
 APPLICATION NOTE

R01AN3428EJ0110 Rev.1.10 Page 1 of 33
Sep 30, 2016

RZ/A1H Group
USB Host Communications Device Class Driver (HCDC)
Introduction

This application note describes USB Host Communication Device Class Driver (HCDC). This module
operates in combination with the USB basic firmware (USB-BASIC-F/W). It is referred to below as the USB
HCDC.

Target Device
RZ/A1H Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after
making modifications to comply with the alternate MCU.

Related Documents

1. Universal Serial Bus Revision 2.0 specification
 http://www.usb.org/developers/docs/

2. USB Class Definitions for Communications Devices Revision 1.2
3. USB Communications Class Subclass Specification for PSTN Devices Revision 1.2

 http://www.usb.org/developers/docs/
4. RZ/A1H Group,RZ/A1M Group User's Manual: Hardware (Document No.R01UH0403EJ)
5. RZ/A1H Group USB Host and Peripheral Interface Driver (Document No.R01AN3291EJ)
6. RZ/A1H Group Downloading Program to NOR Flash Memory Using ARM® Development Studio 5

(DS-5™) Semihosting Function (for GENMAI) (Document No.R01AN1957EJ)
7. RZ/A1H Group I/O definition header file (Document No.R01AN1860EJ)
8. RZ/A1H Group Example of Initialization (for GENMAI) (Document No.R01AN1864EJ)

・ Renesas Electronics Website

http://www.renesas.com/
・ USB Devices Page

http://www.renesas.com/prod/usb/

R01AN3428EJ0110
Rev.1.10

 Sep 30, 2016

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 2 of 33
Sep 30, 2016

Contents

1. Overview .. 3

2. Software Configuration ... 6

3. System Resources ... 6

4. Target Peripheral List（TPL） ... 6

5. Compile Setting .. 7

6. Communication Device Class (CDC), PSTN and ACM ... 8

7. USB Host Communication Device Class Driver (HCDC) .. 13

8. Sample Application ... 31

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 3 of 33
Sep 30, 2016

1. Overview
The USB HCDC, when used in combination with the USB-BASIC-F/W, operates as a USB host
communications device class driver (HCDC). The HCDC conforms to the PSTN device subclass abstract
control model of the USB communication device class specification (CDC) and enables communication
with a CDC peripheral device.
This module supports the following functions.

・ Checking of connected devices
・ Implementation of communication line settings
・ Acquisition of the communication line state
・ Data transfer to and from a CDC peripheral device
・ HCDC can connect maximum 2 CDC devices to 1 USB channel by using USB Hub.

1.1 Please be sure to read
It is recommended to use the APIs described in the document (Document No: R01AN3291EJ) when
creating an application program using this driver.
That document is located in the "reference_documents" folder within the package.
[Note]
a. The document (Document No: R01AN3291EJ) also provides how to create an application program

using the APIs described above.
b. If the APIs described in the document (Document No: R01AN3291EJ) are used, there is no need to

use the API described in “7.3. List of HCDC API Functions” of this document of this document.

1.2 Operation Confirmation Conditions
The operation of the USB Driver module has been confirmed under the conditions listed in Table 1.1.

Table 1.1 Operation Confirmation Conditions
Item Description

MCU RZ/A1H
Operating frequency (Note) CPU clock (Iφ): 400 MHz
 Image-processing clock (Gφ): 266.37 MHz
 Internal bus clock (Bφ): 133.33 MHz
 Peripheral clock 1 (P1φ): 66.67 MHz
 Peripheral clock 0 (P0φ): 33.33 MHz
Operating voltage Power supply voltage (I/O): 3.3 V
 Power supply voltage (internal): 1.8 V
Integrated development
environment

ARM Integrated Development Environment

 • ARM Development Studio (DS-5TM) Version 5.16
 IAR Integrated Development Environment
 • IAR Embedded Workbench for ARM Version 7.40
Compiler ARM C/C++ Compiler/Linker/Assembler Ver.5.03 [Build 102]
 KPIT GNUARM-RZ v14.01
 IAR C/C++ Compiler for ARM 7.40
Operating mode Boot mode 0
 (CS0-space 16-bit booting)
Communication setting of terminal
software

Communication speed: 115200 bps

 Data length: 8 bits
 Parity: None
 Stop bit length: 1 bit
 Flow control: None
Board GENMAI board
 R7S72100 CPU board (RTK772100BC00000BR)
Device Serial interface (D-sub 9-pin connector)
(Functions used on the board) USB1 connector, USB2 connector

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 4 of 33
Sep 30, 2016

1.3 Limitations
This module is subject to the following restrictions
1. Structures are composed of members of different types (Depending on the compiler, the address

alignment of the structure members may be shifted).

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 5 of 33
Sep 30, 2016

Terms and Abbreviations

APL : Application program
CDC : Communications devices class
CDCC : Communications Devices Class － Communications Class Interface
CDCD : Communications Devices Class － Data Class Interface
cstd : Prefix of function and file for Peripheral & Host Common Basic (USB low level) F/W
HCD : Host control driver of USB-BASIC-FW
HCDC : Host communication devices class
HDCD : Host device class driver (device driver and USB class driver)
hstd : Prefix of function and file for Host Basic (USB low level) F/W
HUBCD : Hub class sample driver
MGR : Peripheral device state manager of HCD
non-OS : USB basic firmware for OS less system
PP : Pre-processed definition
Scheduler : Used to schedule functions, like a simplified OS.
Scheduler Macro : Used to call a scheduler function (non-OS)
Task : Processing unit
USB : Universal Serial Bus
USB-BASIC-FW : USB Basic Host Driver for RZ/A1H Group (non-OS)

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 6 of 33
Sep 30, 2016

2. Software Configuration
Table 2.1 lists the modules, and Figure 2-1 shows a block diagram of HCDC.

Table 2.1 Modules
Module Description
APL User application program. Created by customer.
HCDC Requests CDC requests command and the data transfer from APL to HCD .
MGR / HUB Enumerates the connected devices and starts HCDC. Also performs device state

management.
HCD USB host H/W control driver. (See USB Basic FW.)

User Application (APL)

USB Host Communication Device Driver (HCDC)

USB Host Control Driver (HCD)

USB Host Controller (Hardware)

MGR/HUB
(USB manager)

(HUB driver)

Figure 2-1 Software Block Diagram

3. System Resources
The resource which HCDC uses is showed in エラー! 参照元が見つかりません。 Table 3. - Table 3.エラ

ー! 参照元が見つかりません。.
Table 3.1 Task Information

Function ID Priority Description
usb_hcdc_Task USB_HCDC_TSK USB_PRI_3 HCDC Task

Table 3.2 Mailbox Information

Mailbox ID Queue Description
USB_HCDC_MBX USB_HCDC_TSK FIFO order for HCDC

Table 3.3 Memory Pool Information

Memory Pool Queue Memory block（*） Description
USB_HCDC_MPL FIFO order 40byte for HCDC

[Note]: The maximum number of memory blocks for the entire system is defined in USB_BLKMAX. The
default value is 20.

