To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RENESANS

Application Note

Safety Features of
NEC Electronics Microcontrollers

Document no. U18270EU1VOANOO
©July 2006. NEC Electronics America, Inc.
All rights reserved.

Safety Features of NEC Electronics Microcontrollers NEC

The information in this document is current as of July 2006. The information is subject to change without notice. For
actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-
date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please
check with an NEC sales representative for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
liability arising from the use of such NEC Electronics products. No license, express, implied or otherwise, is granted
under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative purposes
in semiconductor product operation and application examples. The incorporation of these circuits, software and
information in the design of customer's equipment shall be done under the full responsibility of customer. NEC
Electronics no responsibility for any losses incurred by customers or third parties arising from the use of these circuits,
software and information.

While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of
damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers
must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure
features.

NEC Electronics products are classified into the following three quality grades: “Standard”, “Special” and “Specific”.

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated
“quality assurance program” for a specific application. The recommended applications of NEC Electronics product
depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics
product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and
visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special”: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems,
anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support
systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is “Standard” unless otherwise expressly specified in NEC Electronics
data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC
Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics 's
willingness to support a given application.

Notes:
1. "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
2. "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics
(as defined above).

MB8E 02.10

Safety Features of NEC Electronics Microcontrollers

NEC

Safety Features of NEC Electronics Microcontrollers NEC

Revision History

Date Revision Section Description

July 2006 — — First release

Safety Features of NEC Electronics Microcontrollers NEC

Contents:
1 Safety Features of NEC MICrOCONTIOIIEISccoiviiiiiiiiiiiiceeee e 9
1.1 Overview Of SAfety FEATUIEScociiiiiiii e 9
I R T TSP PSS PR PP TRPR 9
1.1.2 Power-On-Clear (POC) RESELcccviviiieiieierienie e stesesteseeeete e sie e sresre e esaesaenseseeseesseans 10
1.1.3 LOW-VOIage DELECE (LV1) cueiiiie ettt 12
114 Watchdog TIMEr (WDT) ...ecuiiiiieiiiieiieiesie ettt ettt ettt sb e et sn e e b sne e 13
1.2 Program Description and SPeCifiCation..........ccccciviiieiieiiiiie e 15
1.3 SOftWAIE FIOW ChartS......coiiiciie ettt sttt ettt sbe e 16
1.3.1 Program Startup and INItialization...........cccoeeiiir i 17
1.3.2 WDT_Init() — Watchdog Timer Initialization, Option Byte 0080H and 0081H Settings...... 18
1.3.3 TMOO_Init() — Timer 00 Initialization for 1 Millisecond Periodic Interruptcccveue.e. 19
1.3.4 TMHL Init() — Timer H1 Initialization for 10 Millisecond Periodic Interrupt 20
1.3.5 LVI_Init() - Low-Voltage Detection Initializationc.cccoviveieniie s 22
1.3.6 Main() — The Main Program — Safety Features Demonstration...............ccocvevververereresnnnenn 24
1.3.7 LVI_Reset 239() — Set LVI for Reset at VDD Below 2.39V ... vivvviiciesccc e 26
1.3.8 LVI_Reset 393() — Set LVI for Reset at VDD Below 3.93V ..., 28
1.3.9 LVI_Int_239() — Set LVI for Interrupt at VDD Below 2.39Vccoeoiiiviiiiiiiieneeiens 29
1.3.10 LVI_Int_393() — Set LVI for Interrupt at VDD Below 3.93Vccoeiiiiiiiiiiiciicneeiens 31
1.3.11 EXLVI_Reset() — Set LVI for Reset on EXLVI Low Voltage.........coccovvireiininniencncienennns 32
1.3.12 EXLVLInt() — Set LVI for Interrupt on EXLVI LOW VOItagecccooeiireiicieniie e 33
1.3.13 WDT_Demo() — Demonstrate Watchdog Timer OVerflow.............ccccooo i 34
1.3.14 MD_INTTMHL1 — Timer H1 Interrupt Service ROULINEcccoiiiiiiiiiiiiice e 36
1.3.15 MD_INTTMO000 — Timer 00 Interrupt Service ROULINEcccccievieiire e 36
1.3.16 MD_INTLVI = LVI Interrupt SErvice ROULINEccccvieiieiieiieie e 37
1.4 APPLIE'S REFEIENCE DIVc.iiiiiiiiiee ettt ettt sb e et bbb 37
1.4.1 Configuring Applilet for Watchdog Timer (WDT) ...cccoooviveieiiiee e 38
1.4.2 Configuring Applilet for Power-On Clear (POC).......cccoviviieiiereiese e 38
1.4.3 Configuring Applilet for Low-Voltage Detector (LVI).....ccoevvvieieneiieiiceeeee e 39
1.44 Configuring Applilet for Timer TMOO for 1 Millisecond Interval Interruptccocccvvvenes 40
145 Configuring Applilet for Timer TMH1 for 10 Millisecond Interval Interrupt............ccccoe.e. 41
1.4.6 Generating Code With Applilet, Selecting Optional FUNCIONS............ccoeiiiiieicic e 42
1.4.7 Applilet-Generated Files and Functions for Watchdog Timer (WDT) and POC 44
1.4.8 Applilet-Generated Files and Functions for Low-Voltage Detector (LVI)cccccceoiviiinnne 45
1.4.9 Applilet-Generated Files and Functions for TM0O0 and TMHL...........ccccoviviviiiincnc e, 47
1.4.10 Applilet-Generated Files and Functions for Port Initialization.............c.cccccoveievciicsnennn, 49
1.4.11 Other Applilet-Generated Files ..o e 50
1.4.12 Demonstration Program Files Not Generated by Applilet.........ccccovvvviv i, 50
1.5 Demonstration PIAtFOFM..... ...ttt neesae s 50
L1501 RESOUITES ...veeeeeeieite ettt ettt ettt bbbttt h bbbt e e e b bt e Rt bt b e b e e e en et 50
152 Demonstration Of PrOGIAMccoiiriiiiiieiierieiesie ettt sne e 51
1.5.3 Demonstration Using M-Station VDD Selection Instead of Potentiometercccceeeee. 55
1.6 Hardware BIOCK DIAgIramcccoviiiiiiiiie it ie e sa et te e te e e aesaeste e saestasnseneeseebestesnenes 57
1.7 SOFEWAIE IMOTUIES ..ottt b e et b ettt b ettt b ettt sb e et esbe st ebe b e 58
2 AppendixX A - DeVvelopmMENT TOOIS.......ciiiiiiiiieieie bbb 60
2 A 1o 111V = oo SRS 60

2.2 [0 1YY L =T 010 -SSR 60

Safety Features of NEC Electronics Microcontrollers NEC

3 AppPendix B — SOftWAIE LISTINGSveiieeiie e e et e st e e sne e e e ee e nneenns 61
K T R |V - 11 o Y oSO RS 61
K I \V - Tt oo | 1Y <] i o OSSOSO 65
K T T V1) (-1 o 1 o TS 67
K B £5) (=1 o 11) oS 68
TR S 1 - o 1 oS 70
2T IR N o SRRSO 71
T RV X oSSR 72
38 LLVI_USEE.C ettt bbbk R R R R R bRt Rttt n e 74
KT TR o] o o [P ESSPRRR 75
K T O o] oSSR 77
K T0 R I 02 T=T o o [OOSR 78
K T I 01 T=] o oSSR 80
K T0 R T I 03 T=T U =T oo SRS 84
KT 7 VA oY ot g T [T |10 1T o o S 85
K TR T VA oY ot g T [T |10 1T o oSS 86
318 LA _0537.1 et b et b e bbbt b b n e na s 88
TN T 0 oSO R TSR 89
TN Y 0 8 o SO SRRTS PR 92
TN S 0 I oSSR 92
KT B @ o) 1 To] o 1 1 o [OOSR 94
K I R @ o) 1 [o] o =T 1 o OO ST SO U 95
KT @ o) o] o T = @ @i N o [T RSSO 96
I I @ o) o] o T =@ L @2 4K T o [SRS 97

Vi

Safety Features of NEC Microcontrollers NEC

1. Introduction

This document provides simple examples of how to use the peripherals included in NEC Electronics’
microcontroller devices.

This document includes:

¢ Description of peripheral features

¢ Example program descriptions and specifications
¢ Software flow charts

¢ Applilet reference drivers

¢ Descriptions of demonstration platforms

¢ Hardware block diagrams

¢ Software modules

The Applilet is a software tool that generates peripheral driver code. It affords a convenient means of
generating code for quick evaluation.

Reference the device user manual and other related documents for further details.

Safety Features of NEC Electronics Microcontrollers NEC

1.1 Overview of Safety Features

The safety features built into NEC Electronics’ microcontrollers enable you to start the system in reset
mode and restart from the reset condition. Other safety features apply to power supply problems and
software loops. For example, when the power supply voltage sags below a specified level, a low-voltage
detection circuit interrupts the system in order to save the system’s state. If the program goes into an
infinite loop, a watchdog timer resets the system. These features keep the system running in a safe
condition.

This application note shows how to use the following safety features:

¢ Reset by external reset pin
¢ Power-on-clear reset
¢ Low-voltage detector reset or interrupt

¢ Watchdog-timer reset

Safety Features of NEC Electronics Microcontrollers NEC

2. Safety Features of NEC Electronics Microcontrollers

This document provides a short overview of each safety feature in the NEC Electronics 78K0/Kx2 family
of devices.

2.1 Overview of Safety Features

2.1.1 Reset
The following hardware resources generate a reset signal:
External reset-input pin

Watchdog-timer overflow (internal)

Power-on-reset (internal)

* & & o

Low-voltage detection (internal)

There is no functional difference between an external and internal reset. In both cases, after asserting the
reset signal, the reset vector (locations 0000H-0001H) specifies where program execution starts. Reset also
sets /0 registers and port pins (except RESF) to default values.

Figure 1. Block Diagram for Reset

Internal Bus T
RESF
A
RESET Reset Signal
Input Pin to
LVIM/LVIS
EXLVI
. poC ——| Reset Circuit
<5
é LvVI — ——Reset Signal
E Watchdog
k3]
£

The reset operation sets the reset flag, which identifies the cause of the reset.

Table 1. RESF Status when Reset Request is Generated

Reset Source reset Input Reset by POC Reset by WDT Reset by LVI
Flag
WDTRF Cleared (0) Cleared (0) Set (1) Held
LVIRF Held Set (1)

Safety Features of NEC Electronics Microcontrollers NEC

Figure 2 shows the timing of the external-reset pin and internal-reset signal. The delay after asserting or
releasing avoids the possibility of repeated internal resets due to noise on the reset pin. Once the internal
reset releases, program execution starts using the internal high-speed internal-oscillator clock. After the
external X1 oscillator stabilizes, the system can switch to the CPU clock to use X1 as the system clock.

Figure 2. Timing of External-Reset Pin and Internal-Reset Signal

Wait for oscillation
accuracy
stabilization,

Internal High-speed
Oscillation Clock

High-speed System
Clock (X1) ‘ —
' esel

| Reset period . processing_i Normal operation
1 (oscillation stop) (20 us (TYP)): (internal high-speed oscillation clock)

Starting X1 oscillation is specified by software.
a g P! y

CPU Clock Normal operation

reset

Internal Reset Signal : \ /

: Delayi Delay’
' (5 us (TYP.)

. Hi-Z
Port Pins >‘ """""""""""""""""""""""

2.1.2 Power-On-Clear (POC) Reset

10

The power-on-clear function offers the following features:

¢ Holds the device in reset during power up, while VDD stabilizes

¢ Lets you select a value for the power-up (POC) voltage (1.59 or 2.7V, selected with the option byte)
¢ Resets the device if VDD falls to a level which may cause unstable operation

The power-on-clear generates an internal reset at the power-on of VDD. In the 1.59V mode, when the
power-supply voltage (VDD) exceeds 1.59 £0.5V the reset releases the internal reset. In the 2.7/1.59V

mode, the internal reset signal releases when VDD = 2.7 £0.2V. During system operation, if the power-on-
clear function detects a drop in VDD below 1.59V, it generates an internal reset.

Safety Features of NEC Electronics Microcontrollers NEC

Figure 3. Power-On-Clear Circuit

Vop

N :)0—— Internal reset signal

Reference
voltage
source

o

The power-on-clear circuit compares the supply voltage (VDD) and the detection voltage (Vpoc) and
generates an internal reset when VDD falls below Vpoc. The POC circuit releases the reset when VDD
rises above Vpoc.

Figure 4. 1.59V POC Mode Operation

Set LVI to be Set LVI to be Set LVI to be
used for reset used for interrupt| used for reset,

Supply voltage
(Vob)
1.8 yNoet

Veoc=1.59 V (TYP.) ---

Vims (MAX.)e2

ov |
| Wait for oscillation : !ézﬁrfgéyoscnlanon : ! Wait for oscillation
1 accuracy. ' stabilization H 1 accuracy
| stabilization : ! 1 stabilization
Internal high-speed
oscillation clock (frr)
" | Starting oscillation is H | Starting oscillation is } Starting oscillation is |
High-speed }speciflegd by software \‘ ' : specified by software., ! specified by software. '
system clock (fx+) ' ' | \
(when X1 oscillation ' ' |-| ' ' |-| . : |-|
is selected) . L . | . L
1 Wait for voltage Normal operation ~Resetpeod: Normal operation iResetpeiod; - Wait for voltage Normal operation |
. ; stabilization . . (internal high-speed : (osciltion ; . (internal high-speed ! (osclaon ©stabilization . (internal high-speed !
Operation +(3.24 ms (TYP.)): oscillation clock)'@e3: sop) i oscillation clock)“e3! sop) | (3.24ms (TYP.) | i oscillation clock)Mo3)
CPU stops T d] T 0 T - T T - +— Operation stops
Reset processing (20 us (TYP.)) ‘ fReset processing (20 us (TYP.))} : Reset processing (20 us (TYP.)) ‘

Internal reset signal I_

You can select Vpoc at power up. This value is stored in flash memory. For the 78K0/Kx2 family of
microcontrollers, location 0081H, bit 0 (POCMODE) specifies Vpoc. If POCMODE is 0, Vpoc is 1.59V; if
POCMODE is 1, Vpoc is 2.7V.

In either case, after power up, Vpoc is 1.59V. If VDD drops below this level, power-on clear asserts an
internal reset, holding it until VDD rises above 1.59V.

11

Safety Features of NEC Electronics Microcontrollers NEC

2.1.3 Low-Voltage Detect (LVI)

The low-voltage detect (LV1) function offers the following features:

¢ Selectable reset or interrupt operation for low-voltage condition

¢ Ability to check VDD or the voltage on an external input pin

¢ Selectable VDD from 16 voltage levels

The low-voltage detect circuit compares a voltage against an internal reference and generates an internal

interrupt or internal reset when the voltage falls below the reference value. The circuit can compare against
VDD, tapping off of a resistor divider to select a specific voltage. The low-voltage detect circuit also

supports an external input, EXLVI, generating an interrupt or reset when the voltage on this pin drops
below the reference voltage of 1.21V.

Figure 5.

EXLVI/P120/
INTPO

Low-voltage detection
level selector

1a

| LVIS3 | LvIS2 | LVISll L\/ISOl

]
5]
X
©
n

Low-Voltage Detector Block Diagram

N-ch |— .
— Internal reset signal

P

Selector

INTLVI

Low-voltage detection level
selection register (LVIS)

Reference
voltage
source

7%7- | LVION |LVISEL|L\/IMD | LVIF |

Low-voltage detection register
(LVIM)

Internal bus 2

Table 2. Registers Controlling Low-Voltage Detect

Registers Symbol Description of Functions

Sets low-voltage detection and operation mode
Low-voltage detection register LVIM Enable/disable low-voltage detection

Select internal or external input (EXLVI)

Set low-voltage operation mode and flag
Low-voltage detection level LVIS Selects low-voltage detection level
Selection register Selects up to 16 levels
Port-mode register PMx Sets port mode to input or output for EXLVI pin

To configure low-voltage detection when using reset mode:

¢ Setthe LVIMK bit in the MKOL register to mask the LVI interrupt.
¢ Clear the LVIIF interrupt flag in the IFOL register.
¢ Disable the LVI detector by clearing the LVION bit in the LVIM register.

12

Safety Features of NEC Electronics Microcontrollers NEC

¢ Select the VDD check or EXLVI check modes with the LVISEL bit in the LVIM register.
¢ Ifusing VDD check mode, set the voltage level in the LVIS register.

¢ Ifusing EXLVI check mode, use the appropriate PM register to set the EXLVI pin to input.
¢ Setthe LVIMD bit to 0 to temporarily select interrupt mode.

Turn on the LVION bit to enable the detector.

Wait a minimum of 10 microseconds for the detector to stabilize.

* & o

Set the LVIMD bit to 1 to select reset mode.

To configure low-voltage detection when using interrupt mode:

¢ Setthe LVIMK bit in the MKOL register to mask the LV1 interrupt.

¢ Clear the LVIIF interrupt flag in the IFOL register.

¢ Disable the LVI detector by clearing the LVION bit in the LVIM register.

¢ Select the VDD check or EXLVI check modes with the LVISEL bit in the LVIM register.
¢ If using VDD check mode, set the voltage level in the LVIS register.

¢ Ifusing EXLVI check mode, use the appropriate PM register to set the EXLVI pin to input.
¢ Set the LVIMD bit to 0 to select interrupt mode.

¢ Set the priority for the LVI interrupt using the PROL register.

¢ Turn on the LVION bit to enable the detector.

¢ Wait a minimum of 10 microseconds for the detector to stabilize.

¢ Clear the LVIMK bit to 0 to enable the LV interrupt.

2.1.4 Watchdog Timer (WDT)

The watchdog timer (WDT) offers the following features:

¢ Reset of the microcontroller in the event of runaway program loops

¢ Operation on internal oscillator, which functions even if the external clock fails
¢ Selectable clock frequency to control how often the timer must be cleared
Optional protection against stopping the internal oscillator

Protection against incorrect values written to clear the watchdog timer

Optional protection against clearing the watchdog timer at incorrect times (window open feature)

* & & o

Reset on fetch or read/write of illegal memory areas

The watchdog timer (WDT) operates on the internal low-speed-oscillation clock. When enabled and
running, the watchdog timer counter must be cleared periodically or the counter overflows and generates an

13

Safety Features of NEC Electronics Microcontrollers NEC

14

internal reset. A program clears the counter by writing a special value to the watchdog-timer enable register
(WDTE).

Figure 6. Watchdog Timer

CPU access

CPU access signal
error detector

WDCS2 to WDCSO0 of
option byte (0080H) i

2R tO Overfl
17 verflow
Clock 2" signal Reset

17:bit || selector [*9"5——~| output | Intemal reset signal

fRU2 ———=[" input counter controller

controller

Count clear Window size
signal determination
signal

WINDOW1 and WINDOWO

— CI t trol
of option byte (0080H) ear, reset contro

i

WDTON of option Watchdog timer enable
byte (0080H) register (WDTE)

)

2 Internal bus 2

The process used to start the timer works differently in the various NEC Electronics microcontrollers. For
some microcontrollers you write to a register, while others require you to set a value in flash memory. Once
the watchdog timer is running, you cannot disable it. This feature prevents a runaway program from
accidentally disabling the timer. You can also select a mode that prevents disabling the low-speed internal-
oscillator, thus preventing programs from stopping watchdog timer’s clock.

Your program must write a specific value to the WDTE register to clear the watchdog-timer counter; in the
case of the 78K0/Kx2 family, the value is OACH. Writing any other value to WDTE generates a reset,
preventing a program loop from writing to WDTE with the wrong value.

The watchdog-timer window-open period protects against a runaway program writing the correct value
(OACH) to the WDTE register, but doing it at the wrong time. If you set the window open period to 25%,
for instance, the program must write OACH to the WDTE register after 75% of the overflow time has
passed, but before the full overflow time. Using this feature requires correct program structure to ensure
that the program writes to the WDTE register at the proper time. You can, however, set the window-open
period to 100%, which allows the program to write to the register at any time.

