used.

Six filter coefficients should be set
in one section. The leading
element in a section is the
number of right-shifts, and is not a
filter coefficient.

Set filter coefficients in X
memory as variables.

Filter initialization:
(1) Work area address
(2) Number of filter sections
This is necessary before Iir1 function execution. The
work area in Y memory uses (number of filter
sections)*2*2 bytes.

Iir1 means that the number of data
elements that are set to the Iir
function is 1. When executing Iir1
multiple times, the Init Iir and FreeIir
functions must be executed before
and after the for statement.

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 48 of 117

(e) Double precision IIR
Description:

• Format:
int DIir (short output[], const short input[], long no_samples,
 const long coeff[], long no_sections, long *workspace)

• Parameters:
 output[] Output data yK-1
 input[] Input data x
 no_samples Number of input data elements N
 coeff[] Filter coefficient
 no_sections Number of secondary filter sections K
 workspace Pointer to the work space

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_samples < 1
 •no_sections < 1
 •a0k < 3
 •k < K-1 and a0k > 32
 •k = K-1 and a0k > 48

• Explanation of this function:
Performs double-precision infinite impulse-response filter processing

• Remarks:
This filter is configured whereby a secondary filter, or biquad, is linked to the K number tandem. Additional scaling is
performed with the output of each biquad. The filter coefficient is specified with a signed 32-bit fixed point number.
The output of each biquad is subject to the following equation.
dk(n)=[a1kdk(n-1)+a2kdk(n-2)+229x(n)] ⋅ 2-31
yk(n)=[b0kdk(n)+b1kdk(n-1)+b2kdk(n-2)] ⋅ 2-a0k ⋅ 22
The input xk (n) for k is the output yk-1 (n) of the previous section. The input of the first section (k=0) is read from the
16-bit left shifted value of input. The output of the last section (k=K-1) is written to output.
Set coeff in the following order of coefficients.
a00, a10, a20, b00, b10, b20, a01, a11, a21, b01 ... b2K-1
The a0k item is number of bits for right shift to be performed on the output of the biquad for k.
DIir differs from Iir in that the filter coefficient is specified with a 32-bit value rather than a 16-bit value. The results of
multiply-and-accumulate operations are saved as 64 bits. The output of intermediate stages is the lower 32 bits fetched
from the a0k bit right shifted results. When an overflow occurs, this is the positive or negative maximum value. At the
last stage, the lower 16 bits are fetched from the a0k-1 bit right shifted results. When an overflow occurs, this is the
positive or negative maximum value.
Before calling on this function, call on InitDIir, and initialize the work space of the filter.
The delayed node dk (n) is rounded off to 30 bits, and when an overflow occurs, this is the positive or negative
maximum value.
When using DIir, specify the coefficient with a signed 32-bit fixed point number. In this case, when a0k is k < K-1 set it
as 31, and when k=K-1 set it as 47.
As the speed of execution of Iir is faster than that of DIir, if double precision calculation is required, use Iir.
If the same array is specified for output as for input, input will be overwritten.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 49 of 117

Example of use:

#include <stdio.h>
#include <filt_ws.h>
#include <ensigdsp.h>
#define K 5
#define NUMCOEF (6*K)
#define N 50
#pragma section X
static long coeff_x[NUMCOEF];
#pragma section
static long coeff[60] =
 {31,1254686956, -496866304, 347415747, 694831502, 347415746,
 31,-113001278,-1523568505, 893094203,1786188388, 893094206,
 31,1254686956, -496866304, 347415747, 694831502, 347415746,
 31,-113001278,-1523568505, 893094203,1786188388, 893094206,
 47,1254686956, -496866304, 347415747, 694831502, 347415746};

static short input[100] = {
 32000, 32000, 32000, 32000, 32000,
 32000, 32000, 32000, 32000, 32000,
 32000, 32000, 32000, 32000, 32000,
 32000, 32000, 32000, 32000, 32000,
 32000, 32000, 32000, 32000, 32000,
 32000, 32000, 32000, 32000, 32000,
 32000, 32000, 32000, 32000, 32000,
 32000, 32000, 32000, 32000, 32000,
 32000, 32000, 32000, 32000, 32000,
 32000, 32000, 32000, 32000, 32000 };

void main()
{
 short i;
 short output[N];
 long *work;
 long nsamp;

 for(i=0;i<NUMCOEF;i++)
 coeff_x[i] = coeff[i];
 if(InitDIir(&work,K) != EDSP_OK){
 printf("InitDIir Problem¥n");
 }
 if(DIir(output, input, N, coeff_x, K, work) != EDSP_OK){
 printf("DIir Problem¥n");
 }
 if(FreeDIir(&work, K) != EDSP_OK){
 printf("FreeDIir Problem¥n");
 }
 for(i=0;i<N;i++){
 printf("output[%d]=%d¥n",i,output[i]);
 }
}

Set the filter coefficients in X
memory.

Since Y memory is used by the
library as the work area to calculate
filter coefficients, Y memory should
not be used.

Six filter coefficients
should be set in one
section. The leading
element in a section is the
number of right-shifts, and
is not a filter coefficient.

The number of right-shifts is 31
except for the last section; the
last section is 47.

The FreeDIir function frees the work
area used for DIir calculations; The
FreeDIir function must always be
performed after DIir execution. If this
function is not executed, memory
resources are wasted.

Include header

Filter initialization:
(1) Work area address
(2) Number of filter sections
This is necessary before DIir function
execution. The work area in Y memory uses
(number of filter sections)*4*2 bytes.

Set filter coefficients in X
memory as variables.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 50 of 117

(f) Double precision IIR for single data elements
Description:
• Format:

int DIir1 (short output[], const short input[], long no_samples,
 const long coeff[], long no_sections,
 long *workspace)

• Parameters:
 output Pointer to output data yK-1(n)
 input Input data x0 (n)
 coeff[] Filter coefficient
 no_sections Number of secondary filter sections K
 workspace Pointer to the work space

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_sections < 1
 •a0k < 3
 •k < K-1 and a0k > 32
 •k = K-1 and a0k > 48

• Explanation of this function:
Performs double precision infinite impulse-response filter processing for single data elements.

• Remarks:
This filter is configured whereby a secondary filter, or biquad, is linked to the K number tandem. Additional scaling is
performed with the output of each biquad. The filter coefficient is specified with a signed 32-bit fixed point number.
The output of each biquad is subject to the following equation.
dk(n)=[a1kdk(n-1)+a2kdk(n-2)+229x(n)] ⋅ 2-31
yk(n)=[b0kdk(n)+b1kdk(n-1)+b2kdk(n-2)] ⋅ 2-a0k ⋅ 22
The input xk (n) for k is the output yk-1 (n) of the previous section. The input of the first section (k=0) is read from the
16-bit left shifted value of input. The output of the last section (k=K-1) is written to output.
Set coeff in the following order of coefficients.
a00, a10, a20, b00, b10, b20, a01, a11, a21, b01 ... b2K-1
The a0k item is number of bits for right shift to be performed on the output of the biquad for k.
DIir1 differs from Iir1 in that the filter coefficient is specified with a 32-bit value rather than a 16-bit value. The results
of multiply-and-accumulate operations are saved as 64 bits. The output of intermediate stages is the lower 32 bits
fetched from the a0k bit right shifted results. When an overflow occurs, this is the positive or negative maximum value.
At the last stage, the lower 16 bits are fetched from the a0k-1 bit right shifted results. When an overflow occurs, this is
the positive or negative maximum value.
Before calling on this function, call on InitDIir, and initialize the work space of the filter.
The delayed node dk (n) is rounded off to 30 bits, and when an overflow occurs, this is the positive or negative
maximum value.
When using DIir1, specify the coefficient with a signed 32-bit fixed point number. In this case, when a0k is k < K-1 set
it as 31, and when k=K-1 set it as 47.
As the speed of execution of Iir1 is faster than that of DIir1, if double precision calculation is required, use Iir1.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 51 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define K 5

#define NUMCOEF (6*K)

#define N 50

#pragma section X

static long coeff_x[NUMCOEF];

#pragma section

static long coeff[60] =

 {31,1254686956, -496866304, 347415747, 694831502, 347415746,

 31,-113001278,-1523568505, 893094203,1786188388, 893094206,

 31,1254686956, -496866304, 347415747, 694831502, 347415746,

 31,-113001278,-1523568505, 893094203,1786188388, 893094206,

 47,1254686956, -496866304, 347415747, 694831502, 347415746};

static short input[N] = {32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000 };

void main()

{

 short i;

 short output[N];

 long *work;

 for(i=0;i<NUMCOEF;i++)

 coeff_x[i] = coeff[i];

 if(InitDIir(&work, K) != EDSP_OK){

 printf("Init Problem¥n");

 }

 for(i=0;i<N;i++){

 if(DIir1(&output[i], input[i], coeff_x, K, work) !=EDSP_OK){

 printf("DIir1 error¥n");

 }

 printf("output[%d]:%d ¥n" ,i,output[i]);

 }

 if(FreeDIir(&work, K) != EDSP_OK){

 printf("Free DIir error¥n");

 }

}

Set the filter coefficients in X memory.
Since Y memory is used by the library as
the work area to calculate filter
coefficients, Y memory should not be
used.

Six filter coefficients should be set in one
section. The leading element in a section is
the number of right-shifts, and is not a filter
coefficient.

The number of right-shifts is 31
except for the last section; the
last section is 47.

Set filter coefficients in X memory
as variables.

Filter initialization:
(1) Work area address
(2) Number of filter sections
This is necessary before DIir1 function
execution. The work area in Y memory
uses (number of filter sections)*4*2

DIir1 means that the number of data
elements that are set to the DIir function is
1. When executing DIir1 multiple times, the
InitDIir and FreeDIir functions must be
executed before and after the for
statement respectively.

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 52 of 117

(g) Adaptive FIR
Description:

• Format:
int Lms (short output[], const short input[],
 const short ref_output[], long no_samples,
 short coeff[], long no_coeffs, int res_shift,
 short conv_fact, short *workspace)

• Parameters:
 output[] Output data y
 input[] Input data x
 ref_output[] Desired output value d
 no_samples Number of input data elements N
 coeff[] Adaptive filter coefficient h
 no_coeffs Number of coefficients K
 res_shift Right shift applied to each output
 conv_fact Convergence coefficient 2μ
 workspace Pointer to the work space

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_samples < 1
 •no_coeffs ≤ 2
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:
Using a least mean square (LMS) algorithm, executes real number adaptive FIR filter processing.

• Remarks:
FIR filters are defined using the following equations.

