1. Abstract

This document describes a method for receiving data from an external device synchronized with the internal clock using synchronous serial interface mode.

2. Introduction

The application example described in this document applies to the following microcomputers (MCUs):

MCUs: R32C/116 Group, R32C/117 Group, and R32C/118 Group

This application note can be used with other R32C/100 Series MCUs which have the same special function registers (SFRs) as the above groups. Check the manuals for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. Application Example

This document describes the setting procedure for receiving data using synchronous serial interface mode (UART3). Table 3.1 and Table 3.2 list the Clock Frequency Settings and Setting Conditions for Data Reception Using Synchronous Serial Interface Mode, respectively.

Table 3.1 Clock Frequency Settings

<table>
<thead>
<tr>
<th>Clock</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main clock</td>
<td>16 MHz</td>
</tr>
<tr>
<td>PLL clock</td>
<td>100 MHz</td>
</tr>
<tr>
<td>Base clock</td>
<td>50 MHz</td>
</tr>
<tr>
<td>CPU clock</td>
<td>50 MHz</td>
</tr>
<tr>
<td>Peripheral bus clock</td>
<td>25 MHz</td>
</tr>
<tr>
<td>Peripheral function clock source</td>
<td>25 MHz</td>
</tr>
</tbody>
</table>

Table 3.2 Setting Conditions for Data Reception Using Synchronous Serial Interface Mode

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character length</td>
<td>8-bit</td>
</tr>
<tr>
<td>Transmit/receive clock</td>
<td>Internal</td>
</tr>
<tr>
<td>Transmit control</td>
<td>CTS</td>
</tr>
<tr>
<td>Bit order</td>
<td>LSB first</td>
</tr>
<tr>
<td>Continuous receive mode</td>
<td>Not used</td>
</tr>
<tr>
<td>CLK polarity</td>
<td>Output transmit data on the falling edge of the transmit/receive clock and input receive data on the rising edge</td>
</tr>
<tr>
<td>TXD/RXD I/O polarity switch bit</td>
<td>Non inverted</td>
</tr>
<tr>
<td>Bit rate</td>
<td>500 kbps (1)</td>
</tr>
</tbody>
</table>

Note:

1. The bit rate is calculated by the formula below.
 \[\text{Bit rate} = \frac{f_x}{2(m+1)} \]
 - \(f_x \): Count source for transmit/receive clock \((f_1, f_8, \text{and } f_{2n})\)
 - \(m \): Setting value \((00h \text{ to } FFh)\) in the \(UiBRG\) register \((i = 0 \text{ to } 6)\)
When data is received from an external device, the transmit/receive clock is output from the MCU. To output the transmit/receive clock, set the port direction bit and the function select register for the port corresponding to the CLK pin.

Table 3.3 lists the CLK Pin, Port Direction Bits, and Function Select Register Settings.

Table 3.3 CLK Pin, Port Direction Bits, and Function Select Register Settings

<table>
<thead>
<tr>
<th>CLK Pin</th>
<th>Port</th>
<th>Port Direction Bit</th>
<th>Setting Value</th>
<th>Function Select Register</th>
<th>Setting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK0</td>
<td>P6_1</td>
<td>PD6_1</td>
<td>1</td>
<td>P6_1S</td>
<td>03h</td>
</tr>
<tr>
<td>CLK1</td>
<td>P6_5</td>
<td>PD6_5</td>
<td>1</td>
<td>P6_5S</td>
<td>03h</td>
</tr>
<tr>
<td>CLK2</td>
<td>P7_2</td>
<td>PD7_2</td>
<td>1</td>
<td>P7_2S</td>
<td>03h</td>
</tr>
<tr>
<td>CLK3</td>
<td>P4_1</td>
<td>PD4_1</td>
<td>1</td>
<td>P4_1S</td>
<td>03h</td>
</tr>
<tr>
<td>CLK4</td>
<td>P9_5</td>
<td>PD9_5 (1)</td>
<td>1</td>
<td>P9_5S (1)</td>
<td>03h</td>
</tr>
<tr>
<td>CLK5</td>
<td>P7_7</td>
<td>PD7_7</td>
<td>1</td>
<td>P7_7S</td>
<td>03h</td>
</tr>
<tr>
<td>CLK6</td>
<td>P4_5</td>
<td>PD4_5</td>
<td>1</td>
<td>P4_5S</td>
<td>03h</td>
</tr>
</tbody>
</table>

Note:
1. The instruction to set these registers should be written immediately after the instruction to set the PRC2 bit to 1 (write enabled). Any interrupt or DMA transfer should not be generated between these two instructions.