In the 78K0/Kx2 NEC Electronics microcontroller family, you start the watchdog timer with a bit
contained in the option byte at 0080H. This option byte also selects the frequency of the watchdog-timer
counter and the window-open period.

Safety Features of NEC Electronics Microcontrollers NEC

2.2 Program Description and Specification

The hardware required to demonstrate microcontroller safety features includes an NEC Electronics
microcontroller connected to a reset switch, with other switches for input, a two-digit LED display for
output, and variable-voltage controls for VDD and EXLVI. This hardware demonstrates reset, power-on-
clear, low-voltage detect, and watchdog timer operation. The variable-voltage control for VDD uses the tap
of a potentiometer connected to the VDD power supply such that turning the potentiometer varies VDD
from 0 to 5V.

Figure 7. Demonstration Hardware

VDD

NEC Potentiometer

H To Demonstrate
Microcontroller Power-on-Clear and

VDD Low-Voltage

RST RESET

8-Bit Output Port

VDD
I
EXLVI Q
8-Bit Output Port
GND

Input Port Pin

Potentiometer

LED-1 LED-2 Input Port Pin To Demonstrate
EXLVI Low-Voltage
SW2 SW3

On start up, the demonstration program reads the RESF register and displays the value in the LED display.
This value indicates the cause of the previous reset.

To demonstrate external reset, ground the reset input by pressing the RST switch.

To show power-on-clear, adjust the potentiometer to reduce VDD below Vpoc. When power is applied, the
device remains in reset, and the LED display remains blank, because it is not driven. Adjusting the
potentiometer to raise VDD brings the microcontroller out of reset when VDD exceeds Vpoc. The display
then shows the RESF flag value; this value will be 00 for a power-on-clear reset. Reducing VDD causes a
power-on-clear when VDD falls below 1.59V. This event blanks the LED display. Turning VDD back
above 1.59V releases the power-on-clear reset and displays the RESF value of 00.

15

Safety Features of NEC Electronics Microcontrollers NEC

2.3

16

To demonstrate the low-voltage detect (LV1) operation, use the same potentiometer. Once the display
shows the RESF value, you can select one of several tests by pressing SW2. Then press SW3 to execute
that test. To show how the microcontroller checks VDD, the program sets one of two VDD voltage levels,
and sets the L V1 for either reset or interrupt. Reducing VDD with the potentiometer then causes a reset
(blanking the display) or an interrupt (displaying “L1”") when the voltage falls below the VDD set point.
Raising VDD clears the reset and displays the RESF flag, indicating LV as the cause of the reset.

Demonstrating EXLVI requires that you connect a separate potentiometer between VDD and GND, with its
tap connected to the EXLVI input. To run the demonstration, select an EXLVI input for reset or interrupt
mode. Then reducing the EXLVI input below 1.21V (EXLVI threshold) causes a reset (blanking the
display) or an interrupt (displaying “LI"). Raising the EXLVI voltage clears the reset and shows the RESF
flag, indicating LV as the cause of the reset.

To demonstrate the watchdog timer, the program sets a timer to periodically interrupt and clear the
watchdog timer before the timer’s counter overflows. To start this routine, select the watchdog-timer demo.
The LED then displays a blinking value; the speed of blinking and the value shown represent the interrupt
frequency. Repeated presses on SW3 increase the interval between interrupts. The display increments the
value and slows the blinking rate. When the interval exceeds the watchdog timer’s overflow time, the
watchdog timer resets the program. The RESF value displayed indicates a watchdog-timer reset.

Specifications:

¢ POC voltage is set to 1.59V mode. The option to use 2.7/1.59V mode is also given.

¢ LVlisinitialized to interrupt when VDD falls below 3.93V.

¢ The demonstration illustrates LVI reset and interrupt operation.

¢ Youcansetan LVI VDD of 3.93 or 2.39V.

¢ The watchdog timer overflows in 68 milliseconds and has a 100% window-open period.

¢ Timer H1 provides periodic interrupts to clear the watchdog timer, with a variable interval.

¢ Timer 00 debounces input switches, considering them stable after 10 milliseconds.

Software Flow Charts

The demonstration program consists of:

¢ Initialization code for the program, called before the main() program starts
¢ The main program loop, which displays reset flags, checks switch status, and runs tests
¢ Subroutines to demonstrate LVI, EXLVI, and watchdog timer (WDT) features

¢ Subroutines generated by the Applilet to handle Timer 00 and Timer H1 starting, stopping and
changing

Safety Features of NEC Electronics Microcontrollers

NEC

¢

Subroutines generated by the Applilet for starting, stopping and changing LVI conditions
Subroutines generated by the Applilet for watchdog timer clearing

Subroutines for handling timer and LV interrupts (Applilet-generated stub interrupt service routines,

with user code added)

Subroutines for switch input and LED-display output

The flowcharts describe the initialization, the main program, demonstration subroutines, and timer and LVI

interrupt-service routines. The Appendix provides full listings.

2.3.1 Program Startup and Initialization

For 78K0 programs written in the C language, an object code file such as sOl.rel, linked into the user

program, provides the startup code. This startup code calls a function named hdwinit(); you can place

hardware initialization code here.

When the Applilet generates a C program for the 78K0, the tool adds the hdwinit() function to the user
program, which calls the function Systemlnit(). The SystemlInit() function in turn calls initialization

routines for each peripheral.

When the hdwinit() function completes, the startup code calls main(). Thus, the program initializes all

Figure 8. System Startup and Initialization

RESET
SOxx.rel

CALL hdwinit() hdwinit()

A 4

DI()
CALL Systemlnit()

EI()

A

Other Start-up Code <

A 4

Systeminit()

CALL xxx_Init()

CALL WDT_Init()
CALL TNOO_Init()
CALL TMHZ1_Init()
CALL LVI_Init()

[elele [©

CALL main() —>@

peripherals before main() starts.

17

Safety Features of NEC Electronics Microcontrollers NEC

2.3.2 WDT_Init() — Watchdog-Timer Initialization, Option Byte 0080H and 0081H Settings

18

Figure 9. Initializing Watchdog Timer

Option Byte (0080H) = 0x78

OPT.7=0

OPT.6-5 =11 (Window1-0) 100% Open
OPT.4=1 (WDTON) Enable after Reset
OPT.3-1=100 (WDCS2-0) 68.26 m-Sec. Overflow
OPT.0=0 (LSROSC) Can Be Stopped by Software

POC81 Byte (0081H) = 0x00
POC81.0 =1 (POCMODE) 2.7V/1.59V POC Mode

Systemlnit() calls WDT _Init() as part of the hardware initialization process. This routine contains only a
return.

In the NEC Electronics microcontroller used for this demonstration, an option byte controls the initial
settings and startup for the watchdog timer. This option byte is located in flash memory at location 0080H.
In some NEC Electronics microcontrollers, however, a register controls those settings, and for those
microcontrollers the Applilet puts the code to control the register in the WDT _Init() routine.

Bit 4 of the option byte, WDTON, controls whether the watchdog timer runs initially or only after releasing
the reset. For this demonstration, the routine sets this bit to 1, allowing the timer to run.

Bits 6 and 5, WINDOW1 and WINDOWQO, control the window-open time. The routine sets both of these
bits to 1, for a 100% window-open time, removing any restrictions on when the program can write to the
watchdog-timer register to clear it.

Bits 3, 2, and 1, WDCS2 through WDCSO, control the watchdog-timer overflow time. These bits select a
different number of counts of the low-speed internal-oscillator for overflow. The routine sets these bits to a
value of 100, which selects a clock division of 16,384/fz.. Typically, the internal low-speed oscillator runs
at 240 kHz, giving a watchdog-timer overflow time of 16,384/240,000 seconds, or 68.27 milliseconds.
Once you release the reset, the program must write OXAC to the watchdog-timer register, WDTE, within
this 68.27-millisecond period or the microcontroller resets.

Bit 0, LSROSC, controls whether software can stop the internal low-speed oscillator. Setting the bit to 0
allows the program to stop the oscillator. The program stops the oscillator by setting the LSRSTOP bit in
the RCM register. This bit prevents the watchdog timer from counting, even when the microcontroller is in
HALT or STOP modes, regardless of whether the internal low-speed oscillator is stopped or not. Setting
the LSROSC bhit to 1 allows the internal low-speed oscillator to keep running, even if the LSRSTOP bit is

Safety Features of NEC Electronics Microcontrollers NEC

set. You can use this setting to ensure that the watchdog timer always runs. The demonstration program sets
LSROSC to 0, allowing the program to stop the internal low-speed oscillator.

The POC option byte, located at 0081H, controls the power-on clear behavior. Bit 0 of this byte,
POCMODE, controls the power-on clear operating mode. Setting this bit to 0 selects the 1.59V POC mode
so that the internal reset releases when VDD reaches 1.59V. Setting the bit to 1 selects the 2.7/1.59V mode;
on initial power-up the microcontroller does not release the internal reset until VDD reaches 2.7V. In either
mode, the microcontroller asserts an internal reset whenever VDD falls below 1.59V, releasing the interrupt
once VDD rises above this level. The demonstration uses the 1.59V mode.

2.3.3 TMOO_Init() — Timer 00 Initialization for 1-Millisecond Periodic Interrupt

Figure 10. Flowchart for 1-Millisecond Periodic Interrupt

Set TMCOO0 to 00 to disable Timer

Set PRMOO = 0x00 to Select
Count Clock = 8 MHz

Set PROH.6 = 1 (TMPRO000) for Low Priority Level
Set IFOH.6 = 0 (TMIF000) to Clear Interrupt Flag

ISet CRC00.0=0 (CRCO000) to have CR000 operate as Compare
Set CR000 = 0x1F3F for 1 msec. Interval

y

Return

Systemlnit() calls the TMO0O_Init() routine to set the 16-bit Timer 00 (TMO0O) to its interval-timer mode and
to cause an interrupt every 1 millisecond. The demonstration program uses this interrupt to debounce
switches.

First TMOO_Init() disables the timer while changing register settings.

The routine sets the prescaler-mode register, PRMO0O, which controls the timer clock. The PRMO0O register
is set to 0x00, instructing Timer 00 to use fprs, the main peripheral clock, as its count clock. In this
demonstration, fprs Uses the 8-MHz internal high-speed oscillator as its source. Thus, the count register
(TMOO0) increments once every 1/8,000,000 seconds (0.125 microseconds).

19

Safety Features of NEC Electronics Microcontrollers NEC

TMOO_Init() sets the registers related to the INTTMOOQO interrupt to low priority and clears the interrupt
flag. The routine leaves the mask register controlling the timer-interrupt enable in its default disabled state.

NEC Electronics microcontroller interrupts default to low priority, although you can set them to high
priority. Within each of these priority classifications, each interrupt source has a priority relative to other
interrupts. In this case, INTTMOOO has a lower priority than either INTTMH1 (Timer H1 interrupt) or
INTLVI (low-voltage interrupt). The demonstration uses low priority for all interrupts, thus servicing
INTTMOOO after either INTTMHZ1 or INTLVI, if multiple interrupts occur simultaneously.

TMOO_Init() sets the CRCOO register to use CR0O00 as a compare register and provides a compare value of
Ox1F3F (7999 decimal). This value causes CR00O to match TMOQO every (7999 + 1) counts, which occurs
once every 8000 * 0.125 microseconds = 1,000 microseconds = 1 millisecond. The Applilet calculates the
compare value to provide the 1 millisecond interval.

2.3.4 TMH1_Init() — Timer H1 Initialization for 10-Millisecond Periodic Interrupt

20

Figure 11. Flowchart for 10-Millisecond Periodic Interrupt

TMHMD1.7 =0 (TMHE1) to Disable Timer

TMHMD1.6-4 = 101 (CKS12-10)

TMH1 Clock = fRL/128 = 1875 Hz
Clock Period = 533 usec

PROH.3 = 1 (TMPRH1) Set Low Priority
IFOH.3 = 0 (TMIFH1) Clear Interrupt Flag

TMHMD1.7,3,2 = 000

TMHMD.7 = 0 (TMHE1) Disable Timer
TMHMD1.3 = 0 (TMMD11)

TMHMD1.2 = 0 (TMMD10) for Interval Timer Mode

CMPO1 = 0x11 (17 Decimal)
for 18 *533 u-Sec = 9.6 msec

v

Return

Systemlnit() calls TMHZ1_Init() to set the 8-bit Timer H1 (TMHL1) for interval-timer operation with an
interval of about 10 milliseconds. This timer generates a periodic interrupt to reset the watchdog timer
before the timer overflows.

Safety Features of NEC Electronics Microcontrollers NEC

First TMHZ1_Init() disables the timer, setting the TMHE1 enable bit in the TMHMDZ1 register to 0, while
making other settings.

Bits 6, 5, and 4 of TMHMD1—the CKS12, CKS11, and CKS10 bits—control the clock source for TMH1.
TMHZ1_Init() sets these bits to 101 to select fr, /128. Since fr, is the internal low-speed oscillator, the clock
frequency is 240,000/128 or 1875 Hz. Each count takes about 533 microseconds.

Because the internal low-speed oscillator is the clock source for both the watchdog timer and TMH1,
variations in its frequency do not affect the relative rates of the two timers.

TMHL_Init() sets the TMPRH1 bit (PROL.3) to 1 to select low priority for the INTTMHL1 interrupt. The
routine also clears the TMIFHL interrupt flag (IFOL.3).

As described earlier, you can assign interrupts a high priority or let them default to low priority. In addition,
each interrupt source has a priority relative to the others. For example, INTTMH1 has a higher priority than
INTTMOOO (Timer 00 interrupt), but a lower priority than INTLVI (low-voltage interrupt). If you set the
interrupts within the same priority group, this order prevails. The demonstration uses all low-priority
interrupts, so the microcontroller services INTTMH1 before INTTMOOO, but after INTLVI, if multiple
interrupts occur simultaneously.

Bits 3 and 2 of TMHMD1 (the TMMD11 and TMMDZ10 bits) control the timer-operation mode.
TMHZ1_Init() sets these bits to 00 for interval-timer operation, which triggers the INTTMHL1 interrupt when
the TMH1 timer register matches the CMPO1 compare register.

The initialization routine sets the CMPO1 compare register to 0x11 (17 decimal). This setting results in an
INTTMHL1 interrupt every (17 + 1) * 533 microseconds = 9.6 milliseconds. Because the initialization
leaves the TMHEL enable bit at 0, the interrupt leaves timer TMH1 stopped. Calling TMHL1_Start() starts
the timer again.

21

Safety Features of NEC Electronics Microcontrollers NEC

2.3.5 LVIL Init() — Initializing Low-Voltage Detection

22

Figure 12. Flowchart for Initializing Low-Voltage Detection

@

LVION = 0 (LVIM.7) Disable LVI

LVISEL = 0 (LVIM.2) Detect VDD Voltage
LVIMD = 0 (LVIM.1) Interrupt Mode

LVIPR = 1 (PROL.0) Set Low Priority
LVIIF = 0 (IFOL.0) Clear Interrupt Flag

| LVIS = 0x02 Set Level at 3.93V |

| LVION = 1 Enable LVI |

| Delay 10+ usec |

[LVIMK = 0 (MKOL.0) Enable Interrupt]

!

Return

Systemlnit() calls LVI_Init() to set the operating mode of the low-voltage detection circuit, initially setting
the circuit to interrupt if VDD falls below 3.93V.

First, LVI_Init() clears the LVION bit (LVIM.7) to 0, disabling LVI operation while the routine changes
other settings.

LVISEL (LVIM.2) selects among voltage-comparison sources. The initialization program clears this bit to
0, which sets up a comparison of a particular tap of a VDD resistor divider with the reference voltage. The
LVIS register selects the specific tap. Setting the LVISEL bit to 1 compares the EXLVI pin voltage with
the 1.21V reference, triggering the detector if EXLVI falls below 1.21V. The demonstration program
changes LVISEL to show both VDD and EXLVI triggering.

LVIMD (LVIM.1) controls the LV operating mode. LVI_Init() clears LVIMD (LVIM.1) to 0. This setting
selects interrupt operation, so that the LV detector initiates the INTLVI interrupt. The program sets the
LVIMD bit to 1 for reset mode, so that the LVI trigger resets the microcontroller. The demonstration
program changes the setting of LVIMD to show both interrupt and reset modes.

Safety Features of NEC Electronics Microcontrollers NEC

LVI_Init() sets the LVIPR bit (PROL.0) to 1, selecting low priority, and clears the LVIIF interrupt flag
(IFOL.0).

As mentioned earlier, NEC Electronics microcontrollers allow you to assign either high or low (default)
priority to each interrupt. Within these priority groups, each interrupt source has a relative priority. INTLVI
has a higher priority than any other interrupt in its group. The demonstration uses low priority for all
interrupts, thus giving INTLVI precedence over any other interrupt.

During the servicing of an interrupt, the interrupt-service routine normally clears the master-interrupt
enable bit IE (PSW..7). However, this bit must be set for another interrupt (of a higher priority) to occur
during the current interrupt-service routine. Thus, in the demonstration program, the interrupt-service
routines for the lower-priority interrupts (INTTMOOO for Timer 00 and INTTMH1 for the Time H1) set the
IE bit to allow LVI interrupts to occur.

LVI_Init() sets the LVIS register to 0x02. This setting selects the 3.93V tap on the VDD resistor divider.

LVI_Init() sets the LVION bit (LVIM.7) to 1 to enable LV operation. Because the LVI takes up to 10
microseconds to stabilize, the routine delays a minimum of 10 microseconds after setting LVION. If this
delay takes longer than 69 milliseconds, the watchdog timer overflows, causing a reset. If there is the
potential for a delay longer than 69 milliseconds in your application, insert a call to WDT_Restart().

After the 10-microsecond delay, LVI_Init() normally enables the LV interrupt by clearing LVIMK
(MKOL.0) to 0. The demonstration program comments this instruction out to keep the LVI interrupt
disabled until it is enabled by one of the test routines.

23

Safety Features of NEC Electronics Microcontrollers

NEC

2.3.6 Main() — Main Program — Safety Features Demonstration

®

»

CALL TMH1_Start()
CALL WDT _Start()

»

Display " =" in Left LED
Display Test in Right LED

CALL led_init()

CALL sw_init()

CALL sw_set_debounce(10)
CALL TMOO_Start()

Wait for Switch Down

Display RESF in LEDs

Wait for Switch Down, then Up

Test = 1

24

Figure 13. Flowchart for Demonstrating Safety Features

Test = Test+1
If Test > 7, then Test=1
Display Test in Right LED

Wait for Switch Up
Display Test in Left LED
Blank Right LED

CALL (menultest-1]) ()

xcs

Wait for Switch Up

* 1=LVI_Reset 239()

2=LVI_Reset_393()
3=LVI_lint_239()
4=LVI_Int_393()
5=EXLVI_Reset()
6=EXLVI_Int()
7=WDT_Test()

Once the startup code completes hardware and software initialization, SystemlInit() calls the main()
routine. The main() routine calls TMHZ1_Start() to start the TMH1 timer and then calls WDT _Start() to

clear the watchdog-timer overflow counter.

After this point, periodic INTTMHL interrupts occur every 9.6 milliseconds. The MD_INTTMHZ1()
interrupt-service routine calls WDT_Restart() to clear the watchdog-timer overflow counter. As long as the

INTTMHL1 interrupt occurs at this frequency, the watchdog timer does not reset the program.

In the case of the microcontroller used for the demonstration, the watchdog timer starts after reset by the
option byte, so WDT _Start() just writes OXAC to the WDTE register to clear the watchdog-timer
overflow—the same action performed by WDT_Restart(). In the case of microcontrollers with watchdog
timers whose start is register controlled, WDT _Start() actually starts the timer.

