永久磁石同期モータのセンサレスベクトル制御（4モータ制御）
RX72T実装編 Evaluation System for BLDC Motor用

要旨
本アプリケーションノートはRX72Tマイクロコントローラを使用し、永久磁石同期モータをベクトル制御で駆動するソフトウェア及びモータ制御開発支援ツール「Renesas Motor Workbench」の使用方法について説明することを目的としています。なお、本アプリケーションノート対象ソフトウェアにはスマート・コンフィグレータを使用しています。

本アプリケーションノート対象ソフトウェアはあくまでも参考用途であり、弊社がこの動作を保証するものではありません。本アプリケーションノート対象ソフトウェアを使用する場合、適切な環境で十分な評価をしたうえで御使用ください。

動作確認デバイス
本アプリケーションノート対象ソフトウェアの動作確認は下記のデバイスで行っております。
- RX72T（R5F572TKCDFB）

対象ソフトウェア
本アプリケーションノート対象ソフトウェアを下記に示します。
- RX72T_MRSSK2_4SPM_LESS_FOC_CSP_RV100 （IDE：CS+）
- RX72T_MRSSK2_4SPM_LESS_FOC_E2S_RV100 （IDE：e2studio）
 Evaluation System For BLDC Motor & RX72T CPU カード向け RX72T センサレスベクトル制御ソフトウェア

参考資料
- RX72Tグループユーザーズマニュアル ハードウェア編（R01UH0803）
- 永久磁石同期モータのセンサレスベクトル制御（アルゴリズム編）（R01AN3786）
- Renesas Motor Workbenchユーザーズマニュアル（R21UZ0004）
- Evaluation System for BLDC Motorユーザーズマニュアル（R12UZ0062）
- スマート・コンフィグレータユーザーズマニュアル RX API リファレンス編（R20UT4360）
- RXスマート・コンフィグレータユーザーガイド：CS+編（R20AN0470）
- RXスマート・コンフィグレータユーザーガイド：e² studio編（R20AN0451）
目次

1. 概説... 4
 1.1 開発環境.. 4

2. システム概要.. 5
 2.1 ハードウェア構成.. 6
 2.1.1 ハードウェア全体構成... 6
 2.1.2 モータ 1 ハードウェア構成... 7
 2.1.3 モータ 2 ハードウェア構成... 8
 2.1.4 モータ 3 ハードウェア構成... 9
 2.1.5 モータ 4 ハードウェア構成... 10
 2.2 ハードウェア仕様.. 11
 2.2.1 モータ 1 ハードウェア仕様.. 11
 2.2.2 モータ 2 ハードウェア仕様.. 13
 2.2.3 モータ 3 ハードウェア仕様.. 15
 2.2.4 モータ 4 ハードウェア仕様.. 17
 2.3 ソフトウェア構成... 19
 2.3.1 ソフトウェア・ファイル構成... 19
 2.3.2 スマート・コンフィグレータのファイル構成... 20
 2.3.3 モジュール構成... 22
 2.4 ソフトウェア仕様... 23
 2.4.1 センサレスベクトル制御ソフトウェア基本仕様.. 23
 2.4.2 4 モータ制御の実現方法について.. 24
 2.4.3 4 モータ制御の実装方法.. 25
 2.4.4 AD 変換構成.. 27

3. 制御ソフトウェア説明.. 28
 3.1 制御内容... 28
 3.1.1 モータ起動／停止... 28
 3.1.2 A/D 変換... 28
 3.1.3 変調.. 29
 3.1.4 状態遷移.. 31
 3.1.5 始動方法... 33
 3.1.6 システム保護機能.. 34
 3.2 センサレスベクトル制御ソフトウェア関数仕様.. 35
 3.3 センサレスベクトル制御ソフトウェアマクロ定義.. 40
 3.4 制御フロー（フローチャート）.. 44
 3.4.1 メイン処理... 44
 3.4.2 50 [μs]周期切り込み処理... 45
 3.4.3 500 [μs]周期切り込み処理... 46
 3.4.4 過電流検出切り込み処理... 47

4. モータ制御開発支援ツール「Renesas Motor Workbench」... 48
 4.1 概要... 48
 4.2 Analyzer 機能用変数一覧... 49
 4.3 Analyzer 機能操作例.. 53
 4.4 User Button 機能操作例... 55

RX72T 実装編
5. 測定データ... 57
 5.1 駆動波形 ... 57
 5.2 CPU 負荷 ... 60
 5.3 ROM/RAM 使用量 .. 60

改訂記録.. 61
永久磁石同期モータのセンサレスベクトル制御（4モータ制御） RX72T 実装編

1. 概説

本アプリケーションノートでは、RX72Tマイクロコントローラを使用した永久磁石同期モータ（PMSM）注1のセンサレスベクトル制御ソフトウェアの実装方法及びモータ開発支援ツール「Renesas Motor Workbench」の使用方法について説明します。なお、このソフトウェアは「永久磁石同期モータのセンサレスベクトル制御（アルゴリズム編）」のアルゴリズムを使用しています。

【注】1. 別称: ブラシレス DC モータ（BLDC）

1.1 開発環境

本アプリケーションノート対象ソフトウェアの開発環境を表1-1、表1-2に示します。

<table>
<thead>
<tr>
<th>ハードウェア開発環境</th>
<th>モータ注4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX72T (R5F572TKCDFB)</td>
<td>48V 5A BLDC用インバータボード注1 & RX72T CPUボード注2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ファッショウェア開発環境</th>
<th>ツールチェーンバージョン注5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDEバージョン</td>
<td>RXスマート・コンフィグレータ</td>
</tr>
<tr>
<td>CS+: V8.04.00</td>
<td>バージョン2.7.0</td>
</tr>
<tr>
<td>e²studio: 2021-01</td>
<td>e²studioプラグイン版</td>
</tr>
<tr>
<td></td>
<td>CC-RX: V3.02.00</td>
</tr>
</tbody>
</table>

ご購入、技術サポートにつきましては、弊社営業及び特約店にお問い合わせください。

【注】1. 48V 5A BLDC用インバータボード（RTK0EM0000B10020BJ）は、ルネサスエレクトロニクス株式会社の製品です。
2. 48V 5A BLDC用インバータボードは Evaluation System for BLDC Motor（RTK0EMX270S00020BJ）に同梱されています。
3. 本アプリケーションノートで使用したCPUボードは評価用試作品で非売品です。
4. TG-55Lは、ツカサ電工株式会社の製品です。
5. Evaluation System for BLDC Motorユーザーズマニュアル（R12UZ0062）に記載しているインバータ仕様に対応したモータと接続することができます。同梱しているモータ以外を使用する場合は、モータの仕様を十分に確認した上でご使用ください。
2. システム概要
本システムの概要を以下に示します。