() () () shift_res
1K

0k
n 2knx khny −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ −= ∑

The results of multiply-and-accumulate operations are saved as 39 bits. Output y(n) is the lower 16 bits fetched from
the res_shift bit right shifted results. When an overflow occurs, this is the positive or negative maximum value.
Update of filter coefficients is performed using the Widrow-Hoff algorithm.
hn+1(k)=hn(k)+2μe(n)x(n-k)
Here, e(n) is the margin of error between the desired signal and the actual output.
e(n)=d(n)-y(n)
With the 2μe(n)x(n-k) calculation, multiplication of 16 bits x 16 bits is performed 2 times. The upper 16 bits of both
multiplication results are saved, and when an overflow occurs, this is the positive or negative maximum value. If the
value of the updated coefficient is H’8000, there is a possibility that overflow may occur with the
multiply-and-accumulate operation. Set the value of the coefficient to be in the range of H'8001 to H'7FFF.
For details on coefficient scaling, refer to “(2) Coefficient scaling”. As the coefficient is adapted using an LMS filter,
the safest scaling method is to set less than 256 coefficients and to set res_shift to 24.
conv_fact should normally be set to positive. Do not set it to H’8000.
Before calling on this function, call on InitLms, and initialize the filter.
If the same array is specified for output as for input or for ref_output, input or ref_output will be overwritten.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 53 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define K 8

#define N 40

#define TWOMU 32767

#define RSHIFT 15

#define MAXSH 25

#pragma section X

static short coeff_x[K];

#pragma section

short data[N] = {

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400};

short coeff[K] = {

 0x0c60, 0x0c40, 0x0c20, 0x0c00, 0xf600, 0xf400, 0xf200, 0xf000};

static short ref[N] = { -107, -143, 998, 1112, -5956,

 -10781, 239, 13655, 11202, 2180,

 -687, -2883, -7315, -6527, 196,

 4278, 3712, 3367, 4101, 2703,

 591, 695, -1061, -5626, -4200,

 3585, 9285, 11796, 13416, 12994,

 10231, 5803, -449, -6782, -11131,

 -10376, -2968, 2588, -1241, -6133};

void main()

{

 short *work, i, errc;

 short output[N];

 short twomu;

 int nsamp, ncoeff, rshift;

 /* copy coeffs into X RAM */

 for (i = 0; i < K; i++){

 coeff_x[i] = coeff[i];

 }

 nsamp = 10;

 ncoeff = K;

 rshift = RSHIFT;

 twomu = TWOMU;

 for (i = 0; i < N; output[i++] = 0) ;

 ncoeff = K;/* Sets the number of coefficients */

 nsamp = N;/* Sets the number of samples */

Set the filter coefficients in X memory. Since Y
memory is used by the library as the work area to
calculate filter coefficients, Y memory should not be
used.

Include header

Set filter coefficients in X memory as
variables.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 54 of 117

for (i = 0; i < K; i++){

 coeff_x[i] = coeff[i];

 }

 if (InitLms(&work, K) != EDSP_OK){

 printf("Init Problem¥n");

 }

 if(Lms(output, data, ref, nsamp, coeff_x, ncoeff, RSHIFT,TWOMU, work) !=

 EDSP_OK){

 printf("Lms Problem¥n");

 }

 if (FreeLms(&work, K) != EDSP_OK){

 printf("Free Problem¥n");

 }

 for (i = 0; i < N; i++){

 printf("#%2d output:%6d ¥n",i,output[i]);

 }

}

Filter initialization:
(1) Work area address
(2) Number of coefficients
This is necessary before LMS
function execution. The work area in
Y memory uses (number of
coefficients)*2+8 bytes.

The FreeLms function frees the work area
used for Lms calculations; the FreeLms
function must always be executed after Lms
execution. If this function is not executed,
memory resources are wasted.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 55 of 117

(h) Adaptive FIR for single data elements
Description:

• Format:
int Lms1 (short *output, short input, short ref_output,
 short coeff[], long no_coeffs, int res_shift,
 short conv_fact, short *workspace)

• Parameters:
 output Pointer to output data y(n)
 input Input data x (n)
 ref_output Desired output value d(n)
 coeff[] Adaptive filter coefficient h
 no_coeffs Number of coefficients K
 res_shift Right shift applied to each output.
 conv_fact Convergence coefficient 2μ
 workspace Pointer to the work space

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_coeffs ≤ 2
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:
Using a least mean square (LMS) algorithm, executes real number adaptive FIR filter processing for single data
elements.

• Remarks:
FIR filters are defined using the following equation.

() () () shift_res
1K

0k
n 2knxkhny −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ −= ∑

The results of multiply-and-accumulate operations are saved as 39 bits. Output y(n) is the lower 16 bits fetched from
the res_shift bit right shifted results. When an overflow occurs, this is the positive or negative maximum value.
Update of filter coefficients is performed using the Widrow-Hoff algorithm.
hn+1(k)=hn(k)+2μe(n)x(n-k)
Here, e(n) is the margin of error between the desired signal and the actual output.
e(n)=d(n)-y(n)
With the 2μe(n)x(n-k) calculation, multiplication of 16 bits x 16 bits is performed 2 times. The upper 16 bits of both
multiplication results are saved, and when an overflow occurs, this is the positive or negative maximum value. If the
value of the updated coefficient is H’8000, there is a possibility that overflow may occur with the
multiply-and-accumulate operation. Set the value of the coefficient to be in the range of H'8001 to H'7FFF.
For details on coefficient scaling, refer to “(2) Coefficient scaling”. As the coefficient is adapted using an LMS filter,
the safest scaling method is to set less than 256 coefficients and to set res_shift to 24.
conv_fact should normally be set to positive. Do not set it to H’8000.
Before calling on this function, call on InitLms, and initialize the filter.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 56 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define K 8

#define N 40

#define TWOMU 32767

#define RSHIFT 15

#define MAXSH 25

#pragma section X

static short coeff_x[K];

#pragma section

short data[N] = {

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400};

short coeff[K] = {

 0x0c60, 0x0c40, 0x0c20, 0x0c00, 0xf600, 0xf400, 0xf200, 0xf000};

static short ref[N] = { -107, -143, 998, 1112, -5956,

 -10781, 239, 13655, 11202, 2180,

 -687, -2883, -7315, -6527, 196,

 4278, 3712, 3367, 4101, 2703,

 591, 695, -1061, -5626, -4200,

 3585, 9285, 11796, 13416, 12994,

 10231, 5803, -449, -6782, -11131,

 -10376, -2968, 2588, -1241, -6133};

void main()

{

 short *work, i, errc;

 short output[N];

 short twomu;

 int nsamp, ncoeff, rshift;

 /* copy coeffs into X RAM */

 for (i = 0; i < K; i++){

 coeff_x[i] = coeff[i];

 }

 nsamp = 10;

 ncoeff = K;

 rshift = RSHIFT;

 twomu = TWOMU;

 for (i = 0; i < N; output[i++] = 0) ;

 ncoeff = K;/* Sets the number of coefficients */

 nsamp = N;/* Sets the number of samples */

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Include header

Set filter coefficients in X memory
as variables.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 57 of 117

 for (i = 0; i < K; i++){

 coeff_x[i] = coeff[i];

 }

 if (InitLms(&work, K) != EDSP_OK){

 printf("Init Problem¥n");

 }

 for(i=0;i<nsamp;i++){

 if(Lms1(&output[i], data[i], ref[i], coeff_x,

 ncoeff, RSHIFT, TWOMU, work) != EDSP_OK){

 printf("Lms1 Problem¥n");

 }

 }

 if (FreeLms(&work, K) != EDSP_OK){

 printf("Free Problem¥n");

 }

 for (i = 0; i < N; i++){

 printf("#%2d output:%6d ¥n",i,output[i]);

 }

}

Filter initialization:
(1) Work area address
(2) Number of coefficients
This is necessary before LMS1 function
execution. The work area in Y memory uses
(number of coefficients)*2+8 bytes.

The FreeLms function frees the
work area used for Lms
calculations; The FreeLms
function must always be
performed after Lms execution. If
this function is not executed,
memory resources are wasted.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 58 of 117

(i) FIR work space allocation

Description:

• Format:
int InitFir (short **workspace, long no_coeffs)

• Parameters:
 workspace Pointer to the work space
 no_coeffs Number of coefficients K

• Returned value:
 EDSP_OK Successful
 EDSP_NO_HEAP The memory space that can be used by the work space is insufficient
 EDSP_BAD_ARG no_coeffs ≤ 2

• Explanation of this function:
Allocates the work space to be used by Fir and Fir1.

• Remarks:
Initializes all previously input data to 0.
Only Fir, Fir1, Lms or Lms 1 can operate the work space allocated with InitFir. Do not access the work space directly
from the user program.
This function is not reentrant.

(j) IIR work space allocation
Description:

int InitIir (short **workspace, long no_sections)

• Parameters:
 workspace Pointer to the work space
 no_sections Number of secondary filter sections K

• Returned value:
 EDSP_OK Successful
 EDSP_NO_HEAP The memory space that can be used by the work space is insufficient
 EDSP_BAD_ARG no_sections < 1

• Explanation of this function:
Allocates the work space to be used by Iir and Iir1.

• Remarks:
Initializes all previously input data to 0.
Only Iir and Iir1 can operate the work space allocated with InitIir. Do not access the work space directly from the user
program.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 59 of 117

(k) Double precision IIR work space allocation
Description:

• Format:
int InitDIir (long **workspace, long no_sections)

• Parameters:
 workspace Pointer to the work space
 no_sections Number of secondary filter sections K

• Returned value:
 EDSP_OK Successful
 EDSP_NO_HEAP The memory space that can be used by the work space is insufficient
 EDSP_BAD_ARG no_sections < 1

• Explanation of this function:
Allocates the work space to be used by DIir and DIir1.

• Remarks:
Initializes all previously input data to 0.
Only DIir and DIir1 can operate the work space allocated with InitDIir.
This function is not reentrant.

(l) Adaptive FIR work space allocation
Description:

• Format:
int InitLms (short **workspace, long no_coeffs)

• Parameters:
 workspace Pointer to the work space
 no_coeffs Number of coefficients K

• Returned value:
 EDSP_OK Successful
 EDSP_NO_HEAP The memory space that can be used by the work space is insufficient
 EDSP_BAD_ARG no_coeffs ≤ 2

• Explanation of this function:
Allocates the work space to be used by Lms and Lms1.

