To our customers,

Old Company Name in Catalogs and Other Documents

On April 1\(^{st}\), 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1\(^{st}\), 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
1. Abstract

This document describes an example of the setting procedure with a usage example for receiving data from an external device synchronized with the transmit/receive clock using the synchronous serial interface mode.

2. Introduction

The application example described in this document applies to the following MCU:

- MCU: R32C/111 Group

The sample program in this application note can be used with other R32C/100 Family MCUs which have the same special function registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.

3. Overview

This document describes the setting procedure for receiving data synchronized with the transmit/receive clock supplied from an external device using the synchronous serial interface mode.

Table 3.1 shows the setting conditions for receiving data using the synchronous serial interface mode.

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character length</td>
<td>8-bit</td>
</tr>
<tr>
<td>Transmit/receive clock</td>
<td>External</td>
</tr>
<tr>
<td>Receive control</td>
<td>RTS</td>
</tr>
<tr>
<td>Bit order</td>
<td>LSB first</td>
</tr>
<tr>
<td>Continuous receive mode</td>
<td>N/A</td>
</tr>
<tr>
<td>CLK polarity</td>
<td>Output transmit data on the falling edge of the transmit/receive clock and input receive data on the rising edge</td>
</tr>
<tr>
<td>TXD, RXD input/output polarity switch bit</td>
<td>Non inverted</td>
</tr>
</tbody>
</table>

RTS output is used for receive control. To output RTS in the R32C/111 group, you must set the direction bits and the function select registers for the RTS pin ports. Table 3.2 shows the port direction bit and function select register settings for each RTS pin.
Table 3.2 RTS Pin, Port Direction Bits and Function Select Register Settings

<table>
<thead>
<tr>
<th>RTS Pin</th>
<th>Port</th>
<th>Port Direction Bit</th>
<th>Setting Value</th>
<th>Function Select Register</th>
<th>Setting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTS0</td>
<td>P6_0</td>
<td>PD6_0</td>
<td>1</td>
<td>P6_0S</td>
<td>03h</td>
</tr>
<tr>
<td>RTS1</td>
<td>P6_4</td>
<td>PD6_4</td>
<td>1</td>
<td>P6_4S</td>
<td>03h</td>
</tr>
<tr>
<td>RTS2</td>
<td>P7_3</td>
<td>PD7_3</td>
<td>1</td>
<td>P7_3S</td>
<td>03h</td>
</tr>
<tr>
<td>RTS3</td>
<td>P4_0</td>
<td>PD4_0</td>
<td>1</td>
<td>P4_0S</td>
<td>03h</td>
</tr>
<tr>
<td>RTS4</td>
<td>P9_4</td>
<td>PD9_4(1)</td>
<td>1</td>
<td>P9_4S(1)</td>
<td>03h</td>
</tr>
<tr>
<td>RTS5</td>
<td>P8_1</td>
<td>PD8_1</td>
<td>1</td>
<td>P8_1S</td>
<td>03h</td>
</tr>
<tr>
<td>RTS6</td>
<td>P4_4</td>
<td>PD4_4</td>
<td>1</td>
<td>P4_4S</td>
<td>03h</td>
</tr>
</tbody>
</table>

Note:
1. The instruction to set these registers should be written immediately after the instruction to set the PRC2 bit to 1 (write enabled). Any interrupt or DMA transfer should not be generated between these two instructions.

3.1 Data Reception in Synchronous Serial Interface Mode

1) The MCU switches to receive wait status when the TE bit in the UiC1 register (i = 0 to 6) is set to 1 (transmission enabled), the RE bit in the UiC1 register (i = 0 to 6) is set to 1 (reception enabled) and dummy data is set in the UiTB register. Simultaneously, output level at the RTSi pin becomes low and a message is sent to the transmit device notifying it that data can be received. (Output the transmit/receive clock on the transmit device after confirming that RTS output is low.)

2) When the MCU synchronizes with the initial falling edge of transmit/receive clock, output level at the RTSi pin becomes high. The MCU receives the first bit of the RXDi pin synchronized with the initial rising edge of transmit/receive clock. The second bit and later are then received, synchronized with the rising edge of transmit/receive clock.