図 2-1 システム概要図
2.1 ハードウェア構成
2.1.1 ハードウェア全体構成
ハードウェアの全体構成を次に示します。図中の DC5V はモーター 1 向けインバータボードから供給した場合です。他インバータボードは未接続となります。（CPU ボード側にて DC5V の接続先を選択します。）

図 2-2 ハードウェア全体構成図
2.1.2 モータ1ハードウェア構成

モータ1向けのハードウェア接続構成を以下に示します。

各端子インタフェースの詳細は2.2.1モータ1ハードウェア仕様を参照してください。

![モータ1向けハードウェア接続構成図](image-url)
2.1.3 モータ2ハードウェア構成
モータ2向けのハードウェア接続構成を以下に示します。
各端子インターフェースの詳細は2.2.2 モータ2ハードウェア構成を参照してください。

図2-4 モータ2向けハードウェア接続構成図
2.1.4 モータ 3 ハードウェア構成

モータ 3 向けのハードウェア接続構成を以下に示します。

各端子インタフェースの詳細は 2.2.3 モータ 3 ハードウェア構成を参照してください。

図 2-5 モータ 3 向けハードウェア接続構成図
2.1.5 モータ 4 ハードウェア構成
モータ 4 向けのハードウェア接続構成を以下に示します。
各端子インターフェースの詳細は 2.2.4 モータ 4 ハードウェア構成を参照してください。

図 2-6 モータ 4 向けハードウェア接続構成図
2.2 ハードウェア仕様
2.2.1 モータ1ハードウェア仕様
(1) ユーザインタフェース
モータ1向けのユーザインタフェース一覧を表2-1に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>インタフェース部品</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>回転速度</td>
<td>可変抵抗（VR1_1）</td>
<td>回転速度指令値入力（アナログ値）</td>
</tr>
<tr>
<td>START/STOP</td>
<td>トグルスイッチ（SW1_1）</td>
<td>モータ回転開始／停止指令</td>
</tr>
<tr>
<td>ERROR RESET</td>
<td>プッシュスイッチ（SW2_1）</td>
<td>エラー状態からの復帰指令</td>
</tr>
<tr>
<td>LED1_1</td>
<td>オレンジ色 LED</td>
<td>• モータ回転時:点灯</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 停止時:消灯</td>
</tr>
<tr>
<td>LED2_1</td>
<td>オレンジ色 LED</td>
<td>• エラー検出時:点灯</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 通常動作時:消灯</td>
</tr>
<tr>
<td>RESET</td>
<td>プッシュスイッチ</td>
<td>システムリセット※他モータと共通</td>
</tr>
</tbody>
</table>

(2) 端子インタフェース
モータ1で使用する端子インタフェースを表2-2に示します。

<table>
<thead>
<tr>
<th>R5F572TKCDFB端子名</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>P50/AN204</td>
<td>インバータ母線電圧測定</td>
</tr>
<tr>
<td>P51/AN205</td>
<td>回転速度指令値入力用（アナログ値）</td>
</tr>
<tr>
<td>PA4</td>
<td>START/STOP トグルスイッチ</td>
</tr>
<tr>
<td>PA5</td>
<td>ERROR RESET トグルスイッチ</td>
</tr>
<tr>
<td>PA0</td>
<td>LED1 点灯／消灯制御</td>
</tr>
<tr>
<td>PA1</td>
<td>LED2 点灯／消灯制御</td>
</tr>
<tr>
<td>P40/AN000</td>
<td>U 相電流測定</td>
</tr>
<tr>
<td>P42/AN002</td>
<td>W 相電流測定</td>
</tr>
<tr>
<td>P71/MTIOC3B</td>
<td>PWM 出力（U_p）／“Low”アクティブ</td>
</tr>
<tr>
<td>P72/MTIOC4A</td>
<td>PWM 出力（V_p）／“Low”アクティブ</td>
</tr>
<tr>
<td>P73/MTIOC4B</td>
<td>PWM 出力（W_p）／“Low”アクティブ</td>
</tr>
<tr>
<td>P74/MTIOC3D</td>
<td>PWM 出力（U_n）／“High”アクティブ</td>
</tr>
<tr>
<td>P75/MTIOC4C</td>
<td>PWM 出力（V_n）／“High”アクティブ</td>
</tr>
<tr>
<td>P76/MTIOC4D</td>
<td>PWM 出力（W_n）／“High”アクティブ</td>
</tr>
<tr>
<td>P70/POE0#</td>
<td>過電流検出時のPWM緊急停止入力</td>
</tr>
</tbody>
</table>
(3) 周辺機能

モータ 1 で使用する周辺機能一覧を表 2-3 に示します。

表 2-3 周辺機能対応表

<table>
<thead>
<tr>
<th>12 ビット A/D コンバータ</th>
<th>CMT</th>
<th>MTU3d</th>
<th>POE3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 回転速度指令値入力</td>
<td></td>
<td></td>
<td>PWM 出力端子をハイイン</td>
</tr>
<tr>
<td>• 各 U/W 相電流測定</td>
<td>500 [μs]</td>
<td>相補 PWM 出力</td>
<td>ピーダンス状態にし、PWM</td>
</tr>
<tr>
<td>• インバータ母線電圧測定</td>
<td></td>
<td></td>
<td>出力を停止</td>
</tr>
</tbody>
</table>

(a) 12 ビット A/D コンバータ (S12ADH)

U 相電流（Iu）、W 相電流（Iw）、インバータ母線電圧（Vdc）、回転速度指令値を、「シングルスキャンモード」で測定します（ハードウェアトリガ使用）。U 相電流（Iu）、W 相電流（Iw）の検出には、サンプル＆ホールド機能を使用しています。

(b) コンペアマッチタイマ（CMT）

コンペアマッチタイマのチャネル 0 を、500 [μs]インターバルタイマとして使用します。
※他モータと共通使用します。

(c) マルチファンクションタイマパルスユニット 3（MTU3d）

チャネル 3/4 により、相補 PWM モードを使用して、デッドタイム付きの出力（p 側は “Low” アクティブ、n 側は “High” アクティブ）を行います。

(d) ポートアウトプットイネーブル 3（POE3B）

過電流検出時（各モータに対応した POE0#端子の立ち下がりエッジ検出時）と出力短絡検出時は PWM 出力端子をハイインピーダンス状態にします。
2.2.2 モータ 2 ハードウェア仕様