• Remarks:
Initializes all previously input data to 0.
Only Fir, Fir1, Lms or Lms 1 can operate the work space allocated with InitLms. Do not access the work space directly
from the user program.
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 60 of 117

(m) FIR work space release
Description:

• Format:
int FreeFir (short **workspace, long no_coeffs)

• Parameters:
 workspace Pointer to the work space
 no_coeffs Number of coefficients K

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG no_coeffs ≤ 2

• Explanation of this function:
Releases the work space allocated by InitFir

• Remarks:
This function is not reentrant.

(n) IIR work space release
Description:

• Format:
int FreeIir (short **workspace, long no_sections)

• Parameters:
 workspace Pointer to the work space
 no_sections Number of secondary filter sections K

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG no_sections < 1

• Explanation of this function:
Releases the work space allocated by InitIir

• Remarks:
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 61 of 117

(o) Double precision IIR work space release
Description:

• Format:
int FreeDIir (long **workspace, long no_sections)

• Parameters:
 workspace Pointer to the work space
 no_sections Number of secondary filter sections K

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG no_section ≤ 2

• Explanation of this function:
Releases the work space memory allocated by InitDIir.

• Remarks:
This function is not reentrant.

(p) Adaptive FIR work space release
Description:

• Format:
int FreeLms (short **workspace, long no_coeffs)

• Parameters:
 workspace Pointer to the work space
 no_coeffs Number of coefficients K

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG no_coeffs < 1

• Explanation of this function:
Releases the work space memory allocated by InitLms

• Remarks:
This function is not reentrant.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 62 of 117

2.2.4 Convolution and Correlation
(1) List of functions

Table 2.6 List of DSP Library Functions (Convolution)

No. Type Function
Name

Description

1 Complete convolution ConvComple
te

Calculates complete convolution for two
arrays

2 Periodic convolution ConvCyclic Calculates periodic convolution for two
arrays

3 Partial convolution ConvPartial Calculates partial convolution for two
arrays

4 Correlation Correlate Calculates correlation for two arrays
5 Periodic correlation CorrCyclic Calculates periodic correlation for two

arrays

When using these functions, allocate one of the two input arrays to X memory, and the other to Y memory. The output
array can be allocated to either memory.

(2) Explanation of each function
(a) Complete convolution

Description:

• Format:
int ConvComplete (short output[], const short ip_x[], const short ip_y[], long
 x_size, long y_size, int res_shift)

• Parameters:
 output[] Output z
 ip_x[] Input x
 ip_y[] Input y
 x_size Size X of ip_x
 y_size Size Y of ip_y
 res_shift Right shift applied to each output.

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •x_size < 1
 •y_size < 1
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:
Complete convolves the two input arrays x and y, and writes the results to the output array z.

• Remarks:

 0 ≤ m <

X+Y-1

Data external to the input array is read as 0.
ip_x is allocated to X memory, ip_y is allocated to Y memory, and output is allocated to arbitrary memory.
In addition, it is necessary to ensure that the array output size is more than (xsize+ysize-1).

() () () shift_res
1X

0i
2imy ixmz −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ −= ∑

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 63 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define NX 8

#define NY 8

#define NOUT NX+NY-1

#pragma section X

static short datx[NX];

#pragma section Y

static short daty[NY];

#pragma section

short w1[5] = {-1, -32768, 32767, 2, -3, };

short x1[5] = {1, 32767, -32767, -32767, -2, };

void main()

{

 short i;

 short output[NOUT];

 int xsize, ysize, rshift;

 /* copy data into X and Y RAM */

 for(i=0;i<NX;i++){

 datx[i] = w1[i%5];

 }

 for(i=0;i<NY;i++){

 daty[i] = x1[i%5];

 }

 xsize = NX;

 ysize = NY;

 rshift = 15;

 if(ConvComplete(output, datx, daty, xsize, ysize, rshift) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 for(i=0;i<NX;i++){

 printf("#%3d dat_x:%6d dat_y:%6d ¥n",i,datx[i],daty[i]);

 }

 for(i=0;i<NOUT;i++){

 printf("#%3d output:%d ¥n",i,output[i]);

 }

}

Variables placed in X or Y memory
are defined by a pragma section
within the section.

Sets data for use in convolution
calculations.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 64 of 117

(b) Periodic convolution
Description:
• Format:

int ConvCyclic (short output[], const short ip_x[],
 const short ip_y[], long size,
 int res_shift)

• Parameters:
 output[] Output z
 ip_x[] Input x
 ip_y[] Input y
 size Size N of the array
 res_shift Right shift applied to each output.

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •size < 1
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:
Periodically convolves the two input arrays x and y, and writes the results to the output array z.

• Remarks:

 0 ≤ m < N

Here, |i|N means the remainder (i % N).
ip_x is allocated to X memory, ip_y is allocated to Y memory, and output is allocated to arbitrary memory.
In addition, it is necessary to ensure that the array output size is more than ‘size’.

() () () shift_res
1N

0i
N

2Nim y ixmz −
−

=
⋅⎥⎦

⎤
⎢⎣
⎡ +−= ∑

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 65 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

short x2[5] = {1, 32767, -32767, -32767, -2, };

short w2[5] = {-1, -32768, 32767, 2, -3, };

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short i;

 short output[N];

 int size, rshift;

 /* copy data into X and Y RAM */

 for(i=0;i<N;i++){

 datx[i] = w2[i];

 daty[i] = x2[i];

 }

 size = N ;

 rshift = 15;

 if(ConvCyclic(output, datx, daty, size, rshift) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 for(i=0;i<N;i++){

 printf("#%2d ip_x:%6d ip_y:%6d output:%6d ¥n",

 i,datx[i],daty[i], output[i]);

 }

}

Variables placed in X or Y memory are defined
by a pragma section within the section.

Sets data for use in convolution
calculations.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 66 of 117

(c) Partial convolution
Description:
• Format:

int ConvPartial (short output[], const short ip_x[],
 const short ip_y[], long x_size, long y_size, int res_shift)

• Parameters:
 output[] Output z
 ip_x[] Input x
 ip_y[] Input y
 x_size Size x of ip_x
 y_size Size y of ip_y
 res_shift Right shift applied to each output.

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •x_size < 1
 •y_size < 1
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:
This function convolves the two input arrays x and y, and writes the results to the output array z.

• Remarks:
Output fetched from data external to the input array is not included.

However, the number of arrays is a < b, and A is a size and B is b size.
Data external to the input array is read as 0.
ip_x is allocated to X memory, ip_y is allocated to Y memory, and output is allocated to arbitrary memory.
In addition, it is necessary to ensure that the array output size is more than (|xsize-ysize|+1).

() () () shift_res
1A

0i
2i1Amb iamz −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ −−+= ∑ 0 ≤ m ≤ |A-B|

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 67 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define NX 5

#define NY 5

short x3[5] = {1, 32767, -32767, -32767, -2, };

short w3[5] = {-1, -32768, 32767, 2, -3, };

#pragma section X

static short datx[NX];

#pragma section Y

static short daty[NY];

#pragma section

void main()

{

 short i;

 short output[NY+NX];

 int ysize, xsize, rshift;

 /* copy data into X and Y RAM */

 for(i=0;i<NX;i++){

 datx[i] = w3[i];

 }

 for(i=0;i<NY;i++){

 daty[i] = x3[i];

 }

 xsize = NX;

 ysize = NY;

 rshift = 15;

 if(ConvPartial(output, datx, daty, xsize, ysize, rshift) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 for(i=0;i<NX;i++){

 printf("ip_x=%d ¥n",datx[i]);

 }

 for(i=0;i<NY;i++){

 printf("ip_y=%d ¥n",daty[i]);

 }

 for(i=0;i<(NY+NX);i++){

 printf("output=%d ¥n",output[i]);

 }

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data for use in convolution
calculations.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 68 of 117

(d) Correlation
Description:

• Format:
int Correlate (short output[], const short ip_x[],
 const short ip_y[], long x_size, long y_size,
 long no_corr, int x_is_larger, int res_shift)

• Parameters:
 output[] Output z
 ip_x[] Input x
 ip_y[] Input y
 x_size Size x of ip_x
 y_size Size y of ip_y
 no_corr Number of correlations M for calculation
 x_is_larger Array specification when x=y
 res_shift Right shift applied to each output.

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •x_size < 1
 •y_size < 1
 •no_corr < 1
 •res_shift < 0
 •res_shift > 25
 •x_is_larger ≠ 0 or 1

• Explanation of this function:
Finds the correlation of the two input arrays x and y, and writes the results to the output array z.

• Remarks:
In the following equation, the number of arrays is a < b, and A is a size. If x_is_larger=0 make x to be a, and if
x_is_larger=1 make x to be b.
Operation is not guaranteed when the b array is smaller than the a array.
Set the sizes of the input arrays x and y, as well as x_is_larger, so that no conflict exists.

() () () shift_res
1A

0i
2mib iamz −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ += ∑

There is no obstacle to having A < X + M. In this case, use 0 for data external to the array.
res_shift=0 corresponds to normal integer calculation, and res_shift=15 corresponds to decimal calculation.
ip_x is allocated to X memory, ip_y is allocated to Y memory, and output is allocated to arbitrary memory.
In addition, it is necessary to ensure that the array output size is more than no_corr.

0 ≤ m < M

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 69 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define NY 5

#define NX 5

#define M 4

#define MAXM NX+NY

short x4[5] = {1, 32767, -32767, -32767, -2, };

short w4[5] = {-1, -32768, 32767, 2, -3, };

#pragma section X

static short datx[NX];

#pragma section Y

static short daty[NY];

#pragma section

void main()

{

 short i;

 int ysize, xsize, ncorr, rshift;

 short output[MAXM];

 int x_is_larger;

 /* copy data into X and Y RAM */

 for(i=0;i<NX;i++){

 datx[i] = w4[i%5];

 }

 for(i=0;i<NY;i++){

 daty[i] = x4[i%5];

 }

 /* test working of stack */

 ysize = NY;

 xsize = NX;

 ncorr = M;

 rshift = 15;

 x_is_larger=0;

 for (i = 0; i < MAXM; output[i++] = 0);

 if (Correlate(output, datx, daty, xsize, ysize, ncorr,

 x_is_larger,rshift) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 for(i=0;i<MAXM;i++){

 printf("[%d]:output=%d¥n",i,output[i]);

 }

}

Variables placed in X or Y memory are defined
by a pragma section within the section.

Sets data for use in calculations.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 70 of 117

(e) Periodic correlation
Description:
• Format:

int CorrCyclic (short output[], const short ip_x[],
const short ip_y[], long size, int reverse,
int res_shift)

• Parameters:
output[] Output z
ip_x[] Input x
ip_y[] Input y
size Size N of the array
reverse Reverse flag
res_shift Right shift applied to each output.