3) When 1 byte of data accumulates in the UARTi receive register, the contents of the UARTi receive register are transferred to the UiRB register. Simultaneously, RI bit in the UiC1 register becomes 1 (data held in the UiRB register), showing that receipt is complete. Also, IR bit in the SiRIC register becomes 1 (interrupt request enabled).

4) When the lower byte in the UiRB register are read, the RI bit becomes 0 (no data held in the UiRB register). When dummy data is written in the UiTB register again, the MCU can receive data and output level at the RTSi pin becomes low.

Figure 3.1 shows an example of the receive connection, and Figure 3.2 the operation timing.
The following conditions should be met while an input level at the CLKi pin before receiving data is high:
- The TE bit in the UiC1 register = 1 (transmission enabled)
- The RE bit in the UiC1 register = 1 (reception enabled)
- A write of dummy data to the UiTB register

\[\begin{align*}
R32C/100 Series & \\
Serial Interface Operation (Receiving in Synchronous Serial Interface Mode) & \\
Figure 3.2 Receive Operation Timing & \\
\end{align*} \]
3.2 Setting

The following provides the setting procedure and values for 3.1 “Data Reception in Synchronous Serial Interface Mode”. Refer to the hardware manual for details of each register. The MCU switches to receive wait status by writing dummy data to the UARTi transmit buffer register after the UARTi (i = 0 to 6) initialization. In the sample program, the program detects that the interrupt request bit for the UARTi receive interrupt is 1 (interrupt request enabled) and stores the received data. Figure 3.3 shows the main process flowchart, and Figure 3.4 shows the UARTi initialization process flowchart and the register settings.

![Main Process Flowchart](image)

Note:
1. Refer to the hardware manual for details of the clock default settings.
2. Refer to the IR bit in the interrupt control register in Interrupts chapter in the hardware manual.

Figure 3.3 Main Process Flowchart (i = 0 to 6)
Figure 3.4 UARTi Initialization Process Flowchart (i = 0 to 6)

UARTi Initialization

1. UiMR ← 0x09
 UARTi transmit/receive mode register:
 Synchronous serial interface mode
 External clock

2. UiC0 ← 0x10
 UARTi transmit/receive control register 0:
 Count source: f1, CTS disabled, LSB first

3. UiC1 ← 0x00
 UARTi transmit/receive control register 1:
 Continuous receive mode disabled, data non-logic inverted

4. SiTIC ← 0x00
 Interrupt control register:
 Transmit interrupt request level: 0
 Receive interrupt request level: 0

5. P4_0S ← 0x03
 Output function select register: (1)
 RTS3 selected

6. PD4_0 ← 1
 Port direction register: (1)
 Output (RTS3), input (CLK3), input (RXD3)

7. UiC1 ← 0x05
 UARTi transmit/receive control register 1:
 Transmission and reception enabled

Initialization complete

Note:
1. These are the settings for using UART3.
3.3 Detailed Settings

(1) UART\textsubscript{i} Transmit/Receive Mode Register Setting (i = 0 to 6)

UART\textsubscript{i} Transmit/Receive Mode Register (UiMR)

\begin{tabular}{cccc}
\hline
b7 & b6 & b5 & b4 \\
\hline
0 & 0 & 0 & 1 \\
\hline
\end{tabular}

- SMD2 to SMD0: Serial Interface Mode Select Bit
 - 001b: Synchronous Serial Interface Mode
- CKDIR: Serial Interface Mode Select Bit
- Set to 0
- IOPOL: Internal/External Clock Select Bit
 - TXD, RXD Input/Output Polarity Switch Bit
 - 0: Non inverted

(2) UART\textsubscript{i} Transmit/Receive Control Register 0 Setting

UART\textsubscript{i} Transmit/Receive Control Register 0 (UiC0)

\begin{tabular}{cccc}
\hline
b7 & b6 & b5 & b4 \\
\hline
0 & 0 & 1 & 0 \\
\hline
\end{tabular}