Note that the watchdog timer runs from the reset and is cleared for the first time when main() calls
WDT _Start(). If the program startup takes more than 68 milliseconds, then the timer resets the

Safety Features of NEC Electronics Microcontrollers NEC

microcontroller before the call to WDT_Restart(), and the program will never reach main(). If this is likely
to be the case in your application, modify the startup code to insert instructions that reset the watchdog
timer at strategic intervals. An alternative would be to stop the internal low-speed oscillator early in the
startup code (if this is allowed by the option byte) and restart the oscillator once main() is reached.

After setting up to clear the watchdog timer periodically, the program initializes the LED display and
switches, then sets the switch-debounce counter to 10 and calls TMOQO_Start() to start the TMOQO timer. The
TMOO timer now triggers an INTTMOOO interrupt every millisecond, causing the MD_INTTMO000()
interrupt-service routine to check whether the switches are debounced.

Main() reads the RESF reset-flag register and displays the value stored there on the LED display as a
hexadecimal number. The RESF register in the demonstration microcontroller uses two bits to indicate the
reset type.

If a watchdog-timer counter overflow occurs, or another operation causes the timer to assert reset (such as
writing a value to WDTE which is not 0XAC), the program sets RESF bit 4 (WDTRF), causing the LED
display to show 10.

If the LVI detector causes a reset due to VDD falling below the set threshold level (in the VDD check
mode), or a voltage on EXLVI falling below 1.21V (in the EXLVI check mode), the program sets RESF bit
0 (LVIRF) resulting in 01 on the LED display.

In the event of a low-going reset-input pin (indicating that you pushed the reset switch), or if the power-on-
clear circuit causes a reset, the program clears both of the above bits (so RESF will be 0x00), and the LED
display shows 00.

After displaying the RESF value, main() waits for you to press and release a switch. The main() routine
then sets the test variable to 1, and then enters a test-selection loop. The left digit of the LED display shows
“ =" and the right digit shows the current value of test. At startup, the display therefore shows “ =1".
Main() loops until you press a switch (INTTMO0O0O and INTTMHZ1 interrupts occur periodically).

Once main() detects a debounced switch value, the routine tests to see which switch has been pressed. SW2
causes the routine to increment the test variable, whose value wraps back to 1 if it exceeds 7. Holding SW2
down therefore causes the display to increment test continuously. The display shows “=1", “=2", “=3", up
to “=7” and then back to “=1".

If you press SW3, main() first waits for the switch to be up, then displays the value of test on the left LED,
blanks the right LED, and calls a subroutine. Main() gets the address of the subroutine from the menu[]
array, using test — 1 as an index into the array. So if test is 1, main() calls the subroutine whose address is
in menu[0] (in this case the LVI_Reset_239() routine).

25

Safety Features of NEC Electronics Microcontrollers NEC

This configuration allows you to run seven different tests. Table 3 shows the value of test, the LED display
when you press SW3, the menu-array function accessed, and a description of each test (function operation).

Table 3. Test Descriptions

Test LED menu[test - 1] Function Operation

1 “1” LVI_Reset_239() Set LVI to reset on VDD < 2.39V

2 "2 LVI_Reset_393() Set LVI to reset on VDD < 3.93V

3 “3” LVI_Int_239() Set LVI to interrupt on VDD < 2.39V

4 “4” LVI_int_393() Set LVI to interrupt on VDD < 3.93V

5 “5” EXLVI_Reset() Set LVI to reset on EXLVI < 1.21V

6 “6” EXLVI_Int() Set LVI to interrupt on EXLVI < 1.21V
7 “7” WDT_Demo() Show reset on WDT counter overflow

When the selected test returns, main() waits until all switches are open, and then goes to the top of the loop
to redisplay the equal sign and test number, and wait for the next switch closure.

2.3.7 LVI_Reset_239() — Set LVI for Reset at VDD Below 2.39V

Figure 14. Flowchart for LVI Reset at VDD Below 2.39V

Q

| CALL LVI_Stop() |

| LVISEL =0 (LVIM.2) for VDD Check |

| LVIMD =0 (LVIM.1) for Interrupt on LVI |

| CALL LVI_SetLVILevel(12) to Set 2.39V |

| CALL LVI_Start R() |

| LVIMD =1 (LVIM.1) for Reseton LVI |

| Wait for Switch Down, then Up |

'

Return

When you select Test =1, main() calls LVI_Reset_239(). This routine sets the LV unit to reset the
microcontroller if VDD falls below 2.39V. This setting changes the default LV behavior set in LVI_Init(),
or by other LVI test routines.

26

Safety Features of NEC Electronics Microcontrollers NEC

LVI_Reset 239() calls LVI_Stop() to clear the LVION bit to 0, disabling the LVI detector. LVI_Stop()
also sets LVIMK to 1 to disable the LVI interrupt.

LVI_Reset 239() sets the LVISEL bit (LVIM.2) to 0, selecting the LVI detector’s VDD-comparison mode.
LVI_Reset 239() sets the LVIMD bit (LVIM.1) to 0, temporarily selecting the interrupt mode. The routine
then calls LVI_SetLVILevel(12), which sets the LVIS register to 0xOC. This value sets the tap on the
VDD resistor divider to trigger the LVI detector if VDD falls below 2.39V.

The routine then calls LVI_Start_R(), which sets LVIMK, clears LVIIF, and sets LVION to 1 to enable the
LVI detector. The routine waits at least 10 microseconds, and then returns without clearing the LVIMK bit
to enable the interrupt. This routine is a modified version of LVI1_Start(), which sets up LV to operate in
reset mode. When LVI_Start_R() returns, the LV detector is stable.

LVI_Reset _239() sets the LVIMD bit (LVIM.1) to 1, selecting the LVI-detector reset mode. In this mode,
the setting of LVIMK has no effect on LVI operation. If VDD falls below the selected voltage, the low
voltage triggers an immediate reset.

If there is no reset (VDD is above the selected voltage), the test routine waits for a switch to be pressed and
released before returning to the main() program.

A reset occurs if you reduce VDD below the threshold while the routine is waiting for a switch (or later in
main() when in this same LVI mode).

On reset, the program restarts, reinitializing the LV detector in interrupt mode (generating an interrupt
when VDD falls below 3.93V). The LED display shows 01 as the contents of the reset flag register RESF,
indicating that the LV detector caused the reset.

27

Safety Features of NEC Electronics Microcontrollers NEC

2.3.8 LVI_Reset_393() — Set LVI for Reset at VDD Below 3.93V

28

Figure 15. Flowchart for Setting LVI to Reset at VDD Below 3.93V

7

| CALL LVI_Stop() |

| LVISEL =0 (LVIM.2) for VDD Check |

| LVIMD =0 (LVIM.1) for Interrupt on LVI |

| CALL LVI_SetLVILevel(2) to Set 3.93V |

| CALL LVI_Start_R() |

| LVIMD =1 (LVIM.1) for Reseton LVI |

| Wait for Switch Down, then Up |

'

Return

When Test =2, main() calls LVI_Reset_393(), which sets the LVI unit to reset the microcontroller if the
VDD voltage falls below 3.93V. This setting changes the default LVI behavior set in LVI_Init() or by other
LV1 test routines.

LVI_Reset_393() calls LVI_Stop() to clear the LVION bit to 0, disabling the LVI detector, and to set
LVIMK to 1 to disable the LVI interrupt.

LVI_Reset_393() sets the LVISEL bit (LVIM.2) to 0, selecting the VDD-comparison mode. The routine
also sets the LVIMD bit (LVIM.1) to 0, temporarily selecting the LV detector’s interrupt mode.

The routine calls LVI_SetLVILevel(2), which sets the LVIS register to 0x02. This value sets the tap on
the VDD resistor divider to trigger the LV detector if VDD falls below 3.93V.

The routine then calls LVI_Start_R(), which sets LVIMK, clears LVIIF, sets LVION to 1 to enable the LVI
detector, waits at least 10 microseconds, and then returns without clearing the LVIMK bit to enable the
interrupt. This routine is a modified version of LVI_Start(), which sets the reset mode. When
LVI_Start R() returns, the LVI detector is stable.

Safety Features of NEC Electronics Microcontrollers

NEC

LVI_Reset _393() sets the LVIMD bit (LVIM.1) to 1, selecting LV detector reset mode. In reset mode, the
setting of LVIMK has no effect on LVI operation; LVI resets immediately if VDD falls below the selected

voltage.

If there is no reset (VDD remains above the selected voltage), the test routine waits for you to press and

release a switch before returning to the main() program.

A reset occurs if VDD drops below the threshold while the routine waits for a switch (or later in main() if

the LVI is operating in this mode).

On reset, the program restarts, reinitializing the LV detector to interrupt when VDD falls below 3.93V.
The LED display shows 01 as the contents of the reset-flag register RESF, indicating that the LV detector

caused the reset.

2.3.9 LVIL Int_239() — Set LVI for Interrupt at VDD Below 2.39V

Figure 16. Flowchart for Setting Interrupt When VDD Falls Below 2.39V

7

| CALL LVI_Stop() |

| LVISEL =0 (LVIM.2) for VDD Check |

| LVIMD =0 (LVI.1) for Interrupt on LVI |

| CALL LVI_SetLVILevel(2) to Set 2.93V |

| CALL LVI_Start() |

| Wait for Switch Down, then Up |

|

Return

When Test = 3, main() calls LVI_Int_239(). This routine sets the LVI to interrupt the microcontroller if
VDD falls below 2.39V. This setting changes the default LV behavior set in LVI_Init() or by other LVI

test routines.

29

Safety Features of NEC Electronics Microcontrollers NEC

30

LVI_Int_239() calls LVI_Stop() to clear the LVION bit to 0, disabling the LV detector, and to set LVIMK
to 1 to disable the LVI interrupt. The routine then clears the LVISEL bit (LVIM.2) to 0, selecting the LVI
detector’s VDD-comparison mode.

LVI_Int_239() sets the LVIMD bit (LVIM.1) to 0, selecting the interrupt mode.

The routine calls LVI_SetLVILevel(12), which sets the LVIS register to 0xOC. This value sets the tap on
the VDD resistor divider to trigger the LV detector if VDD falls below 2.39V.

The routine then calls LVI_Start(), which sets LVIMK, clears LVIIF, sets LVION to 1 (to enable the LVI
detector), waits at least 10 microseconds, and then clears the LVIMK bit to enable the interrupt.

If VDD is below the selected voltage, clearing the LVIMK flag immediately triggers an INTLVI interrupt.
If there is no INTLVI interrupt (VDD is above the selected voltage), the test routine waits for you to press
and release a switch before returning to the main() program.

An INTLVI interrupt occurs if VDD decreases below the threshold while the routine waits for a switch (or
later in main() if operating in this LVI mode).

On INTLVI, the MD_INTLVI() interrupt-service routine displays LI on the LEDs.

Safety Features of NEC Electronics Microcontrollers NEC

2.3.10 LVI_Int_393() — Set LVI for Interrupt at VDD Below 3.93V

Figure 17. Flowchart to Set LVI for Interrupt When VDD is Below 3.93V

?

| CALL LVI_Stop() |

| LVISEL =0 (LVIM.2) for VDD Check |

| LVIMD =0 (LVI.1) for Interrupt on LVI |

| CALL LVI_SetLVILevel(2) to Set 3.93V |

| CALL LVI_Start() |

| Wait for Switch Down, then Up |

'

Return

When Test=4, main() calls LVI_Int_393() to set the LVI unit to interrupt the microcontroller if VDD falls
below 3.93V. Although this LVI behavior is the default set by LVI_Init(), other test routines might have
changed this setting.

LVI_Int_393() calls LVI_Stop() to clear the LVION bit to 0, disabling the LV1 detector, and to set LVIMK
to 1 to disable the LVI interrupt.

The routine clears the LVISEL bit (LVIM.2) to 0, selecting the LV1 detector’s VDD comparison mode. The
routine also sets the LVIMD bit (LVIM.1) to 0, selecting interrupt mode.

The routine calls LVI_SetLVILevel(2), which sets the LVIS register to 0x02. This value selects the tap on
the VDD resistor divider to trigger the LVI detector if VDD falls below 3.93V.

The routine then calls LVI_Start(), which sets LVIMK, clears LVIIF, sets LVION to 1 to enable the LVI
detector, waits at least 10 microseconds, and then clears the LVIMK bit to enable the interrupt.

If VDD is below the selected voltage, an INTLVI interrupt occurs immediately after clearing the LVIMK
flag.

31

Safety Features of NEC Electronics Microcontrollers NEC

If an INTLVI interrupt does not occur (VDD is above the selected voltage), the routine waits for you to
press and release a switch before returning to the main() program.

An INTLVI interrupt occurs if VDD drops below the threshold while the routine is waiting for a switch (or
later in main() if operating in the same LVI mode).

On INTLVI, the MD_INTLVI() interrupt-service routine executes, showing LI in the LED display.

2.3.11 EXLVI_Reset() — Set LVI for Reset on EXLVI Low Voltage

32

Figure 18. Flowchart for Rest on EXLVI Low Voltage

?

| CALL LVI_Stop() |

| LVISEL =1 (LVIM.2) to Clear EXLVI Input |

| LVIMD =0 (LVIM.1) for Interrupt on LVI |

| CALL LVI_Start R() |

| LVIMD =1 (LVIM.1) for Reseton LVI |

| Wait for Switch Down, then Up |

'

Return

When Test=5, the main() routine calls EXLVI_Reset() to configure the LVI unit to reset the
microcontroller if the EXLVI input voltage falls below 1.21V. This setting changes the default LVI
behavior set in LVI_Init() or by other LVI test routines.

EXLVI_Reset() calls LVI_Stop() to clear the LVION bit to 0, disabling the LVI detector, and to set
LVIMK to 1, disabling the LVI interrupt.

EXLVI_Reset() sets the LVISEL bit (LVIM.2) to 1, selecting the EXLVI comparison mode, and sets the
LVIMD bit (LVIM.1) to 0, temporarily selecting the interrupt mode.

The routine then calls LVI_Start_R(), which sets LVIMK, clears LVIIF, sets LVION to 1 to enable the LVI
detector, waits at least 10 microseconds, and then returns without clearing the LVIMK bit to enable the

Safety Features of NEC Electronics Microcontrollers NEC

interrupt. This modified version of LVI_Start() establishes the reset mode. When LVI_Start_R() returns,
the LVI detector is stable.

EXLVI_Reset() sets the LVIMD bit (LVIM.1) to 1, selecting the reset mode. In this mode, the setting of
LVIMK has no effect on LVI operation. If EXLVI falls below 1.21V, the low voltage immediately resets
the microcontroller.

If a reset does not occur (EXLVI is above 1.21V), the test routine waits for you to press and release a
switch, then returns to the main() program.

A reset occurs if EXLVI starts above 1.21V and decreases below this voltage while the routine is waiting
for a switch (or later in main() if in the same LVI mode).

On reset, the program restarts, reinitializing the LV detector to interrupt on VDD falling below 3.93V. The

LED display shows 01 as the contents of the reset flag register RESF, indicating that the LV detector
caused the reset.

2.3.12 EXLVIL Int() — Set LVI for Interrupt on EXLVI Low Voltage

Figure 19. Flowchart for Setting LVI to Interrupt on EXLVI Low Voltage

?

| CALL LVI_Stop() |

| LVISEL =1 (LVIM.2) to Clear EXLVI Input |

| LVIMD =0 (LVIM.1) for Interrupt on LVI |

| CALL LVI_Start() |

| Wait for Switch Down, then Up |

!

Return

When Test =6, main() calls EXLVI_Int() to set the LVI unit to interrupt the microcontroller if the EXLVI

input voltage falls below 1.21V. This setting changes the default LVI behavior set in LVI_Init() or by other

LVI test routines.

33

Safety Features of NEC Electronics Microcontrollers NEC

EXLVI_Int() calls LVI_Stop() to clear the LVION bit to 0, disabling the LV detector, and to set LVIMK
to 1, disabling the LVI interrupt.

EXLVI_Int() sets the LVISEL bit (LVIM.2) to 1, selecting the EXLVI comparison mode. The routine also
sets the LVIMD bit (LVIM.1) to 0, selecting interrupt mode.

The routine then calls LVI_Start(), which sets LVIMK, clears LVIIF, sets LVION to 1 to enable the LVI
detector, waits at least 10 microseconds, and then clears the LVIMK bit to enable the interrupt.

If EXLVI is below 1.21V, an INTLVI interrupt occurs immediately after clearing the LVIMK flag.

If an INTLVI interrupt does not occur (EXLVI is above 1.21V), the test routine waits for you to press and
release a switch before returning to the main() program.

An INTLVI interrupt occurs if EXLVI is above 1.21V and drops below this voltage while the routine is
waiting for a switch (or later in main() if in the same LVI mode).

On INTLVI, the MD_INTLVI() interrupt-service routine executes, showing LI in the LED display.

Figure 20. Demonstrating Watchdog-Timer Overflow

2.3.13 WDT_Demo() — Demonstrating Watchdog-Timer Overflow
Count = 1

reg[0] = Ox11

CALL TMH1_SetTimerCondition(®[0], 1)

»
P>

Yes

Switch Down?

Wait for Switch Up

g_tmh1_count Blank
bit 2 set? Right LED
No
Display Count in Right LED Return
Yes | Count= Count+1
reg[0] = reg[0] + Ox12
CALL TMH1_SetTimerCondition(reg[0])
A 4 A 4

34

Safety Features of NEC Electronics Microcontrollers NEC

When Test =7, main() calls WDT_Demo() to illustrate what happens when you do not clear the watchdog
timer before it overflows — in this case, within 68 milliseconds.

The routine sets the count variable to 1. The routine also sets the interval for Timer H1 to 0x11 by placing
this value in the reg[0] variable and calling TMHZ1_ChangeTimerCondition(). This change-timer-condition
routine sets the value of the CMPO1 register. When timer TMH1 counts up to the CMPO1 value, the timer
triggers an INTTMHL1 interrupt. The MD_INTTMHZL() interrupt-service routine calls WDT_Restart() to
clear the watchdog timer. TMH1 also clears when the match occurs.

With CMPOL1 set to 0x11 (17 decimal), the interval between TMH1 and CMP0O1 matches is 18 times the
TMH1 count-clock period. The count clock is 533.33 microseconds, so 18 * 533.33 = 9.6 milliseconds.
When the routine starts, it clears the watchdog timer every 9.6 milliseconds, so the timer does not overflow.
The MD_INTTMHZ1() interrupt-service routine increments the global variable g_tmh1_count every time
the INTTMHL interrupt occurs; this variable counts up at a frequency determined by the TMHL1 interval.

The WDT_Demo() routine then enters a loop and waits for you to press a switch. If the routine does not see
a switch pressed, the routine checks the global variable g_tmh1_count. Depending on the state of bit 2, the
routine either blanks the right digit or displays the count variable. Since the interrupt increments
g_tmh1_count, the right LED digit blinks at a rate proportional to the rate of INTTMH1 interrupts.

At the start of the WDT_Demo() routine, the left LED displays 7, as set by main(). Thus, when the
demonstration runs, you see 71 on the display, with the 1 blinking on and off rapidly.

If you press SW2, WDT_Demo() returns to main(). If you press SW3, count increments, 0x12 (18 decimal)
is added to reg[0], and WDT_Demo() calls TMH1_ChangeTimerCondition() to change the TMH1 interval
to the new value. Thus, every press of SW3 increases count (shown as 2, 3, 4, etc.) and changes the
interval for TMH1 (count * 18 * 533.33 microseconds, or count * 9.6 milliseconds).

The increasing value of the TMH1 interval changes the time for clearing the watchdog timer. At first the
routine clears the timer every 9.6 milliseconds, then every 19.2 milliseconds, then every 28.8 milliseconds,
etc. As the values increase, the right LED digit blinks more and more slowly.