• Returned value:
EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •size < 1
 •res_shift < 0
 •res_shift > 25
 •reverse ≠ 0 or 1

• Explanation of this function:
Finds the correlation of the two input arrays x and y periodically, and writes the results to the output array z.

• Remarks:

() () () shift_res
1N

0i
N

2mi y ixmz −
−

=
⋅⎥⎦

⎤
⎢⎣
⎡ += ∑

Here, |i|N means the remainder (i % N). If reverse=1, the output data is reversed, and the actual calculation is as follows.

() () () shift_res
1N

0i
N

2mi x iymz −
−

=
⋅⎥⎦

⎤
⎢⎣
⎡ += ∑

ip_x is allocated to X memory, ip_y is allocated to Y memory, and output is allocated to arbitrary memory.
In addition, it is necessary to ensure that the array output size is more than ‘size’.

0 ≤ m < N

0 ≤ m < N

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 71 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

short x5[5] = {1, 32767, -32767, -32767, -2, };

short w5[5] = {-1, -32768, 32767, 2, -3, };

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short i;

 short output[N];

 int size, rshift;

 int reverse;

 int result;

 /* TEST CYCLIC CORRELATION OF X WITH Y */

 reverse=0;

 /* copy data into X and Y RAM */

 for(i=0;i<N;i++){

 datx[i] = w5[i];

 daty[i] = x5[i];

 }

 /* test working of stack */

 size = N;

 rshift = 15;

 if (CorrCyclic(output, datx, daty, size, reverse, rshift) != EDSP_OK){

 printf("EDSP_OK not returned - this one¥n");

 }

 for(i=0;i<N;i++){

 printf("output[%d]=%d¥n",i,output[i]);

 }

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data for use in calculations.

Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 72 of 117

2.2.5 Other
(1) List of functions

Table 2.7 DSP Library Function List (Miscellaneous)

No. Type Function
Name

Description

1 H’8000 → H’8001
replacement

Limit Replaces H'8000 data with H'8001

2 X memory → Y
memory copy

CopyXtoY Copies an array from X memory to Y
memory.

3 Y memory → X
memory copy

CopyYtoX Copies an array from Y memory to X
memory.

4 Copy to X memory CopyToX Copies an array from a specified location
to X memory.

5 Copy to Y memory CopyToY Copies an array from a specified location
to Y memory.

6 Copy from X memory CopyFromX Copies an array from X memory to a
specified location.

7 Copy from Y memory CopyFromY Copies an array from Y memory to a
specified location.

8 Gaussian white noise GenGWnois
e

Generates Gaussian white noise.

9 Matrix multiplication MatrixMult Multiplies two matrices.
10 Multiplication VectorMult Multiplies two data elements.
11 RMS value MsPower Determines RMS power.
12 Mean Mean Determines mean.
13 Mean and variance Variance Determines mean and variance.
14 Maximum value MaxI Determines maximum value of integer

array.
15 Minimum value MinI Determines minimum value of integer

array.
16 Maximum absolute

value
PeakI Determines maximum absolute value of

integer array.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 73 of 117

(2) Explanation of each function
(a) H’8000 → H’8001 replacement
Description:

• Format:
int Limit (short data[], long no_elements, int data_is_x)

• Parameters:
 data[] Data array
 no_elements Number of data elements
 data_is_x Data location specification

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •data_is_x ≠ 0 or 1

• Explanation of this function:
Replaces input data with a value of H'8000 with H'8001. In this way, when fixed point multiplication is performed with
the DSP instruction, overflow will not occur.

• Remarks:
Even when the process is performed there is a possibility that overflow may occur with addition in the
multiply-and-accumulate operation.
When data_is_x=1 allocate data to X memory, and when data_is_x=0 allocate data to Y memory.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 74 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

static short dat[N] = { -32768, 32767, -32768, 0};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short i;

 int size;

 int src_x; /* copy data into X and Y RAM */

 for(i=0;i<N;i++) {

 datx[i] = dat[i%4];

 daty[i] = dat[i%4];

 printf("BEFORE NO %d datx daty :%d:%d ¥n",i,datx[i], daty[i]);

 }

 size = N;

 src_x = 1;

 if (Limit(datx, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 src_x = 0;

 if (Limit(daty, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 for(i=0;i<N;i++) {

 printf("After NO %d datx daty :%d:%d¥n",i,datx[i], daty[i]);

 }

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data.

If using X memory

If using Y memory

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 75 of 117

(b) X memory → Y memory copy
Description:

• Format:
int CopyXtoY (short op_y[], const short ip_x[], long n)

• Parameters:
 op_y[] Output array
 ip_x[] Input array
 n Number of data elements

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG n < 1

• Explanation of this function:
The array is copied from ip_x to op_y.

• Remarks:
Allocate ip_x to X memory, and allocate op_y to Y memory.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 76 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

static short dat[N] = { -32768, 32767, -32768, 0};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 int i;

 for(i=0;i<N;i++){

 daty[i]=0;

 datx[i]=dat[i%4];

 }

 if(CopyXtoY(daty, datx, N) != EDSP_OK){

 printf("CopyXtoY Problem¥n");

 }

 printf("no_elements:%d ¥n",N);

 for(i=0;i<N;i++){

 printf("#%2d op_x:%6d ip_y:%6d ¥n",i,datx[i],daty[i]);

 }

}

Variables placed in X or Y memory are defined
by a pragma section within the section.

Sets data.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 77 of 117

(c) Y memory → X memory copy
Description:

• Format:
int CopyYtoX (short op_x[], const short ip_y[], long n)

• Parameters:
 op_x[] Output array
 ip_y[] Input array
 n Number of data elements

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG n < 1

• Explanation of this function:
The array is copied from ip_y to op_x.

• Remarks:
Allocate ip_y to Y memory, and allocate op_x to X memory.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

static short dat[N] = { -32768, 32767, -32768, 0,3};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 int i;

 for(i=0;i<N;i++){

 daty[i]=dat[i];

 }

 if(CopyYtoX(datx, daty, N)!= EDSP_OK){

 printf("CopyYtoX error!¥n");

 }

 printf("no_elements %d ¥n",N);

 for(i=0;i<N;i++){

 printf("#%2d po_x:%6d ip_y:%6d ¥n",i,datx[i],daty[i]);

 }

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 78 of 117

(d) Copy to X memory
Description:
• Format:

int CopyToX (short op_x[], const short input[], long n)

• Parameters:
 op_x[] Output array
 input[] Input array
 n Number of data elements

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG n < 1

• Explanation of this function:
The array input is copied to op_x.

• Remarks:
Allocate op_x to X memory, and allocate input to arbitrary memory.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

static short dat[N] = { -32768, 32767, -32768, 0};

#pragma section X

static short datx[N];

#pragma section

void main()

{

 int i;

 short data[N];

 for(i=0;i<N;i++){

 data[i]=dat[i];

 }

 if(CopyToX(datx, data, N) !=EDSP_OK){

 printf("CopyToX Problem¥n");

 }

 printf("no_elements %d¥n",N);

 for(i=0;i<N;i++){

 printf("#%2d op_x:%6d input:%6d ¥n",i,datx[i],data[i]);

 }

}

Variables placed in X memory are
defined by a pragma section within the
section.

Sets data.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 79 of 117

(e) Copy to Y memory
Description:

• Format:
int CopyToY (short op_y[], const short input[], long n)

• Parameters:
 op_y[] Output array
 input[] Input array
 n Number of data elements

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG n < 1

• Explanation of this function:
The array input is copied to op_y.

• Remarks:
Allocate op_y to Y memory, and allocate input to arbitrary memory.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

static short dat[N] = { -32768, 32767, -32768, 0};

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 int i;

 short data[N] ;

 for(i = 0; i < N; i++){

 data[i] = dat[i%4] ;

 }

 if(CopyToY(daty, data, N) != EDSP_OK){

 printf("CopyToY Problem¥n");

 }

 printf("no_elements %ld ¥n",N);

 for(i = 0; i < N; i++){

 printf("#%2d op_y:%6d input:%6d ¥n",i,daty[i],data[i]);

 }

}

Variables placed in Y memory are defined by
a pragma section within the section.

Sets data.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 80 of 117

(f) Copy from X memory
Description:

• Format:
int CopyFromX (short output[], const short ip_x[], long n)

• Parameters:
 output[] Output array
 ip_x[] Input array
 n Number of data elements

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG n < 1

• Explanation of this function:
The array ip_x is copied to output.

• Remarks:
Allocate ip_x to X memory, and allocate output to arbitrary memory.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

static short dat[N] = { -32768, 32767, -32768, 0};

static short out_dat[N] ;

#pragma section X

static short datx[N];

#pragma section

void main(){

 int i;

 for(i=0;i<N;i++){

 datx[i]=dat[i];

 }

 if(CopyFromX(out_dat,datx, N) != EDSP_OK){

 printf("CopyFromX Problem¥n");

 }

 for(i=0;i<N;i++){

 printf("#%3d output:%6d ip_x:%6d ¥n",i,out_dat[i],datx[i]);

 }

 printf("no_elements:%ld¥n",N);

}

Variables placed in X memory are
defined by a pragma section within the
section.

Sets data.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 81 of 117

(g) Copy from Y memory
Description:

• Format:
int CopyFromY (short output[], const short ip_y[], long n)

• Parameters:
 output[] Output array
 ip_y[] Input array
 n Number of data elements

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG n < 1

• Explanation of this function:
The array ip_y is copied to output.

• Remarks:
Allocate ip_y to Y memory, and allocate output to arbitrary memory.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

static short dat[N] = { -32768, 32767, -32768, 0};

static short out_dat[N] ;

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 int i;

 for(i=0;i<N;i++){

 daty[i]=dat[i];

 }

 if(CopyFromY(out_dat,daty, N)!= EDSP_OK){

 printf("CopyFormY Problem¥n");

 }

 printf("no_elements:%d ¥n",N);

 for(i=0;i<N;i++){

 printf("#%2d output:%6d ip_y:%6d ¥n",i,out_dat[i],daty[i]);

 }

}

Variables placed in Y memory are
defined by a pragma section within the
section.

Sets data.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 82 of 117

(h) Gaussian white noise
Description:

• Format:
int GenGWnoise (short output[], long no_samples, float variance)

• Parameters:
 output[] Outputs white noise data
 no_samples Number of output data elements
 Variance Variance of noise distribution σ2

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_samples < 1
 •variance ≤ 0.0

• Explanation of this function:
With a mean of 0, Gaussian white noise is generated with the variance specified by the user.

• Remarks:
One set of two output data elements are generated. In order to generate 1 set of output data, use a rand function, and
until a set of less than 1 is found by the sum of the square of x, 1 set of random numbers, γ1 and γ2, between –1 and 1 is
generated. Then 1 set of output data, ο1 and ο2, is calculated using the following equations.

