RZ/A1LU Group

RZ/A1LU Software Package V3.30 Release Note

Introduction
This Software Package has best solution for Human Machine Interface (hereinafter referred to as HMI) application development.

The Software Package shows how easy it is to create a professional, user-friendly and platform-independent user interface for your product. The entire application source code is included in the workspace enabling the Software Package to be ported to the platform of your choice.

Following sample applications are available.

GUI sample application:
Example for interoperation between RZ/A1LU peripherals/StreamIt! on-board peripherals with the C++ HMI Framework "Guiliani" by TES Electronics Solutions. "Guiliani" and RZ/A1LU Software Package allows rapid implementations of smooth, intuitive and high-performance GUIs that can interact with RZ/A1LU extensive peripherals free-of-charge.

For details on Guiliani, please refer to

SDK for Camera sample application:
Supports camera input, LCD output, and easily image adjustment. Only if you use e2 studio as IDE, this sample program can be linked with the development support tool QE for Display/Camera. QE for Display/Camera is a plugin of the integrated development environment e2 studio and it can adjust the timing of the LCD panel/Camera, image correction and set Camera module very easy with GUI.

- Product page
 https://www.renesas.com/qe-display
 https://www.renesas.com/qe-camera

Touch Panel sample application:
Supports detection the touch event and gets touch coordinates. After detection, this sample application will draw a large arrow at the coordinates of the event. Also when a large arrow is drawn, JPEG codec processing is done using JPEG Codec Unit(JCU).

This Software Package has a touch abstraction layer which is Touch Panel Utility. User can implement each touch panel driver easily without modifying the application interface.

USB Mass Storage sample application:
Access Control sample of FAT formatted Mass Storage Devices (USB Memory Stick, hard drive, etc.)
Web Server sample application:
The Web Engine Demonstration provides an example of Ethernet connectivity and a sample web server application that can control peripherals on Target board. C functions may be called from the web server output processor, allowing dynamic data to be displayed in web pages.

Other sample applications:
This package includes other sample programs as follows.

Sound / USER Switch / ADC / PMOD (use RsSPI) / USBH HID / USBH CDC / USBF HID / USBF CDC / Watchdog timer / RTC

Target Device
Target Device: RZ/A1LU
Target Board: Stream it! RZ V2.3 (YSTREAM-IT-RZ-V2.3)
Contents

1. Package Contents... 4
 1.1 Software ... 4
 1.2 Documents .. 4

2. Folder Structure.. 4

3. Related Documents ... 5

4. How to use this package ... 5

5. Restrictions ... 5

6. Known Issues ... 5

7. Precautions ... 6

Revision History .. 7
1. Package Contents

1.1 Software
This package contains the following software.

Table 1. Software of this package

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RZ/A1LU Group RZ/A1LU Software Package V3.30 (iccarm version)</td>
<td>iccarm.zip</td>
</tr>
<tr>
<td>2</td>
<td>RZ/A1LU Group RZ/A1LU Software Package V3.30 (gcc version)</td>
<td>gcc.zip</td>
</tr>
</tbody>
</table>

1.2 Documents
This package contains the following documents.

Table 2. Documents of this package

<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Document Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RZ/A1LU Group RZ/A1LU Software Package Release Note</td>
<td>R01AN4310</td>
</tr>
<tr>
<td></td>
<td>(This document)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RZ/A1LU Group RZ/A1LU Software Package Quick Start Guide</td>
<td>R01QS0024</td>
</tr>
<tr>
<td>3</td>
<td>RZ/A1LU Group SDK for Camera Sample Program Application Note</td>
<td>R01AN4312</td>
</tr>
<tr>
<td>4</td>
<td>RZ/A1LU Group Video Utility Application Note</td>
<td>R01AN4313</td>
</tr>
<tr>
<td>5</td>
<td>RZ/A1LU Group Touch Panel Utility Application Note</td>
<td>R01AN4314</td>
</tr>
<tr>
<td>6</td>
<td>RZ/A1LU Group GUI Sample Program Application Note</td>
<td>R01AN4413</td>
</tr>
<tr>
<td>7</td>
<td>Driver documents generated by Doxygen.</td>
<td>*</td>
</tr>
</tbody>
</table>
3. Related Documents
Summaries of the related documents are shown as follow.

 This document describes the hardware specifications for RZ/A1LU.

- RZ/A1LU Group RZ stream it! Kit User's Manual For e2studio (R20UT3823)
 This document describes the development kit of Stream it! RZ V2.3.

4. How to use this package
Regarding how to use, refer to “RZ/A1LU Group RZ/A1LU Software Package Quick Start Guide (R01QS0024)“.

5. Restrictions
The Stream-it board contains two QSPI devices supporting a total of 128MBytes of flash storage. The Boot loader (an-r11an0084eg) provided supports directly accessing the first 64MB of this flash storage. Accessing the second block cannot be completed while running code from the QSPI devices. If the additional bank needs to be used please ensure the swap is completed by code running from a different memory area such as RAM. A future sample may be provided to demonstrate accessing the second bank of flash. Please check the web site for updates.

6. Known Issues
Nothing.
7. Precautions

The Precautions of V3.20 are shown as follow.

Table 4. Precautions

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Developing environment | In the case IAR Embedded Workbench ARM is used, you can change the emulator to I-Jet from IAR by changing following settings:
1. Select “Project” menu -> “Options”.
2. Select “Debugger” category.
4. Change “Driver” to “I-jet/JTAGjet”.
5. Press “OK”.