(1) ユーザインタフェース

モータ 2 向けのユーザインタフェース一覧を表 2-4 に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>インタフェース部品</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>回転速度</td>
<td>可変抵抗（VR1_2）</td>
<td>回転速度指令値入力（アナログ値）</td>
</tr>
<tr>
<td>START/STOP</td>
<td>トグルスイッチ（SW1_2）</td>
<td>モータ回転開始／停止指令</td>
</tr>
<tr>
<td>ERROR RESET</td>
<td>ブッシュスイッチ（SW2_2）</td>
<td>エラー状態からの復帰指令</td>
</tr>
<tr>
<td>LED1_2</td>
<td>オレンジ色 LED</td>
<td>モータ回転時：点灯</td>
</tr>
<tr>
<td></td>
<td></td>
<td>停止時：消灯</td>
</tr>
<tr>
<td>LED2_2</td>
<td>オレンジ色 LED</td>
<td>エラー検出時：点灯</td>
</tr>
<tr>
<td></td>
<td></td>
<td>通常動作時：消灯</td>
</tr>
<tr>
<td>RESET</td>
<td>ブッシュスイッチ</td>
<td>システムリセット※他モータと共通</td>
</tr>
</tbody>
</table>

(2) 端子インタフェース

モータ 2 で使用する端子インタフェースを表 2-5 に示します。

<table>
<thead>
<tr>
<th>端子名</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>P52/AN200</td>
<td>インバータ母線電圧測定</td>
</tr>
<tr>
<td>P53/AN201</td>
<td>回転速度指令値入力用（アナログ値）</td>
</tr>
<tr>
<td>PB4</td>
<td>START/STOP トグルスイッチ</td>
</tr>
<tr>
<td>PB5</td>
<td>ERROR RESET トグルスイッチ</td>
</tr>
<tr>
<td>PB0</td>
<td>LED1 点灯／消灯制御</td>
</tr>
<tr>
<td>PB1</td>
<td>LED2 点灯／消灯制御</td>
</tr>
<tr>
<td>P43/AN003</td>
<td>U 相電流測定</td>
</tr>
<tr>
<td>PH2/AN005</td>
<td>W 相電流測定</td>
</tr>
<tr>
<td>P92/MTIOC6D</td>
<td>PWM 出力（Up）／“Low”アクティブ</td>
</tr>
<tr>
<td>P91/MTIOC7C</td>
<td>PWM 出力（Vp）／“Low”アクティブ</td>
</tr>
<tr>
<td>P90/MTIOC7D</td>
<td>PWM 出力（Wp）／“Low”アクティブ</td>
</tr>
<tr>
<td>P95/MTIOC6B</td>
<td>PWM 出力（Un）／“High”アクティブ</td>
</tr>
<tr>
<td>P94/MTIOC7A</td>
<td>PWM 出力（Vn）／“High”アクティブ</td>
</tr>
<tr>
<td>P93/MTIOC7B</td>
<td>PWM 出力（Wn）／“High”アクティブ</td>
</tr>
<tr>
<td>P96/POE4#</td>
<td>過電流検出時の PWM 緊急停止入力</td>
</tr>
</tbody>
</table>
(3) 周辺機能

モータ２で使用する周辺機能一覧を表2-6に示します。

表2-6 周辺機能対応表

<table>
<thead>
<tr>
<th>12ビットA/Dコンバータ</th>
<th>CMT</th>
<th>MTU3d</th>
<th>POE3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>回転速度指令値入力</td>
<td>500 [µs]インターバルタイマ</td>
<td>相補PWM出力</td>
<td>PWM出力端子をハイインピーダンス状態にし、PWM出力を停止</td>
</tr>
<tr>
<td>各U／W相電流測定</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>インバータ母線電圧測定</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) 12ビットA/Dコンバータ（S12ADH）

U相電流(Iu)、W相電流(Iw)、インバータ母線電圧(Vdc)、回転速度指令値を、「シングルスキャンモード」で測定します（ハードウェアトリガを使用）。U相電流(Iu)、W相電流(Iw)の検出には、サンプル＆ホールド機能を使用しています。

(b) コンペアマッチタイマ（CMT）

コンペアマッチタイマのチャネル0を、500 [µs]インターバルタイマとして使用します。
※他モータと共通使用します。

(c) マルチファンクションタイマパルスユニット3（MTU3d）

チャネル6/7により、相補PWMモードを使用して、デッドタイム付きの出力（p側は“Low”アクティブ、n側は“High”アクティブ）を行います。

(d) ポートアウトプットイネーブル3（POE3B）

過電流検出時（各モータに対応したPOE4#端子の立ち下がりエッジ検出時）と出力短絡検出時はPWM出力端子をハイインピーダンス状態にします。
2.2.3 モータ 3 ハードウェア仕様

(1) ユーザインタフェース

モータ 3 向けのユーザインタフェース一覧を表 2-7 に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>インタフェース部品</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>回転速度</td>
<td>可変抵抗 (VR1_3)</td>
<td>回転速度指令値入力（アナログ値）</td>
</tr>
<tr>
<td>START/STOP</td>
<td>トグルスイッチ (SW1_3)</td>
<td>モータ回転開始／停止指令</td>
</tr>
<tr>
<td>ERROR RESET</td>
<td>ブッシュスイッチ (SW2_3)</td>
<td>エラー状態からの復帰指令</td>
</tr>
</tbody>
</table>
| LED1_3 | オレンジ色 LED | モータ回転時：点灯
STOP 時：消灯 |
| LED2_3 | オレンジ色 LED | エラー検出時：点灯
通常動作時：消灯 |
| RESET | ブッシュスイッチ | システムリセット※他モータと共通 |

(2) 端子インタフェース

モータ 3 で使用する端子インタフェースを表 2-8 に示します。

<table>
<thead>
<tr>
<th>R5F572TKCDFB 端子名</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>P54/AN202</td>
<td>インバータ母線電圧測定</td>
</tr>
<tr>
<td>P55/AN203</td>
<td>回転速度指令値入力（アナログ値）</td>
</tr>
<tr>
<td>PE4</td>
<td>START/STOP トグルスイッチ</td>
</tr>
<tr>
<td>PE5</td>
<td>ERROR RESET トグルスイッチ</td>
</tr>
<tr>
<td>PE0</td>
<td>LED1 点灯／消灯制御</td>
</tr>
<tr>
<td>PE1</td>
<td>LED2 点灯／消灯制御</td>
</tr>
<tr>
<td>P44/AN100</td>
<td>U 相電流測定</td>
</tr>
<tr>
<td>P46/AN102</td>
<td>W 相電流測定</td>
</tr>
<tr>
<td>PD7/GTIOC0A</td>
<td>PWM 出力 (U_p) ／ “Low” アクティブ</td>
</tr>
<tr>
<td>PD5/GTIOC1A</td>
<td>PWM 出力 (V_p) ／ “Low” アクティブ</td>
</tr>
<tr>
<td>PD3/GTIOC2A</td>
<td>PWM 出力 (W_p) ／ “Low” アクティブ</td>
</tr>
<tr>
<td>PD6/GTIOC0B</td>
<td>PWM 出力 (U_n) ／ “High” アクティブ</td>
</tr>
<tr>
<td>PD4/GTIOC1B</td>
<td>PWM 出力 (V_n) ／ “High” アクティブ</td>
</tr>
<tr>
<td>PD2/GTIOC2B</td>
<td>PWM 出力 (W_n) ／ “High” アクティブ</td>
</tr>
<tr>
<td>P01/POE12#</td>
<td>過電流検出時の PWM 緊急停止入力</td>
</tr>
</tbody>
</table>
(3) 周辺機能