() xxln211 −σγ=ο

() xxln222 −σγ=ο

If the number of data elements is set to an odd number, the second data element of the last set is nullified.
As the rand function of the standard library called on by this function is not reentrant, the order of the random
numbers γ1 and γ2 generated will not necessarily always be the same. However, there will be no impact on the
characteristics of the white noise ο1 and ο2 generated.
This function uses a floating point operation. As the processing speed of floating point operations is slow, it is
recommended that this function is used for evaluation.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define MAXG 4.5 /* approx. saturating level for N(0,1) random variable */

#define N_SAMP 10 /* number of samples generated in a frame */

void main()

{

 short out[N_SAMP];

 float var;

 int i;

 var = 32768 / MAXG * 32768 / MAXG;

 if(GenGWnoise(out, N_SAMP, var) !=EDSP_OK){

 printf("GenGWnoise Problem¥n");

 }

 for(i=0;i<N_SAMP;i++){

 printf("#%2d out:%6d ¥n",i,out[i]);

 }

}

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 83 of 117

(i) Matrix multiplication
Description:

• Format:
int MatrixMult (void *op_matrix, const void *ip_x,
 const void *ip_y, long m, long n, long p,
 int x_first, int res_shift)

• Parameters:
 op_matrix Pointer to the first data element of output
 ip_x Pointer to the first data element of input x
 ip_y Pointer to the first data element of input y
 m Number of rows in matrix 1
 n Number of columns in matrix 1, number of rows in matrix 2
 p Number of rows in matrix 2
 x_first Order specification for matrix multiplication
 res_shift Right shift applied to each output.

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •m, n, or p < 1
 •res_shift < 0
 •res_shift > 25
 •x_first ≠ 0 or 1

• Explanation of this function:
Performs multiplication of the two matrices x and y, and allocates the result to op_matrix.

• Remarks:
When x_first=1, calculates x ⋅ y In this case, ip_x is m x n, ip_y is n x p, and op_matrix is m x p.
When x_first=0, calculates y ⋅ x. In this case, ip_y is m x n, ip_x is n x p, and op_maxtrix is m x p.
The results of multiply-and-accumulate operations are saved as 39 bits. Output y(n) is the lower 16 bits fetched from
the res_shift bit right shifted results. When an overflow occurs, this is the positive or negative maximum value.
Each matrix is allocated to a normal C format (row major order).
 a0 a1 a2 a3
 a4 a5 a6 a7
 a8 a9 a10 a11
In order to be able to specify an arbitrary array size, specify void* for the array parameters. Make these parameters
point to short variables.
Provide input arrays ip_x and ip_y, and output array op_matrix separately.
Allocate ip_x to X memory, allocate ip_y to Y memory, and allocate op_matrix to arbitrary memory.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 84 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

#define NN N*N

short m1[16] = { 1, 32767, -32767, 32767,

 1, 32767, -32767, 32767,

 1, 32767, -32767, 32767,

 1, 32767, -32767, 32767, };

short m2[16] = { -1, 32767, -32767, -32767,

 -1, 32767, -32767, -32767,

 -1, 32767, -32767, -32767,

 -1, 32767, -32767, -32767, };

#pragma section X

static short datx[NN];

#pragma section Y

static short daty[NN];

#pragma section

void main()

{

 short i, j;

 short output[NN];

 int m, n, p, rshift, x_first;

 long sum;

 for (i = 0; i < NN; output[i++] = 0) ;

 /* copy data into X and Y RAM */

 for(i=0;i<NN;i++) {

 datx[i] = m1[i%16];

 daty[i] = m2[i%16];

 }

 m = n = p = N;

 rshift = 15;

 x_first = 1;

 if (MatrixMult(output, datx, daty, m, n, p, x_first, rshift) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 for(i=0;i<NN;i++) {

 printf("output[%d]=%d¥n",i,output[i]);

 }

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 85 of 117

(j) Multiplication
Description:

• Format:
int VectorMult (short output[], const short ip_x[],
 const short ip_y[],long no_elements, int res_shift)

• Parameters:
 output[] Output
 ip_x[] Input 1
 ip_y[] Input 2
 no_elements Number of data elements
 res_shift Right shift applied to each output.

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •res_shift < 0
 •res_shift > 16

• Explanation of this function:
Data is fetched one element at a time from ip_x and ip_y and multiplication is performed, with the results being
allocated to output.

• Remarks:
Output is the lower 16 bits fetched from the res_shift bit right shifted results.
When an overflow occurs, this is the positive or negative maximum value.
This function performs multiplication of the data. To calculate the inner product, use the MatrixMult function, setting 1
for m (the number of rows of matrix 1) and for p (the number of columns of matrix 2).
ip_x is allocated to X memory, ip_y is allocated to Y memory, and output is allocated to arbitrary memory.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 86 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

#define RSHIFT 15

short y[4] = {1, 32767, -32767, 32767, };

short x[4] = {-1, 32767, -32767, -32767, };

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short i, n ;

 short output[N];

 int size, rshift;

 /* copy data into X and Y RAM */

 for(i=0;i<N;i++) {

 datx[i] = x[i];

 daty[i] = y[i];

 }

 size = N;

 rshift = RSHIFT;

 for (i = 0; i < N; output[i++] = 0) ;

 if (VectorMult(output, datx, daty, size, rshift) != EDSP_OK) {

 printf("EDSP_OK not returned¥n");

 }

 for(i=0;i<N;i++){

 printf("#%2d output:%6d ip_x:%6d ip_y:%6d ¥n",i,

 output[i],datx[i], daty[i]);

 }

}

Variables placed in X or Y memory
are defined by a pragma section
within the section.

Sets data.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 87 of 117

(k) RMS value
Description:

• Format:
int MsPower (long *output, const short input[],long no_elements, int src_is_x)

• Parameters:
 output Pointer to output
 input[] Input x
 no_elements Number of data elements N
 src_is_x Data location specification

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •src_is_x ≠ 0 or 1

• Explanation of this function:
Determines the RMS value of input data.

• Remarks:

x(i)2
N

RMS
1

 =
N-1

i=0
Σ

Rounds off the division result to the nearest integer.
The result of the operation is saved as 63 bits.
If no_elements is 232, overflow may occur.
When src_is_x=1 allocate input to X memory, and when src_is_x=0 allocate data to Y memory.
Allocate output to arbitrary memory.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 88 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

static short dat[5] = {-16384, -32767, 32767, 14877, 8005};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 int i;

 long output[1];

 int src_x;

 /* copy data into X and Y RAM */

 for (i = 0; i < N; i++) {

 datx[i] = dat[i];

 daty[i] = dat[i];

 }

 src_x = 1;

 if (MsPower(output, datx, N, src_x) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 printf("MsPower:x=%d¥n",output[0]);

 src_x = 0;

 if (MsPower(output, daty, N, src_x) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 printf("MsPower:y=%d¥n",output[0]);

}

Variables placed in X or Y memory
are defined by a pragma section
within the section.

Sets data.

When X memory is used,
src_x=1.

When Y memory is used,
src_x=0.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 89 of 117

(l) Mean
Description:

• Format:
int Mean (short *mean, const short input[], long no_elements, int src_is_x)

• Parameters:
 mean Pointer to mean value of input
 input[] Input x
 no_elements Number of data elements N
 src_is_x Data location specification

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •src_is_x ≠ 0 or 1

• Explanation of this function:
Determines the mean of input data.

• Remarks:

()∑
−

=
=

1N

0i
ix

N
1

x

Rounds off the division result to the nearest integer.
The operation result is saved as 32 bits. If no_elements is greater than 216-1, overflow may occur.
When src_is_x=1 allocate input to X memory, and when src_is_x=0 allocate data to Y memory.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 90 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

static short dat[5] = {-16384, -32767, 32767, 14877, 8005};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short i,output[1];

 int size;

 int src_x;

 int flag = 1;

 /* copy data into X and Y RAM */

 for (i = 0; i < N; i++) {

 datx[i] = dat[i];

 daty[i] = dat[i];

 }

 /* test working of stack */

 src_x = 1;

 if (Mean(output, datx, N, src_x) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 printf("Mean:x=%d¥n",output[0]);

 src_x = 0;

 if (Mean(output, daty, N, src_x) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 printf("Mean:y=%d¥n",output[0]);

}

Variables placed in X or Y memory are defined
by a pragma section within the section.

When X memory is used,
src_x=1.

When Y memory is used,
src_x=0.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 91 of 117

(m) Mean and variance and
Description:

• Format:
int Variance (long *variance, short *mean, const short input[],
 long no_elements, int src_is_x)

• Parameters:
 Variance Pointer to the variance σ2 of input
 mean Pointer to data mean x
 input[] Input x
 no_elements Number of data elements N
 src_is_x Data location specification

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •src_is_x ≠ 0 or 1

• Explanation of this function:
Determines mean and variance of input.

• Remarks:

()∑
−

=
=

1N

0i
ix

N
1

x

() 2
1N

0i

22 xix
N
1

−=σ ∑
−

=

Rounds off the division result to the nearest integer.
x is saved as 32 bits. There is no check for overflow.
If no_elements is greater than 216-1, overflow may occur.
σ2 is saved as 63 bits. There is no check for overflow.
When src_is_x=1 allocate input to X memory, and when src_is_x=0 allocate data to Y memory.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 92 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

static short dat[5] = {-16384, -32767, 32767, 14877, 8005};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 long size,var[1];

 short mean[1];

 int i ;

 int src_x;

 /* copy data into X and Y RAM */

 for (i = 0; i < N; i++) {

 datx[i] = dat[i];

 daty[i] = dat[i];

 }

 /* test working of stack */

 size = N;

 src_x = 1;

 if (Variance(var, mean, datx, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 printf("Variance:%d mean:%d ¥n ",var[0],mean[0]);

 src_x = 0;

 if (Variance(var, mean, daty, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 printf("Variance:%d mean:%d ¥n ",var[0],mean[0]);

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data.

When X memory is used,
src_x=1.

When Y memory is used,
src_x=0.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 93 of 117

(n) Maximum value
Description:

• Format:
int MaxI (short **max_ptr, short input[], long no_elements, int src_is_x)

• Parameters:
 max_ptr Pointer to the maximum data
 input[] Input
 no_elements Number of data elements
 src_is_x Data location specification

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •src_is_x ≠ 0 or 1

• Explanation of this function:
Searches for the maximum value in the array input, and returns its address to max_ptr.