4. Target Peripheral List（TPL）
When using a USB host driver (USB-BASIC-F/W FIT module) and device class driver in combination, it is
necessary to create a target peripheral list (TPL) for each device driver.
For details, see “Target Peripheral List,” in USB Basic Firmware application note (Document No.
R01AN3291EJ).

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 7 of 33
Sep 30, 2016

5. Compile Setting
In order to use this module, it is necessary to set the USB-BASIC-F/W as a host. Refer to USB Basic
Firmware application note (Document No. R01AN3291EJ) for information on USB-BASIC-F/W settings.
Please modify r_usb_hcdc_config.h when User sets the module configuration option.
The following table shows the option name and the setting value.

Configuration options in r_usb_hcdc_config.h
USB_HCDC_IF_CLASS Specifies the device class ID of connected CDC devices.

・ USB_IFCLS_VEN: Vendor class devices may be connected.
・ USB_IFCLS_CDC: CDC class devices may be connected.

USB_HCDC_MULTI_CONNECT Enables this definition when connecting 2 CDC devices to one USB
module (USB channel).

USB_HCDC_IN_DATA_PIPE
USB_HCDC_OUT_DATA_PIPE
USB_HCDC_IN_DATA_PIPE2
USB_HCDC_OUT_DATA_PIPE2

Specifies the pipe number which is used at the data transfer.
(Specifies any one from USB_PIPE1 to USB_PIPE5. Don’t specify
the same pipe number.)

USB_HCDC_STATUS_PIPE
USB_HCDC_STATUS_PIPE2

Specifies the pipe number which is used at the class notification.
(Specifies any one from USB_PIPE6 to USB_PIPE9. Don’t specify
the same pipe number.)

[Note]
1. Please confirm the specification of the CDC device before attempting to use it. When using a

commercial USB-serial converter (CDC device), check that the device class ID is CDC and not
Vendor class.

2. Sets the pipe number to USB_HCDC_IN_DATA_PIPE2, USB_HCDC_OUT_DATA_PIPE2 and
USB_HCDC_STATUS_PIPE2 when enabling USB_HCDC_MULTI_CONNECT.

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 8 of 33
Sep 30, 2016

6. Communication Device Class (CDC), PSTN and ACM
This software conforms to the Abstract Control Model (ACM) subclass of the Communication Device Class
specification, as specified in detail in the PSTN Subclass document listed in “Related Documents”.
The Abstract Control Model subclass is a technology that bridges the gap between USB devices and earlier
modems (employing RS-232C connections), enabling use of application programs designed for older
modems.

6.1 Basic Functions
The main functions of HCDC are as follows.

1. Verify connected devices
2. Make communication line settings
3. Acquire the communication line state
4. Transfer data to and from the CDC peripheral device

6.2 Abstract Control Model Class Requests - Host to Device
The software supports the following ACM class requests.

Table 6.1 CDC Class Requests
Request Code Description
SendEncapsulatedCommand 0x00 Transmits an AT command as defined by the protocol used by

the device (normally 0 for USB).
GetEncapsulatedResponse 0x01 Requests a response to a command transmitted by

SendEncapsulatedCommand.
SetCommFeature 0x02 Enables or disables features such as device-specific 2-byte code

and country setting.
GetCommFeature 0x03 Acquires the enabled/disabled state of features such as device-

specific 2-byte code and country setting.
ClearCommFeature 0x04 Restores the default enabled/disabled settings of features such

as device-specific 2-byte code and country setting.
SetLineCoding 0x20 Makes communication line settings (communication speed, data

length, parity bit, and stop bit length).
GetLineCoding 0x21 Acquires the communication line setting state.
SetControlLineState 0x22 Makes communication line control signal (RTS, DTR) settings.
SendBreak 0x23 Transmits a break signal.

For details concerning the Abstract Control Model requests, refer to Table 11, “Requests - Abstract Control
Model” in “USB Communications Class Subclass Specification for PSTN Devices”, Revision 1.2.
The following describes the class request data formats supported by this class driver software.

6.2.1 SendEncapsulatedCommand
The SendEncapsulatedCommand data format is shown in Table 6.2.

Table 6.2 SendEncapsulatedCommand Data Format
bmRequestType bRequest wValue wIndex wLength Data
0x21 SEND_ENCAPSULATED

_COMMAND(0x00)
0x0000 0x0000 Data length Control protocol

command
Note: Items such as AT commands for modem control are set as Data, and wLength is set to match the

length of the data.

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 9 of 33
Sep 30, 2016

6.2.2 GetEncapsulatedResponse
The GetEncapsulatedResponse data format is shown Table 6.3.

Table 6.3 GetEncapsulatedResponse Data Format
bmRequestType bRequest wValue wIndex wLength Data
0x21 GET_ENCAPSULATED_

RESPONSE (0x01)
0x0000 0x0000 Data length The data depends on

the protocol.
Note: The response data to SendEncapsulatedCommand is set as Data, and wLength is set to match the

length of the data.

6.2.3 SetCommFeature
The SetCommFeature data format is shown Table 6.4.

Table 6.4 SetCommFeature Data Format
bmRequestType bRequest wValue wIndex wLength Data
0x21 SET_COMM_FEATURE

(0x02)
Feature
Selector
Note

0x0000 Data length Status
Either the country
code or the Abstract
Control Model idle
setting/multiplexing
setting for Feature
Selector.

Note: Shown in Table 4.6 Feature selector Settings.

6.2.4 GetCommFeature Data Format
The GetCommFeature data format is shown below.

Table 6.5 GetCommFeature Data Format
bmRequestType bRequest wValue wIndex wLength Data
0x21 GET_COMM_FEATURE

(0x03)
Feature
Selector
Note

0x0000 Data length Status
Either the country
code or the Abstract
Control Model idle
setting/multiplexing
setting for Feature
Selector.

Note: Shown in Table 4.6 Feature selector Settings.

A Feature selector setup is shown in Table 6.6. The Status format at the time of ABSTRACT_STATE is
shown in Table 6.7.

Table 6.6 Feature Selector Settings
Feature Selector Code Targets Length of

Data
Description

RESERVED 0x00 None None Reserved
ABSTRACT_STATE 0x01 Interface 2 Selects the setting for Abstract Control Model

idle state and signal multiplexing.
COUNTRY_SETTING 0x02 Interface 2 Selects the country code in hexadecimal

format, as defined by ISO 3166.