モータ 3 で使用する周辺機能一覧を表 2-9 に示します。

<table>
<thead>
<tr>
<th>12 ビット A/D コンバータ</th>
<th>CMT</th>
<th>GPTW</th>
<th>POE3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>回転速度指令値入力</td>
<td>500 [µs]インターバルタイマ</td>
<td>PWM 出力</td>
<td>PWM 出力端子をハイインピーダンス状態にし、PWM出力を停止</td>
</tr>
<tr>
<td>各 U/W 相電流測定</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>インバータ母線電圧測定</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) 12 ビット A/D コンバータ（S12ADH）

U 相電流（Iu）、W 相電流（Iw）、インバータ母線電圧（Vdc）、回転速度指令値を、「シングルスキャンモード」で測定します（ハードウェアトリガを使用）。U 相電流（Iu）、W 相電流（Iw）の検出には、サンプル＆ホールド機能を使用しています。

(b) コンペアマッチタイマ（CMT）

コンペアマッチタイマのチャネル 0 を、500 [µs]インターバルタイマとして使用します。
※他モータと共通使用します。

(c) 汎用 PWM タイマ（GPTW）

チャネル 0/1/2 により、PWM 出力動作モードを使用して、デッドタイム付きの出力（p 側は “Low” アクティブ、n 側は “High” アクティブ）を行います。

(d) ポートアウトプットイネーブル 3（POE3B）

過電流検出時（各モータに対応した POE12#端子の立ち下がりエッジ検出時）と出力短絡検出時は PWM出力端子をハイインピーダンス状態にします。
2.2.4 モータ4ハードウェア仕様

(1) ユーザインタフェース

モータ4向けのユーザインタフェース一覧を表2-10に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>インタフェース部品</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>回転速度</td>
<td>可変抵抗(VR1_4)</td>
<td>回転速度指令値入力(アナログ値)</td>
</tr>
<tr>
<td>START/STOP</td>
<td>トグルスイッチ(SW1_4)</td>
<td>モータ回転開始／停止指令</td>
</tr>
<tr>
<td>ERROR RESET</td>
<td>プッシュスイッチ(SW2_4)</td>
<td>エラー状態からの復帰指令</td>
</tr>
<tr>
<td>LED1_4</td>
<td>オレンジ色LED</td>
<td>该当</td>
</tr>
<tr>
<td>LED2_4</td>
<td>オレンジ色LED</td>
<td>该当</td>
</tr>
<tr>
<td>RESET</td>
<td>プッシュスイッチ</td>
<td>システムリセット※他モータと共通</td>
</tr>
</tbody>
</table>

(2) 端子インタフェース

モータ4で使用する端子インタフェースを表2-11に示します。

<table>
<thead>
<tr>
<th>R5F572TKCDFB端子名</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>P60/AN206</td>
<td>インバータ母線電圧測定</td>
</tr>
<tr>
<td>P61/AN207</td>
<td>回転速度指令値入力用(アナログ値)</td>
</tr>
<tr>
<td>PC3</td>
<td>START/STOP トグルスイッチ</td>
</tr>
<tr>
<td>PC4</td>
<td>ERROR RESET トグルスイッチ</td>
</tr>
<tr>
<td>P20</td>
<td>LED1点灯／消灯制御</td>
</tr>
<tr>
<td>P21</td>
<td>LED2点灯／消灯制御</td>
</tr>
<tr>
<td>P47/AN103</td>
<td>U相電流測定</td>
</tr>
<tr>
<td>PH6/AN105</td>
<td>W相電流測定</td>
</tr>
<tr>
<td>P15/GTIOC7B</td>
<td>PWM出力(U_p)／“Low”アクティブ</td>
</tr>
<tr>
<td>P16/GTIOC8B</td>
<td>PWM出力(V_p)／“Low”アクティブ</td>
</tr>
<tr>
<td>P17/GTIOC9B</td>
<td>PWM出力(W_p)／“Low”アクティブ</td>
</tr>
<tr>
<td>P12/GTIOC7A</td>
<td>PWM出力(U_n)／“High”アクティブ</td>
</tr>
<tr>
<td>P13/GTIOC8A</td>
<td>PWM出力(V_n)／“High”アクティブ</td>
</tr>
<tr>
<td>P14/GTIOC9A</td>
<td>PWM出力(W_n)／“High”アクティブ</td>
</tr>
<tr>
<td>PK0/POE14#</td>
<td>過電流検出時のPWM緊急停止入力</td>
</tr>
</tbody>
</table>
（3）周辺機能

モータ4で使用する周辺機能一覧を表2-12に示します。

表2-12 周辺機能対応表

<table>
<thead>
<tr>
<th>12ビットA/Dコンバータ</th>
<th>CMT</th>
<th>GPTW</th>
<th>POE3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>回転速度指令値入力</td>
<td></td>
<td></td>
<td>PWM出力</td>
</tr>
<tr>
<td>各U/W相電流測定</td>
<td></td>
<td>PWM出力</td>
<td></td>
</tr>
<tr>
<td>インバータ母線電圧測定</td>
<td>500[µs]インターバルタイマ</td>
<td>PWM出力</td>
<td></td>
</tr>
</tbody>
</table>

(a) 12ビットA/Dコンバータ（S12ADH）

U相電流（Iu）、W相電流（Iw）、インバータ母線電圧（Vdc）、回転速度指令値を、「シングルスキャンモード」で測定します（ハードウェアトリガを使用）。U相電流（Iu）、W相電流（Iw）の検出には、サンプル＆ホールド機能を使用しています。

(b) コンペアマッチタイマ（CMT）

コンペアマッチタイマのチャネル0を、500[µs]インターバルタイマとして使用します。
※他モータと共通使用します。

(c)汎用PWMタイマ（GPTW）

チャネル7/8/9により、PWM出力動作モードを使用して、デッドタイム付きの出力（p側は“Low”アクティブ、n側は“High”アクティブ）を行います。

(d)ポートアウトプットイネーブル3（POE3B）

過電流検出時（各モータに対応したPOE14#端子の立ち下がりエッジ検出時）と出力短絡検出時はPWM出力端子をハイインピーダンス状態にします。
2.3 ソフトウェア構成