When count reaches 8, the value set in CMPO1 is 18 *8 = 144, and the TMHL1 interval is 8 * 9.6
milliseconds = 76.8 milliseconds. This value is longer than the watchdog-timer overflow time, so the
watchdog timer overflows.

When the timer overflows, it resets the microcontroller. The program restarts, showing the RESF value in
the display and setting RESF bit 4 (WDTRF), indicating that the reset was caused by the watchdog timer.
The display shows 10.

35

Safety Features of NEC Electronics Microcontrollers NEC

2.3.14 MD_INTTMH1 — Timer H1 Interrupt-Service Routine

Figure 21. Timer H1 Interrupt-Service Routine

INTTMH1

0]

| CALL WDT_Restart() |

| g_tmh1_count = g_tmhl_count + 1 |

:

Return

When timer-count register TMH1 matches the compare register CMPO1 and asserts INTTMHL, the
MD_INTTMHZ1() interrupt-service routine is invoked. MD_INTTMH1() calls WDT_Restart() to clear the
watchdog-timer counter and increments the global variable g_tmh1_count.

Note that an EI() instruction executes at the start of this routine to allow interrupts in the same priority
group and of higher priority to interrupt the microcontroller. In this case, the INTLVI interrupt can occur
during this interrupt-service routine.

2.3.15 MD_INTTMOO00 — Timer 00 Interrupt-Service Routine

36

Figure 22. Timer 00 Interrupt-Service Routine

INTTMO000

T

| CALL sw_isr() |

'

Return

When timer-count register TM0O matches the compare register CMPOQO, the timer asserts INTTMO00O,
which invokes the MD_INTTMOO0O() interrupt-service routine. This event occurs once every 1 millisecond.
The MD_INTTMOO00() routine calls sw_isr() to check and debounce the switches.

An EI() instruction executes at the start of this routine to allow interrupts in the same priority group and of
higher priority to interrupt the microcontroller. As a result, the INTLVI or INTTMHL interrupts can occur
during this interrupt-service routine.

Safety Features of NEC Electronics Microcontrollers NEC

2.3.16 MD_INTLVI—LVI Interrupt Service Routine
Figure 23. MD_INTLVI — LVI Interrupt Service Routine

INTLVI

| CALL LVI_Stop() |

Display “ L “in left LED
Display “ I “ in right LED

'

Return

The INTLVI interrupt invokes the MD_INTLVI() interrupt-service routine. This interrupt occurs if the
low-voltage detect circuit is set to interrupt mode (LVIMD=0) and either of two events occurs: if VDD falls
below the level set by the LVIS register (in VDD checking mode), or if EXLVI falls below 1.21V (in
EXLVI checking mode).

The MD_INTLVI() routine calls LVI_Stop() to disable the LVI detector and to display LI to indicate an
INTLVI interrupt.

2.4 Applilet's Reference Driver

NEC Electronics’ Applilet program generator automatically generates C or assembly-language source code
to manage peripherals for the NEC Electronics microcontroller devices. Please see the Appendix for the
version of the Applilet used.

The Applilet produces the program’s basic initialization code and main function, driver code for the
watchdog timer, LVI (low-voltage) detect, timers TMOO and TMH1, and 1/0 ports used for switch input
and LED-display output. After the Applilet produces the basic code, you can add code to customize the
program.

This section describes how to set up the Applilet to produce code for the watchdog timer, LVI1, and timers.

When you start the Applilet and select the target device, save your settings to a new project (.prx) file. The
Applilet displays a dialog box that lets you select the peripheral blocks you want to set up.

37

Safety Features of NEC Electronics Microcontrollers NEC

2.4.1 Configuring the Applilet for Watchdog Timer (WDT)

Selecting watchdog timer brings up the watchdog-timer configuration dialog.

Figure 24. Watchdog Timer Configuration Dialog Box

“~Watchdog Timer

—Mode
™ Unused

% lzed

— Clock selection
Cheerflony tirne(tns) i j

—WWindow opening
Windowr opening tirne | %) 100%,

Detall | Detaut | Hew | o |

Select Mode as Used to generate watchdog-timer code. Select the Overflow time (from the drop-down
menu) as 68 milliseconds, and the Window opening time for 100%.

Based on these selections, the Applilet generates the appropriate value for storage in the option byte at
0080H and generates routines to control the watchdog timer.

2.4.2 Configuring Applilet for Power-On Clear (POC)

The version of the Applilet used for this demonstration has no dialog to control power-on clear settings.
However, the Applilet does produce a value for the POC81 (0081H) location in files option.inc and
option.asm. You must edit these files to change the power-on clear settings.

38

Safety Features of NEC Electronics Microcontrollers

NEC

2.4.3 Configuring Applilet for Low-Voltage Detector (LVI)

Selecting Low-voltage detector brings up the LVI configuration dialog.

Figure 25. Setting Up LVI Operation

“~Low_¥oltage detector

—Dperation setting
= Tlnused

% Enghle detection operation

—Yoltage detection selection
% Power-voltage (VDD detect

" External voltage (EXLVI) detect

— Detection operation mode selection
% CGererate interrupt signal

Pronty Ilcuwest j
" Clenerate internal reset signal
- Detection level selection
Povwrer woltage detection lesel(W) IR R
External woltage detection level(V) 121 %
Detail | Default | Help | Info |

Select Enable detection operation to have the Applilet produce code for the LVI detector.

For the demonstration program, you must modify the default LV1 settings to demonstrate how the LVI
operates in different modes. Under Voltage-detection selection, select Power-voltage (VDD) detect to
initialize the LV detector to check VVDD. This selection controls the initial setting of the LVISEL bit.

Under Detection-operation mode selection select Generate interrupt signal to cause the LVI to generate
the INTLVI interrupt instead of a reset. This selection controls the initial setting of the LVIMD bit. Now

choose the lowest priority.

Because you chose to detect VDD, under Detection level selection you need to select a voltage; pick 3.91V
from the drop-down menu. This selection controls the initial value written to the LVIS register.

39

Safety Features of NEC Electronics Microcontrollers

NEC

2.4.4 Configuring Applilet for Timer TMOO for 1-Millisecond Interval Interrupt

Selecting Timer brings up a dialog of various timer blocks. Select Timer00 and click Interval timer.

Figure 26. The Applilet Timer-Selection Screen

s Timer
Tirer00 | Tirer01 | Tizers0| TirerSt| TireerHO | TiresrH1 |

— Timerdd functions
= TTrused

% Tnterval timer

' External event conrter

™ Sepuare weave outpt

" PPG output

" Oneshot pulse outpt

" Pulse width measureraent

Detail | Defautt | Hew | i | ok

Now clicking Detail brings up the Timer 00 detail dialog for interval-timer settings.

Figure 27. Detail Dialog Box for Interval-Timer Settings

> TMDO interval timer

—Count clock
& Euto " fprs
™ frsia © fprsi256
" TIOO0O falling edze " TI000 tiging edge
£~ TIOOO0 both edge Ext clack{EHz) |1':":'
—%alue scale
Walue scale - j
— Interval tirmer
[nterval value |1
—Interrupt setting
¥ TIOO and CRO0D valus match, generate a interrupt
Friority I]J:uwest j
Help | [nfio | 2k | Cancel |

40

Safety Features of NEC Electronics Microcontrollers NEC

This timer should generate an interrupt every 1 millisecond, so set Value scale to msec (milliseconds) and
Interval value to 1. Leave Count clock in Auto to have the Applilet select an appropriate setting for the
timer-clock selection register.

Check Interrupt setting to generate an interrupt when TMOO (the timer count register) and CR00O (the
timer compare register) match. Set Priority to lowest.

2.4.5 Configuring Applilet for Timer TMH1 for 10-Millisecond Interval Interrupt

On the timer-selection screen, choose TimerH1 and click Interval timer.

Figure 28. Configuring Applilet for TMH1

'--.-_'"-Timer
Tiraer00 | Tiraer01 | TimerS0| TimerS1| TimerHD TirwerH1

—Function
= TTrused

% Interval tirer
" Souare wave ortput

" Carmier generator
" PWIM output

Defaut | Hew | o | ok | cancer |

Now clicking Detail brings up the interval-timer detail dialog box.

41

Safety Features of NEC Electronics Microcontrollers NEC

Figure 29. Interval-Timer Detail Dialog Box

> TMH1 interval timer

—Count clock

" buto i fors

™ frsia fursi16

T fprsicd fprsi4096

e flil 28

—%alue scale

Value scale s j

— Interval tirmer

[nterval value |1|:|

—Interrupt setting

¥ TMHI and CWIP10 mateh, generate a interrupt

Priority I]J:uwest j
Help | [nfio | 2k | Cancel |

This timer should run on the same clock as the watchdog timer (the internal low-speed oscillator), so select
fr1/128 as the Count clock. Set Value scale to msec and the Interval timer value to 10 to generate an
interrupt about every 10 milliseconds. The Applilet calculates an appropriate setting for the CMPO1 timer
comparison register. (The actual value provides a 9.6 millisecond interval — the closest available value to
10.)

Check Interrupt setting to have the timer generate an interrupt when TMH1 (the timer-count register) and
CMPOL1 (the timer-compare register) match. (Note that the screen mistakenly shows the register as
“CMP10”.) Select the lowest priority for the interrupt.

2.4.6 Generating Code With Applilet, Selecting Optional Functions

42

Once you have set up the various dialog boxes, click Generate code. The Applilet shows the peripherals
and functions to be generated, and allows you to select a directory for the source code.

When you initialize the Applilet for a new project, you might select only some of the available functions.
The function tree at the left of the dialog shows which functions are available for each peripheral. A check
mark indicates a selected function; an “x” indicates a function not selected. You can change the options by
clicking on the mark.

For the watchdog timer, only WDT _Init() may be selected. For the demonstration program you must add
WDT_Start() and WDT_Restart().

Safety Features of NEC Electronics Microcontrollers NEC

For LVI, only LVI_Init() may be selected. For the demonstration program, you also select LVI1_Start(),
LVI_Stop(), and LVI_SetLVILevel().

Figure 30. Program Functions Available

Generatesourcecode ______H|
—Select peripherals and functions: —Select driver and directorny, ————
o Serial Al Semag =l

o — ® o AT acj
a— ¥ Timer ENEETDDISEE
o — ¥ WatchdogTirner EM-Stat:inn
.............. ¥ WDT Init) EAMOSITAN
.............. ¥ WDT _Start() -
.............. ¥ WDT Restart{)
WatchTirner
Buzzer
DU
LVI

e LY Init])
.............. ¥ LVI Start()

.............. ¥ LV Stop()

.............. ¥ LVI SetlLWILewell)
.............. ® LV Usger Init)

- Create folder

Expanid all Collapze all Select all Clear all Crererate Canecel

When you click Generate, the Applilet creates the code in several C-language source files (extension .c)
and header files (extension .h), and shows the list of files created in a dialog box.

To support the watchdog timer, the Applilet generates watchdogtimer.h, and watchdogtimer.c. The Applilet
also generates the assembly language files option.inc and option.asm, which define the option byte area in
flash memory.

To support the low-voltage detector, the Applilet generates Ivi.h, lvi.c and lvi_user.c.

43

Safety Features of NEC Electronics Microcontrollers NEC

To support TM0O and TMH1, the Applilet generates timer.h, timer.c and timer_user.c.
To support the 1/0 ports for switch input and LED display output, the Applilet generates port.h and port.c

The Applilet also generates several other files, including a main.c file with a blank main function.

2.4.7 Applilet-Generated Files and Functions for Watchdog Timer (WDT) and POC

44

The Applilet stores code generated for watchdog-timer support in the files watchdogtimer.h and
watchdogtimer.c. The Applilet stores the code controlling the option byte and the POC byte in the files
option.inc and option.asm

2.4.7.1 Watchdogtimer.h

The header file watchdogtimer.h contains declarations for the functions controlling the watchdog
timer.

2.4.7.2 Watchdogtimer.c

The source file watchdogtimer.c contains the following functions generated by the Applilet for the
watchdog timer:

void WDT _Init(void)
The WDT _Init() initializes the watchdog timer. Since the option byte at 0080H controls watchdog
timer settings, this function returns without any action.

void WDT_Start(void)

The WDT_Start() routine writes the value OXAC to the WDTE register to clear the watchdog-timer
overflow counter. This is the same code as WDT_Restart(), since the option byte already started
the watchdog timer. For a microcontroller with registers controlling watchdog timer starting, this
routine would actually start the watchdog timer.

void WDT _Restart(void)
The WDT _Restart() routine writes the value OXAC to the WDTE register to clear the watchdog-
timer overflow counter. Calling this routine throughout the program prevents overflow reset.

2.4.7.3 Option.inc

The source file option.inc is an assembly-language file included in option.asm. The file contains
EQU statements, which define the values placed in the option byte at 0080H, the POC81 byte at
0081H, and other locations.

Safety Features of NEC Electronics Microcontrollers NEC

For the demonstration program, edit the option.inc file to produce two different files:

¢ Option.inc, which has the POC byte set to 0x00 for the 1.59V mode
¢ Option_POC27.inc, with the POC81 byte changed to 0x01 to set the 2.7V/1.59V POC mode

2.4.7.4 Option.asm

The assembly-language source file option.asm contains DB (define byte) statements, which
allocate memory locations and assign values. The file also contains segment definition directives
which specify the location of the memory. This file allocates locations for the option byte at
0080H, the POCB81 byte at 0081H, and others, and assigns the values used in option.inc.

For the demonstration program, edit the option.asm file to produce two different files:

¢ Option.asm, which includes option.inc

¢ Option_POC27.asm, which includes the modified option_POC27.inc

2.4.8 Applilet-Generated Files and Functions for Low-Voltage Detector (LVI)

The files lvi.h, lvi.c, and Ivi_user.c contain the code to support LVI operation.

2.4.8.1 Lvi.h

The header file lvi.h contains declarations for the functions used to initialize, start, stop, and
configure the LVI detector.

You must add the declaration for the LV1_Start_R() routine to the Applilet-generated code.
2.4.8.2 Lvi.c
The source file lvi.c contains:

void LVI_Init(void)
The LVI_Init() routine initializes the LVI detector.

void LVI_Start(void)
The LVI_Start() routine starts the LVI detector operation for interrupt mode.

void LVI_Stop(void)
The LVI_Stop() routine clears the LVION bit to stop LVI detector operation, and sets the LVIMK
bit to disable the INTLVI interrupt.

45

Safety Features of NEC Electronics Microcontrollers NEC

46

MD_STATUS LVI_SetLVILevel(enum LVILevel level)

The LVI_SetLVILevel(level) routine writes the voltage level parameter value to the LVIS register,
to set the VDD detection voltage. Lvi.h defines symbolic values for the levels; LVILevell is 1,
LVILevel2 is 2, etc.

2.4.8.3 Lvi_user.c

The source file lvi_user.c contains stub functions for user code. These functions are empty when
generated, and you can add application-specific code.

__interrupt void MD_INTLVI(void)
This is the interrupt-service routine for the LVI-detector interrupt INTLVI, generated when the
detected voltage (either VDD or the EXLVI input-pin voltage) falls below the threshold.

The Applilet generates a blank interrupt-service routine. You add code to stop the LVI detector by
calling LVI_Stop() and code to display LI on the LED display to indicate an LV1 interrupt.

void LVI_Start_R(void)
The Applilet does not generate the LVI_Start R() routine. You modify the code in LVI_Start() to
demonstrate how to start the LVI unit in reset mode. Please see the section below.

2.4.8.4 Applilet Code for LVI Operation in Interrupt and Reset Mode

The code generated by the Applilet for LVI-detector operation is correct for the specified interrupt
mode. The sequence of operations in LVI_Init() is:

¢ LVION=0 Disable LVI unit.

¢ LVISEL=x Select VDD or EXLVI mode.

¢ LVIMD=0 Select interrupt mode.

¢ - Set interrupt priority; set LVIS for VDD level if using.

¢ LVION=1 Turn on LVI unit.

¢ (delay) Wait 10 microseconds minimum.

¢ LVIMK=0 Unmask the LVI interrupt.

LVI_Start() contains similar code; it masks the interrupt and clears the flag, sets LVION, delays,
and unmasks the interrupt.

However, for the version of the Applilet used, if the reset mode of operation is selected for LVI, the
LVI_Init() and LVI1_Start() code contains a minor error. Specifically, both routines set the LVION
bit immediately after setting the LVIMD bit to 1 (reset mode). This sequence could cause an
immediate reset at an inappropriate level while the LVI-detector voltage stabilizes. For correct

Safety Features of NEC Electronics Microcontrollers NEC

operation in the reset mode, first set the LVION bit, then delay 10 miscroseconds for the voltage to
stabilize before setting the LVIMD bit. The proper sequence of operations in LVI_Init() is:

LVION =0 Disable LVI unit.

LVISEL=x Select VDD or EXLVI mode.

LVIMD=0 Select interrupt mode temporarily.

Set interrupt priority; set LVIS for VDD level if using.
LVION=1 Turn on LVI unit.

* & & oo o

¢ (delay) Wait 10 microseconds minimum.
¢ LVIMD=1 Set reset mode.

If using the Applilet for LVI control in reset mode, please check for proper sequences in the
LVI_Init() and LVI1_Start() routines.

2.4.9 Applilet-Generated Files and Functions for TM0O and TMH1

The files timer.h, timer.c and timer_user.c contain code for TM00 and TMH1 support.

2.49.1 Timer.h

The header file timer.h contains declarations for the functions controlling the timers, and
definitions of values for timer initialization. The header file macrodriver.h, used for all Applilet-
generated code, also defines some data types and values, such as the MD_STATUS values returned
by some functions.

To make the global variable g_tmh1_count available to other routines, add an external declaration
of this variable to the Applilet-generated file.

2.49.2 Timer.c
The source file Timer.c contains the following functions:

void TMOO_Init(void)
The TMOO_Init() routine initializes Timer 00.

void TMOO_Start(void)
The TMOO_Start() routine starts Timer 00 operation, enabling the both the timer and interrupt
INTTMO000.

47

Safety Features of NEC Electronics Microcontrollers NEC

48

void TMO0O_Stop(void)
The TMOO_Stop() routine stops Timer 00 operation by disabling the timer and the timer interrupt.
The demonstration program does not use this routine.

MD_STATUS TMO00_ChangeTimerCondition(USHORT™ array_reg, USHORT array_num)
The TMO0O0_ChangeTimerCondition() function changes the value in the Timer 00 compare
registers, CR000 and CRO010, and therefore changes the interval for Timer 00.

The array_reg parameter points to an array of values to be put in one or the other of the compare
registers. The array_num parameter is either 1 (to select CR000) or 2 (to select both CR010 and
CRO000). The demonstration program does not use this routine.

void TMHL1_Init(void)
The TMHZ_Init() routine initializes the TMHL1.

void TMH1_Start(void)
The TMHZ1_Start() routine starts TMH1 operation — enabling the timer and the interrupt
INTTMH1.

void TMH1_Stop(void)
The TMHZ1_Stop() routine stops TM51 operation by disabling the timer and the interrupt. The
demonstration program does not use this routine.

MD_STATUS TMH1_ChangeTimerCondition(UCHAR™* array_reg, UCHAR array_num)
The TMH1_ChangeTimerCondition() function changes the value in the Timer H1 compare
registers, CMP0O1 and CMP11, and therefore changes the interval for Timer H1.

The array_reg parameter points to an array of values to be put in one or the other of the compare
registers. The array_num parameter is either 1 (to select CMPO01) or 2 (to select both CMPO01 and
CMP11).

2.4.9.3 Timer_user.c

The source file timer_user.c contains stub functions for user code. The Applilet generates empty
function, and you can add application-specific code.

__interrupt void MD_INTTMO000(void)

This is the interrupt-service routine for Timer 00 interrupt INTTMO00O, generated when TMOO and
CRO000 values match. Once started, the timer generates this interrupt once every 1 millisecond.