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 10 of 33
Sep 30, 2016

Table 6.7 Status Format when ABSTRACT_STATE Selected

Bit Position Description
D15 to D2 Reserved
D1 Data multiplexing setting

1: Multiplexing of call management commands is enabled for the Data class.
0: Multiplexing is disabled.

D0 Idle setting
1: No endpoints of the target interface accept data from the host, and data is not
supplied to the host.
0: Endpoints continue to accept data and it is supplied to the host.

6.2.5 ClearCommFeature

The ClearCommFeature data format is shown Table 6.8.
Table 6.8 ClearCommFeature Data Format

bmRequestType bRequest wValue wIndex wLength Data
0x21 CLEAR_COMM_FEATUR

E (0x04)
Feature
Selector
Note

0x0000 0x0000 None

Note: Shown in Table 4.6 Feature selector Settings.

6.2.6 SetLineCoding
The SetLineCoding data format is shown Table 6.9.

Table 6.9 SetLineCoding Data Format
bmRequestType bRequest wValue wIndex wLength Data
0x21 SET_LINE_CODING

(0x20)
0x0000 0x0000 0x0000 Line Coding Structure

See Table 6.10 Line
Coding Structure
Format

Line Coding Structure Format is shown Table 6.10.

Table 6.10 Line Coding Structure Format
Offset Field Size Value Description
0 dwDTERate 4 Number Data terminal speed (bps)
4 bCharFormat 1 Number Stop bits 0 - 1 stop bit

 1 - 1.5 stop bits
 2 - 2 stop bits

5 bParityType 1 Number Parity 0 - None
 1 - Odd
 2 - Even
 3 - Mask
 4 - Space

6 bDataBits 1 Number Data bits (5, 6, 7, 8)

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 11 of 33
Sep 30, 2016

6.2.7 GetLineCoding

The GetLineCoding data format is shown Table 6.11.
Table 6.11 GetLineCoding Data Format

bmRequestType bRequest wValue wIndex wLength Data
0xA1 GET_LINE_CODING

(0x21)
0x0000 0x0000 0x0007 Line Coding Structure

See Table 4.10, Line
Coding Structure
Format

6.2.8 SetControlLineState

The SetControlLineState data format is shown below.
Table 6.12 SetControlLineState Data Format

bmRequestType bRequest wValue wIndex wLength Data
0x21 SET_CONTROL_LINE

_STATE (0x22)
Control
Signal
Bitmap
See Table
6.13 Control
Signal
Bitmap

0x0000 0x0000 None

Table 6.13 Control Signal Bitmap

Bit Position Description
D15 to D2 Reserved
D1 DCE transmit function control 0 - RTS OFF

 1 - RTS ON
D0 Notification of DTE ready state 0 - DTR OFF

 1 - DTR ON

6.2.9 SendBreak

The SendBreak data format is shown below.
Table 6.14 SendBreak Data Format

bmRequestType bRequest wValue wIndex wLength Data
0x21 SEND_BREAK

(0x23)
Break
signal
output
duration

0x0000 0x0000 None

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 12 of 33
Sep 30, 2016

6.3 ACM Notifications from Device to Host
The class notifications supported and not supported by the software are shown Table 6.15.

Table 6.15 CDC Class Notifications
Notification Code Description Supported
NETWORK_CONNECTION 0x00 Notification of network connection state No
RESPONSE_AVAILABLE 0x01 Response to GET_ENCAPSLATED_RESPONSE Yes
SERIAL_STATE 0x20 Notification of serial line state Yes

6.3.1 SerialState
The SerialState data format is shown below.

Table 6.16 SerialState Data Format
bmRequestType bRequest wValue wIndex wLength Data
0xA1 SERIAL_STATE

(0x20)
0x0000 0x0000 0x0000 UART State bitmap

See Table 6.17 UART
State bitmap Format

UART State bitmap format is shown Table 6.17.

Table 6.17 UART State bitmap Format
Bits Field Description
D15 to D7 Reserved
D6 bOverRun Overrun error detected
D5 bParity Parity error detected
D4 bFraming Framing error detected
D3 bRingSignal INCOMING signal (ring signal) detected
D2 bBreak Break signal detected
D1 bTxCarrier Data Set Ready: Line connected and ready for communication
D0 bRxCarrier Data Carrier Detect: Carrier detected on line

6.3.2 ResponseAvailable

The ResponseAvailable data format is shown below.
Table 6.18 ResponseAvailable Data Format

bmRequestType bRequest wValue wIndex wLength Data
0xA1 RESPONSE_AVAILABLE

(0x01)
0x0000 0x0000 0x0000 None

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 13 of 33
Sep 30, 2016

7. USB Host Communication Device Class Driver (HCDC)
7.1 Basic Functions

This software conforms to the Abstract Control Model subclass of the communication device class
specification.
The main functions of HCDC are to:
1. Send class requests to the CDC peripheral
2. Transfer data to and from the CDC peripheral
3. Receive communication error information from the CDC peripheral

7.2 Structures
7.2.1 HCDC Request Structure

Table 7.1 describes the “UART settings” parameter structure used for the CDC requests SetLineCoding
and GetLineCoding.

Table 7.1 USB_HCDC_LineCoding_t Structure
Type Member Description Remarks
uint32_t dwDTERate Line speed Unit: bps
uint8_t bCharFormat Stop bits setting
uint8_t bParityType Parity setting
uint8_t bDataBits Data bit length

Table 7.2 describes the “UART settings” parameter structure used for the CDC requests
SetControlLineState.

Table 7.2 USB_HCDC_ControlLineState_t Structure
Type Member Description Remarks
uint16_t (D1) bRTS:1 Carrier control for half duplex modems

0 - Deactivate carrier, 1 - Activate carrier

uint16_t (D0) bDTR:1 Indicates to DCE if DTE is present or not
0 - Not Present, 1 - Present

Table 7.3 describes the “AT command” parameter structure used for the CDC requests
SendEncapsulatedCommand and GetEncapsulatedResponse.

Table 7.3 USB_HCDC_Encapsulated_t Structure
Type Member Description Remarks
uint8_t *p_data Area where AT command data is stored
uint16_t wLength Size of AT command data Unit: byte

Table 7.4 describes the “Break signal” parameter structure used for the CDC requests SendBreak.