2.3.1 ソフトウェア・ファイル構成
ソフトウェアのフォルダとファイル構成を下記に示します。

図2-7 フォルダ・ファイル構成
2.3.2 スマート・コンフィグレータのファイル構成

スマート・コンフィグレータ（以下 SC とする）を使用することで、周辺機能ドライバを簡単に生成することができます。

3つ以上のモータを駆動する場合、モータ専用のコンポーネントを使用せず、マルチファンクションタイムパルスユニット、汎用 PWM タイマユニット、12ビット A/D コンバータユニットの各コンポーネントの設定を個別に行います。

SC は、プロジェクトで使用するマイクロコントローラ、周辺機能、端子機能などの設定情報をプロジェクト・ファイル（*.scfg）に保存し、参照します。本ソフトウェアの周辺機能設定を確認する場合、以下のファイルを参照してください。

"RX72T_MRSSK2_4SPM_LESS_FOC_xxx_RVyyy.scfg"

(xxx : CSP は CS+版、E2S は e² studio 版を意味します。yyy : リビジョン番号)

SC で生成したフォルダとファイル構成を下記に示します。

図 2-8 スマート・コンフィグレータのフォルダ・ファイル構成（1/2）
永久磁石同期モータのセンサレスベクトル制御（4モータ制御）

永久磁石同期モータのセンサレスベクトル制御

このモータ制御開発支援ツールには以下のファイルが含まれています。

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config_MTU0.user.c</td>
<td>MTU0に関するデバイス設定</td>
</tr>
<tr>
<td>Config_MTU1.user.c</td>
<td>MTU1に関するデバイス設定</td>
</tr>
<tr>
<td>Config_MTU2.user.c</td>
<td>MTU2に関するデバイス設定</td>
</tr>
<tr>
<td>Config_MTU3_MTU4.user.c</td>
<td>MTU3-MTU4に関するデバイス設定</td>
</tr>
<tr>
<td>Config_MTU6_MTU7.user.c</td>
<td>MTU6-MTU7に関するデバイス設定</td>
</tr>
<tr>
<td>Config_POE_user.c</td>
<td>ポートアウトプットイネーブルに関するドライバ</td>
</tr>
<tr>
<td>Config_POE_user.c</td>
<td>ポートアウトプットイネーブルに関するドライバ</td>
</tr>
<tr>
<td>Config_GPT9_user.c</td>
<td>GPT9に関するドライバ</td>
</tr>
<tr>
<td>Config_GPT10_user.c</td>
<td>GPT10に関するドライバ</td>
</tr>
<tr>
<td>Config_IWDT_user.c</td>
<td>ウォッチドッグタイマに関するドライバ</td>
</tr>
<tr>
<td>Config_SCI8_user.c</td>
<td>SCI8に関するドライバ</td>
</tr>
<tr>
<td>Config_S12AD1_user.c</td>
<td>S12AD1に関するドライバ</td>
</tr>
<tr>
<td>Config_S12AD2_user.c</td>
<td>S12AD2に関するドライバ</td>
</tr>
<tr>
<td>Config_SC18_user.c</td>
<td>SC18に関するドライバ</td>
</tr>
<tr>
<td>r_cpg_hardware_setup.c</td>
<td>SC生成ドライバの初期化関数</td>
</tr>
<tr>
<td>r_smc_entry.h</td>
<td>プロジェクトに追加されるSCドライバヘッダファイル</td>
</tr>
<tr>
<td>r_smc_entry.h</td>
<td>プロジェクトに追加されるSCドライバヘッダファイル</td>
</tr>
</tbody>
</table>

【注】
1. xxx:CSPはCS版、E2Sはstudio版を意味します。yyy:リビジョン番号を示しています。例えば110の場合、Rev1.10を意味します。
2. もし制御開発支援ツール「Renesas Motor Workbench」のAnalyzer機能の詳細については、4章を参照してください。
3. モータ制御開発支援ツール「Renesas Motor Workbench」に関わるフォルダ、ファイル、関数、変数の名前には、識別子「Ics/ICS（旧トネサス製モータ制御開発支援ツール「In Circuit Scope」の略）」が含まれる場合があります。

図2-8 スマート・コンフィグレータのフォルダ・ファイル構成（2/2）
2.3.3 モジュール構成
ソフトウェアのモジュール構成を図2-9に示します。
2.4 ソフトウェア仕様

2.4.1 センサレスベクトル制御ソフトウェア基本仕様

本システムのソフトウェアの基本仕様を下記に示します。センサレスベクトル制御の詳細に関しては「永久磁石同期モータのセンサレスベクトル制御（アルゴリズム編）」を参照してください。

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベクトル制御</td>
<td>ベクトル制御</td>
</tr>
<tr>
<td>回転子磁極位置検出</td>
<td>センサレス</td>
</tr>
<tr>
<td>モータ回転開始/停止</td>
<td>SW1のレベルにより判定 (“Low”：回転開始 “High”：停止) またはAnalyzerから入力</td>
</tr>
<tr>
<td>入力電圧</td>
<td>DC 24V</td>
</tr>
<tr>
<td>キャリア（PWM）周波数</td>
<td>20 [kHz]（キャリア周期：50 [µs]）</td>
</tr>
<tr>
<td>デッドタイム</td>
<td>2 [µs]</td>
</tr>
<tr>
<td>制御周期</td>
<td>電流制御/位置・速度推定：50 [µs] 速度制御：500 [µs]</td>
</tr>
</tbody>
</table>
| 回転速度範囲 | CW：0 [rpm]～2650 [rpm]
CCW：0 [rpm]～2650 [rpm] ただし、600 [rpm]以下は速度オープンループで駆動* |
| 各制御系固有周波数 | 電流制御系：300 [Hz] 速度制御系：3 [Hz] 誘起電圧推定系：1000 [Hz] 位置推定系：50 [Hz] |
| コンパイラ最適化設定 | 最適化レベル 2 （-optimize = 2）（デフォルト設定）
最適化方法 コード・サイズ重視の最適化(-size)（デフォルト設定） |
| 保護停止処理 | 以下のいずれかの条件の時、モータ制御信号出力（6本）を非アクティブにする
1. 各相の電流が0.89 [A]を超過（50 [µs]毎に監視）
2. インバータ母線電圧が28 [V]を超過（50 [µs]毎に監視）
3. インバータ母線電圧が14[V]未満（50 [µs]毎に監視）
4. 回転速度が3000 [rpm]を超える（50 [µs]毎に監視）
外部からの過電流検出信号（POE0#端子に立ち下がりエッジを検出）及び出力短絡を検出した場合、P WM出力端子をハイインピーダンスにする |