• Remarks:
If several data elements have the same maximum value, the address of the data with the start closest to input is returned.
When src_is_x=1 allocate input to X memory, and when src_is_x=0 allocate data to Y memory.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 94 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

static short dat[131] = {-16384, -32767, 32767, 14877, 8005};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short *outp,**outpp;

 int size,i;

 int src_x;

 /* copy data into X and Y RAM */

 for (i = 0; i < N; i++) {

 datx[i] = dat[i];

 daty[i] = dat[i];

 }

 /* MAXI */

 size = N;

 outpp = &outp;

 src_x = 1;

 if (MaxI(outpp, datx, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 printf("Max:x = %d¥n",**outpp);

 src_x = 0;

 if (MaxI(outpp, daty, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 printf("Max:y = %d¥n",**outpp);

}

Sets data.

Variables placed in X or Y
memory are defined by a pragma
section within the section.

When X memory is used,
src_x=1.

When Y memory is used,
src_x=0.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 95 of 117

(o) Minimum value
Description:

• Format:
int MinI (short **min_ptr, short input[], long no_elements, int src_is_x)

• Parameters:
 min_ptr Pointer to the minimum data
 input[] Input
 no_elements Number of data elements
 src_is_x Data location specification

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •src_is_x ≠ 0 or 1

• Explanation of this function:
Searches for the minimum value in the array input, and returns its address to min_ptr.

• Remarks:
If several data elements have the same minimum value, the address of the data with the start closest to input is returned.
When src_is_x=1 allocate input to X memory, and when src_is_x=0 allocate data to Y memory.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 96 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 10

static short dat[5] = {-16384, -32767, 32767, 14877, 8005};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short *outp,**outpp;

 int size,i;

 int src_x;

 /* copy data into X and Y RAM */

 for (i = 0; i < N; i++) {

 datx[i] = dat[i];

 daty[i] = dat[i];

 }

 /* MINI */

 /* test working of stack */

 size = N;

 outpp = &outp;

 src_x = 1;

 if (MinI(outpp, datx, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 printf("Min:x=%d¥n",**outpp);

 src_x = 0;

 if (MinI(outpp, daty, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned¥n");

 }

 printf("Min:y=%d¥n",**outpp);

}

When X memory is used,
src_x=1.

When Y memory is used,
src_x=0.

Sets data.

Variables placed in X or Y memory are
defined by a pragma section within the
section.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 97 of 117

(p) Maximum absolute value
Description:

• Format:
int PeakI (short **peak_ptr, short input[], long no_elements, int src_is_x)

• Parameters:
 peak_ptr Pointer to the maximum absolute value data
 input[] Input
 no_elements Number of data elements
 src_is_x Data location specification

• Returned value:
 EDSP_OK Successful
 EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •src_is_x ≠ 0 or 1

• Explanation of this function:
Searches for the maximum absolute value in the array input, and returns its address to peak_ptr.

• Remarks:
If several data elements have the same maximum absolute value, the address of the data with the start closest to input is
returned.
When src_is_x=1 allocate input to X memory, and when src_is_x=0 allocate data to Y memory.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 98 of 117

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

static short dat[5] = {-16384, -32767, 32767, 14877, 8005};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short *outp,**outpp;

 int size,i;

 int src_x;

 /* copy data into X and Y RAM */

 for (i = 0; i < N; i++) {

 datx[i] = dat[i];

 daty[i] = dat[i];

 }

 size = N;

 outpp = &outp;

 src_x = 1;

 if (PeakI(outpp, datx, size, src_x) != EDSP_OK)

 {

 printf("EDSP_OK not returned¥n");

 }

 printf("Peak:x=%d¥n",**outpp);

 src_x = 0;

 if (PeakI(outpp, daty, size, src_x) != EDSP_OK)

 {

 printf("EDSP_OK not returned¥n");

 }

 printf("Peak:y=%d¥n",**outpp);

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data.

When X memory is used,
src_x=1.

When Y memory is used,
src_x=0.

 Include header

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 99 of 117

2.3 Performance of the DSP Library
(1) Number of execution cycles of the DSP library

The number of execution cycles required by functions in the DSP library are indicated below.
Measurements were performed using an emulator (SH-DSP, 60 MHz), with the program section allocated to
X-ROM or to Y-ROM.

Table 2.8 List of Execution Cycles for DSP Library Functions (1)

Category DSP Library
Function Name

Number of Execution
Cycles (Cycle)

Notes

FftComplex 29,330
FftReal 25,490
IfftComplex 30,380
IfftReal 29,240
FftInComplex 26,540
FftInreal 25,260
IfftInComplex 27,590
IfftInReal 27,470
LogMagnitude 1,778,290
InitFft 3,116,640

Fast
Fourier
transform
s

FreeFft 780

Size: 256
Scaling: 0xFFFFFFFF

Fir 23,010
Fir1 280
Lms 97,710
Lms1 790
InitFir 1,400
InitLms 1,400
FreeFir 90
FreeLms 90

Number of coefficients: 64
Number of data items: 200
Convergence coefficient 2μ =
32767

Iir 23,530
Iir1 360
DIir 309,010
DIir1 1,860
InitIir 280
InitDIir 280
FreeIir 90

Filter
functions

FreeDIir 270

Number of data items: 200
Number of filter sections: 5

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 100 of 117

Table 2.8 List of Execution Cycles for DSP Library Functions (2)

Category DSP Library
Function Name

Number of Execution
Cycles (Cycle)

Notes

Window GenBlackman 789,950
GenHamming 418,330
GenHanning 447,250

functions

GenTriangle 744,220

 Number of data items: 100

ConvComplete 21,890
ConvCyclic 14,790
ConvPartial 370
Correlate 11,930

Convolutio
n
functions

CorrCylic 15,790

 Number of data items: 100

Limit 480
CopyXtoY 130
CopyYtoX 130
CopyToX 1,270
CopyToY 1,270
CopyFromX 1,320
CopyFromY 1,320
GenGWnoise 2,878,410
MatrixMult 2,337,460
VectorMult 1,500
MsPower 370
Mean 270
Variance 820
MaxI 540
MinI 520

Other
functions

PeakI 740

 Number of data items: 100

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 101 of 117

(2) Comparison of C language and DSP library source code
Here source code is presented in C language and from the DSP library, for some of the FFT-related functions (those
performing butterfly calculations).
In the DSP library source code, the DSP-specific instructions such as movx, movy, and padd are used to improve
the performance of the DSP library.

C source code

void R4add(short *arp, short *brp, short *aip, short *bip, int grpinc, int numgrp)
{
short tr,ti;
int grpind;
 for(grpind=0;grpind<numgrp;grpind++) {
 tr = *brp;
 ti = *bip;
 *brp = sub(*arp,ti);
 *bip = add(*aip,tr);
 *arp = add(*arp,ti);
 *aip = sub(*aip,tr);
 arp += grpinc;
 aip += grpinc;
 brp += grpinc;
 bip += grpinc;
 }
}

DSP library source code _

_R4add:
 MOV.L Ix,@-R15
 MOV.L Iy,@-R15

 MOV.L @(2*4,R15),Ix
 SHLL Ix
 MOV Ix,Iy
 MOV.L @(3*4,R15),R1

 REPEAT r4alps,r4alpe
 ADD #-1,R1
 SETRC R1
 movx.w @ar,X0 movy.w @bi,Y0
 padd X0,Y0,A0
 psub X0,Y0,A1 movx.w @br,X0 movy.w @ai,Y0
 padd X0,Y0,A0 movx.w A0,@ar+Ix
 pneg X0,X0 movx.w A1,@br+Ix
 padd X0,Y0,A1 movy.w A0,@bi+Iy
 movx.w @ar,X0 movy.w @bi,Y0

 .ALIGN 4
r4alps padd X0,Y0,A0 movy.w A1,@ai+Iy
 psub X0,Y0,A1 movx.w @br,X0 movy.w @ai,Y0
 padd X0,Y0,A0 movx.w A0,@ar+Ix
 pneg X0,X0 movx.w A1,@br+Ix
 padd X0,Y0,A1 movy.w A0,@bi+Iy
r4alpe movx.w @ar,X0 movy.w @bi,Y0
 movy.w A1,@ai+Iy
 MOV.L @R15+,Iy
 RTS
 MOV.L @R15+,Ix

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 102 of 117

 (3) Performance of individual FFT functions
Fourier transform functions are classified as follows.

Table 2.9 Fast Fourier Transform Functions

 Not-in-place function In-place function
Complex Fourier
transform

FftComplex FftInComplex

Real Fourier transform FftReal FftReal

Table 2.10 Inverse Fast Fourier Transform Functions

 Not-in-place function In-place function
Complex Fourier
transform

IfftComplex IfftInComplex

Real Fourier transform IfftReal IfftInReal

(a) Differences between In-Place and Not-In-Place Functions

In-place functions use the array of input data as the array for output data. Hence the input data is overwritten by the
output data, and is not saved.

When using not-in-place functions, the input and output data must be prepared separately before calling on a function.
The input data and output data are separate, and so the input data is saved even after the function is called on.

There is almost no difference in the performance of in-place and not-in-place functions, and so the type of function to
be used should be determined based on the amount of memory available.

Compared with not-in-place functions, in-place functions require half the amount of memory.

• About scaling

In each stage of FFT calculations, calculations are executed in multiply-and-accumulate form, so overflows tend to
occur. If an overflow occurs, all values become maxima or minima, so that calculation results cannot be evaluated
correctly.
In order to prevent overflow, scaling is performed at each stage of FFT calculations; the scaling is 2 by which
values are divided (right-shifted).

Table 2.11 Scaling Values and Features

Scaling Value Features
FFTNOSCALE No shifting whatsoever; overflow tends to occur
EFFTMIDSCALE Shifting at every other stage
EFFTALLSCALE Shifting at all stages; overflow does not occur

readily

Scaling does not have a large effect on performance. Hence when deciding on a scaling, the features of the data, rather
than performance, should be considered.

(4) Filter functions

(b) Using Fir and Lms

The relation between the number of coefficients and cycles for the Fir and Lms filters are shown in figure 3.11.

Because the Lms filter uses an adaptive algorithm, speed of calculation is slower than for the Fir filter. In a system with
stable data waveforms, Lms should be used to determine filter coefficients, after which it should be replaced by the Fir
filter.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 103 of 117

 The number of right-shifts can be specified for data scaling. Because multiply-and-accumulate operations are used
internally in SH-DSP library functions, depending on the input data, overflows may occur. In such cases the number of
right-shifts should be modified appropriately, and should be selected referring to output values.