Table 7.4 USB_HCDC_BreakDuration_t Structure
Type Member Description Remarks
uint16_t wTime_ms Duration of Break Unit: ms

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 14 of 33
Sep 30, 2016

7.2.2 CommFeature Function Selection Union
Table 7.5 and Table 7.6 describe the “Feature Selector” parameter structure used for the CDC requests
SetCommFeature and GetCommFeature, and Table 7.7 describes the parameter union.

Table 7.5 USB_HCDC_AbstractState_t Structure
Type Member Description Remarks
uint16_t rsv1:8 Reserved1
uint16_t rsv2:6 Reserved2
uint16_t bDMS:1 Data Multiplexed State
iomt16_t bIS:1 Idle Setting

Table 7.6 USB_HCDC_CountrySetting_t Structure
Type Member Description Remarks
uint16_t country_code Country code in hexadecimal format as defined in [ISO3166],

Table 7.7 USB_HCDC_CommFeature_t Union
Type Member Description Remarks
USB_HCDC_AbstractState_t abstractState Abstract Control Model select time

parameters

USB_HCDC_CountrySetting_t countrySetting Country Setting select time parameters

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 15 of 33
Sep 30, 2016

7.2.3 CDC Request Input Parameter Union
Table 7.8 describes the common parameter structure for CDC requests.

Table 7.8 USB_HCDC_ClassRequestParm_t Structure
Request Request code

Structure type
Member name Description

SetLineCoding USB_HCDC_SET_LINE_CODING
/ USB_HCDC_LineCoding_t

*LineCoding Data address send and
receive in data stage.
Refer to Table 7.1

GetLineCoding USB_HCDC_GET_LINE_CODING
/ USB_HCDC_LineCoding_t

SetControlState USB_HCDC_SET_
CONTROL_LINE_STATE
/ USB_HCDC_ControlLineState_t

ControlLineState Value set to the wValue
field. Refer to Table 7.2

SendEncapsulated
Command

USB_HCDC_SEND_
ENCAPSULATED_COMMAND
/ USB_HCDC_Encapsulated_t

Encapsulated Data address send and
receive in data stage,
and value set to the
wValue field. Refer to
Table 7.3

GetEncapsulated
Response

USB_HCDC_GET_
ENACAPSULATED_RESPONSE
/ USB_HCDC_Encapsulated_t

SendBreak USB_HCDC_SEND_BREAK
/ USB_HCDC_BreakDuration_t

BreakDuration Value set to the wValue
field. Refer to Table 7.4

SetCommFeature USB_HCDC_SET_
COMM_FEATURE
/ USB_HCDC_CommFeature_t

*CommFeature Data address send and
receive in data stage.
Refer to Table 7.7

GetCommFeature USB_HCDC_GET_
COMM_FEATURE
/ USB_HCDC_CommFeature_t

ClearCommFeature USB_HCDC_CLR_COMM_FEATURE
No structure

7.2.4 CDC Request API Function Structure

Table 7.9 describes the CDC request parameter structure.
Table 7.9 USB_HCDC_ClassRequest_UTR_t Structure

Type Member Description
usb_addr_t devadr Device address
USB_REGADR_t ipp USB IP Base Address
uint16_t ip USB IP Number
uint8_t bRequestCode Class request code. Refer to Table 7.8
USB_CDC_ClassRequestParm_t parm Parameter setup value. Refer to Table 7.8
usb_cb_t complete Class request processing end call-back function

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 16 of 33
Sep 30, 2016

7.2.5 CDC Notification Format
Table 7.10 and Table 7.11 describe the data format of the CDC notification.

Table 7.10 Response_Available notification format
Type Member Description Remarks
uint8_t bmRequestType 0xA1
uint8_t bRequest RESPONSE_AVAILABLE(0x01)
uint16_t wValue 0x0000
uint16_t wIndex Interface
uint16_t wLength 0x0000
uint8_t Data none

Table 7.11 Serial_State notification format
Type Member Description Remarks
uint8_t bmRequestType 0xA1
uint8_t bRequest SERIAL_STATE(0x20)
uint16_t wValue 0x0000
uint16_t wIndex Interface
uint16_t wLength 0x0002
uint16_t Data UART State bitmap Refer to Table 7.12

The host is notified of the “SerialState” when a change in the UART port state is detected. Table 7.12
describes the structure of the UART State bitmap.

Table 7.12 USB_HCDC_SerialState_t Structure
Type Member Description Remarks
uint16_t (D15-D8) rsv1:8 Reserved1
uint16_t (D7) rsv2:1 Reserved2
uint16_t (D6) bOverRun:1 Overrun error detected
uint16_t (D5) bParity:1 Parity error detected
uint16_t (D4) bFraming:1 Framing error detected
uint16_t (D3) bRingSignal:1 Incoming signal (Ring signal) detected
uint16_t (D2) bBreak:1 Break signal detected
uint16_t (D1) bTxCarrier:1 Line connected and ready for communication Data Set Ready
uint16_t (D0) bRxCarrier:1 Carrier detected on line Data Carrier Detect

7.3 List of HCDC API Functions
The HCDC API is shown in Table 7.13.

Table 7.13 List of HCDC API Functions
Function Description
R_usb_hcdc_receive_data USB receive processing
R_usb_hcdc_send_data USB send processing
R_usb_hcdc_serial_state_trans Class notification Serial State processing
R_usb_hcdc_class_check Descriptor check processing
R_usb_hcdc_SetPipeRegistration Pipe setting processing
R_usb_hcdc_class_request Sends CDC class request
R_usb_hcdc_driver_start Driver task start setting for HCDC
R_usb_hcdc_Task HCDC task

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 17 of 33
Sep 30, 2016

7.3.1 R_usb_hcdc_receive_data

Host receive data.

Format
USB_ER_t R_usb_hcdc_send_data (USB_UTR_t *ptr,

uint8_t *buf,
 uint32_t size,

USB_CB_t complete)

Argument
ptr Pointer to the USB Communication Structure used for attached device.
buf Pointer to transmit data buffer address
size Transfer size
complete Process completion notice callback function

Return Value
－ Error code (USB_E_OK / USB_E_ERROR).

Description
This function requests USB data reception from the USB driver (HCD).
When data reception ends (specified data size reached, short packet received, error occurred), the call-
back function is called. Information on remaining receive data (length, status, error count and transfer
end) is determined bythe parameters of the call-back.
USB receive data is stored in the area given by the address specified by 2nd argument (*buf).

Note
1. Call this API in the user application program or the class driver.
2. Set the following members of the USB_UTR_t structure when calling the function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP Number

3. Specify the area other than the auto variable (stack) area to the 2nd argument.
4. When the received data is n times of the maximum packet size and less than the specified size in

the argument (size), it is considered that the data transfer is not ended and a callback function
(complete) is not generated.