【注】* センサレスベクトル制御でモータを回す場合は、600 [rpm]より高い回転速度指令値を設定してください。
2.4.2 4モータ制御の実現方法について

本システムでは、4モータを同時に駆動するために、各モータ用の制御処理の実行や、電流検出用のAD変換の実行等のタイミングを設計してあります。モータの駆動に用いる相補PWMパルス出力用モジュールとしてMTU及びGPTWを使用しており、各モジュールにて2つずつモータを駆動します。

また本システムでは、MTUで駆動するモータの電流検出にAD変換モジュールのユニット0、GPTWで駆動するモータの電流検出にAD変換モジュールのユニット1を使用して、4モータ分の電流検出を行います。モータ電流は、意図したタイミングで検出する必要があるため、各モータの電流検出用のAD変換動作が遅延する事が無いよう扱う必要があります。

本システムで使用する3シャント電流検出回路は、インバータの下アームON期間電流が検出可能です。1つのAD変換モジュールにて、2つのモータ電流を検出する場合、このインバータの下アームON期間が重なる事が無ければ、電流検出が可能です。

そこで本システムでは、表2-2、表2-5、表2-8、表2-11に示すように、MTUとGPTWで駆動する各モータのPWM出力端子の正相・逆相出力と、インバータの上下アーム信号を入れ替えています。これにより、PWM信号のスイッチングのパターンが逆となり、インバータの下アームON期間が重なる事を防止できます。

上記の方法にて、前述の参照資料に記載のセンサレスベクトル制御を、4モータ分実装する方法について次頁より示します。
2.4.3 4 モータ制御の実装方法

PWM 割込み処理、電流検出用の AD 変換のタイミング、および PWM 出力レベルのバッファ転送タイミングについて、以下の図 2-10 及び図 2-11 に示します。図 2-10 ではモータ 1, 2 (MTU3, 4, 6, 7 及び S12AD モジュール使用) の場合、図 2-11 ではモータ 3, 4 (GPTW0, 1, 2, 7, 8, 9 及び S12AD1 モジュール使用) についてそれぞれ示します。

図 2-10、図 2-11 で示す MTU と GPTW を同時にタイマをスタートさせた場合、キャリア周波数が同一の設定では、MTU 側と GPTW 側の PWM 周期割込みの実行タイミングが重複します。この場合、割込み優先度が同じなので、先に割込みが発生した方から順次実行されます。

この場合でも、PWM 割込み 2 つの処理が PWM キャリア半周期 (キャリア 20kHz の場合、25 µs) 以内に十分取まっているため問題ありません。

(1) モータ 1, 2 処理タイミング

図 2-10 に示すように、モータ 1, モータ 2 では MTU の各タイマを同期させ、AD 変換タイミングを PWM キャリアの山側と谷側に分散させているので、それに合わせる形で PWM 周期割込みの実行タイミングとバッファレジスタの転送タイミングを調整しています。

また、グループスキャンモードを使用して AD 変換を行うことにより、AD コンバータ 1 ユニットで 2 モータ分の電流検出に対応しています。

図 2-10 モータ 1, 2 各種処理タイミング
永久磁石同期モータのセンサレスベクトル制御（4モータ制御）

(2) モータ 3、4 処理タイミング

図 2-11 にモータ 3、モータ 4 の各タイミングを示します。図に示すように、モータ 4 のバッファレジスタ転送タイミングのみ異なりますが、谷の転送時はデータ更新がされていないため、動作としては、モータ 1、2 側と同等となります。これは、モータ 3、4 で使用する GPTW では山側のみバッファ転送を行う設定が無いためです。

図 2-11 モータ 3、4 各種処理タイミング
2.4.4 AD 変換構成

AD コンバータ変換ユニットの使用用途について表 2-14 で示します。

表 2-14 AD コンバータ変換ユニットの使用用途

<table>
<thead>
<tr>
<th>AD コンバータ変換ユニット</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>S12AD</td>
<td>モータ 1、2 電流測定</td>
</tr>
<tr>
<td>S12AD1</td>
<td>モータ 3、4 電流測定</td>
</tr>
<tr>
<td>S12AD2</td>
<td>インバータ母線電圧測定、VR1 読み込み</td>
</tr>
</tbody>
</table>
3. 制御ソフトウェア説明
本アプリケーションノート対象ソフトウェアについて説明します。

3.1 制御内容
3.1.1 モータ起動／停止
モータの起動と停止は、Analyzer からの入力または SW1 からの入力によって制御します。SW1 には汎用ポートが割り当てられ、メイン・ループ内で、端子を読み、“Low”レベルのときスタートスイッチが押されていると判断し、逆に“High”レベルのときはモータを停止すると判断します。

3.1.2 A/D 変換
(1) モータ回転速度指令値
モータの回転速度指令値は Analyzer からの入力または VR1 の出力値（アナログ値）を A/D 変換することによって決定します。A/D 変換された VR1 の値は、以下の表のように、回転速度指令値として使用します。

表 3-1 回転速度指令値の変換比

<table>
<thead>
<tr>
<th>項目</th>
<th>変換比（指令値：A/D 変換値）</th>
<th>チャネル</th>
</tr>
</thead>
<tbody>
<tr>
<td>回転速度指令値</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>0 [rpm]2700 [rpm] : 07FFH0000H</td>
<td>AN205: モータ 1</td>
</tr>
<tr>
<td>CCW</td>
<td>0 [rpm]2700 [rpm] : 0800H0FFFH</td>
<td>AN201: モータ 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AN203: モータ 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AN207: モータ 4</td>
</tr>
</tbody>
</table>

(2) インバータ母線電圧
以下の表のように、インバータ母線電圧を測定します。変調率の算出と過電圧検出（異常時は PWM 停止）に使用します。

表 3-2 インバータ母線電圧の変換比

<table>
<thead>
<tr>
<th>項目</th>
<th>変換比（インバータ母線電圧：A/D 変換値）</th>
<th>チャネル</th>
</tr>
</thead>
<tbody>
<tr>
<td>インバータ母線電圧</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 [V]111 [V] : 0000H0FFFH</td>
<td></td>
<td>AN204: モータ 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AN200: モータ 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AN202: モータ 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AN206: モータ 4</td>
</tr>
</tbody>
</table>