3.1 Data Reception In Synchronous Serial Interface Mode

(1) In the U3C1 register, set the TE bit to 1 (transmission enabled) and set the RE bit to 1 (reception enabled).
(2) When dummy data is set in the U3TB register, the MCU switches to wait status.
(3) When the input signal to the CTS3 pin becomes low, the transmit/receive clock is output. (1) The MCU receives the first bit of the RXD3 pin synchronized with the initial rising edge of transmit/receive clock. Then, data from the second bit on is received synchronized with the rising edge of transmit/receive clock.
(4) When 1-byte data accumulates in the UART3 receive register, the value in the UART3 receive register is transferred to the U3RB register. Simultaneously, the RI bit in the U3C1 register becomes 1 (data held in the U3RB register), indicating that data reception is completed. Also, the IR bit in the S3RIC register becomes 1 (interrupt requested).
(5) When the lower byte in the U3RB register is read, the RI bit becomes 0 (no data held in the U3RB register).

Note:
1. The input signal to the CTS3 pin is controlled by the transmit device.

Figure 3.1 and Figure 3.2 show the Connection Example and Receive Operation, respectively.

Figure 3.1 Connection Example
Serial Interface Operation When Receiving Data in Synchronous Serial Interface Mode

Figure 3.2 Receive Operation

The data is transmitted from the U3TB register to the UART3 transmit register.

The data is transferred from the UART3 receive register to the U3RB register.

Received data is loaded

Read the U3RB register.

Set to 0 by an interrupt request acceptance or by a program.

Received data is loaded

Clock is not output because CTS3 is high.

fx: U3BRG count source frequency (f1, f8, f2n)
m: Setting value of the U3BRG register

\[TCLK = \frac{2(m+1)}{fx} \]
3.2 Settings

This section describes the setting procedures and values for “3.1 Data Reception In Synchronous Serial Interface Mode”. Refer to the hardware user's manual for details of each register. Figure 3.3 and Figure 3.4 show the Main Function Flowchart and UART3 Initialization Flowchart, respectively.

Figure 3.3 Main Function Flowchart

```
main
  SetPLLClock() Initialize clock. 
  uart3_init() Initialize UART3. 
  U3TB ← FFh Write dummy data to the UART3 transmit buffer register. 
  IR bit in the S3RIC register = 1 ? UART3 receive interrupt requested? 
    Yes
      Clear the IR bit in the S3RIC register
      Read the data received from the U3RB register
      U3TB ← FFh Write dummy data to the UART3 transmit buffer register.
    No
      Clear UART3 receive interrupt request.
```

Note:
1. Refer to the hardware user's manual for initializing the clock.
Serial Interface Operation When Receiving Data in Synchronous Serial Interface Mode

UART3 transmit/receive mode register:
- Synchronous serial interface mode
- Internal clock

UART3 transmit/receive control register 0
- Count source: f1, CTS enabled, LSB first

UART3 bit rate register:
- Transmit/receive bit rate: set to 500 kbps

UART3 transmit/receive control register 1:
- Continuous receive mode disabled, data non logic-inverted

Interrupt control register:
- Transmit interrupt request level: 0
- Receive interrupt request level: 0

Output function select register:
- CLK3 selected

Port direction register:
- Input (CTS3), output (CLK3), input (RXD3)

UART3 transmit/receive control register 1:
- Transmission enabled, reception enabled

Figure 3.4 UART3 Initialization Flowchart
4. Sample Program

A sample program can be downloaded from the Renesas Electronics website.

5. Reference Documents

User’s Manuals
R32C/116 Group User’s Manual: Hardware Rev.1.10
R32C/117 Group User’s Manual: Hardware Rev.1.10
R32C/118 Group User’s Manual: Hardware Rev.1.10
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
R32C/100 Series C Compiler Package V.1.02 C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Nov. 26, 2010</td>
<td>First edition issued</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheet or data book, etc.

8. "Standard": Computers; office equipment; information equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; and industrial robots.

9. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

10. "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g., artificial life support devices or systems), surgical implants, or healthcare intervention (e.g., asepsis, etc.) and any other applications or purposes that pose a direct threat to human life.

11. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheet or data book, etc.

12. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

13. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation hardness design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, the control and malfunction prevention, appropriate treatment for aging-degradation or any other appropriate measures. Because of the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

14. You should contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

15. This document is not to be reproduced, duplicated or utilized in any form, in whole or in part, without prior written consent of Renesas Electronics.

16. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.