Safety Features of NEC Electronics Microcontrollers NEC

The Applilet generates this routine blank. To use the interval timer to debounce switches by
checking their value every millisecond, you add code to MD_INTTMO00() to call the sw_isr()
function.

__interrupt void MD_INTTMH1(void)

This is the interrupt-service routine for the Timer H1 interrupt INTTMHL1, generated when TMH1
and CMPO01 values match. After initial timer set up, the timer generates this interrupt once every
9.6 milliseconds.

The Applilet generates this routine blank. You add code to call WDT_Restart() to reset the
watchdog timer. You need to also add code to increment the global variable g_tmh1_count—this,
which the watchdog-timer demo subroutine uses to indicate the rate of INTTMH1 occurrences.

2.4.10 Applilet-Generated Files and Functions for Port Initialization

The files port.h and port.c contain the code generated for 1/0 port support.

2.4.10.1 Port.h

The header file port.h contains declarations for the PORT _Init() function used to initialize the ports
and definitions of values for initialization of port-output latches, port-mode registers, and port pull-
up registers. For example, to initialize port PO, you write values to PO, PMOQ, and PUO. The file
port.h defines these values.

To change the port initialization values, edit the definitions in port.h. Modifying the value of
PORT_PUO sets pull-up resistors on pins P04 and P05 for when they are not used as outputs in the
key-scan routine.

2.4.10.2 Port.c

The source file port.c contains the following function for port initialization:

void PORT _Init(void)
The PORT _Init() routine initializes all of the device I/O ports by setting the port-output latch, port-
mode register, and pull-up register for each of the ports. The file port.h defines the values.

49

Safety Features of NEC Electronics Microcontrollers

NEC

2.4.11 Other Applilet-Generated Files

For the demonstration program, the Applilet generates several other source files.

Table 4. Other Applilet-Generated Files

File Function

Macrodriver.h General header file for Applilet-generated programs
Systeminit.c Systemlnit() and hdwinit() functions for initialization
Main.c The main program function

System.h Clock-related definitions

System.c Clock_Init() function

2.4.12 Demonstration Program Files Not Generated by Applilet

The demonstration program includes the following files that the Applilet does not generate.

Table 5. Demonstration Program Files not generated by Applilet

File Function

Sw_0537.h Header file for push-button switch input

Sw_0537.c Code to read and debounce pushbutton switches
Led_0537.h Header file for seven-segment LED patterns and functions
Led_0537.c Code to display data in seven-segment LED displays

2.5 Demonstration Platform

The demonstration uses a development board from NEC Electronics. You may be able to duplicate the
same hardware using off-the-shelf components along with the NEC Electronics microcontroller of interest.

2.5.1 Resources

The program demonstration uses:

¢ M-78F0537 Micro-Board, with pPD78F0537 8-bit microcontroller mounted

¢ M-Station Il Evaluation System, using M-Station Il resources:

- RST switch to generate low-level reset

- 7-segment LED displays LED1 and LED2

— Pushbutton switches SW2 and SW3

- MH_009 standard M-Station-I1 potentiometer connected between VDD and GND

You need to add a wire from the MH_009 potentiometer’s tap to microcontroller pin P120/EXLVI
(J1_B.17). (The tap is already connected to uPD78F0537 analog input P20/ANIO.)

50

Safety Features of NEC Electronics Microcontrollers NEC

You also need to add a 100-ohm potentiometer between VDD_FLASH (JP1.1) and GND, with the tap
connected to VDD (JP1.2). This potentiometer allows you to vary VDD.

For details on the hardware listed above, please refer to the appropriate user manual, available from NEC
Electronics upon request.

Figure 31. Demonstration Platform

O O T ! @ @) | Inter-Brd Connector |<, -F--1 >| Inter-Brd Connector
PWR use| VDDVoltage 1 VDD VPP
| i 1
gi _’[:IE oy E E Tt [Reset Circuit
§(>S) PWR :O: 10 O O O, :O o O O:O [ON©] _ Push-Buttons
[Ty NEC |O|:OO OO: OO O 0000 g
. b o E E
o M-Station ol o | 2 CPU-1/O
% 4> UsB Rev-2.2 S b . :
<} [[! o Micro- o
I L ' E ! = Controller ;
' Prototype Area i ! CPU-1/0 ISignals E:Lj uPD78F0537 %
[L '
oy ' |
ol o i CPU-I/O —
ol b i 5 ~
P D : g g
Tl P ' T Main Clock s
28 1O 100 09000 & Sub-Clock o
[sa e\ 1 - a
> 02 _ 1010 o 001100 00000 o Modules g
Trim o S ool -
11 et 10 0 00!
1
8 @ b e 2
RST - O sw2| [sw3 Inter-Brd Connector |<, I ,I Inter-Brd Connector

M-78F0537 Micro-Board

2.5.2 Demonstration of Program

With the hardware configured and the uPD78F0397 microcontroller programmed with the demonstration
code, the demonstration includes the following sequences.

2.5.2.1 External reset Demonstration
¢ Apply VDD power above Vpoc threshold; observe “00” on LED display.
¢ Press either SW2 or SW3; see “=1" (selection of test).

¢ Press RST switch to assert reset; on release, see “00” on LED display.

2.5.2.2 Power-On Clear (POC) Demonstration

The demonstration program has two versions of this demonstration. One version uses the option.inc
and option.asm files, which set power-on clear to the 1.59V mode; on power-up, VVpoc is therefore
1.59V. The other version of the demonstration uses the option_POC27.inc and option_POC27.asm

51

Safety Features of NEC Electronics Microcontrollers NEC

52

files, which set the POC mode to the 2.7/1.59V mode; on power-up, Vpoc is 2.7V and afterwards
1.59V. The sequence for both versions is as follows:

¢ Apply VDD power below Vpoc threshold; observe a blank LED display.
¢ Raise VDD above Vpoc threshold; the LED display shows “00”.

¢ Press either SW2 or SW3; see “=1" in LED display.

¢ Lower VDD below 1.59V; LED goes blank (reset asserted).

¢ Raise VDD above 1.59V; LED display shows “00”.

2.5.2.3 Low-Voltage Detect (LVI) Demonstration

After pressing SW2 or SW3 and seeing “=1" displayed, press SW2 to step the display to “=2",
“=3”, through “=7" and back to “=1". These values represent seven tests; pressing SW3 executes a
test. When you press SW3, the left digit shows the test number, and the right digit is blank. Tests 1
through 6 are LVI tests, and Test 7 is the watchdog-timer demonstration:

Table 6. Demonstration’s Seven Tests
Test LED Test Function Function Operation
1 "1 LVI_Reset_239() Set LVI to reset on VDD < 2.39V
2 ‘2" LVI_Reset_393() Set LVI to reset on VDD < 3.93V
3 “3” LVI_Int_239() Set LVI to interrupt on VDD < 2.39V
4 “4” LVI_int_393() Set LVI to interrupt on VDD < 3.93V
5 “5” EXLVI_Reset() Set LVI to reset on EXLVI < 1.21V
6 “6” EXLVI_Int() Set LVI to interrupt on EXLVI < 1.21V
7 w7 WDT_Demo() Show reset on WDT counter overflow

Demonstrate LVI reset on VDD low voltage:

Apply VDD power above 3.93V.

Select test “=1" or “=2", press SW3; see “1” or “2 .
Reduce VDD below set voltage.

See LED display blank at appropriate voltage.

Raise VDD above set voltage.

* & & & oo o

See LED display show “01” indicating LVI caused reset.
Demonstrate LVI interrupt on VDD low voltage:
¢ Apply VDD power above 3.93V.

¢ Select test “=3" or “=4"; press SW3; see “3 " or “4 .

¢ Reduce VDD below set voltage.

Safety Features of NEC Electronics Microcontrollers NEC

¢ See LED display show “LI” at appropriate voltage.

¢ Press SW2 to return to test menu.

Demonstrate LVI reset on EXLVI low voltage:

¢ Apply VDD power.

¢ Set potentiometer for EXLVI above 1.21V.
Select test “=5"; press SW3; see “5”

Reduce EXLVI voltage below 1.21V.

See LED display blank at appropriate voltage.
Raise EXLVI voltage above 1.21V.

* & & oo o

See LED display show “01” indicating LVI caused reset.

Demonstrate LVI interrupt on EXLVI low voltage:

¢ Apply VDD power.

¢ Select test “=6"; press SW3; see “6 .

¢ Reduce EXLVI voltage below 1.21V.

¢ See LED display “LI” at appropriate voltage.
¢ Raise EXLVI voltage above 1.21V.

¢ Press SW2 to return to menu of tests.

2.5.2.4 Watchdog-Timer Demonstration

Initialization sets the watchdog timer to overflow after about 68 milliseconds. Initialization also
sets Timer H1 to interrupt every 9.6 milliseconds and the interrupt-service routine for Timer H1 to
clear the watchdog-timer counter. Use these steps to run the watchdog-timer demonstration:

¢ Select test “=7"; press SW3.

¢ See “71”, with right digit blinking rapidly.

At this point, Timer H1 interrupt INTTMH1 occurs once every 9.6 milliseconds.
¢ Press SWa3 repeatedly.

¢ See “72”, 73", etc., with right digit blinking more slowly.

Every press of SW3 adds another 9.6 milliseconds to the Timer H1 interval. A variable
incremented in the INTTMHL1 interrupt-service routine causes the blinking. As the interval
increases, INTTMH1 occurs less frequently, so the blinking slows.

53

Safety Features of NEC Electronics Microcontrollers NEC

The table below relates the number of times you press SW3 to Timer H1’s interval and the LED

display.

Table 7. Watchdog Timer Interrupt Intervals
SW3 Presses | Timer H1 Interval | LED Display
1 9.6 msec “71”, 1is blinking rapidly
2 19.2 msec “72”, 2 is blinking more slowly
3 28.8 msec “73”, 3 is blinking more slowly
4 38.4 msec “74”, 4 is blinking more slowly
5 48.0 msec “75”, 5 is blinking more slowly
6 57.6 msec “76”, 6 is blinking more slowly
7 67.2 msec “77”, 7 is blinking more slowly
8 76.8 msec “10”; Watchdog Timer has caused reset

When the interval for Timer H1 interrupt exceeds 68 milliseconds, the watchdog timer overflows,
causing a watchdog-timer reset. The program restarts and shows the value “10” for RESF, which
indicates that the watchdog timer caused the reset.

The reset reinitializes the system, so the Timer H1 interval is again 9.6 milliseconds.

54

Safety Features of NEC Electronics Microcontrollers NEC

2.5.3 Demonstration Using M-Station VDD Selection Instead of Potentiometer

The M-Station-11 offers selectable VDD levels, which you can use for a slightly limited version of this
demonstration. The VDD SET switch allows you to turn VDD off or on. When off, you can select VDD as
2.0,2.5,3.0,3.3,4.0,4.5, 0r 5.0V.

To demonstrate power-on-clear:

¢

* & & & oo o

Use the version of the demonstration program with POC mode 2.7/1.59V.
Turn VDD off by holding down the VDD SET switch for 5 seconds.

Set VDD selection to 2.5V.

Turn VDD on by holding down the VDD SET switch for 5 seconds.
Observe that the LED display is blank (VDD is below Vpoc threshold).
Turn VDD off.

Set VDD to 3.0V.

Turn VDD on.

Observe that the LED display is “00” (VDD is above Vpoc threshold).

Finally, reprogram the device with the version of the demonstration program that uses POC mode 1.59V.
Observe that the program runs for all values of VDD from 2.0 to 5.0V.

Note: When changing the value of the POC81 byte at location 0081H, you must erase the uPD78F0537
fully (chip mode erase). Partial erasure (using block mode programming) or self-flash-programming will
not change the value of the POC81 byte.

To demonstrate low-voltage detection:

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢

Turn VDD on at 5.0V.

Run tests =1, =2, =3, =4.

Observe no LVI occurs (display does not blank or show “LI”).

Turn VDD off, then on at 3.3V.

Run tests =1, =2, =3, =4.

Observe no LVI on tests =1 or =3 (VDD is above 2.39V).

Observe LED display blank on test =2 (VDD is below 3.93V, reset).
Observe LED display “LI” on test =4 (VDD is below 3.93V, interrupt).
Make sure demonstration program with POC mode 1.59V is programmed.
Turn VDD off, then on at 2.0V (display will be dim).

55

Safety Features of NEC Electronics Microcontrollers NEC

¢ Runtests =1, =2, =3, =4.
¢ Observe that the LED display blanks on tests =1 and =3 (VDD is below 2.39V, reset).
¢ Observe that the LED displays “LI” on tests =3 and =4 (VDD is below 2.39V, interrupt).

56

Safety Features of NEC Electronics Microcontrollers

NEC

2.6 Hardware Block Diagram

Figure 32. Hardware Block Diagram

I
VDE Q

VDD
GND
Potentiometer
uPD78F0537 To Demonstrate
Power-On-Clear and
VDD Low-Voltage
RST RESET
VDD
P40 - P43 |
P50 - P53
P120/EXLVI Q
P70 - P77
P20/ANIO |
P31 GND
P32 Potentiometer
LED-1 LED-2 To Demonstrate
EXLVI Low-Voltage
Sw2 SW3
Segments LED-1 LED-2
A A P40 P70
F I G I B B P41 P71
C P42 P72
E Cc
— D P43 P73
D DP
E P50 P74
LED-1 and LED-2
F P51 P75
G P52 P76
DP P53 P77

57

Safety Features of NEC Electronics Microcontrollers NEC

2.7 Software Modules

58

The following files make up the software modules for the demonstration program. The table shows the files
that the Applilet generated and which files require modification to create the demonstration program.

The listings for these files are in the Appendix.

Table 8. Software Modules

File Purpose Generated Modified
By Applilet By User
Main.c Main program Yes Yes
Macrodriver.h General definitions used by the Applilet Yes No
System.h Clock-related definitions Yes No
Systeminit.c Systemlnit() and hdwinit() functions Yes No
System.c Clock_Init() function Yes No
Lvi.h LVI-related definitions Yes Yeshore!
Lvi.c LVI functions Yes Yeghote!
Lvi_user.c User code for LVI interrupt handling Yes Yeshore!
Port.h Port-related definitions Yes No
Port.c Port_Init() function Yes No
Timer.h Timer-related definitions Yes Yeshore?
Timer.c Timer functions Yes No
Timer_user.c User code for timer interrupt handling Yes Yeghowe?
Watchdogtimer.h WDT-related definitions Yes No
Watchdogtimer.c WDT functions Yes No
Option.inc Option-byte, POC, and security definitions Yes No
Option.asm Option-byte, POC, and security data Yes No
Led_0537.h LED display definitions -- Yes
Led_0537.c LED display functions -- Yes
Sw_0537.h Switch input definitions - Yes
Sw_0537.c Switch input functions -- Yes

Note 1: You must modify Lvi.h to add the declaration for the LVI_Start_R() routine and Lvi.c to comment-
out the enabling of the LVI interrupt at the end of the LVI_Init() routine. Add code in Lvi_user.c to handle
the INTLVI interrupt in the MD_INTLVI() routine, and to add the LVI_Start_R() routine.

Note 2: Add the declaration of the global variable g_tmh1_count in Timer.h. Add code to Timer_user.c to
handle the INTTMOOO interrupt in the MD_INTTMO00() routine for debouncing switches, to handle the
INTTMHL1 interrupt in the MD_INTTMHZL() routine for clearing the watchdog timer, and to add the global
variable g_tmh1_count, used to track the rate of INTTMHL interrupts.

The files listed in the following table implement a version of the program that sets the power-on clear
function to 2.7V.

Safety Features of NEC Electronics Microcontrollers

NEC

Table 9. Files for Setting Power-On Clear Function to 2.7V

File Purpose Generated Modified
By Applilet By User

Option_POC27.inc Option-byte, POC, and security definitions Yes Yeshoe

Option_POC27.asm Option-byte, POC, and security data Yes Yeshor®

Note: Modify Option_POC27.inc from option.inc to change the POC81 value from 00H to 01H, setting the
POC mode to the 2.7V/1.59V mode. Modify Option_POC27.asm from option.asm to include the
option_POC27.inc file instead of option.inc. Other than these changes, the files remain as the Applilet

generated them.

59

Safety Features of NEC Electronics Microcontrollers NEC

3. Appendix A - Development Tools

This application uses the following software and hardware tools.

3.1 Software Tools

Table 10. Software Development Tools

Tool Version Comments

Applilet for 78KOKX2 V1.51 Source code generation tool for 78K0/KE2 devices
PM Plus V5.20 Project Manager for program compilation and linking
CC78K0 V3.60 C Compiler for NEC Electronics 78K0 devices
RAT78KO0 V3.70 Assembler for NEC Electronics 78K0 devices
DF053764.78K V2.00 Device file for uPD78F0537_64 device

3.2 Hardware Tools

Table 11. Hardware Development Tools

Tool Version Comments

M-Station 2 V2.1E Base platform for NEC Electronics Micro-board demonstration

M-78F0537 V1.0 NEC Electronics Micro-board for ypD78F0537; CPU chip is
UPD78F0537DGB

Modify the M-Station 2 by adding a potentiometer between JP1.1 (VDD_FLASH) and GND, with the tap
of the potentiometer connected to JP1.2 (VDE). This modification lets you vary VDD to the uPD78F0537
microcontroller.

Make a connection between J1_B.17 (M-Station signal J1_043, M-78F0537 signal P120/EXLVI) and
MH_009 (M-Station Potentiometer between VDD and GND). This connection lets you apply a variable
voltage to the EXLVI input.

60

Safety Features of NEC Electronics Microcontrollers NEC

4.

Appendix B — Software Listings

Note: Use the files option_POC27.inc and option_POC27.asm to build an alternate version of the
demonstration program with the power-on-clear function set in 2.7V/1.59V mode.

4.1 Main.c

/*

*x

*x

E R S e

This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
78K0/KD2, 78K0O/KE2 and 78KO/KF2 8-Bit Single-Chip Microcontrollers.

Copyright(C) NEC Electronics Corporation 2002 - 2005
All rights reserved by NEC Electronics Corporation.

This program should be used on your own responsibility.