Figure 2.2 Relation between Number of Coefficients and Number of Cycles

300,000

250,000

200,000

150,000

100,000

50,000

0

0 20 40 60 80 100 120

Fir
Fir1
Lms

Number of coefficients

N
um

be
r o

f c
yc

le
s

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 104 of 117

• Iir and DIir

When performance is given priority, Iir should be used instead of DIir. Because multiply-and-accumulate operations
are used internally in SH-DSP library functions, depending on the input data, overflows may occur. In such cases
the number of right-shifts should be modified appropriately, and should be selected referring to output values.
The number of right-shifts can be specified for data scaling. However, the number of right-shifts is specified as part
of the array of filter coefficients. For details, refer to section 3.13.6, (5)(c) IIR and (e) Double precision IIR.

Figure 2.3 Relation between Number of Filter Sections and Number of Cycles

• Selective Use of Filter Functions

The Fir filter has a linear phase response and is always stable, making it suitable for use in audio,
video and other applications where phase distortion cannot be tolerated. On the other hand, the Iir
filter includes feedback, and can obtain results using fewer coefficients than Fir, for faster execution;
it is suitable for applications where time constraints are imposed. However, the Iir filter may be
unstable in some situations, and proper care should be taken in its use.

Number of filter sections

Iir
DIir

1,500,000

1,000,000

500,000

0 5 10 15 20
0

N
um

be
r o

f c
yc

le
s

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 105 of 117

3. DSP-C Specifications
Description:

The DSP-C language is supported.
This specification is valid when the compiler option “dspc” is specified for the SuperH RISC engine C/C++ compiler.

3.1 Fixed-Point Data Type
Previously, the integer type has been used to represent a fractional value. You can now use the fixed-point data type to
code a fractional value without modification.
The SuperH RISC engine C/C++ compiler generates DSP instructions appropriate to the fixed-point data type being
used. Table 3.45 shows the internal representation of the fixed-point data type.

•
Table 3.1 Internal Representation of the Fixed-point Data Type

Range of data Constant
index

Type
Size

(Size on
memory)

Align-
ment

number
(bytes)

Min.
value Max. value

_ _fixed 16 bits
(16 bits) 2 -1.0 1.0-2

 -15

 (0.999969482421875) r

long
_ _fixed

32 bits
(32 bits) 4 -1.0 1.0-2

 -31

(0.9999999995343387126922607421875)

R

_ _accum 24 bits
(32 bits) 4 -256.0 256.0-2

 -15

 (255.999969482421875) a

long
_ _accum

40 bits
(64 bits) 4 -256.0 256.0-2

 -31

(255.9999999995343387126922607421875)

A

Important Information:

(1) The _ _accum and long _ _accum data stored in memory is right justified, with sign extension added at the
beginning part.

Example: (_ _accum)128.5a is stored as “00 40 40 00”.
Example: (long _ _accum)(-256.0A) is stored as “FF FF FF 80 00 00 00 00”.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 106 of 117

(2) Comparing DSP-C and the previous method

 C function [Previous method] [DSP-C]

// -cpu=sh3

#include <stdio.h>

#define NUM 8

short input[NUM] = {0x1000, 0x2000, 0x4000,
 0x6000, 0xf000, 0xe000,
 0xc000, 0xa000};

short result[NUM];

void func(void)

{

 int i;

 for (i = 0; i < NUM; i++) {

 result[i] = input[i] + 0x1000;

 }

}

void main(void)

{

 int i;

 func();

 for (i = 0; i < NUM; i++) {

 printf("%f¥n", result[i]/32768.0);

 }

}

// -cpu=sh3dsp -dspc

#include <stdio.h>

#define NUM 8

__fixed input[8] = { 0.125r, 0.25r, 0.5r, 0.75r,
 -0.125r, -0.25r, -0.5r,
 -0.75r};

__fixed result[NUM];

void func()

{

 int i;

 for (i = 0; i < NUM; i++) {

 result[i] = input[i] + 0.125r;

 }

}

void main(void)

{

 int i;

 func();

 for (i = 0; i < NUM; i++) {

 printf("%r¥n", result[i]);

 }

}

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 107 of 117

(3) Example of multiply-and-accumulation operations
If the integer type is used as a substitute for a fractional value, the products must be aligned to the fixed number of
digits. This alignment is unnecessary for the fixed-point data type.

 C function [Previous method] [DSP-C]

// -cpu=sh3

#include <stdio.h>

#define NUM 8

short x_input[NUM] = {0x1000, 0x2000, 0x4000,
 0x6000, 0xf000, 0xe000,
 0xc000, 0xa000};

short y_input[NUM] = {0x1000, 0x2000, 0x4000,
 0x6000, 0xf000, 0xe000,
 0xc000, 0xa000};

int result;

int func(short *x_input, short *y_input)

{

 int i;

 int temp = 0;

 for (i = 0; i< NUM ;i++) {

 temp += (x_input[i] * y_input[i]) >> 15;

 }

 return (temp);

}

void main()

{

 result = func(x_input, y_input);

 printf("%f¥n", result/32768.0);

}

// -cpu=sh3dsp -dspc -fixed_noround

#include <stdio.h>

#define NUM 8

_X fixed x_input[NUM] = { 0.125r, 0.25r,
 0.5r, 0.75r,
 -0.125r, -0.25r,
 -0.5r, -0.75r};

_Y_fixed y_input[NUM] = { 0.125r, 0.25r,
 0.5r, 0.75r,
 -0.125r, -0.25r,
 -0.5r, -0.75r};

__accum result;

void func(__accum *result_p,

 __X __fixed *x_input,

 __Y __fixed *y_input)

{

 int i;

 __accum temp = 0.0a;

 for (i = 0; i< NUM ;i++) {

 temp += x_input[i] * y_input[i];

 }

 *result_p = temp;

}

void main()

{

 func(&result, x_input, y_input);

 printf("%a¥n", result);

}

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 108 of 117

3.2 Memory Qualifier
Adding the X/Y memory qualifier to variables promotes generation of X/Y memory-dedicated access instructions
which are more efficient than ordinary memory access instructions.
Use the following qualifier to explicitly specify the X or Y memory for storing data.

 _ _X: Store data in the X memory.
 _ _Y: Store data in the Y memory.

The SuperH RISC engine C/C++ compiler outputs objects that have the _ _X or _ _Y memory qualifier to the sections
shown in table 3.46. You must allocate these sections to the X or Y memory during linking.

•
Table 3.2 Memory Qualifier Specifications

Name Section Description
$XC const data (Stored in the X memory) Constant area
$YC const data (Stored in the X memory)
$XD Data with an initial value (Stored in the X

memory)
Initialized data area

$YD Data with an initial value (Stored in the Y
memory)

$XB Data without an initial value (Stored in the X
memory)

Uninitialized data
area

$YB Data without an initial value (Stored in the Y
memory)

However, X or Y memory may exist only on RAM. You must be careful when creating ROM from such memory.

Examples of use:

(1) Storing data in memory by using the _ _X or _ _Y memory qualifier
_ _X int a; //Store in the X memory.
 int _ _X b; //Store in the X memory.
_ _Y int * c; //Pointer to the int data in the Y memory (Memory is undefined.)
 int _ _Y * d; //Pointer to the int data in the Y memory (Memory is undefined.)
 int *_ _Y e; //Pointer to the int data (Stored in the Y memory)
_ _X int *_ _Y f; //Pointer to the int data in the X memory (Stored in the Y memory)

(2) Copying the constant area and initialized data area from ROM to X/Y RAM
In this example, the data that was stored in ROM during linking is copied to X/Y RAM when the program starts. You
need to use the VOW option of the optimizing linkage editor to allocate the same space twice in ROM and in X/Y
RAM.

Example of the subcommand during linking:
rom=$XC=XC,$XD=XD,$YC=YC,$YD=YD

 start P,C,D,$XC,$XD,$YC,$YD/400,$XB,XC,XD/05007000,$YB,YC,YD/05017000

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 109 of 117

The standard library function INITSCT() allows you to easily copy data from ROM to X/Y RAM.
Example of use: _INITSCT()

(3) Not using the constant area or initialized area

By specifying that neither a const specification nor initialized data is to be added to an object with the X/Y memory
qualifier, you do not have to allocate the same space twice in ROM and in X/Y RAM.
For example, you can eliminate initialized data by specifying dynamic initialization as shown in the following
example.

Example of use

•
•
•
•
•
•
•
•

#include <_h_c_lib.h>

void PowerON_Reset(void)

{

 _INITSCT();

 main();

 sleep();

}

#pragma section $DSEC

static const struct {

void *rom_s;

void *rom_e;

void *ram_s;

} DTBL[] = { {__sectop("$XC"), __secend("$XC"), __sectop("XC")},

 {__sectop("$XD"), __secend("$XD"), __sectop("XD")},

 {__sectop("$YC"), __secend("$YC"), __sectop("YC")},

 {__sectop("$YD"), __secend("$YD"), __sectop("YD")}};

#pragma section

#define NUM 8

__X __fixed x_input[NUM];

__Y __fixed y_input[NUM];

__fixed x_input[NUM] = { 0.125r, 0.25r, 0.5r, 0.75r, -0.125r, -0.25r, -0.5r, -0.75r};

__fixed y_input[NUM] = { 0.125r, 0.25r, 0.5r, 0.75r, -0.125r, -0.25r, -0.5r, -0.75r};

void xy_init()

{

 int i;

 for (i = 0; i< NUM; i++) {

 x_input[i] = x_init[i];

 y_input[i] = y_init[i];

 }

}

void main()

{

 xy_init();

 :

}

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 110 of 117

(4) Comparing DSP-C and the previous method

 C function [Previous method] [DSP-C]

// -cpu=sh3
#include <stdio.h>
#define NUM 8
short x_input[NUM] = { 0x1000, 0x2000, 0x4000,

 0x6000, 0xf000, 0xe000,
 0xc000, 0xa000};

short y_input[NUM] = { 0x2000, 0x4000, 0xe000,
 0xf000, 0x6000, 0x2000,
 0xe000, 0xf000};

short result[NUM];
void func(void)
{
 int i;

 for (i = 0; i < NUM; i++) {
 result[i] = x_input[i] - y_input[i];
 }
}

void main(void)
{
 int i;
 func();
 for (i = 0; i < NUM; i++) {

 printf("%f¥n", result[i]/32768.0);
 }
}

// -cpu=sh3dsp -dspc
#include <stdio.h>
#define NUM 8
__X __fixed x_input[NUM] = { 0.125r, 0.25r, 0.5r,

 0.75r, -0.125r, -0.25r,
 -0.5r, -0.75r};

__Y __fixed y_input[NUM] = {0.25r, 0.5r, -0.25r,
 -0.125r, 0.75r, 0.25r,
 -0.25r, -0.125r};

__fixed result[NUM];
void func(void)
{
 int i;
 for (i = 0; i < NUM; i++) {
 result[i] = x_input[i] - y_input[i];
 }
}

void main(void)
{
 int i;
 func();
 for (i = 0; i < NUM; i++) {

 printf("%r¥n", result[i]);
 }
}

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 111 of 117

3.3 Saturation Qualifier
If the operation results in an overflow, saturation operation replaces the result with the largest or smallest representable
value. For DSP-C, simply adding a saturation qualifier enables the saturation operation.
Use the following qualifier to specify the saturation operation:

 _ _sat

You can specify the saturation qualifier only for _ _fixed or long _ _fixed data. Specifying the saturation qualifier for
any other data type causes an error.
Saturation operation will be performed if an expression contains data piece for which at least one saturation qualifier (_
_sat) is specified.