(3) U 相、W 相電流
以下の表のように、U 相、W 相電流を測定し、ベクトル制御に使用します。

表 3-3 U、W 相電流の変換比

<table>
<thead>
<tr>
<th>項目</th>
<th>変換比（U 相、W 相電流：A/D 変換値）</th>
<th>チャネル</th>
</tr>
</thead>
<tbody>
<tr>
<td>U 相、W 相電流</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-12.5 [A]12.5 [A] : 0000H0FFFH</td>
<td></td>
<td>lu : AN000: モータ 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lw : AN002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lu : AN003: モータ 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lw : AN004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lu : AN100: モータ 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lw : AN102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lu : AN103: モータ 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lw : AN105</td>
</tr>
</tbody>
</table>

【注】 * A/D 変換特性の詳細に関しては「RX72T グループ ユーザーズマニュアル ハードウェア編」を参照してください。
3.1.3 変調

本アプリケーションノート対象ソフトウェアでは、モータへの入力電圧はパルス幅変調（以降、PWM）によって生成し、PWM波形は三角波比較法によって生成します。

(1) 三角波比較法

指令値電圧を実際に出力する方法の一つとして、キャリア波形（三角波）と指令値電圧波形を比較することで出力電圧のパルス幅を決める三角波比較法があります。指令値電圧がキャリア波電圧より大きければスイッチをオン、小さければオフにすることで、正弦波状の指令値電圧を擬似的に出力することができます。

図3-1 三角波比較法の概念図
図 3-2 のように、出力電圧パルスのキャリア波に対する割合をデューティと呼びます。

図 3-2 デューティの定義

\[
\text{デューティ} = \frac{T_{\text{ON}}}{T_{\text{ON}} + T_{\text{OFF}}} \times 100[\%]
\]

平均電圧 $V_{\text{平均}}$

また、変調率 m を以下のように定義します。

\[
m = \frac{V}{E}
\]

m: 変調率 $\quad V$: 指令値電圧 $\quad E$: インバータ母線電圧

この変調率を、PWM デューティを決めるレジスタに反映させることで所望の制御を行います。
3.1.4 状態遷移

図3-3に本アプリケーションノート対象ソフトウェアにおける状態遷移図を示します。本アプリケーションノート対象ソフトウェアでは、「SYSTEM MODE」と、「RUN MODE」により状態を管理し、「Control Config」は、ソフトウェア内でアクティブになっている制御系を表しています。

以下に示すSYSTEM MODE、RUN MODE、EVENTは、モータ毎に個別に管理しており各モータを独立して制御する事が可能です。

図3-3 センサレスベクトル制御ソフトウェアの状態遷移図
(1) SYSTEM MODE
システム動作状態を表します。各イベント（EVENT）の発生により、状態が遷移します。システムの動作状態は、モータ駆動停止（INACTIVE）、モータ駆動（ACTIVE）、異常状態（ERROR）があります。

(2) RUN MODE
モータの制御状態を表します。システムの状態が ACTIVE になると、モータの駆動状態が図 3-3 の様に遷移します。

(3) EVENT
各 SYSTEM MODE 中に EVENT が発生すると、その EVENT に従って、システム動作状態が図 3-3 中の表の様に遷移します。各 EVENT の発生要因は下記となります。

<table>
<thead>
<tr>
<th>イベント名</th>
<th>発生要因</th>
</tr>
</thead>
<tbody>
<tr>
<td>INACTIVE</td>
<td>ユーザー操作により発生します</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>ユーザー操作により発生します</td>
</tr>
<tr>
<td>ERROR</td>
<td>システムが異常を検出したときに発生します</td>
</tr>
<tr>
<td>RESET</td>
<td>ユーザー操作により発生します</td>
</tr>
</tbody>
</table>
3.1.5 始動方法

本アプリケーションノート対象ソフトウェアの始動制御内容を図3-4に示します。d軸電流、q軸電流、速度それぞれの指令値を管理するフラグによってモードをコントロールしています。

図3-4 センサレスベクトル制御ソフトウェアの始動制御内容
3.1.6 システム保護機能

本アプリケーションノート対象ソフトウェアは、以下のエラー状態を持ち、それぞれの場合に緊急停止する機能を実装しています。システム保護機能に関わる各設定値は表 3-5 を参照してください。

- **過電流エラー**
 過電流エラーはハードウェア及びソフトウェア両方で検出されます。ハードウェアからの緊急停止信号（過電流検出）により、PWM 出力端子をハイインピーダンス状態にします。
 また、過電流監視周期で U 相、V 相、W 相電流を監視し、過電流（過電流リミット値を超える）を検出した時に、緊急停止します（ソフトウェア検出）。過電流リミット値はモータの定格電流 \([\text{MP_NOMINAL_CURRENT_RMS}] \)から自動で計算されます。

- **過電圧エラー**
 過電圧監視周期でインバータ母線電圧を監視し、過電圧（過電圧リミット値を超える）を検出した時に、緊急停止します。過電圧リミット値は検出回路の抵抗値の誤差等を考慮して設定した値です。

- **低電圧エラー**
 低電圧監視周期でインバータ母線電圧を監視し、低電圧（低電圧リミット値を超える）を検出した時に、緊急停止します。低電圧リミット値は検出回路の抵抗値の誤差等を考慮して設定した値です。

- **回転速度エラー**
 回転速度監視周期で速度を監視し、速度リミット値を超えた場合、緊急停止します。

<table>
<thead>
<tr>
<th></th>
<th>過電流リミット値 [A]</th>
<th>監視周期 [µs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>過電流エラー</td>
<td>0.89</td>
<td>50</td>
</tr>
<tr>
<td>過電圧エラー</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>低電圧エラー</td>
<td>14</td>
<td>50</td>
</tr>
<tr>
<td>回転速度エラー</td>
<td>3000</td>
<td>50</td>
</tr>
</tbody>
</table>
3.2 センサレスベクトル制御ソフトウェア関数仕様

本アプリケーションノート対象ソフトウェアにおける制御処理は、主に50 [µs]周期割り込みと、500 [µs]周期割り込みの2つの割り込みにより構成されています。図3-5、図3-6にあるように、赤破線部が50 [µs]周期毎に実行される処理で、青破線部が500 [µs]周期毎に実行される処理になります。

図3-5 センサレスベクトル制御概略ブロック図（オープンループ制御時）

図3-6 センサレスベクトル制御概略ブロック図（センサレス制御時）

ここでは、2つの割り込み関数と、各割り込み周期毎に実行される関数について仕様を表3-6〜表3-8にまとめます。また各表には、センサレスベクトル制御における主要な関数のみ記載しています。各表に記載のない関数の詳細については、ソースコードを参照してください。
永久磁石同期モータのセンサレスベクトル制御（4モータ制御）