NEC Electronics Corporation assumes no responsibility for any losses
incurred by customers or third parties arising from the use of this file.
Filename : main.c

Abstract : This file implements main function

APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

Device : uPD78F0537

Compiler: NEC/CC78KO

*/

#include "macrodriver.h"
#include "system.h"
#include "port.h"
#include "timer.h"
#include "watchdogtimer.h"
#include "lvi.h"

/*

add includes for non-Applilet functions */

#include "led_0537.h"
#include "sw_0537.h"

*/

#define TEST_MAX 7

/*

test function definitions */

void LVI_Reset_239(void); /* Set LVI for Reset on 2.39V */
void LVI_Reset_393(void); /* Set LVI for Reset on 3.93V */

61

Safety Features of NEC Electronics Microcontrollers NEC

void LVI_Int_239(void); /* Set LVI for Interupt at 2.39V */
void LVI_Int_393(void); /* Set LVI for Interupt at 3.93V */
void EXLVI_Reset(void); /* Set for EXLVI Reset at 1.51V */
void EXLVI_Int(void); /* Set for EXLVI Interrupt at 1.51V */
void WDT_Demo(void); /* Watchdog timer demo */

/* define PF_VF_RV as pointer to a function, void parameter, returning void */
typedef void (*PF_VF_RV)(void);

PF_VF_RV menu[TEST_MAX] = {
LVI_Reset_239,
LVI_Reset_393,
LVI_Int_239,
LVI_Int_393,
EXLVI_Reset,
EXLVI_Int,

WDT_Demo };

** Abstract:
kel main function

** Parameters:
*x None

** Returns:

kel None

*x

A L o o o e
*/

void main(void)

unsigned char resf val; /* value read from RESF */

unsigned char test; /* selection of test to run */

unsigned char sw_val; /* value of switches */

IMS = MEMORY_IMS_SET;
IXS = MEMORY_IXS SET;
/* TODO. add user code */

TMH1_Start();
WDT_Start();

led_init(); /* initialize LEDs */
sw_initQ; /* initialize switch variables */
sw_set_debounce(10); /* set debounce counter to 10 for 10 msec stable time */

TMOO_Start(); /7* start timer for switch debouncing */

resf_val = RESF; /* read reset flag register */

led_dig(resf_val); /* display the value */

while (SW_LU_RU == sw_get())
; /* wait for switch down */

while (SW_LU_RU = sw_get())

; /* wait for switch up */
test = 1; /* set initial test number */
while(1){
led_out_left(LED_PAT_EQUAL); /* display an equal sign */

62

Safety Features of NEC Electronics Microcontrollers

NEC

*/

pressed */

again */

led_dig_right(test);

while (SW_LU_RU == sw_get())

sw_val = sw_get(Q);

if (sw_val == SW_LD RU) {

/* display number of test to execute

/* wait for switch

/* get value of switch */

/* SW2 (left) is down, right (SW3) is up */

test = test + 1;
if (test > TEST_MAX)
test = 1;
led_dig_right(test);
}
if (sw_val == SW_LU_RD) {

/* SW2 up, SW3 down */
while (SW_LU_RU = sw_get())

led_dig_left(test);
led_out_right(LED_PAT_BLANK);

(menu[test-11D 0

T
while (SW_LU RU != sw_get())

} /* end of while (1) loop */
} /7* end of main() */

void LVI_Reset_239(void)

/* increment the test number */

/* wrap around if hit max */
/* update display right away */

/* wait for switch up

/* show test in left digit */
/* show blank in right digit */

/* execute function */

/* wait for switch up */

{
/* Set LVI for Reset on 2.39V */
LVI_Stop(Q); /* make sure we are stopped */
LVISEL = 0; /* select LVI checking VDD level as set by LVIS register */
LVIMD = O; /* set LVI mode to interrupt temporarily */
LVI_SetLVIiLevel (LVI_Levell2); /* set LVIS for level 12 (2.39V) */
LVI_Start_RQ); /* start the LVl detector without enabling interrupt */
LVIMD = 1; /* set mode to Reset on LVI */
/* wait for switch press and release before returning */
while (SW_LU RU == sw_get()) ;
while (SW_LU_RU = sw_get()) ;

}

void LVI_Reset_393(void)

{

/* Set LVI for Reset on 3.93V */

LVI_Stop(Q);
LVISEL = O;
LVIMD = O;
LVI_SetLVIiLevel (LVI_Level2);
LVI_Start_RQ);
LVIMD = 1;

/* wait for switch

while (SW_LU_RU == sw_get()) ;
while (SW_LU RU != sw_get()) ;

/* make sure we are stopped */

/* select LVI checking VDD level as set by LVIS register */
/* set LVI mode to interrupt temporarily */

/* set LVIS for level 2 (3.93V) */

/* start the LVI detector without enabling interrupt */

/* set mode to Reset on LVI */

press and release before returning */

63

Safety Features of NEC Electronics Microcontrollers

NEC

}

void LVI_Int_239(void)

{

/* Set LVI for Interupt at 2.39V */

LVI_Stop(Q);
LVISEL = O;
LVIMD = O;

LVI_SetLVILevel(LVI_Levell2);

/* make sure we are stopped */
/* select LVI checking VDD level as set by LVIS register */
/* set mode to give interrupt on LVI */

/* set LVIS for level 12 (2.39V) */

LVI_Start(); /* start LVl detector and enable the interrupt */

/* wait for switch
while (SW_LU_RU ==
while (SW_LU RU I=

void LVI_Int_393(void)

{

/* Set LVI for Interupt at 3.93V */

LVI_Stop(Q);
LVISEL = O;
LVIMD = O;

press and release before returning */

sw_get())
sw_get())

/* make sure we are stopped */
/* select LVI checking VDD level as set by LVIS register */
/* set mode to give interrupt on LVI */

LVI_SetLVILevel(LVI_Level2);
LVI_Start(); /* start LVI detector and enable the interrupt */

/* wait for switch
while (SW_LU RU ==
while (SW_LU RU 1=

void EXLVI_Reset(void)

{

/* Set for EXLVI Reset

LVI_Stop(Q);
LVISEL = 1;
LVIMD = O;
LVI_Start_RQ);
LVIMD = 1;

/* wait for switch
while (SW_LU RU ==
while (SW_LU RU 1I=

void EXLVI_Int(void)

{

64

/* Set for EXLVI Interrupt at 1.51V */

LVI_Stop(Q);
LVISEL = 1;
LVIMD = O;

/* wait for switch
while (SW_LU RU ==
while (SW_LU RU 1=

/* set LVIS for level 2 (3.93V) */

press and release before returning */

sw_get())
sw_get())

at 1.51v */

/* make sure we are stopped */

/* select LVI checking EXLVI

level

above 1.21V */

/* set LVI mode to interrupt temporarily */
/* start the LVI detector without enabling interrupt */
/* set mode to Reset on LVI */

press and release before returning */

sw_get())
sw_get())

/* make sure we are stopped */

/* select LVI checking EXLVI

level

above 1.21V */

/* set mode to give interrupt on LVI */
LVI_Start(); /* start LVI detector and enable the interrupt */

press and release before returning */

sw_get())
sw_get())

Safety Features of NEC Electronics Microcontrollers

NEC

void WDT_Demo(void)

{
UCHAR count;
UCHAR reg[2];
UCHAR sw_val;
/* Watchdog timer demo */
count = 1;
in timer */
reg[0] = TM_TMH1_INTERVALVALUE;
TMH1_ChangeTimerCondition(®[0],1);

while (1) {
while (SW_LU RU
/*

(sw_val =

/* number of timer increments

/* set TMH1 for one increment */

sw_get())) {

}

until switch down, blink count in right LED */
g_tmhl_count counting speed will decrease as */
timer count increases, and blinking will slow down */
(g_tmhl_count & 0x04)

led_out_right(LED_PAT_BLANK);

/*
/*
if

else
led_dig_right(count);

/* switch has been pressed */
while (SW_LU_RU = sw_get())

it (sw_val

; /* wait for switch up */
== SW_LU RD) {

/* 1T right switch pressed,
count = count + 1;

reg[0] = reg[0] + (TM_TMHL1_INTERVALVALUE + 1);
TMH1_ChangeTimerCondition(®[0],1);

/* now timer interval = (count) * (base interval) */

increment count, and add to interval */

}

it (sw_val SW_LD _RU) {
break; /* exit loop */

}
} /7* end of while (1) loop */

4.2 Macrodriver.h

/*

AEEAKXEEAE AL EAAEAAA KA AEA AKX A AKX A AKX AAEA AKX AAXA AL A AXAAAXAALAAXAXAAXAAAXAXAXAAXAAAXAALAAAXAAAXAALAAAXAAAXAX*X

*x
*x
*x
*x
*x

*x

incurred

macrodriver.h
This is the general header file

Filename
Abstract

This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
78K0/KD2, 78K0/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

Copyright(C) NEC Electronics Corporation 2002 - 2005
All rights reserved by NEC Electronics Corporation.

This program should be used on your own responsibility.
NEC Electronics Corporation assumes no responsibility for any losses
by customers or third parties arising from the use of this file.

65

Safety Features of NEC Electronics Microcontrollers

NEC

** APIlib: NEC78KOKX2.l1ib V1.01 [09 Aug. 2005]

*x

** Device :
**x

** Compiler: NEC/CC78KO

*x

uPD78F0537

*/
#ifndef _MDSTATUS_
#define _MDSTATUS

#pragma sfr
#pragma di
#pragma ei
#pragma NOP
#pragma HALT
#pragma STOP

/* data type defintion */

typedef unsigned long ULONG;

typedef unsigned int UINT;

typedef unsigned short USHORT ;

typedef unsigned char UCHAR;

typedef unsigned char BOOL;

#deFfine ON 1

#define OFF 0

#define TRUE 1

#deFfine FALSE O

#define IDLE O /* idle status */

/* read mode */
/* write mode */

#define READ 1
#define WRITE2

#define SET 1
#define CLEARO

#define MD_STATUS
#define MD_STATUSBASE

unsigned short
0x0

/* status list definition */
#define MD_OK

#define MD_reset

#define MD_SENDCOMPLETE
#define MD_OVF

MD_STATUSBASE+0x0
MD_STATUSBASE+0x1
MD_STATUSBASE+0x2
MD_STATUSBASE+0x3

/* error list definition */
#define MD_ERRORBASE
#define MD_ERROR

#define MD_RESOURCEERROR
#define MD_PARITYERROR
#define MD_OVERRUNERROR
#define MD_FRAMEERROR
#define MD_ARGERROR
#define MD_TIMINGERROR
#define MD_SETPROHIBITED
#define MD_DATAEXISTS

in TXBn register */
#define MD_SPT

#define MD_NACK

#define MD_SLAVE_SEND_END

0x80
MD_ERRORBASE+0x0
MD_ERRORBASE+0x1
MD_ERRORBASE+0x2
MD_ERRORBASE+0x3
MD_ERRORBASE+0x4
MD_ERRORBASE+0x5
MD_ERRORBASE+0x6
MD_ERRORBASE+0x7
MD_ERRORBASE+0x8

/* error */

MD_STATUSBASE+0x8
MD_STATUSBASE+0x9

66

/* register setting OK */
/* reset input */

/* send data complete */
/* timer count overflow */

/* no resource available */

/* UARTn parity error */

/* UARTn overrun error */

/* UARTn frame error */

/* Error agrument input error */

/* Error timing operation error */
/* setting prohibited */

/* Data to be transferred next exists

/*11C stop*/
/*11C no ACK*/
MD_STATUSBASE+0x10 /*11C slave send end*/

Safety Features of NEC Electronics Microcontrollers

NEC

#define MD_SLAVE _RCV_END MD_STATUSBASE+0x11 /*11C slave receive end*/
#define MD_MASTER_SEND_END MD_STATUSBASE+0x12 /*11C master send end*/
#define MD_MASTER_RCV_END MD_STATUSBASE+0x13 /*11C master receive end*/

/* main clock and subclock as clock source */
enum ClockMode { HiRingClock, SysClock };

/* the value for IMS and IXS */

#define MEMORY_IMS_SET 0OxCC

#define MEMORY_IXS_SET 0x00

/* clear 10 register bit and set 10 register bit */
#define CIr1ORBit(Reg, CIrBitMap) Reg &= ~ClrBitMap
#define SetlORBit(Reg, SetBitMap) Reg |= SetBitMap

enum INTLevel { Highest, Lowest };

#define SYSTEMCLOCK 8000000
#define SUBCLOCK 32768
#define MAINCLOCK 8000000
#define FRCLOCK 8000000
#define FRCLOCKLOW 240000
#endi

4.3 System.h

/*

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses

** fncurred by customers or third parties arising from the use of this file.

** Filename : system._h

** Abstract : This file implements device driver for SYSTEM module.
** API1lib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler : NEC/CC78KO

B e L R s e =

*/
#ifndef _MDSYSTEM_
#define “MDSYSTEM_
/*

67

Safety Features of NEC Electronics Microcontrollers NEC

*/

#define CG_X1STAB_SEL 0x5
#define CG_X1STAB_STAOx1f
#define CG_CPU_CLOCKSEL 0x0

enum CPUClock { SystemClock, Sys Half, Sys_Quarter, Sys OneEighth, Sys_OneSixteen,
Sys_SubClock };

enum PSLevel { PS_STOP, PS_HALT };

enum StabTime { ST_LevelO, ST Levell, ST Level2, ST Level3, ST Level4d };

void Clock_Init(void);

#endif

4.4 Systeminit.c

E R S

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** jncurred by customers or third parties arising from the use of this file.

** Filename : systeminit.c
** Abstract : This file implements macro initialization.
** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

*x
AEEAXEEAEAALAEAAXAEAAAAEA AKX A AXTEAAXAAXAEA AKX AAXAALAAAXAAXAXAAXAAXAXAAXAAAXAAXAXAAXAAAXAAXAXAAXAAXAXAALAAAXAAXAX*X
*/
/*

B R R S e

** Include files

*/

#include "macrodriver.h"
#include "system_h"
#include "port.h"

#include "timer.h"
#include "watchdogtimer._.h"
#include "lvi.h"

/*

68

Safety Features of NEC Electronics Microcontrollers

** MacroDefine
*/
/*
K
*x
** Abstract:
*x Init every Macro
**x
** Parameters:
holad None
*x
** Returns:
*x None
**x
R L o e e e e e e
*/
void Systemlnit(void)
{
/* Clock generator initiate */
Clock_InitQ);
/* Port initiate */
PORT_InitQ);
/* WDT initiate */
WDT_Init(Q);
/* TMOO initiate */
TMOO_Init(Q);
/* TMH1 initiate */
TMHL_Init();
/* LVI initiate */
LVI_InitQ);
b
/*
R o e e e e e e e e e e e e
**x
** Abstract:
*x Init hardware setting
*x
** Parameters:
*x None
o
** Returns:
*x None
**x
A
*/
void hdwinit(void)

DIC);
SystemInit();

ENC)D;

Safety Features of NEC Electronics Microcontrollers NEC

4.5 System.c

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename : system.c

** Abstract : This Ffile implements device driver for System module.

** APIIib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

** Include files

*/

#include "macrodriver.h"

#include "'system.h"

/*

A AAAAAAAAARAAAARAAAARAAAAAAAARA A AAA AKX

** MacroDefine

AEEAEXEIKAALEAAEAEAEA A AEA AKX A AXA A AKX AXAEA AKX AAXA AL A AXAAAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAXAAXAAAXAALAAAXAAAXAX*X

*/

/*
*x

*x

** Abstract:
holad Init the Clock Generator and Oscillation stabilization time.

** Parameters:
*x None

** Returns:

*x None

**x

A

*/

void Clock_Init(void)

{
CIrlIORBit(MCM, 0x05); /* High-Internal-0SC operate for CPU */
SetlORBit(MCM, 0x01); /* peripheral hardware clock:frh */
CIrIORBit(0OSCCTL, 0x10);
SetlORBit(MOC, 0x80); /* stop X1 clock */

PCC = CG_CPU_CLOCKSEL;

70

Safety Features of NEC Electronics Microcontrollers

NEC

}

4.6 Lvi.h

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename : Ivi.h

** Abstract : This Ffile implements device driver for LVI module.

** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

*/
#ifndef _MDLVI_
#define _MDLVI_
/*

S

** MacroDefine

*/

enum LVILevel {
LVI LevelO, LVI Levell, LVI Level2, LVI Level3,
LVI_Level4, LVI_Level5, LVI_Level6, LVI_Level7,
LVI Level8, LVI Level9, LVI Levell0, LVI Levelll,
LVI_Levell2, LVI_Levell3, LVI_Levell4,LVI_Levell5
};

void LVI_Init(void);

void LVI_Start(void);

MD_STATUS LVI_SetLVIiLevel(enum LVILevel level);
void LVI_Stop(void);

__interrupt void MD_INTLVI(void);

/* add special version of LVI_Start() for Reset mode for demo program */
void LVI_Start_R(void);

#endi

71

Safety Features of NEC Electronics Microcontrollers NEC

4.7 Lvi.c

This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,

78K0/KD2,

78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

Copyright(C) NEC Electronics Corporation 2002 - 2005
All rights reserved by NEC Electronics Corporation.

This program should be used on your own responsibility.
NEC Electronics Corporation assumes no responsibility for any losses

incurred
Filename
Abstract
APIlib :

Device :

Compiler

by customers or third parties arising from the use of this file.

lvi.c
This file implements device driver for LVI module.
NEC78KOKX2.1ib V1.01 [09 Aug. 2005]

uPD78F0537

= NEC/CC78KO0

*hKhk

*/

#include "macrodriver.h"
#include "lvi.h"

/*
*x
*x
*x
*x
*x
*x

*x

*/

Abstract:

This function initializes the Low-Voltage Detector.

Parameters:

None

Returns:
None

void LVI_Init(void)

{

72

USHORT 1i;

LVION

LVIMD
LVIPR
LVIIF

=0 /* stop LVI */

/* internal interrupt mode */
/* low priority level */

LVISEL = 6; /* detect supply voltage (VDD) */

0
1
0

Safety Features of NEC Electronics Microcontrollers NEC

LVIS = LVI_Level2; /* compare with 3.91V */

LVION = 1; /* enable LVI */

for(i=0; i<=100; i++){ /* wait 10 us */

NOPQ);

/* for demonstration program, do not unmask LVI interrupt here */
#if O

LVIMK = 0;
#endif
}
/*
R L o
**x
** Abstract:
*x This function starts the Low-Voltage Detector.
*x
** Parameters:
** None
*x

** Returns:

*x None
**x
A
*/
void LVI_Start(void)
{
USHORT i;
LVIMK = 1;
LVIIF = 0;
LVION = 1; /* enable LVI */
for(i=0; i<=100; i++){ /* wait 10 us */
NOPQ);
}
LVIMK = 0;
}
/*
R L o e
**
** Abstract:
*x This function stops the Low-Voltage Detector.
**x
** Parameters:
*x None
**x
** Returns:
*x None
**
A
*/
void LVI_Stop(void)
LVION = O; /* stop LVI */
LVIMK = 1;
}
/*
K e e e
*x

73

Safety Features of NEC Electronics Microcontrollers NEC

** Abstract:

** This function set detection level.

* X

** Parameters:

kel level : fifteen detection level
*x (LVI_LevelO - LVI_Levell5)
* X

** Returns:

kel MD_OK

kel MD_ERROR

*x

*/
MD_STATUS LVI_SetLVIiLevel(enum LVILevel level)
{

ifC LVISEL == 1){

return MD_ERROR;

}

LVIS = level;

return MD_OK;
}

4.8 Lvi_user.c

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** fncurred by customers or third parties arising from the use of this file.
** Filename : lvi_user.c

** Abstract : This Ffile implements device driver for LVI module.

** APIIib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler : NEC/CC78KO

*/
#pragma interrupt INTLVI MD_INTLVI

*/
#include "macrodriver.h"

74

Safety Features of NEC Electronics Microcontrollers NEC

#include "lvi.h"

/* add include file for LEDs */
#include "led_0537.h"

/*

*x

** Abstract:
*x INTLVI Interrupt service routine.

** Parameters:
**x None

** Returns:

*x None
**x
R o e e e e e e e
*/
__interrupt void MD_INTLVI(void)
LVI_Stop(Q); /* mask LVI operation */
led_out_left(0OxC7); /* show an "L" in left LED */

led_out_right(LED_PAT_1); /* show 1 in right LED */
/* and return */

** Abstract:

kel This function starts the Low-Voltage Detector, for Reset Mode,
*x by not clearing the interrupt mask LVIMK
*x (this routine modified from LVI_Start() as generated by Applilet)

** Parameters:
*x None

** Returns:

*x None
**x
K L e e
*/
void LVI_Start_R(void)
{
USHORT i;
LVIMK = 1;
LVIIF = O;
LVION = 1; /* enable LVI */
for(i=0; 1<=100; i++){ /* wait 10 us */
NOPQ);
}
/* LVIMK = 0; */ /* comment out */
}
4.9 Port.h

75

Safety Features of NEC Electronics Microcontrollers NEC

*x

This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
78K0/KD2, 78K0O/KE2 and 78KO/KF2 8-Bit Single-Chip Microcontrollers.

Copyright(C) NEC Electronics Corporation 2002 - 2005
All rights reserved by NEC Electronics Corporation.

This program should be used on your own responsibility.

NEC Ellectronics Corporation assumes no responsibility for any losses
incurred by customers or third parties arising from the use of this file.
Filename :port.h

Abstract : This file implements device driver for PORT module.

APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

Device : uPD78F0537

Compiler :NEC/CC78KO

AEEAEXEEKIAALAEAAEAEAAEAAEA A AKX AKX A AKX AKX A AKX AAXA AL A AKX AXAXAAXAAXAAAXAAAXAXAXAAXAAAXAAXAXAAXAAAXAALAAAXAAXXAX*X

*/

#ifndef _MDPORT_

#define _MDPORT_

/*

** MacroDefine

*/

#define PORT_PMO OxFF
#define PORT_PUO 0x0
#deFfine PORT_PO 0x0
#define PORT_PM1 OxFf
#deFfine PORT_PU1 0x0
#define PORT_P1 0x0
#define PORT_PM2 Oxff
#define PORT_P2 0x0
#define PORT_PM3 Oxff
#define PORT_PU3 0x6
#define PORT_P3 0x0
#define PORT_PM4 0xf0
#define PORT_PU4 0x0
#define PORT_P4 0x0
#define PORT_PM5 Oxf0
#define PORT_PU5 0x0
#define PORT_P5 0x0
#define PORT_PM6 OxFf
#define PORT_P6 0x0
#define PORT_PM7 0x0
#define PORT_PU7 0x0
#deFfine PORT_P7 0x0
#define PORT_PM12 Oxff
#define PORT_PU12 0x0
#define PORT_P12 0x0
#deFfine PORT_P13 0x0
#define PORT_PM14 OxFf
#define PORT_PU14 0x0
#define PORT_P14 0x0
#define PORT_ADPC 0x0

76

Safety Features of NEC Electronics Microcontrollers NEC

Vo

#e

id PORT_Init(void);

ndif

410 Port.c

/*

AEEAEXEEAE AL EAAEAAA A AEA A A A AKX AAXA AKX A AKX AAXA AL A XA AAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAAAXAAXAAALAAAXAAXAX*X

*x

*x

*x

*x

This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
78K0/KD2, 78K0/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

Copyright(C) NEC Electronics Corporation 2002 - 2005
All rights reserved by NEC Electronics Corporation.

This program should be used on your own responsibility.

NEC Electronics Corporation assumes no responsibility for any losses
incurred by customers or third parties arising from the use of this file.
Filename :port.c

Abstract : This file implements device driver for PORT module.

APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

Device : uPD78F0537

Compiler : NEC/CC78KO

*/
J*

AEEAEXEEEA AL EAAEAAAAAEAAXAEAAXT A AKX AXAEA AKX AAXA AL A AXAAXAXAAXAAXAXAAXAAXAAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAAXAX*X

*x

Include files

AEEAXEAEA AL EAAEAEAA A AKX AKX A AXT A AKX A XA AXAAAXA AL A AXAAAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAAXAd*X

*/
#i
#i
/*

nclude "macrodriver.h"
nclude "port.h"

**

EaE T S e

Constants

*x

EaE e

Abstract:
This function initializes the 1/0 module.

Parameters:
None

Returns:
None

77

Safety Features of NEC Electronics Microcontrollers

NEC

*/

void PORT_Init(void)

{
/* initialize the port registers */
PO = PORT_PO;
P1 = PORT_P1;
P2 = PORT_P2;
P3 = PORT_P3;
P4 = PORT_P4;
P5 = PORT_P5;
P6 = PORT_P6;
P7 = PORT_P7;
P12 = PORT_P12;
P13 = PORT_P13;
P14 = PORT_P14;
/* initialize the Pull-up resistor option registers */
PUO = PORT_PUO;
PU1 = PORT_PU1;
PU3 = PORT_PU3;
PU4 = PORT_PU4;
PU5 = PORT_PUS5;
PU7 = PORT_PU7;
PU12 = PORT_PU12;
PU14 = PORT_PU14;
/* initialize the mode registers */
PMO = PORT_PMO;
PM1 = PORT_PM1;
PM2 = PORT_PM2;
ADPC = PORT_ADPC;
PM3 = PORT_PM3;
PM4 = PORT_PM4;
PM5 = PORT_PM5;
PM6 = PORT_PM6;
PM7 = PORT_PM7;
PM12 = PORT_PM12;
PM14 = PORT_PM14;

}

4.11 Timer.h

/*

EaE S

*x

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

*x

** Copyright(C) NEC Electronics Corporation 2002 - 2005

** All rights reserved by NEC Electronics Corporation.

**

** This program should be used on your own responsibility.

78

Safety Features of NEC Electronics Microcontrollers NEC

** NEC Electronics Corporation assumes no responsibility for any losses

** incurred by customers or third parties arising from the use of this file.
**x

** Filename : timer.h

** Abstract : This file implements a device driver for the timer module

** APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

*x

** Device : uPD78F0537

** Compiler: NEC/CC78KO

*x

AEEAEXEAKA AL EAAEAAA KA AEA AKX A AKX EAAXA AKX A AKX AAXA AL A XA AAXA AKX AXAAAXAAAXAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAAXAX*X

*/

#ifndef _MDTIMER_

#define _MDTIMER_

/*

A AAAAAAAAAAAAARAAAARAAAARAAAARAAAA A AAA A AKX

** MacroDefine

*/

#define REGVALUE_MAX OxFf

#define TM_TMOO_CLOCK Ox0

#define TM_TMOO_ INTERVALVALUE Ox1F3F
#define TM_TMOO_SQUAREWIDTH Ox1f3f
#define TM_TMOO_PPGCYCLE ~ Ox1f3f
#define TM_TMOO_PPGWIDTH Ox00
#define TM_TMOO_ONESHOTCYCLE Ox1F3F
#define TM_TMOO_ONEPULSEDELAY 0x00
#define TM_TMO1_CLOCK 0x0

#define TM_TMO1_INTERVALVALUE 0x00
#define TM_TMO1_SQUAREWIDTH 0x00
#define TM_TMO1_PPGCYCLE 0Ox00
#define TM_TMO1_PPGWIDTH Ox00
#define TM_TMO1_ONESHOTCYCLE 0x00
#define TM_TMO1_ONEPULSEDELAY 0x00
#define TM_TM50_CLOCK 0Ox2

#define TM_TM50_INTERVALVALUE 0x00
#define TM_TM50_SQUAREWIDTH 0x00
#define TM_TM50_PWMACT IVEVALUE 0x00
#define TM_TM51_CLOCK Ox2

#define TM_TM51_INTERVALVALUE 0x00
#define TM_TM51_SQUAREWIDTH 0x00
#define TM_TM51_PWMACT IVEVALUE 0x00
#define TM_TMHO_CLOCK 0x0

#define TM_TMHO_INTERVALVALUE 0x00
#define TM_TMHO_SQUAREWIDTH 0x00
#define TM_TMHO_PWMCYCLE Ox00
#define TM_TMHO_PWMDELAY Ox00
#define TM_TMH1_CLOCK Ox5

#define TM_TMH1_INTERVALVALUE 0x11
#define TM_TMH1_SQUAREWIDTH Ox11
#define TM_TMH1_PWMCYCLE Ox11
#define TM_TMH1_PWMDELAY Ox0O0
#define TM_TMH1_CARRIERDELAY 0x11
#define TM_TMH1_CARRIERWIDTH 0x00

/* timer00 to 01,50,51,HO,H1 configurator initiation */
void TMOO_Init(void);
void TMH1_Init(void);

79

Safety Features of NEC Electronics Microcontrollers NEC

/*timer start*/
void TMOO_Start(void);
void TMH1_Start(void);

/*timer stop*/

void TMOO_Stop(void);

void TMH1_Stop(void);

MD_STATUS TMOO_ChangeTimerCondition(USHORT* array_reg,USHORT array_num);
MD_STATUS TMH1_ChangeTimerCondition(UCHAR* array_reg,UCHAR array_num);
__interrupt void MD_INTTMOOO(void);

__interrupt void MD_INTTMH1(void);

/* add declaration of g_tmhl_count */
extern unsigned char g_tmhl_count;

#endif /* MDTIMER_*/

4,12 Timer.c

E R S

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** jncurred by customers or third parties arising from the use of this file.

** Filename : timer.c
** Abstract : This file implements a device driver for the timer module
** APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler: NEC/CC78KO

*x

AEEAXEEAEAALAEAAXAEAAAAEA AKX A AXTEAAXAAXAEA AKX AAXAALAAAXAAXAXAAXAAXAXAAXAAAXAAXAXAAXAAAXAAXAXAAXAAXAXAALAAAXAAXAX*X

*/

/*
A AR A A A A A A AAAAAAAAARAAAARAAAARAAAAAAAA AR AL A AKX X
** Include files
A AR A AAAAAARAAAARAAAARAAAARAAAARAAAA A AKX K
*/
- " - "
#include "macrodriver.h
' " ' "
#include ""timer.h

Safety Features of NEC Electronics Microcontrollers NEC

** MacroDefine
*/
/*TMOO pulse width measure*/

/*TMO1 pulse width measure*/

/*
*x

*x

** Abstract:

*x This function initializes TMOO_module.
**x

** Parameters:
**x None

** Returns:

** None

**x

A o o e e
*/

void TMOO_Init()

{

TMCO0=0x00;
/* internal count clock */
PRMOO |= TM_TMOO_CLOCK;
SetlORBit(PROH, 0x40); /* low priority level */
CIrIORBit(IFOH, 0x40);
/* TMOO interval */
CIrlIORBit(CRC00,0x01);
CROOO = TM_TMOO_ INTERVALVALUE;

** Abstract:
** This function starts the TMOO counter.

** Parameters:
**x None

** Returns:

*x None

o

A L o o e e

*/

void TMOO_Start()
TMCOO = 0OxOc; /* interval timer start */
CIrIORBit(MKOH, 0x40); /* INTTMOOO enable */

}

/*

*x

**

** Abstract:

*x This function stops the TMOO counter and clear the count register.
*x

** Parameters:

*x None

Eax

** Returns:

81

Safety Features of NEC Electronics Microcontrollers NEC

kel None
**x
AR
*/
void TMOO_Stop()
TMCO0=0x0;
SetlORBit(MKOH, 0x40); /* INTTMOOO stop */
¥
/*

** Abstract:
*x This function changes TMOO condition.

** Parameters:

x USHORT : array_reg
olal USHORT : array_num
** Returns:
*x MD_OK

*x MD_ERROR

*x

*/
MD_STATUS TMOO_ChangeTimerCondition(USHORT* array_reg,USHORT array_num)

switch (array_num){
case 2:
CRO10=*(array_reg + 1);
case 1:
CROOO=*(array_reg + 0);
break;

default:

return MD_ERROR;

}

}
/*

*x

return MD_OK;

*x

** Abstract:
*x This function initializes TMH1 module.

** Parameters:
**x None

** Returns:

** None

*x

A L o o o e
*/

void TMH1_Init(void)

{

CIrIORBit(TMHMD1, 0x80);
/* countclock=Ffr/128 */
SetlORBit(TMHMD1, 0x50);
SetlORBit(PROH, 0x08); /* low priority level */
CIrIORBit(IFOH, 0x08);
/* TMH1 interval timer */
CIr1IORBit(TMHMD1, 0x8c);

82

Safety Features of NEC Electronics Microcontrollers NEC

CMPO1 = TM_TMH1_INTERVALVALUE;

s
/*
A L o o o
*x
** Abstract:
** This function can start the TMH1 counter.
**x
** Parameters:
kel None
**x
** Returns:
*x None
**x
R o e e e e e e e
*/
void TMH1_Start(void)
{
/* TMH1 interval timer */
SetlORBit(TMHMD1, 0x80);
CIrIORBit(MKOH, 0x08); /* INTTMH1 enable */
by
/*
A o e o e
*x
** Abstract:
*x This function can stop the TMH1 counter operation.
**
** Parameters:
*x None
*x
** Returns:
*x None
**
R o e e e e e e e e e e e e
*/
void TMH1_Stop(void)
{
CIrIORBit(TMHMD1, 0x80);
SetlORBit(MKOH, 0x08); /* INTTMH1 disable */
¥
/*
A
**x
** Abstract:
** This function can change TMH1 condition.
*x
** Parameters:
x UCHAR : array_reg
** UCHAR : array_num
** Returns:
kel MD_OK
kel MD_ERROR
**
R L o o e
*/

MD_STATUS TMH1_ChangeTimerCondition(UCHAR* array_reg,UCHAR array_num)

switch (array_num){

83

Safety Features of NEC Electronics Microcontrollers NEC

case 2:
CMP11=*(array_reg + 1);
case 1:
CMPOl1=*(array_reg + 0);
break;

default:

return MD_ERROR;

+
}

return MD_OK;

4.13 Timer_user.c

EE L S

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename : timer_user.c

** Abstract : This file implements a device driver for the timer module

** APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler: NEC/CC78KO

#pragma sfr

#pragma interrupt INTTMOOO MD_INTTMOOO
#pragma interrupt INTTMH1 MD_INTTMH1
/*

EaE T S e

** Include files

*/
#include "macrodriver.h"
#include "timer.h"

/* add include for switch routines */
#include "sw_0537.h"

/* add include for watchdog timer routines */
#include "watchdogtimer._.h"

/*

84

Safety Features of NEC Electronics Microcontrollers NEC

** MacroDefine

*/
/* Timer00, TimerOl pulse width measure */

** Abstract:
*x TMOO INTTMOOO interrupt service routine

** Parameters:
*x None

** Returns:
** None

__interrupt void MD_INTTMO00()

E1(Q; 7/* allow higher priority interrupts (INTTMH1, INTLVI) to occur */
/* call switch ISR routine for debouncing switches */
sw_isr();

** Abstract:
*x TMH1 INTTMH1 interrupt service routine

** Parameters:
** None

** Returns:
*x None

*x

*/
/* global variable incremented by TMH1 interrupt */
unsigned char g_tmhl_count;

__interrupt void MD_INTTMHL1()
E1Q; 7/* allow higher priority interrupts (INTLVI) to occur */

WDT_Restart();
g_tmhl_count = g_tmhl_count + 1;

4.14 Watchdogtimer.h

85

Safety Features of NEC Electronics Microcontrollers

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename : watchdogtimer.h

** Abstract : This Ffile implements device driver for WDT module.

** AP1lib - NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

NEC

EE S e

*/
#ifndef _MDWTACHDOGT IMER_
#define _MDWTACHDOGT IMER_
/*

*/

void WDT_Init(void);
void WDT_Start(void);
void WDT_Restart(void);

#endi

4.15 Watchdogtimer.c

/*

AEEAEXEAKE AL EAAEAAA KA AEA AKX A AKX A AKX AAEA AKX AAXA AL A AXAAAXAAXAAXAXAAXAAAXAXAXAAXAAAXAALAAAXAAAXAALAAAXAAXAX*X

*x

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

*x

** Copyright(C) NEC Electronics Corporation 2002 - 2005

** All rights reserved by NEC Electronics Corporation.

**x

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses
** fncurred by customers or third parties arising from the use of this file.
*x

** Filename : watchdogtimer.c

** Abstract : This file implements device driver for WDT module.

** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

Safety Features of NEC Electronics Microcontrollers NEC

** Device : uPD78F0537

*x

** Compiler :NEC/CC78KO

*x

*/

/*

E R e

** Include files

*/

#include "macrodriver.h"

#include "watchdogtimer._h"

/*

AAEEAAAAAAAAAAA A AAA A A AAAA A AAA LA AAAAAAAALAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXK

** MacroDefine

AEEAXEEKIAALAEAAEAEAAAAEAAXAEA AKX A AKX AXAEAAXAAAXAALAAAXAAXAXAAXAAXAXAAXAAAXAAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAXAd*X

*/

/*
A L o o o
*x
** Abstract:
*x This function initializes the Watchdog timer module.
**x
** Parameters:
*x None
*x
** Returns:
*x None
**
R o e
*/
void WDT_Init(void)
{
/* overflow time: 2M14/frl (62.06ms) */
/* window open period: 100% (before overflow time) */
}
/*
K o e
*x
** Abstract:
** This function starts watchdog timer.
**x
** Parameters:
*x None
**x
** Returns:
*x None
*x
A o o o e
*/

void WDT_Start(void)

WDTE = Oxac;

/*
*x

*x

87

Safety Features of NEC Electronics Microcontrollers NEC

** Abstract:

*x This function clears and starts watchdog timer again.
*x

** Parameters:

**x None
Kk

** Returns:
*x None

*/
void WDT_Restart(void)

WDTE = Oxac;

4.16 Led_0537.h

/* led_0537.h */
/* header for M-78F0537 CPU board for LED digit display */
/* Version 1.1 01-13-2006 */

#ifndef _LED_0537_H
#define _LED_0537_H

V faleiaiaiaiaisiaialaiaiaiaiainiaiaiaiaiaiaioiafaiaiaiaiaiaiofaiaiaiaiaioia /
/* Define definitions */

V faieisiaiaiaisiaiaiaiaiaiasiaisiaiaiaiaiaiaioiofaiaiaiaiaiaiofaiaiaiaiaioiol /
/* LED Patterns for decimal and hex digits, characters */

/* for individual bits, ——=A-—- */

/* 0=on 1=off I 1 */

/* bit 0 = segment A F B */

/* bit 1 = segment B I 1 */

/* bit 2 = segment C -—-G--—- */

/* bit 3 = segment D I 1 */

/* bit 4 = segment E EC */

/* bit 5 = segment F I 1 */

/* bit 6 = segment G ---D--- DP */

/* bit 7 = decimal point */

#define LED_PAT_O OxCO
#define LED_PAT_1 OxF9
#define LED_PAT_2 OxA4
#define LED_PAT_3 0OxBO
#define LED_PAT_4 0x99
#define LED_PAT_5 0x92
#define LED_PAT_6 0x82
#define LED_PAT_7 OxF8
#define LED_PAT_8 0x80
#define LED_PAT_9 0x98
#define LED_PAT_A 0x88
#define LED_PAT_B 0x83
#define LED_PAT_C 0xC6

88

Safety Features of NEC Electronics Microcontrollers

NEC

/* init ports for LED

#define LED_PAT_D OxAl

#define LED_PAT_E 0x86

#define LED_PAT_F Ox8E

#define LED_PAT_BLANK OxFF

#define LED_PAT_DP OX7F

#define LED_PAT_DASH OxBF

#define LED_PAT_ULINE OxF7

#define LED_PAT_OLINE OxFE

#define LED_PAT_EQUAL OxB7

Y AeieiaisisisiaiaisitisisisiaiaiaisititiaiaisiaiaiaisiaiaisiaiaiaisisiasiaisiaisiaTiaiTiaiTisiaiasisisiTsiaaas sl aiaiale /

/* Export functions */

Y AciaiaisisisiaisisitisisisiaiaiaisitiaisiaisiaiaiaisiaiaisaiaiaiaisiaisiaaiaisissaiaiasiTiaTisiaaa skl alaiale /
extern void led_init(void);

output */

extern void led_out_right(unsigned char val); /* output value to right LED
extern void led_out_left(unsigned char val); /* output value to left LED
extern void led_dig_right(unsigned char num); /* display number in right LED
extern void led_dig_left(unsigned char num); /* display number in left LED
extern void led_dig(unsigned char num); /* display number as hex
extern void led_dig_bcd(unsigned char bcdnum); /* display number as BCD

#endif /* LED 0537 _H */

4.17 Led_0537.c

/*

/* Version:

/*
/*
/*

/*

led_0537.c - routines for LED display */
for M-78F0537 CPU board on M-Station base board */
1.1 01-13-2006 */
P70-P77 = output to right digit (LED2) */
P40-P43 = output to left digit (LED1l) bits 0-3 */
P50-P53 = output to left digit (LED1) bits 4-7 */

To connect ports
following jumper
To connect ports
the default SBxx

Port
P70
P71
P72
P73
P74
P75
P76
P77

P40
P41
P42
P43

to LEDs on M-Station 1.1, make the
connections between ROW1 and ROW2.
to LEDs on M-Station 2, make sure

connections are inserted.