- CLK1 to CLK0: UiBRG Count Source Select Bit
 - 00b: f_1
- TXEPT: Transmit Shift Register Empty Flag
 - 0: Data held in the transmit shift register (transmission in progress)
 - 1: No data held in transmit shift register (transmission completed)
- CRD: CTS Disable Bit
 - 1: CTS disabled
- NCH: Data Output Select Bit
 - 0: Pins TXDi/SDAi and SCLi are push-pull output
- CKPOL: CLK Polarity Select Bit
 - 0: Output transmit data on the falling edge of the transmit/receive clock and input receive data on the rising edge
- UFORM: Bit Order Select Bit
 - 0: LSB first

Continued on next page
(3) UARTi Transmit/Receive Control Register 1 Setting (i = 0 to 6)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>b7</td>
<td>Transmit Enable Bit</td>
<td>0</td>
</tr>
<tr>
<td>b0</td>
<td>Transmit Buffer Empty Flag</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Receive Enable Bit (RE)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Receive Complete Flag</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>UARTi Transmit Interrupt Source Select (UIIRS)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>UARTi Continuous Receive Mode Enable (UIRRM)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Logical Inversion Select Bit (UILCH)</td>
<td>0</td>
</tr>
</tbody>
</table>

(4) Interrupt Control Register Setting

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interrupt Request Level Select Bit (ILVL2 to ILVL0)</td>
<td>000b: Level 0 (Interrupt disabled)</td>
</tr>
<tr>
<td></td>
<td>Interrupt Request Bit (IR)</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page
Continued from previous page

(5) Function Select Register Setting

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Port P4_0 Function Select Register (P4_0S)

PSEL2 to PSEL0 Port P4_0 Output Function Select Bit
01b: RTS3 output

These are the settings for using UART3.

(6) Port Direction Register Setting

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Port P4 Direction Register (PD4)

PD4_0 Port P4_0 Direction Bit
1: Output port

PD4_1 Port P4_1 Direction Bit
0: Input port

PD4_2 Port P4_2 Direction Bit
0: Input port

These are the settings for using UART3.

(7) UARTi Transmit/Receive Control Register 1 Setting (i = 0 to 6)

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

UARTi Transmit/Receive Control Register 1 (UIC1)

TE Transmit Enable Bit
1: Transmission enabled

RE Receive Enable Bit
1: Reception enabled

These are the settings for using UART3.
(8) Transmitted Dummy Data Write

UART\textsubscript{i} Transmit Buffer Register (UiTB) \((i = 0\text{ to } 6)\)

Data transmitted Set dummy data

Interrupt Request Bit Confirm and Interrupt Control Register Setting

UART\textsubscript{i} Receive Interrupt Control Register (SiRIC)

ILVL2 to ILVL0 Interrupt Request Level Select Bit
000b: Level 0 (interrupt disabled)

IR Interrupt Request Bit
0: No interrupt requested
1: Interrupt requested

(9) Received Data Read and Error Check

UART\textsubscript{i} Receive Buffer Register (UiRB) \((i = 0\text{ to } 6)\)

Data(D7 to D0) received

Data (D8) received

ABT Arbitration Lost Detection Flag
0: Not detected (win)
1: Detected (lose)

OER Overrun Error Flag
0: No overrun error occurred
1: Overrun error occurred

FER Framing Error Flag
0: No framing error occurred
1: Framing error occurred

PER Parity Error Flag
0: No parity error occurred
1: Parity error occurred

SUM Error Sum Flag
0: No error occurred
1: Error occurred
4. **Sample Programs**

Sample programs can be downloaded from the Renesas Technology website. To download, click "Application Notes" in the left-hand side menu of the R32C/100 Family page.

5. **Reference Documents**

Hardware Manual
R32C/111 Group Hardware Manual Rev.1.10
The latest version can be downloaded from the Renesas Technology website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Technology website.

C compiler manual
R32C/100 Family C compiler package V.1.02 C compiler user manual Rev.1.00
The latest version can be downloaded from the Renesas Technology website.
Website and Support

Renesas Technology Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

<table>
<thead>
<tr>
<th>REV.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Feb 15, 2010</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.