To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersibles; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
1. **Abstract**

This document describes an example of the setting procedure for transmitting in the asynchronous serial interface mode (UART mode) using an arbitrary bit rate and data format.

2. **Introduction**

The application example described in this document applies to the following MCU:

- MCU: R32C/111 Group

This program can be used with other R32C/100 Series MCUs which have the same special function registers (SFRs) as the R32C/111 Group. Check the manual for any additions or modifications to functions. Careful evaluation is recommended before using this application note.

3. **Application Example**

This section describes how to transmit data at a bit rate of 9600bps (Xin = 16 MHz, PLL clock = 100 MHz and actual bit rate = 9586bps) using asynchronous serial interface mode. Table 3.1 lists specifications of asynchronous serial interface mode.

| Table 3.1 Setting Conditions for Receiving Data Using Asynchronous Serial Interface Mode |
|---|-----------------|
| Item | Setting |
| Bit rate | 9600bps |
| Character length | 8 bit-length |
| Parity | Odd |
| Stop bit length | 1 bit-length |
| Transmit/receive clock | Internal clock |
| Receive control | RTS |
| Bit order | LSB first |
The following is the formula for calculating the actual bit rate.

\[
\text{Actual bit rate} = \frac{\text{UiBRG register } (i = 0 \text{ to } 6) \text{ count source}}{16 \times (\text{UiBRG register value } + 1)}
\]

Table 3.2 lists examples of bit rate settings.

Table 3.2 Bit Rate Setting Examples

<table>
<thead>
<tr>
<th>Target Bit Rate (bps)</th>
<th>Count Source of UiBRG</th>
<th>PLL Clock: 96 MHz</th>
<th>PLL Clock: 100 MHz</th>
<th>PLL Clock: 120 MHz</th>
<th>PLL Clock: 128 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Setting value of UiBRG</td>
<td>Actual bit rate (bps)</td>
<td>Setting value of UiBRG</td>
<td>Actual bit rate (bps)</td>
<td>Setting value of UiBRG</td>
</tr>
<tr>
<td>1200</td>
<td>f8</td>
<td>155(9Bh)</td>
<td>1202</td>
<td>162(A2h)</td>
<td>1198</td>
</tr>
<tr>
<td>2400</td>
<td>f8</td>
<td>77(4Dh)</td>
<td>2404</td>
<td>80(50h)</td>
<td>2411</td>
</tr>
<tr>
<td>4800</td>
<td>f8</td>
<td>38(26h)</td>
<td>4808</td>
<td>40(28h)</td>
<td>4764</td>
</tr>
<tr>
<td>9600</td>
<td>f1</td>
<td>155(9Bh)</td>
<td>9615</td>
<td>162(A2h)</td>
<td>9586</td>
</tr>
<tr>
<td>14400</td>
<td>f1</td>
<td>103(67h)</td>
<td>14423</td>
<td>108(6Ch)</td>
<td>14335</td>
</tr>
<tr>
<td>19200</td>
<td>f1</td>
<td>77(4Dh)</td>
<td>19231</td>
<td>80(50h)</td>
<td>19290</td>
</tr>
<tr>
<td>28800</td>
<td>f1</td>
<td>51(33h)</td>
<td>28846</td>
<td>53(35h)</td>
<td>28935</td>
</tr>
<tr>
<td>31250</td>
<td>f1</td>
<td>47(2Fh)</td>
<td>31250</td>
<td>49(31h)</td>
<td>31250</td>
</tr>
<tr>
<td>38400</td>
<td>f1</td>
<td>38(26h)</td>
<td>38462</td>
<td>40(28h)</td>
<td>38109</td>
</tr>
<tr>
<td>51200</td>
<td>f1</td>
<td>28(1Ch)</td>
<td>51724</td>
<td>30(1Eh)</td>
<td>50403</td>
</tr>
</tbody>
</table>

In this application note, the RTS output is used for receive control. To output the RTS in the R32C/111 Group, set the direction bits and the function select registers for the RTS pin.

Table 3.3 lists the RTS Pin, Port Direction Bit and Function Select Register Settings.