5. Set the device address of CDC device which do the USB data transfer to the member “keyword” in
USB_UTR_t structure when the definition “USB_HCDC_MULTI_CONNECT” is enabled.

6. The USB transmit process results are obtained from the USB_UTR_t * argument in the call-back
function

7. Refer to the structure for USB communication (USB_UTR_t structure) of a USB Basic Firmware
application note.

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 18 of 33
Sep 30, 2016

Example

{
 USB_UTR_t *ptr;
 uint16_t size = 64; /* Data size */

 ptr = (USB_UTR_t *)&utr;
 ptr->ip = USB_HOST_USBIP_NUM; /* USB IP number set */
 ptr->ipp = R_usb_cstd_GetUsbIpAdr(ptr->ip); /* USB IP base address set */

 R_usb_hcdc_receive_data(ptr, (uint8_t *)receive_data, size,
(USB_CB_t)&usb_complete)

}

/* Callback function */
void usb_complete(USB_UTR_t *mess, uint16_t data1, uint16_t data2);
{
 /* Describe the processing performed when the USB receive is completed. */
}

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 19 of 33
Sep 30, 2016

7.3.2 R_usb_hcdc_send_data

Host send data

Format
USB_ER_t R_usb_hcdc_send_data (USB_UTR_t *ptr,
 uint8_t *buf,
 uint32_t size,
 USB_CB_t complete)

Argument
ptr Pointer to the USB Communication Structure used for attached device.
buf Pointer to Transmit data buffer address
size Transfer size
complete Process completion notice callback function

Return Value
－ Error code (USB_E_OK / USB_E_ERROR)

Description
This function transfers the USB data in the specified transmit size from the address specified in the
Transmit Data Address Table.
When the transmission processing is complete, the call-back function is called.

Note
1. Call this API in the user application program or the class driver.
2. Please set the following member of USB_UTR_t structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP Number

3. Specify the area other than the auto variable (stack) area to the 2nd argument.
4. Set the device address of CDC device which do the USB data transfer to the member “keyword” in

USB_UTR_t structure when the definition “USB_HCDC_MULTI_CONNECT” is enabled.
5. The USB transmit processing results are obtained by ”USB_UTR_t *” argument in the call-back

function
6. Refer to the USB Basic Firmware application note for info on the USB communication

(USB_UTR_t) structure.

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 20 of 33
Sep 30, 2016

Example

{
 USB_UTR_t *ptr;

 ptr = (USB_UTR_t *)&utr;
 ptr->ip = USB_PERI_USBIP_NUM; /* USB IP number set */
 ptr->ipp = R_usb_cstd_GetUsbIpAdr(ptr->ip); /* USB IP base address set */

 R_usb_hcdc_send_data(ptr, send_data, size, (USB_CB_t)&usb_complete)

}

/* Callback function */
void usb_complete(USB_UTR_t *mess, uint16_t data1, uint16_t data2);
{
 /* Describe the processing performed when the USB transmit is completed. */
}

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 21 of 33
Sep 30, 2016

7.3.3 R_usb_hcdc_serial_state_trans

Handle CDC class and serial state info from peripheral

Format
USB_ER_t R_usb_hcdc_serial_state_trans (USB_UTR_t *ptr,
 USB_HCDC_SERIAL_ST_CB_t *complete)

Argument
*ptr Pointer to the USB Communication Structure used for attached device.
complete Process completion notice callback function

Return Value
－ Error code (USB_E_OK / USB_E_ERROR).

Description
This function receives the CDC class notification(Serial State) from the peripheral device.
Callback function complete is called after the completion of reception.
The serial status is received when the callback function is triggered.

Note
1. Call this API in the user application program or the class driver.
2. For information concerning the serial status bit pattern, refer to”Table 6.17 UART State bitmap

Format.
3. The USB transmit results are obtained from the USB_UTR_t * argument in the call-back function.
4. Please set the following member of USB_UTR_t structure when calling the function.

USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP Number

5. Set the device address of CDC device which do the USB serial state reception to the member
“keyword” in USB_UTR_t structure when the definition “USB_HCDC_MULTI_CONNECT” is
enabled.

Example
void usb_hcdc_main_task(USB_VP_INT stacd)
{
 USB_UTR_t *mess;
 USB_ER_t err;

 while (1)
 {
 err = R_USB_RCV_MSG(USB_HCDCSMP_MBX,(USB_MSG_t**)&mess);
 if (err == USB_OK)
 {
 err = R_usb_hcdc_serial_state_trans(mess,
 (USB_HCDC_SERIAL_ST_CB_t *)&usb_hcdc_smp_SerialStateReceive);
 if(err != USB_OK)
 {
 USB_PRINTF0("### usb_pcdc_MainTask function bulk read error\n");
 }
 }
}

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 22 of 33
Sep 30, 2016

7.3.4 R_usb_hcdc_class_check

Check descriptor

Format
void R_usb_hcdc_class_check (USB_UTR_t *ptr, uint16_t **devinfo)

Argument
*ptr Pointer to the USB Communication Structure used for attached device.
**devinfo Device information array

[0] : Device Descriptor
 [1] : Configuration Descriptor
 [2] : Interface Descriptor
 [3] : Descriptor Check Result
 [4] : HUB Classification
 [5] : Port Number
 [6] : Transmission Speed
 [7] : Device Address

Return Value
－ Result (USB_E_OK / USB_E_ERROR).

Description
This is a class driver registration function. It is registered to the driver registration structure member
classcheck, as a callback function during HCDC registration at startup and called when a configuration
descriptor is received during enumeration.
When the check result is OK, the function sets USB_DONE in the descriptor result (table[3]). When the
check result is NG, the function sets USB_ERROR and ends the process.
This function references the endpoint descriptor in the peripheral device configuration descriptor, then
edits the pipe information table and checks the pipe information of the pipes to be used.

Note
－

Example
void usb_hcdc_registration(USB_UTR_t *ptr)
{
 USB_HCDREG_t driver;

 driver.ifclass = (uint16_t)USB_IFCLS_CDCC;
 :
 driver.classcheck = (USB_CB_CHECK_t)&R_usb_hcdc_class_check;
 :
 driver.devresume = (USB_CB_INFO_t)&usb_hcdc_dummy_function;
 R_usb_hstd_DriverRegistration(ptr, (USB_HCDREG_t*)&driver);
}

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 23 of 33
Sep 30, 2016

7.3.5 R_usb_hcdc_SetPipeRegistration

Set host USB H/W pipe configuration

Format
USB_ER_t R_usb_hcdc_SetPipeRegistration (USB_UTR_t *ptr, uint16_t dev_addr)

Argument
*ptr Pointer to the USB Communication Structure used for attached device.
dev_addr Device Address

Return Value
－ Rresult (USB_E_OK / USB_E_ERROR).