When flash download is finished, “There were 1 error and 4 warnings during the initialization of the debugging session.” will be issued. But you can debug with this setting, because of following reasons:
Error:
- Verification error at 0x18080000: mem = 0x04, file = 0x18
 This error issued because the verification is done by reading QSPI flash with single QSPI flash mode but flash downloading was done with dual QSPI flash mode.

Warning:
- Download completed but verification failed.
 This warning notices that an error was issued.
- The downloaded program doesn't seem to match the expected memory layout of the target system:
 - There are linked memory segments outside known memory areas or with incompatible memory attributes.
 - Memory is specified as follows:
 These 3 warnings show that the attribute of GUI resource is RW but the memory attribute allocated to GUI resource is Read Only. You can ignore this warning because GUI library never use write access to the GUI resource area.

2 | Application (USBF-CDC) | The disconnect interrupt occurrence will take around 1 minute after disconnecting the USB cable connected with PC since the USB connector (CN2) of the Stream it! board is designed for USB Host. |
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>No</th>
<th>Type</th>
<th>Description</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.30</td>
<td>Jan. 20, 2023</td>
<td>-</td>
<td>-</td>
<td>Modified the MMU attribute of external RAM. Modified Critical Section related functions in OS abstraction to support IRQ handler.</td>
<td>-</td>
</tr>
<tr>
<td>3.20</td>
<td>Jul. 20, 2022</td>
<td>-</td>
<td>-</td>
<td>Change library related build options</td>
<td>-</td>
</tr>
<tr>
<td>3.10</td>
<td>Oct. 11, 2021</td>
<td>1</td>
<td>Driver</td>
<td>Fix Bug using lwIP to transfer large throughput package.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Sample Program/Driver</td>
<td>Fix Bug using USB in CDC function mode sending variable data packets larger than 100 bytes.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Environment</td>
<td>Fix Bug in ISR handler which can potentially create an invalid memory access.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Document</td>
<td>Updated i2c documentation.</td>
<td>Doxygen update</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Section 1.1</td>
<td>Update References</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Section 2</td>
<td>Update References</td>
<td>-</td>
</tr>
<tr>
<td>3.00</td>
<td>Nov. 29, 2019</td>
<td></td>
<td>All</td>
<td>New template applied</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Application</td>
<td>Modified memory map to use cached area.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Driver</td>
<td>Replace the DMA driver to the latest version.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Driver</td>
<td>Added cache control driver.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Application</td>
<td>Implemented ARM Errata 801120 and 733075 to IRQ handler.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Middleware</td>
<td>Disabled long file name of Filesystem.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Driver</td>
<td>Fixed a minor bug of INTC driver.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Driver</td>
<td>Fixed an issue that USB Host Driver fails to recover the STALL error with some USB media.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Driver</td>
<td>Fixed a known issue which was written in section 7 of this document and removed this issue from section 7. The issue was that sometime PC cannot detect the “Stream it!” board as USB CDC device.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Driver</td>
<td>Fixed an issue that PC still recognize the “Stream it!” board as unknown device after closing USB Function CDC driver.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Application</td>
<td>Fixed an issue that USB Function CDC application cannot recovery without user operation on console after disconnecting and reconnecting the USB cable while the program running.</td>
<td>-</td>
</tr>
<tr>
<td>Rev. Date</td>
<td>No</td>
<td>Type</td>
<td>Description</td>
<td>Remark</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>-----------</td>
<td>--</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Application</td>
<td>Fixed an issue that the web server sample application detects only first USB device when attaching multiple USB devices.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Application</td>
<td>Fixed an issue that the web server sample application cannot set Date information when pressing the “Set” button on web without any other entries.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Bootloader</td>
<td>Updated the bootloader binary to allow to enable 32 bit addressing instead of 24 bit.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2.10 Oct. 31, 2018</td>
<td>1</td>
<td>Application</td>
<td>Fixed Sound application restriction. The restriction was as following. If the play command is run from the console and the user presses a key during playback to abort, the next play command will fail.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Sample Program</td>
<td>Added “RZA1LU_BlinkySample” project for user development startup. This project is for user development startup and it has only LED blink application. User can startup user’s own project with this project easily.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Driver</td>
<td>Supported USBF CDC for GCC toolchain.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Driver</td>
<td>Changed ADC driver I/F to support whole channels and any configurations.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Driver</td>
<td>Fixed an issue that sometimes the USB Host (MSC) driver fail to read/write big data.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2.00 Jun. 29, 2018</td>
<td>1</td>
<td>Development environment</td>
<td>Supported “IAR Embedded Workbench for Arm”.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Sample Program</td>
<td>Added sample programs as follows. GUI / Web Server / Sound / USER Switch / ADC / PMOD(use RSP1) / USBH HID / USBH CDC / USBF HID / USBF CDC</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Development environment</td>
<td>Supported “QE for Camera” & “QE for Display”</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1.00 Apr. 6, 2018</td>
<td>-</td>
<td>-</td>
<td>First Edition issued</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
 A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoiding using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
 The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
 Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
 Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
 After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
 Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between \(V_{IL} \) (Max.) and \(V_{IH} \) (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between \(V_{IL} \) (Max.) and \(V_{IH} \) (Min.).

7. Prohibition of access to reserved addresses
 Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
 Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product is indicated below.

* "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

* "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain usage conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2023 Renesas Electronics Corporation. All rights reserved.