Table 3.3 RTS Pin, Port Direction Bit and Function Select Register Settings

<table>
<thead>
<tr>
<th>Channel</th>
<th>Port</th>
<th>Port Direction Bit</th>
<th>Setting Value</th>
<th>Function Select Register</th>
<th>Setting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTS0</td>
<td>P6_0</td>
<td>PD6_0</td>
<td>1</td>
<td>P6_0S</td>
<td>03h</td>
</tr>
<tr>
<td>RTS1</td>
<td>P6_4</td>
<td>PD6_4</td>
<td>1</td>
<td>P6_4S</td>
<td>03h</td>
</tr>
<tr>
<td>RTS2</td>
<td>P7_3</td>
<td>PD7_3</td>
<td>1</td>
<td>P7_3S</td>
<td>03h</td>
</tr>
<tr>
<td>RTS3</td>
<td>P4_0</td>
<td>PD4_0</td>
<td>1</td>
<td>P4_0S</td>
<td>03h</td>
</tr>
<tr>
<td>RTS4</td>
<td>P9_4 (1)</td>
<td>PD9_4 (1)</td>
<td>1</td>
<td>P9_4S (1)</td>
<td>03h</td>
</tr>
<tr>
<td>RTS5</td>
<td>P8_1</td>
<td>PD8_1</td>
<td>1</td>
<td>P8_1S</td>
<td>03h</td>
</tr>
<tr>
<td>RTS6</td>
<td>P4_4</td>
<td>PD4_4</td>
<td>1</td>
<td>P4_4S</td>
<td>03h</td>
</tr>
</tbody>
</table>

Notes:
1. N-channel open drain output.
2. Set the PRC2 bit in the PRCR register to 1 (write enabled) just before rewriting this register. Do not generate any interrupts or DMA transfers between setting the PRC2 bit to 1 and rewriting this register.
3.1 Data Reception in Asynchronous Serial Interface Mode

1) When setting the RE bit in the UiC1 register to 1 (write enabled), the MCU waits for data reception (i = 0 to 6). At the same time, the output level of the RTSi pin becomes low, notifying the transmitting side that reception is enabled.

2) When the first bit of received data (start bit) is input to the RXDi pin, the output level of the RTSi pin becomes high. Then the remaining data is received bit by bit in the following order: data bit (LSB) through data bit (MSB), parity bit, and stop bit.

3) When the stop bit is received, the value in UARTi receive register is transferred to the UiRB register. At the same time, the RI bit in the UiC1 register becomes 1 (data held in the UiRB register), indicating the reception is completed. The IR bit in the SiRIC register becomes 1 (interrupt requested).

4) When reading the lower byte in the UiRB register, RI bit becomes 0 (no data held in the UiRB register). At the same time, the output level of the RTSi pin becomes low.

Figure 3.1 shows a Connection Example for Transmission, and Figure 3.2 shows the Transmit Operation Timing.
Figure 3.1 Connection Example for Transmission

Figure 3.2 Transmit Operation Timing
3.2 Settings

This section describes the procedure and values to execute the examples shown in section 3.1 “Data Reception in Asynchronous Serial Interface Mode”. For details on each register, refer to hardware manual. The MCU enters reception standby mode by initializing UART\(_i\) (\(i = 0\) to 6). The sample program detects that the interrupt request bit in the UART\(_i\) receive interrupt becomes 1 (interrupt requested) and stores the received data. Figure 3.3 shows the main Processing Flowchart (\(i = 0\) to 6) and Figure 3.4 shows the UART\(_i\) Initialization Process Flowchart (\(i = 0\) to 6).

![Flowchart](image)

Figure 3.3 main Processing Flowchart (\(i = 0\) to 6)

Notes:
1. Refer to the hardware manual for details of the clock initialization.
2. Refer to the IR bit in the interrupt control register in the Interrupts chapter in the hardware manual.
Figure 3.4 UART{i} Initialization Process Flowchart (i = 0 to 6)

1. These are the settings when using UART3.
3.3 Detailed Settings

Set UARTi Transmit/Receive Mode Register (i = 0 to 6)

UARTi Transmit/Receive Mode Register (UiMR)

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

SMOD2 to SMOD0 Serial Interface Mode Select Bit

101b: UART Mode, 8–bit Character Length

CKDIR Internal/External Clock Select Bit

0: Internal clock

STPS Stop Bit Length Selection Bit

0: 1 stop bit

PRY Odd/Even Parity Select Bit

0: Odd parity

PRYE Parity Enable Bit

1: Parity enabled

IOPOL TXD, RXD Input/Output Polarity Switch Bit

0: Non inverted

Set UARTi Transmit/Receive Control Register 0

UARTi Transmit/Receive Control Register 0 (UiC0)

<table>
<thead>
<tr>
<th>b7</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CLK1,CLK0 UiBRG Count Source Select Bit

00b: f1

TXEPT Transmit Shift Register Empty Flag

0: Data held in the transmit shift register (transmission in progress)
1: No data held in the transmit shift register (transmission completed)

CRD CTS Disable Bit

1: CTS disabled

NCH Data Output Select Bit

0: Pins TXDi/SDA and SCLi are push–pull output
1: Output transmit data on the falling edge of the transmit/receive clock and input receive data on the rising edge

CKPOL CLK Polarity Select Bit

The TXD2 pin is an N channel open drain output; it will not switch to push–pull output even if set to 0.