Description
This function sets the USB hardware to use the communication pipes that correspond to the endpoints
used for USB CDC communications. A total of three pipes are setup in host CDC: Bulk IN and Bulk
OUT pipes for data communications, as well as an Interrupt IN pipe for receiving the serial state.

Note
1. Call this API from the user application program or the class driver.
2. Please set the following member of USB_UTR_t structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP Number

Example
void usb_hcdc_smp_open(USB_UTR_t *ptr, uint16_t devadr, uint16_t data2)
{
 USB_ER_t err;

 if (devadr != 0)
 {
 usb_shcdc_devadr = devadr; /* Device Address store */

 /* Host CDC Pipe Registration */
 err = R_usb_hcdc_SetPipeRegistration(ptr, usb_shcdc_devadr);
 if (err != USB_OK)
 {
 USB_PRINTF0("Pipe Registration error !\n");
 }
 }
}

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 24 of 33
Sep 30, 2016

7.3.6 R_usb_hcdc_class_request

Send a CDC Class request

Format
USB_ER_t R_usb_hcdc_class_request (void *pram)

Argument
*pram Class request parameter.

Return Value
－ Error code (USB_E_OK / USB_E_ERROR).

Description
The following CDC class requests can be sent to an enumerated USB CDC peripheral by HCDC.

1. SendEncapsulatedCommand
2. GetEncapsulatedResponse
3. SetCommFeature
4. GetCommFeature
5. ClearCommFeature
6. SetLineCoding
7. GetLineCoding
8. SetControlLineState
9. SendBreak

Please refer to the following “Example” for details on how to issue these requests.
The parameter set in the void * pram argument will cast USB_HCDC_ClassRequestParm_t*.
Refer to Table 7.8 for the USB_HCDC_ClassRequest_Parm structure.

Note
1. Call this API in the user application program or the class driver.
2. Set the following members of the USB_UTR_t structure when calling the function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP Number

3. Refer to the USB Basic Firmware application note for the USB Communication structure
USB_UTR_t.

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 25 of 33
Sep 30, 2016

Example
 SetEncapsulatedResponse

{
 USB_ER_t err;
 USB_HCDC_ClassRequest_UTR_t utr_req;

 utr_req.parm.Encapsulated.p_data = p_data; /* Command data buffer */
 utr_req.parm.Encapsulated.wLength = length;
 utr_req.bRequestCode = USB_HCDC_SEND_ENCAPSULATED_COMMAND;
 utr_req.complete = smp_sendencapsulateresponse_cb;
 utr_req.devadr = devadr; /* Device Address */
 utr_req.ip = USB_USBIP_0; /* USB IP No (0/1) */
 utr_req.ipp = R_usb_cstd_GetUsbIpAdr(USB_USBIP_0); /* USB IP address */

 /* CDC class request */
 err = R_usb_hcdc_class_request((void*)&utr_req);

 return err;
}
/* Callback function */
void smp_sendencapsulateresponse_cb (USB_UTR_t *mess, uint16_t data1, uint16_t data2)
{
 /* Describe the processing performed when the class request is completed. */
}

 GetEncapsulatedResponse

{
USB_HCDC_ClassRequest_UTR_t utr_req; /* Line Coding Parameter */
usb_er_t err;

/* Example of usage. */
USB_ER_t err;
USB_HCDC_ClassRequest_UTR_t utr_req;

utr_req.parm.Encapsulated.p_data = p_data; /* Command data buffer */
utr_req.parm.Encapsulated.wLength = length;
utr_req.bRequestCode = USB_HCDC_GET_ENACAPSULATED_RESPONSE;
utr_req.complete = smp_getencapsulateresponse_cb; /* Callback function */
utr_req.devadr = devadr; /* USB device address */
utr_req.ip = USB_USBIP_0; /* USB IP No (0/1)*/
utr_req.ipp = R_usb_cstd_GetUsbIpAdr(USB_USBIP_0); /* USB IP address */

/* CDC class request */
 err = R_usb_hcdc_class_request((void*)&utr_req);
 return err;
}
/* Callback function */
void smp_getencapsulateresponse_cb (USB_UTR_t *mess, uint16_t data1, uint16_t data2)
{
 /* Describe the processing performed when the class request is completed. */
}

 SetCommFeature

{
 USB_HCDC_ClassRequest_UTR_t utr_req;

 utr_req.bRequestCode = USB_HCDC_SET_COMM_FEATURE;
 utr_req.selector = selector; /* Feature Selector */
 utr_req.parm.CommFeature = p_commfeature; /* Feature Parameter set data */

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 26 of 33
Sep 30, 2016

 if(selector == USB_HCDC_ABSTRACT_STATE)
 {
 p_commfeature->abstractState.rsv = 0;
 }
 utr_req.complete = (USB_CB_t)&smp_setcommfeature_cb;
 utr_req.devadr = devadr; /* Device Address */
 utr_req.ip = USB_USBIP_0; /* USB IP No */
 utr_req.ipp = R_usb_cstd_GetUsbIpAdr(USB_USBIP_0);/* USB IP address */

 /* CDC class request */
 err = R_usb_hcdc_class_request((void*)&utr_req);/

 return err;

}
/* Callback function for sending SetLineCoding class request */
void smp_setcommfeature_cb (USB_UTR_t *mess, uint16_t data1, uint16_t data2)
{
/* Describe the processing performed when the class request is completed. */
}

 GetCommFeature

{
 USB_ER_t err;
 USB_HCDC_ClassRequest_UTR_t utr_req;

 utr_req.bRequestCode = USB_HCDC_GET_COMM_FEATURE;

 /* Feature Parameter storage address */
 utr_req.parm.CommFeature = p_commfeature;
 utr_req.complete = (USB_CB_t)& smp_getcommfeature_cb;
 utr_req.devadr = devadr; /* Device Address */
 utr_req.selector = selector; /* Feature Selector */
 utr_req.ip = USB_USBIP_0; /* USB IP No */
 utr_req.ipp = R_usb_cstd_GetUsbIpAdr(USB_USBIP_0);/* USB IP address */

 /* CDC class request */
 err = R_usb_hcdc_class_request((void*)&utr_req);

 return err;

}
/* Callback function for sending SetLineCoding class request */
void smp_getcommfeature_cb (USB_UTR_t *mess, uint16_t data1, uint16_t data2)
{
/* Describe the processing performed when the class request is completed. */
}