LED M-Station 1.1M-Station 2.2
2-A R1.25 - R2.25SB27
2-B R1.26 - R2.26 SB28
2-C R1.27 - R2.27SB29
2-D R1.28 - R2.28SB30
2-E R1.29 - R2.29SB31
2-F R1.30 - R2.30SB32
2-G R1.31 - R2.31SB33
2-DP R1.32 - R2.32SB34
1-A R1.17 - R2.17 SB35
1-B R1.18 - R2.18SB36
1-C R1.19 - R2.19SB37
1-D R1.20 - R2.20SB38

*/

*/
*/

*/

*/

*/

89

Safety Features of NEC Electronics Microcontrollers

NEC

P50 1-E R1.21 - R2.21SB39
P51 1-F R1.22 - R2.22SB40
P52 1-G R1.23 - R2.23SB41
P53 1-DP R1.24 - R2.24SB42

*/

/* NOTE: on M-Station Base V1.0 prototype, P40-P53 are
/* located at ROW4.1-8, and need to be wirewrapped to*/
/* connect to ROW2.17-24 to drive LED1.

/* need pragma declaration to access SFR"s in C */
#pragma sfr

#include "led_0537.h"

/* table of bit patterns for seven-segment digits */
static unsigned char dig_tab[] = {

LED_PAT_O, /* 0 */

LED PAT_ 1, /* 1 */

LED_PAT 2, /* 2 */
LED PAT 3, /* 3 */
LED_PAT 4, /* 4 */
LED PAT 5, /* 5 */
LED_PAT 6, /* 6 */
LED PAT 7, /* 7 */
LED_PAT 8, /* 8 */
LED _PAT 9, /* 9 */
LED_PAT_A, /* A */
LED PAT B, /* B */
LED_PAT_C, /* C */
LED PAT D, /* D */
LED_PAT E, /* E */
LED_PAT _F /* F */
};
/* void led_init(void) */
/* set up ports for display of LED digits */
void led_init(void)
{
#if 0 /* ports initialized in Port_Init() by Applilet */
PM7 = 0x00; /* set all port 7 to output */
PM4 = 0xO00; /* set all port 4 to output */
PM5 = 0x00; /* set all port 5 to output */
#endi
b
/* void led_out_right(unsigned char val) */
/* output raw data to right LED */
void led_out_right(unsigned char val)
{
P7 = val;
}
/* void led_out_left(unsigned char val) */
/* output raw data to left LED */
void led_out_left(unsigned char val)
{
P4 = val & OxOF;
P5 = (val >> 4) & OxOF;
}

/* void led_dig_right(unsigned char num) */

90

*/

*/

Safety Features of NEC Electronics Microcontrollers

NEC

/* display number in right LED */
void led_dig_right(unsigned char num)

if (num > OxOF) {
led_out_right(LED_PAT_BLANK);

return;
}
led_out_right(dig_tab[num]);
}
/* void led_dig_left(unsigned char num) */
/* display number in left LED */

void led_dig_left(unsigned char num)

{
if (num > OxOF) {
led_out_left(LED_PAT_BLANK);
return;

}
led_out_left(dig_tab[num]);

}

/* void led_dig(unsigned char num) */

/* display number as hex digits */
/* num - number to display */

/* bits 0-3 in right digit */
/* bits 4-7 in left digit */

void led_dig(unsigned char num)

led_out_right(dig_tab[num & OxOF]);

led_out_left(dig_tab[(num >> 4) & OxO0F]);

}

/* void led_dig_bcd(unsigned char bcdnum) */

/* display two digits of BCD coded bcdnum */

/* bcdnum - number to display in BCD */

/* 0 - 9 displayed as right decimal digit, left blank */
/* 10 - 99 displayed as two decimal digits */

/* 100 - 255 displayed as blank */

void led_dig_bcd(unsigned char bcdnum)
{

unsigned char tens_dig;

if (bcdnum > 99) {
led_out_right(LED_PAT_BLANK);
led_out_left(LED_PAT_BLANK);
return;

}

if (bcdnum < 10) {
led_out_right(dig_tab[bcdnum]);
led_out_left(LED_PAT_BLANK);
return;

}

/* 10 <= bcdnum <= 99 */
tens_dig = 0;

/* display both digits blank */

/* just display right LED */
/* blank left LED */

do { /* calculate ten"s place and remainder */
bcdnum -= 10; /* by multiple subtractions of 10 */
tens_dig++; /* while counting up the tens digit */

} while (bcdnum >= 10);
/* now tens_dig has ten"s place */
/* and bcdnum has remainder */

91

Safety Features of NEC Electronics Microcontrollers NEC

led_out_right(dig_tab[bcdnum]);
led_out_left(dig_tab[tens_dig]);

4.18 Sw_0537.h

/* sw_0537.h */
/* header for M-78F0537 CPU board for base board switch reading */
/* Version: 1.1 01-13-2006 */

#ifndef _SW_0537_H
#define _SW_0537_H

/***/

/* Define definitions */

/***/

/* symbolic definitions for switch inputs */

/* SW2 = left switch = P31 */

/* SW3 = right switch = P32 */

/* P32
P31 */

#define SW_LU_RU 0x06 /* left up, right up 1 1 */

#define SW_LD RU 0x04 /* left down, right up 1 0 */

#define SW_LU_RD 0x02 /* left up, right down 0 1 */

#define SW_LD _RD 0x00 /* left down, right down O 0 */

#define SW_DEF_DEB_COUNT 8 /* default debounce counter */

Y Acieisisisisisisisiaisiaisiaisisisisiaisisisisiaiaiaiaiaiaisiaiaiaiale /

/* Export functions */

Y Asieiaisisisiaisisiaisisisisisiaisisisisisisisiaisiaiaiaisisiaiaiaiale /

extern void sw_init(void); /* init ports and variables for switch input */

extern unsigned char sw_chk(void); /* get undebounced switch input */

extern unsigned char sw_get(void); /* get debounced switch input */

extern void sw_set_debounce(unsigned char count); /* set deboune cound */

extern void sw_isr(void); /* debounce routine, called by timer ISR */

#endif /* _SW_0537_H */

4.19 Sw_0537.c

/* sw_0537.c - routines for switch input */

/* for M-78F0537 CPU board on M-Station base board */

/* Version: 1.1 01-13-2006 */

92

Safety Features of NEC Electronics Microcontrollers NEC

/* P31 = input for left switch (SW2) */
/* P32 = input for right switch (SW3) */
/= To connect ports to switches on M-Station 1.1, make the

following jumper connections between ROW1 and ROW2.
To connect ports to swtiches on M-Station 2, make sure
the default SBxx connections are inserted.

Port Switch M-Station 1.1M-Station 2.2

P31 Sw2 R1.5 - R2.5 SB7
P32 SW3 R1.6 - R2.6 SB8
*/
/* need pragma declaration to access SFR"s in C */

#pragma sfr
#include "sw_0537.h"

/* local variables for switch handling */

static unsigned char sw_last; /* last debounced switch value */
static unsigned char sw_new; /* new value being debounced */
static unsigned char sw_deb_value; /* value of debounce counter */
static unsigned char sw_deb_count; /* debounce counter */

/* void sw_init(void) */

/* set up ports for switch input */

void sw_init(void)

#if 0 /* initialization done in Port_Init() by Applilet */
/* set P31 and P32 to inputs */

PM3.1 = 1;
PM3.2 = 1;
/* set pullups on P31 and P32 */
PU3.1 = 1;
PU3.2 = 1;

#endif
/* set static variables */
sw_last = SW_LU_RU; /* default is right up, left up (no switch pressed) */
sw_deb_value SW_DEF DEB _COUNT; /* set default debounce counter value */
sw_deb_count = SW_DEF DEB_COUNT; /* set counter to max */

}
/* unsigned char sw_chk(void) */
/* return input from switches, undebounced */
unsigned char sw_chk(void)
{
return P3 & 0x06;
}
/* void sw_set_debounce(unsigned char count) */
/* set the debounce counter value */
void sw_set_debounce(unsigned char count)
{
sw_deb_value = count; /* set new debounce counter value */
sw_deb_count = count; /* set counter to max */
}
/* unsigned char sw_get(void) */
/* return debounced switch input */

93

Safety Features of NEC Electronics Microcontrollers NEC

unsigned char sw_get(void)

{
}

return sw_last;

/* void sw_isr(void) */

/* this routine called by periodic timer interrupt to poll and debounce switches */

/* after a new value has been seen steadily for sw_deb_value times, sw_last is updated */
void sw_isr(void)

unsigned char val;

val = sw_chk(Q); /* get current value */
/* if value is the same as before, no change; reset debounce and return */
if (val == sw_last) {
sw_deb _count = sw_deb_value; /* reset debounce counter to max */
return;

/* val 1= sw_last, there is a new input */
/* if it"s not the same as the previous new one, */
/* set the NEW new one, reset the debounce counter and return */
if (val '= sw_new) {
sw_new = val;
sw_deb_count = sw_deb_value;
return;

}

/* val 1= sw_last, val == sw_new */
/* count down the debounce counter */
sw_deb_count--;

/* if we have counted down to zero, we have seen the same sw_new */
/* for debounce count times, it is now the debounced switch value */
if (sw_deb_count == 0) {

sw_last = val;

sw_deb_count = sw_deb value;

return;

}

/* if still debouncing, just return */
return;

4.20 Option.inc

Note: this version is for 1.59V POC mode.

Safety Features of NEC Electronics Microcontrollers

NEC

-%k*
Ll
-kx
’
-%k*
’
-k
’
-k*
Ll
-%kx
’
-%k*x
2
-%kx
’
-%kx
’

-%kx
’
-%k*x
’
-%kx
’
-%k*x
L
-%kx
’
-%kx
’

-%kx
’
-%k*x
’
-%kx
’
-%kx
’

This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
78K0/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

Copyright(C) NEC Electronics Corporation 2002 - 2005
All rights reserved by NEC Electronics Corporation.

This program should be used on your own responsibility.

NEC Electronics Corporation assumes no responsibility for any losses
incurred by customers or third parties arising from the use of this file.
Filename : option.asm

Abstract : This file implements OPTION-BYTES/SECURITY-ID setting.

APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

Device : uPD78F0537

Compiler : NEC/CC78KO0

B L R s e =

OPTION_BYTE EQU OOH
POC81 EQU OOH

POC82 EQU OOH

POC83 EQU OOH
CG_ONCHIP EQU 02H
CG_SECURITYO EQU OFfH
CG_SECURITY1 EQU OFfH
CG_SECURITY2 EQU OFfH
CG_SECURITY3 EQU OFfH
CG_SECURITY4 EQU OFfH
CG_SECURITY5 EQU OFfH
CG_SECURITY6 EQU OFfH
CG_SECURITY7 EQU OFfH
CG_SECURITY8 EQU OFfH
CG_SECURITY9 EQU OFfH
OPTION_BYTE_WDT EQU 078H

4.21 Option.asm

" EAEEAEAEAAEAAA A AEAAA A AEA A A A AA A AL A A A AAAAAAAEAAXAAAXAAAEAAXAAAXAALAAAAAXAXAALAAAAAAXAAAAAXAAAXAXX
’

-%k*x
L

Note: this version is for 1.59V POC mode.

Safety Features of NEC Electronics Microcontrollers NEC

-%kx
’
-%k*
Ll
-%kx
’
-k*
Ll
-k
’
-k*
3
-%kx
’
-%k%*
3
-kx
’
-%kx
’
-%kx
’
-%k*x
2
-%k%
’
-%kx
’
-%k%
’
-%kx
’
-%kx
’
-%kx
’

This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
78K0/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

Copyright(C) NEC Electronics Corporation 2002 - 2005
All rights reserved by NEC Electronics Corporation.

This program should be used on your own responsibility.

NEC Electronics Corporation assumes no responsibility for any losses
incurred by customers or third parties arising from the use of this file.
Filename : option.asm

Abstract : This file implements OPTION-BYTES/SECURITY-ID setting.

AP1lib: NEC78KOKX2.l1ib V1.01 [09 Aug. 2005]

Device : uPD78F0537

Compiler : NEC/CC78KO0

= EAEEAEAEAEA AL A AAAA A AL A AAAA A AEAAAEAAXT A AXAAAEAAXA A AKX AAAAXAAAXAALAAAXAAXAXAALAAAAAAXAALAAAXAAXAd*X

**

EaE L S

Include files

$ INCLUDE (option.inc)

OPT_SET CSEG AT 80H

OPTION: DB OPTION_BYTE + OPTION_BYTE_WDT;
DB POC81
DB POC82
DB POC83

ONC_SET CSEG AT 84H

ONCHIP: DB CG_ONCHIP

CSEG SECUR_ID

SECURITYO: DB CG_SECURITYO
SECURITY1: DB CG_SECURITY1
SECURITY2: DB CG_SECURITY2
SECURITY3: DB CG_SECURITY3
SECURITY4: DB CG_SECURITY4
SECURITYS: DB CG_SECURITY5
SECURITY6: DB CG_SECURITY6
SECURITY7: DB CG_SECURITY7
SECURITYS8: DB CG_SECURITY8
SECURITY9: DB CG_SECURITY9

END

4.22 Option_POC27.inc

96

Note: this version is for 2.7V1.59V POC mode.

Safety Features of NEC Electronics Microcontrollers NEC

;** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
78K0/KD2, 78K0/KE2 and 78KO/KF2 8-Bit Single-Chip Microcontrollers.

*
*

;** Copyright(C) NEC Electronics Corporation 2002 - 2005
;** All rights reserved by NEC Electronics Corporation.

;** This program should be used on your own responsibility.

;** NEC Electronics Corporation assumes no responsibility for any losses

;** incurred by customers or third parties arising from the use of this file.
;** Filename : option.asm

;** Abstract : This file implements OPTION-BYTES/SECURITY-ID setting.

;** APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

;** Device : uPD78F0537

%% Compiler : NEC/CC78KO

OPTION_BYTE EQU OOH

; original POC81 byte as generated by Applilet

; had POC81.0 = 0 (POCMODE) to select 1.59V POC mode
; Ffor SAFETY_POC27 project, changed value of POC81 to O1H
; so POC81.0 = 1 (POCMODE) to select 2.7V/1.59V POC mode
;POC81 EQU OOH

POC81 EQU O01H

POC82 EQU 01H

POC83 EQU OOH

CG_ONCHIP EQU O2H

CG_SECURITYO EQU OffH

CG_SECURITY1 EQU OffH

CG_SECURITY2 EQU OffH

CG_SECURITY3 EQU OffH

CG_SECURITY4 EQU OffH

CG_SECURITY5 EQU OffH

CG_SECURITY6 EQU OffH

CG_SECURITY7 EQU OffH

CG_SECURITY8 EQU OffH

CG_SECURITY9 EQU OffH

OPTION_BYTE_WDT EQU 078H

4,23 Option_POC27.asm

Note: this version is for 2.7V1.59V POC mode.

Safety Features of NEC Electronics Microcontrollers NEC

;** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
;** 78K0/KD2, 78K0O/KE2 and 78KO/KF2 8-Bit Single-Chip Microcontrollers.

;** Copyright(C) NEC Electronics Corporation 2002 - 2005
;** All rights reserved by NEC Electronics Corporation.

;** This program should be used on your own responsibility.

;** NEC Electronics Corporation assumes no responsibility for any losses

;** incurred by customers or third parties arising from the use of this file.
;** Filename : option.asm

;** Abstract : This file implements OPTION-BYTES/SECURITY-ID setting.

;** APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

;** Device : uPD78F0537

;** Compiler : NEC/CC78KO0O

changed option.asm as originally generated by Applilet
to option_POC27.asm, to include option_POC27.inc

for SAFETY_POC27 project

;$ INCLUDE (option.inc)

$ INCLUDE (option_POC27.inc)

OPT_SET CSEG AT 80OH

OPTION: DB OPTION_BYTE + OPTION_BYTE_WDT;
DB POC81
DB POC82
DB POC83
ONC_SET CSEG AT 84H
ONCHIP: DB CG_ONCHIP

CSEG SECUR_ID

SECURITYO: DB CG_SECURITYO
SECURITY1: DB CG_SECURITY1
SECURITY2: DB CG_SECURITY2
SECURITY3: DB CG_SECURITY3
SECURITY4: DB CG_SECURITY4
SECURITY5: DB CG_SECURITY5
SECURITY6: DB CG_SECURITY6
SECURITY7: DB CG_SECURITY7
SECURITY8: DB CG_SECURITYS8
SECURITY9: DB CG_SECURITY9
END

98

	Application Note
	Safety Features of�NEC Electronics Microcontrollers
	Revision History

	Contents:
	Introduction
	Overview of Safety Features

	Safety Features of NEC Electronics Microcontrollers
	Overview of Safety Features
	Reset
	Power-On-Clear (POC) Reset
	Low-Voltage Detect (LVI)
	Watchdog Timer (WDT)

	Program Description and Specification
	Software Flow Charts
	Program Startup and Initialization
	WDT_Init() – Watchdog-Timer Initialization, Option Byte 0080
	TM00_Init() – Timer 00 Initialization for 1-Millisecond Peri
	TMH1_Init() – Timer H1 Initialization for 10-Millisecond Per
	LVI_Init() – Initializing Low-Voltage Detection
	Main() – Main Program – Safety Features Demonstration
	LVI_Reset_239() – Set LVI for Reset at VDD Below 2.39V
	LVI_Reset_393() – Set LVI for Reset at VDD Below 3.93V
	LVI_Int_239() – Set LVI for Interrupt at VDD Below 2.39V
	LVI_Int_393() – Set LVI for Interrupt at VDD Below 3.93V
	EXLVI_Reset() – Set LVI for Reset on EXLVI Low Voltage
	EXLVI_Int() – Set LVI for Interrupt on EXLVI Low Voltage
	WDT_Demo() – Demonstrating Watchdog-Timer Overflow
	MD_INTTMH1 – Timer H1 Interrupt-Service Routine
	MD_INTTM000 – Timer 00 Interrupt-Service Routine
	MD_INTLVI – LVI Interrupt Service Routine

	Applilet's Reference Driver
	Configuring the Applilet for Watchdog Timer (WDT)
	Configuring Applilet for Power-On Clear (POC)
	Configuring Applilet for Low-Voltage Detector (LVI)
	Configuring Applilet for Timer TM00 for 1-Millisecond Interv
	Configuring Applilet for Timer TMH1 for 10-Millisecond Inter
	Generating Code With Applilet, Selecting Optional Functions
	Applilet-Generated Files and Functions for Watchdog Timer (W
	Watchdogtimer.h
	Watchdogtimer.c
	Option.inc
	Option.asm

	Applilet-Generated Files and Functions for Low-Voltage Detec
	Lvi.h
	Lvi.c
	Lvi_user.c
	Applilet Code for LVI Operation in Interrupt and Reset Mode

	Applilet-Generated Files and Functions for TM00 and TMH1
	Timer.h
	Timer.c
	Timer_user.c

	Applilet-Generated Files and Functions for Port Initializati
	Port.h
	Port.c

	Other Applilet-Generated Files
	Demonstration Program Files Not Generated by Applilet

	Demonstration Platform
	Resources
	Demonstration of Program
	External reset Demonstration
	Power-On Clear (POC) Demonstration
	Low-Voltage Detect (LVI) Demonstration
	Watchdog-Timer Demonstration

	Demonstration Using M-Station VDD Selection Instead of Poten

	Hardware Block Diagram
	Software Modules

	Appendix A - Development Tools
	Software Tools
	Hardware Tools

	Appendix B – Software Listings
	Main.c
	Macrodriver.h
	System.h
	Systeminit.c
	System.c
	Lvi.h
	Lvi.c
	Lvi_user.c
	Port.h
	Port.c
	Timer.h
	Timer.c
	Timer_user.c
	Watchdogtimer.h
	Watchdogtimer.c
	Led_0537.h
	Led_0537.c
	Sw_0537.h
	Sw_0537.c
	Option.inc
	Option.asm
	Option_POC27.inc
	Option_POC27.asm