UFORM Bit Order Select Bit

0: LSB first

Do not set bits CK1 and CK0 to 11b.

Continued on next page
Set UARTi Bit Rate Register (i = 0 to 6)

UARTi Bit Rate Register (UiBRG)

The UiBRG register divides the count source by n+1 (n = setting value)
162: Divided by 163

Set UARTi Transmit/Receive Control Register 1

UARTi Transmit/Receive Control Register 1 (UiC1)

- **TE** Transmit Enable Bit
 - 0: Transmission disabled
- **TI** Transmit Buffer Empty Flag
 - 0: Data held in UiTB register
 - 1: No data held in UiTB register
- **RE** Receive Enable Bit
 - 0: Reception disabled
- **RI** Receive Complete Flag
 - 0: No data held in UiRB register
 - 1: Data held in UiRB register
- **UiIRS** UARTi Transmit Interrupt Source Selection Bit
 - 0: UiTB register is empty (TI = 1)
- **UiRRM** UARTi Continuous Receive Mode Enable Bit
 - 0: Continuous receive mode disabled
- **UiLCH** Logical Inversion Select Bit
 - 0: Data non logic-inverted

Set to 0
Set the interrupt control register (i = 0 to 6).

UARTi Transmit Interrupt Control Register (SiTIC)

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **ILVL2 to ILVL0**: Interrupt Request Level Select Bits
- **IR**: Interrupt Request Flag
 - 000b: Level 0 (Interrupt disabled)
 - 0: No interrupt requested

UARTi Receive Interrupt Control Register (SiRIC)

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **ILVL2 to ILVL0**: Interrupt Request Level Select Bits
- **IR**: Interrupt Request Flag
 - 000b: Level 0 (Interrupt disabled)
 - 0: No interrupt requested

Continued from previous page

Set the function select register.

Port P4_0 Function Select Register (P4_0S)

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **PSEL2 to PSEL0**: Port P4_0 Output Function Select Bits
 - 011b: RTS3 output

Setting when UART3 is used.

Set the port direction register.

Port P4 Direction Register (PD4)

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **PD4_0**: Port P4_0 Direction Bit
 - 1: Output
- **PD4_2**: Port P4_2 Direction Bit
 - 0: Input

Setting when UART3 is used.

Continued on next page
Continued from previous page

Set the UARTi transmit/receive control register 1 (i = 0 to 6).

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

UARTi Transmit/Receive Control Register 1 (UIC1)

- **TE** (Transmit Enable Bit)
 - 0: Transmission disabled
- **RE** (Receive Enable Bit)
 - 1: Reception enabled

Read the interrupt request bit and set the interrupt control register.

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

UARTi Receive Interrupt Control Register (SiRIC)

- **ILVL2 to ILVL0** (Interrupt Request Level Select Bits)
 - 000b: Level 0 (interrupt disabled)
- **IR** (Interrupt Request Flag)
 - 0: No interrupt requested
 - 1: Interrupt requested

Read the receive data and check error.

<table>
<thead>
<tr>
<th>b15</th>
<th>b14</th>
<th>b13</th>
<th>b12</th>
<th>b11</th>
<th>b10</th>
<th>b9</th>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

UARTi Receive Buffer Register (UiRB)

- **Data Received (D7 to D0)**
- **Data Received (D8)**
- **ABT** (Arbitration Lost Detection Flag)
 - 0: Not detected (win)
 - 1: Detected (lose)
- **OER** (Overrun Error Flag)
 - 0: No overrun error occurred
 - 1: Overrun error occurred
- **FER** (Framing Error Flag)
 - 0: No framing error occurred
 - 1: Framing error occurred
- **PER** (Parity Error Flag)
 - 0: No parity error occurred
 - 1: Parity error occurred
- **SUM** (Error Sum Flag)
 - 0: No error occurred
 - 1: Error occurred
4. **Sample Programs**
 A sample program can be downloaded from the Renesas Technology website.

5. **Reference Documents**
 Hardware Manual
 R32C/111 Group Hardware Manual Rev.1.10
 The latest version can be downloaded from the Renesas Technology website.

 Technical Update/Technical News
 The latest information can be downloaded from the Renesas Technology website.

 C compiler manual
 R32C/100 Family C compiler package V.1.02 C compiler user manual Rev.1.00
 The latest version can be downloaded from the Renesas Technology website.
Website and Support

Renesas Technology Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

<table>
<thead>
<tr>
<th>REVISION HISTORY</th>
<th>R32C/100 Series Serial Interface Operation (Receiving in Asynchronous Serial Interface Mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev.</td>
<td>Date</td>
</tr>
<tr>
<td>1.00</td>
<td>Mar 12, 2010</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:

 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.