 ClearCommFeature
{
 USB_ER_t err;
 USB_HCDC_ClassRequest_UTR_t utr_req;

 utr_req.bRequestCode = USB_HCDC_CLR_COMM_FEATURE;
 utr_req.complete = (USB_CB_t)&smp_clrcommfeature_cb;
 utr_req.devadr = devadr; /* Device Address */
 utr_req.selector = selector; /* Feature Selector */
 utr_req.ip = USB_USBIP_0; /* USB IP No */
 utr_req.ipp = R_usb_cstd_GetUsbIpAdr(USB_USBIP_0);/* USB IP address */

 /* CDC class request */
 err = R_usb_hcdc_class_request((void*)&utr_req);

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 27 of 33
Sep 30, 2016

 return err;
}
/* Callback function */
void smp_clrcommfeature_cb (USB_UTR_t *mess, uint16_t data1, uint16_t data2)
{
/* Describe the processing performed when the class request is completed. */
}

 SetLineCoding
static USB_HCDC_LineCoding_t usb_shcdc_line_coding;

{
 USB_ER_t err;
 USB_HCDC_ClassRequest_UTR_t utr_req; /* Line Coding Parameter */

 usb_shcdc_line_coding.dwDTERate = USB_HCDC_SPEED_9600;
 usb_shcdc_line_coding.bDataBits = USB_HCDC_DATA_BIT_8;
 usb_shcdc_line_coding.bCharFormat = USB_HCDC_STOP_BIT_1;
 usb_shcdc_line_coding.bParityType = USB_HCDC_PARITY_BIT_NONE;

 utr_req.bRequestCode = USB_HCDC_SET_LINE_CODING;
 utr_req.complete = (USB_CB_t)&smp_setlinecoding_cb;
 utr_req.parm.LineCoding = &usb_shcdc_line_coding;
 utr_req.devadr = devadr;
 utr_req.ip = USB_USBIP_0; /* USB IP No */;
 utr_req.ipp = R_usb_cstd_GetUsbIpAdr(USB_USBIP_0);/* USB IP address */

 /* CDC Class Request */
 err = R_usb_hcdc_class_request((void*)&utr_req);
 return err;

}
/* Callback function */
void smp_setlinecoding_cb (USB_UTR_t *mess, uint16_t data1, uint16_t data2)
{
/* Describe the processing performed when the class request is completed. */
}

 GetLineCoding

{
 USB_ER_t err;
 USB_HCDC_ClassRequest_UTR_t utr_req;

 utr_req.bRequestCode = USB_HCDC_GET_LINE_CODING;
 utr_req.parm.LineCoding = p_linecoding; /* Line Coding table address */
 utr_req.complete = smp_getlinecoding_cb;
 utr_req.devadr = devadr; /* Device Address */
 utr_req.ip = USB_USBIP_0; /* USB IP No */
 utr_req.ipp = R_usb_cstd_GetUsbIpAdr(USB_USBIP_0); /* USB IP address */

 /* CDC class request */
 err = R_usb_hcdc_class_request((void*)&utr_req);

 return err;

}
/* Callback function for sending SetLineCoding class request */
void smp_getlinecoding_cb (USB_UTR_t *mess, uint16_t data1, uint16_t data2)
{
 /* Describe the processing performed when the class request is completed. */

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 28 of 33
Sep 30, 2016

}

 SetControlLineState
{
 USB_ER_t err;
 USB_HCDC_ClassRequest_UTR_t utr_req;

 utr_req.bRequestCode = USB_HCDC_SET_CONTROL_LINE_STATE;
 utr_req.parm.ControlLineState.bDTR = dtr; /* RS232 signal DTR */
 utr_req.parm.ControlLineState.bRTS = rts; /* RS232 signal RTS */
 utr_req.complete = (USB_CB_t)smp_setcontrollinestate_cb;
 utr_req.devadr = devadr; /* Device Address */
 utr_req.ip = USB_USBIP_0; /* USB IP No */
 utr_req.ipp = R_usb_cstd_GetUsbIpAdr(USB_USBIP_0); /* USB IP address */

 /* CDC class request */
 err = R_usb_hcdc_class_request((void*)&utr_req);

 return err;
}
/* Callback function */
void smp_setcontrollinestate_cb (USB_UTR_t *mess, uint16_t data1, uint16_t data2)
{
/* Describe the processing performed when the class request is completed. */
}
 SendBreak
{
 USB_ER_t err;
 USB_HCDC_ClassRequest_UTR_t utr_req;

 utr_req.bRequestCode = USB_HCDC_SEND_BREAK;
 /* Break Signal output time */
 utr_req.parm.BreakDuration.wTime_ms = time_ms;
 utr_req.complete = (USB_CB_t)smp_sendbreak_cb;
 utr_req.devadr = devadr; /* Device Address */
 utr_req.ip = USB_USBIP_0; /* USB IP No */
 utr_req.ipp = R_usb_cstd_GetUsbIpAdr(USB_USBIP_0); /* USB IP address */

 /* CDC class request */
 err = R_usb_hcdc_class_request((void*)&utr_req);

 return err;
}
/* Callback function */
void smp_sendbreak_cb (USB_UTR_t *mess, uint16_t data1, uint16_t data2)
{
/* Describe the processing performed when the class request is completed. */
}

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 29 of 33
Sep 30, 2016

7.3.7 R_usb_hcdc_driver_start

HCDC driver task init

Format
void usb_hcdc_driver_start (void)

Argument
－ －

Return Value
－ －

Description
This function starts the HCDC driver task.

Note
Call this API from the user application at user system initialization.

Example
void usb_hcdc_task_start(void)
{
:
ptr->ipp = R_usb_cstd_GetUsbIpAdr(ptr->ip);
R_usb_hstd_usbdriver_start(ptr); /* Host USB Driver Start Setting */
usb_hcdc_registration(ptr); /* Host Application Registration */
usb_hstd_HubRegistAll(ptr); /* Hub registration */

R_usb_hcdc_driver_start(ptr); /* Host Class Driver Task Start Setting */
usb_hapl_task_start(ptr); /* Host Application Task Start Setting */
R_usb_cstd_UsbIpInit(ptr, USB_HOST_PP); /* Initialize USB IP */
:
}

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 30 of 33
Sep 30, 2016

7.3.8 R_usb_hcdc_task

HCDC task

Format
void R_usb_hcdc_task (USB_VP_INT_t stacd)

Argument
stacd Task start code - Not used

Return Value
－ －

Description
The HCDC task processes requests from the application, and notifies the application of the results.

Note
In non-OS operations, the function is registered to be scheduled by the scheduler.