Examples of use:

(1) Example of sat specification

_ _fixed a;
_ _sat _ _fixed b;
_ _fixed c;

a = -0.75r ;
b = -0.75r ;
c = a + b ; // c = -1.0r will result.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 112 of 117

(2) Comparing DSP-C and the previous method

 C function [Previous method] [DSP-C]

// -cpu=sh3
#include <stdio.h>
#define NUM 8
short x_input[NUM] = {0x1000, 0x2000, 0x4000,

 0x6000, 0xf000, 0xe000,
 0xc000, 0xa000};

short y_input[NUM] = {0x1000, 0x2000, 0x4000,
 0x6000, 0xf000, 0xe000,
 0xc000, 0xa000};

short result[NUM];
void func(void)
{
 int i;
 int temp;
 for (i = 0; i < NUM; i++) {
 temp = x_input[i] + y_input[i];

 if (temp > 32767) {
 temp = 32767;
 }
 else if (temp < -32768) {
 temp = -32768;
 }
 result[i] = temp;
 }
}
void main(void)
{
 int i;
 func();
 :

// -cpu=sh3dsp -dspc
#include <stdio.h>
#define NUM 8

sat __X __fixed x_input[NUM] = { 0.125r, 0.25r, 0.5r,
 0.75r, -0.125r, -0.25r,
 -0.5r, -0.75r};

sat__Y __fixed y_input[NUM] = { 0.125r, 0.25r, 0.5r,
 0.75r, 0.125r, -0.25r,
 -0.5r, -0.75r};
__fixed result[NUM];
void func(void)
{
 int i;
 for (i = 0; i < NUM; i++) {
 result[i] = x_input[i] + y_input[i];
 }
}
void main(void)
{
 int i;
 func();
 for (i = 0; i < NUM; i++) {
 printf("%r¥n", result[i]);
 }
}

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 113 of 117

3.4 Circular Qualifier
Use the following qualifier to specify the modulo addressing:

 _ _circ

You can specify the modulo addressing for _ _fixed type one-dimensional arrays and pointers for which the memory
qualifier (_ _X/_ _Y) is specified. Specifying the modulo addressing for any other conditionscauses an error.

Examples of use:

(1) Comparing DSP-C and the previous method
 C function [Previous method] [DSP-C]

// -cpu=sh3
#include <stdio.h>
#define NUM 8
#define BUFFER_SIZE 4
short x_input[NUM] = {0x1000, 0x2000, 0x4000, 0x6000,,
 0xf000, 0xe000, 0xc000, 0xa000};
short y_input[BUFFER_SIZE] = {0x2000, 0x4000,
 0x2000, 0x1000};
short result[NUM];

void func()
{
 int i;
 for (i = 0; i < NUM; i++) {

result[i] = x_input[i] +
y_input[i%(BUFFER_SIZE)];

 }
}

void main()
{
 int i;
 func();
 for (i = 0; i < NUM; i++) {
 printf("%f¥n", result[i]/32768.0);
 }
}

// -cpu=sh3dsp -dspc
#include <stdio.h>
#include <machine.h>
#define NUM 8
#define BUFFER_SIZE 4
__X __fixed x_input[NUM] = { 0.125r, 0.25r, 0.5r,

 0.75r, -0.125r, -0.25r, -0.5r,
 -0.75r};

__circ __Y __fixed y_input[BUFFER_SIZE] = {0.25r, 0.5r,
 0.25r, 0.125r};

__fixed result[NUM];

void func()
{
 int i;
 set_circ_y(y_input, sizeof(y_input));
 for (i = 0; i < NUM; i++) {
 result[i] = x_input[i] + y_input[i];
 }
 clr_circ();
}

void main()
{
 int i;
 func();
 for (i = 0; i < NUM; i++) {
 printf("%r¥n", result[i]);
 }

}

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 114 of 117

Important Information:

(1) The modulo addressing is applicable to one-dimensional arrays and pointers that exist between the built-in functions
clr_circ() and set_circ_x() or set_circ_y().

(2) Correct operation is not guaranteed if you specify the modulo addressing for multiple arrays concurrently or if you
reference an array or pointer with _ _circ specified in other than between the built-in functions shown above.

(3) Correct operation is not guaranteed if you specify the modulo addressing in a negative direction.
(4) Data subject to modulo addressing must be aligned so that the higher 16 bits will be the same during liking. You

cannot directly reference the contents of an array.
(5) Correct operation is not guaranteed if one of the following occurs (a warning may be output):
• optimize=0 is specified.
• The _ _circ pointer is specified for other than a local variable.
• volatile is specified for the _ _circ pointer.
• The _ _circ pointer is updated but is not referenced.
• There is a function all between the built-in functions clr_circ and set_circ_x or set_circ_y.

3.5 Type Conversion
Table 3.3 shows the rules for type conversion.

Table 3.3 Rules for Type Conversion

Conversion Specifications

_ _fixed -> long _ _fixed
_ _accum -> long _
_accum

Lower 16 bits are cleared to zero.
The value remains unchanged.

long _ _fixed -> _ _fixed
long _ _accum -> _ _accum

Lower 16 bits are truncated.
Precision of the fractional part is degraded.

_ _fixed -> _ _accum
long _ _fixed -> long _ _accum

Sign expansion is performed for higher 8 bits.
The value remains unchanged.

_ _fixed -> long _ _accum Sign expansion is performed for higher 8 bits.
Lower 16 bits are cleared to zero.
The value remains unchanged.

long _ _fixed -> _ _accum Sign expansion is performed for higher 8 bits.
Lower 16 bits are truncated.
Precision of the fractional part is degraded.

_ _accum -> _ _fixed
long _ _accum -> long _ _fixed
_ _accum -> long _ _fixed

Higher 8 bits are truncated. The 9th bit must be the
sign bit.
The value remains unchanged if the integer part is
zero.

long _ _accum -> _ _fixed Higher 8 bits and lower 16 bits are truncated.
The 9th bit must be the sign bit. The value remains
unchanged if the integer part is zero.
Precision of the fractional part is degraded.

_ _fixed -> signed integer
type
long _ _fixed -> signed integer
type

The value is -1 for -1.0r and -1.0R, or 0 for other
cases.

_ _accum -> signed
integer type
long _ _accum -> signed
integer type

The fractional part is truncated.
The value after conversion is an integer from -256
to 255.

_ _fixed -> unsigned integer
type

For -1.0r and -1.0R, the maximum value for the
type after conversion is assumed. For other cases,

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 115 of 117

Conversion Specifications

long _ _fixed -> unsigned
integer type

0 is assumed.

_ _accum -> unsigned
integer type

long _ _accum -> unsigned
integer type

The fractional part is truncated.
For a positive value, the value after conversion is
an integer from 0 to 255.
For a negative value, (the value before conversion
+ 1 + the maximum value for the type after
conversion) is assumed.

signed integer type -> _ _fixed
signed integer type ->long _
_fixed

The highest bit before conversion must be the
highest bit after conversion.
All the other bits will be zero.

signed integer type -> _ _accum
signed integer type ->long _
_accum

Lower 9 bits of the value must be the integer part.
The fractional part must be zero.

unsigned integer type -> _ _fixed
unsigned integer type ->long _
_fixed

All the bits after conversion must be zero.

unsigned integer type -> _
_accum
unsigned integer type ->long _
_accum

Lower 9 bits of the value must be the integer part.
The fractional part must be zero.

Fixed-point -> floating-point A value representable in the type after conversion
will be the same as the original value.
The value that cannot be represented is rounded to
a nearest value.

Floating-point -> fixed point The handling of the fractional part is the same as
for the conversion from fixed-point to floating point.
The handling of the integer part is the same as for
the conversion from floating-point to integer.
If the integer part is the representable range for the
fixed-point, the value remains unchanged.
If the integer part exceeds the range, the lowest bit
of the overflow must be a sign bit. The saturation
processing is not performed even if it is specified
for the type after conversion.

Important Information:

(1) Conversion from (long)_ _fixed to the integer type, and vice versa
Integers that can be represented in the (long)_ _fixed type are 0 and -1.
This means that the above conversion causes missing information.

(2) Conversion from (long)_ _accum to the integer type, and vice versa
Integers in the range from -256 to 255 can be represented in the (long)_ _accum type. Integers within this range
retain information after they are converted.
However, note that converting a negative value to the unsigned integer type causes an overflow.
For a series of operations that only require the integer type, conversion to the integer type may improve
performance.

(3) Bit pattern copy
If you use a substitute operator to copy a bit pattern, a type conversion occurs and the expected results cannot be
acquired. In this case, use the built-in functions such as long_as_lfixed and lfixed_as_long.

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 116 of 117

 Website and Support <website and support,ws>

Renesas Technology Website
http://japan.renesas.com/

Inquiries

http://japan.renesas.com/inquiry
csc@renesas.com

Revision Record <revision history,rh>
Description

Rev.

Date Page Summary
1.00 Jun.1.07 — First edition issued

http://japan.renesas.com/
http://japan.renesas.com/inquiry
mailto:csc@renesas.com

APPLICATION NOTE

REJ06J0017-0100/Rev.1.00 June 2007 Page 117 of 117

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2007. Renesas Technology Corp., All rights reserved.

	1. SH-DSP Features
	2. DSP Library
	2.1 Summary
	2.1.1 Data Format
	2.1.2 Efficiency

	2.2 Details of DSP library function
	2.2.1 Fast Fourier transform
	2.2.2 Window Functions
	2.2.3 Filters
	2.2.4 Convolution and Correlation
	2.2.5 Other

	2.3 Performance of the DSP Library

	3. DSP-C Specifications
	3.1 Fixed-Point Data Type
	3.2 Memory Qualifier
	3.3 Saturation Qualifier
	3.4 Circular Qualifier
	3.5 Type Conversion