Example
void usb_apl_task_switch(void)
{
 while(1)
 {
 /* Scheduler */
 R_usb_cstd_Scheduler();

 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 R_usb_hstd_HcdTask((USB_VP_INT)0); /* HCD Task */
 R_usb_hstd_MgrTask((USB_VP_INT)0); /* MGR Task */
 R_usb_hhub_Task((USB_VP_INT)0); /* HUB Task */
 usb_hcdc_main_task((USB_VP_INT)0); /* HCDC Application Task */

 R_usb_hcdc_task((USB_VP_INT)0); /* HCDC Task */

 }
 else
 {
 /* Idle Task (sleep sample) */
 R_usb_cstd_IdleTask(0);
 }
 }
}

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 31 of 33
Sep 30, 2016

8. Sample Application
8.1 Application Specifications

The main functions of the HCDC sample application (hereafter APL) are as follows.
1. Sends receive (Bulk In transfer) requests to the CDC device and receives data.
2. Transfers received data to the CDC device by means of Bulk Out transfers (loopback).
3. Makes RTS and DTR settings by means of the class request SET_CONTROL_LINE_STATE.
4. Makes communication speed and other settings when switches on the evaluation board are operated.

The communication speed and other settings are made by transmitting the class request
SET_LINE_CODING to the CDC device. This class request can be used to set the communication
speed, number of data bits, number of stop bits, and the parity bit.

5. Acquires the communication setting values of the CDC device by sending the class request
GET_LINE_CODING to the CDC device.

8.1.1 Data Transfer Image

Figure 8-1 shows the data transfer image.

Figure 8-1 Data Transfer (Loopback) Image

8.1.2 Baud Rate Settings

The baud rate setting for the connected CDC device should match the baud rate setting of the
INIT_COM_SPEED definition in the common\inc\r_usb_hcdc_apl.h file. Specify a setting of 1200, 2400,
4800, 9600, 14400, 19200, 38400, 57600, or 115200 bps.

Example)

 #define INIT_COM_SPEED USB_HCDC_SPEED_57600

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 32 of 33
Sep 30, 2016

8.2 Application Processing
The APL comprises two parts: initial setting and main loop. The following gives the processing summary for
each part.

8.2.1 Initial Setting
In the initial setting part, the initial setting of the USB controller and the initialization of the application
program are performed.

8.2.2 Main Loop
The main loop performs loop-back processing in which data received from the CDC device is transmitted
unaltered back to the CDC device as part of the main routine. An overview of the processing of the main
loop is presented below.

1. When the R_USB_GetEvent function is called after the CDC device attaches to the evaluation board
and enumeration finishes, USB_STS_CONFIGURED is set as the return value. When the APL
confirms USB_STS_CONFIGURED, it sends class request SET_LINECODING to the CDC device.

2. When it confirms that the class request processing has finished, the APL calls the R_USB_Read
function to make a data receive request for data sent from the CDC device. Note that in addition to
the data receive request a receive request is also sent for a class notification from the CDC device.

3. When the R_USB_GetEvent function is called after reception of data from the CDC device has
finished, USB_STS_READ_COMPLETE is set as the return value. The received data is stored in
external variable g_data. The receive data size can be confirmed by means of the size member of
the usb_ctrl_t structure. The APL determines that a null packet has been received if the value of the
size member is 0 (zero) and performs another data receive request. If the value of the size member
is other than 0 (zero), the APL determines that data has been received from the CDC device. It then
makes a transmit request to send the received data to the CDC device.

4. When the R_USB_GetEvent function is called after transmission of data to the CDC device finishes,
USB_STS_WRITE_COMPLETE is set as the return value. When the APL confirms
USB_STS_CONFIGURED, it calls the R_USB_Read function to make a data receive request for
data sent by the CDC device.

5. The processing in steps 3 and 4, above, is repeated.
HCDC APL
(usb_main)

USB_STS_CONFIGURED?

USB_STS_REQUEST
_COMPLETE ?

set_control_line_state
request transmission

processing

USB_STS_READ_
COMPLETE ?

Request processing

Yes

Yes

Yes

No

No

No

Initialization processing

Get USB event
(R_USB_GetEvent)

USB_STS_WRITE_
COMPLETE ?

Yes

No

Data receive request,
etc.

Data transmit request,
etc.

Data receive request

Figure 8-2 Main Loop

RZ/A1H Group USB Host Communications Device Class Driver (HCDC)

R01AN3428EJ0110 Rev.1.10 Page 33 of 33
Sep 30, 2016

Website and Support
Renesas Electronics Website

http://www.renesas.com/
Inquiries
 http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record

Rev.

Date

Description
Page Summary

1.00 Sep 01, 2016 — First edition issued
1.10 Sep 30, 2016 ― Since the USB-BASIC-F / W has been revised, the version up

 General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage
notes on the products covered by this document, refer to the relevant sections of the document as well as
any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. Overview
	1.1 Please be sure to read
	1.2 Operation Confirmation Conditions
	1.3 Limitations

	2. Software Configuration
	3. System Resources
	4. Target Peripheral List（TPL）
	5. Compile Setting
	6. Communication Device Class (CDC), PSTN and ACM
	6.1 Basic Functions
	6.2 Abstract Control Model Class Requests - Host to Device
	6.2.1 SendEncapsulatedCommand
	6.2.2 GetEncapsulatedResponse
	6.2.3 SetCommFeature
	6.2.4 GetCommFeature Data Format
	6.2.5 ClearCommFeature
	6.2.6 SetLineCoding
	6.2.7 GetLineCoding
	6.2.8 SetControlLineState
	6.2.9 SendBreak

	6.3 ACM Notifications from Device to Host
	6.3.1 SerialState
	6.3.2 ResponseAvailable

	7. USB Host Communication Device Class Driver (HCDC)
	7.1 Basic Functions
	7.2 Structures
	7.2.1 HCDC Request Structure
	7.2.2 CommFeature Function Selection Union
	7.2.3 CDC Request Input Parameter Union
	7.2.4 CDC Request API Function Structure
	7.2.5 CDC Notification Format

	7.3 List of HCDC API Functions
	7.3.1 R_usb_hcdc_receive_data
	7.3.2 R_usb_hcdc_send_data
	7.3.3 R_usb_hcdc_serial_state_trans
	7.3.4 R_usb_hcdc_class_check
	7.3.5 R_usb_hcdc_SetPipeRegistration
	7.3.6 R_usb_hcdc_class_request
	7.3.7 R_usb_hcdc_driver_start
	7.3.8 R_usb_hcdc_task

	8. Sample Application
	8.1 Application Specifications
	8.1.1 Data Transfer Image
	8.1.2 Baud Rate Settings

	8.2 Application Processing
	8.2.1 Initial Setting
	8.2.2 Main Loop