表 3-6 割り込み関数一覧

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>関数概要</th>
<th>処理概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config_MTU3_MTU4_user.c</td>
<td>r_Config_MTU3_MTU4_tgia3_interrupt</td>
<td>50 [μs]毎に呼び出し</td>
</tr>
<tr>
<td></td>
<td>入力：なし</td>
<td>モータ 1 用処理</td>
</tr>
<tr>
<td></td>
<td>出力：なし</td>
<td>mtr_foc_interrupt_carrier 関数コール</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RMW 通信処理</td>
</tr>
<tr>
<td>Config_MTU6_MTU7_user.c</td>
<td>r_Config_MTU6_MTU7_c7_tciv7_interrupt</td>
<td>50 [μs]毎に呼び出し</td>
</tr>
<tr>
<td></td>
<td>入力：なし</td>
<td>モータ 2 用処理</td>
</tr>
<tr>
<td></td>
<td>出力：なし</td>
<td>mtr_foc_interrupt_carrier 関数コール</td>
</tr>
<tr>
<td>Config_GPT0_user.c</td>
<td>r_Config_GPT0_gtciv0_interrupt</td>
<td>50 [μs]毎に呼び出し</td>
</tr>
<tr>
<td></td>
<td>入力：なし</td>
<td>モータ 3 用処理</td>
</tr>
<tr>
<td></td>
<td>出力：なし</td>
<td>mtr_foc_interrupt_carrier 関数コール</td>
</tr>
<tr>
<td>Config_GPT7_user.c</td>
<td>r_Config_GPT7_gtcIU7_interrupt</td>
<td>50 [μs]毎に呼び出し</td>
</tr>
<tr>
<td></td>
<td>入力：なし</td>
<td>モータ 4 用処理</td>
</tr>
<tr>
<td></td>
<td>出力：なし</td>
<td>mtr_foc_interrupt_carrier 関数コール</td>
</tr>
<tr>
<td>Config_CMT0_user.c</td>
<td>r_Config_CMT0_cmi0_interrupt</td>
<td>500 [μs]毎に呼び出し</td>
</tr>
<tr>
<td></td>
<td>入力：なし</td>
<td>モータ 1～4 用処理</td>
</tr>
<tr>
<td></td>
<td>出力：なし</td>
<td>mtr_foc_interrupt_500us 関数コール</td>
</tr>
<tr>
<td></td>
<td></td>
<td>パラメータ自動セット</td>
</tr>
</tbody>
</table>

パラメータ自動セット
表 3-7 50 [μs]周期割り込み関数内実行関数一覧 (1/2)

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>関数概要</th>
<th>処理概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_mtr_interrupt_carrier.c</td>
<td>mtr_get_current_iuwiw</td>
<td>各相電流の取得</td>
</tr>
<tr>
<td></td>
<td>入力: (float*) f4_iu_ad / U 相電流 AD 変換値ポインタ</td>
<td>各相電流の取得</td>
</tr>
<tr>
<td></td>
<td>(float*) f4_iw_ad / W 相電流 AD 変換値ポインタ</td>
<td>各相電流の取得</td>
</tr>
<tr>
<td></td>
<td>(uint8_t) u1_id / Motor ID</td>
<td>各相電流の取得</td>
</tr>
<tr>
<td></td>
<td>出力: なし</td>
<td>各相電流の取得</td>
</tr>
<tr>
<td>r_mtr_ctrl_mrssk.c</td>
<td>mtr_get_vdc</td>
<td>インバータ母線電圧の取得</td>
</tr>
<tr>
<td></td>
<td>入力: (uint8_t) u1_id / Motor ID</td>
<td>インバータ母線電圧の取得</td>
</tr>
<tr>
<td></td>
<td>出力: (float) f4_temp_vdc /インバータ母線電圧</td>
<td>インバータ母線電圧の取得</td>
</tr>
<tr>
<td>r_mtr_foc_control.c</td>
<td>mtr_error_check</td>
<td>エラーの監視</td>
</tr>
<tr>
<td></td>
<td>入力: (mtr_foc_control_t *) st_foc /ベクトル制御構造体ポインタ</td>
<td>エラーの監視</td>
</tr>
<tr>
<td></td>
<td>出力: なし</td>
<td>エラーの監視</td>
</tr>
<tr>
<td></td>
<td>mtr_current_offset_adjustment</td>
<td>電流 A/D 変換値からオフセットを除去</td>
</tr>
<tr>
<td></td>
<td>入力: (mtr_foc_control_t *) st_foc /ベクトル制御構造体ポインタ</td>
<td>電流 A/D 変換値からオフセットを除去</td>
</tr>
<tr>
<td></td>
<td>出力: なし</td>
<td>電流 A/D 変換オフセット算出</td>
</tr>
<tr>
<td></td>
<td>mtr_calib_current_offset</td>
<td>電流 A/D 変換オフセット算出</td>
</tr>
<tr>
<td></td>
<td>入力: (mtr_foc_control_t *) st_foc /ベクトル制御構造体ポインタ</td>
<td>電流 A/D 変換オフセット算出</td>
</tr>
<tr>
<td></td>
<td>出力: なし</td>
<td>電流 A/D 変換オフセット算出</td>
</tr>
<tr>
<td></td>
<td>mtr_angle_speed</td>
<td>磁極位置、速度の推定</td>
</tr>
<tr>
<td></td>
<td>入力: (mtr_foc_control_t *) st_foc /ベクトル制御構造体ポインタ</td>
<td>磁極位置、速度の推定</td>
</tr>
<tr>
<td></td>
<td>出力: なし</td>
<td>磁極位置、速度の推定</td>
</tr>
<tr>
<td></td>
<td>mtr_foc_voltage_limit</td>
<td>指令電圧制限</td>
</tr>
<tr>
<td></td>
<td>入力: (mtr_foc_control_t *) st_foc /ベクトル制御構造体ポインタ</td>
<td>指令電圧制限</td>
</tr>
<tr>
<td></td>
<td>出力: なし</td>
<td>指令電圧制限</td>
</tr>
<tr>
<td>r_mtr_foc_current.c</td>
<td>mtr_current_pi_control</td>
<td>電流 PI 制御</td>
</tr>
<tr>
<td></td>
<td>入力: (mtr_current_control_t *) st_cc /電流制御構造体ポインタ</td>
<td>電流 PI 制御</td>
</tr>
<tr>
<td></td>
<td>出力: なし</td>
<td>電流 PI 制御</td>
</tr>
<tr>
<td></td>
<td>mtr_foc_current_decoupling</td>
<td>非干渉制御</td>
</tr>
<tr>
<td></td>
<td>入力: (mtr_current_control_t *) st_cc /電流制御構造体ポインタ</td>
<td>非干渉制御</td>
</tr>
<tr>
<td></td>
<td>(float) f4_speed_rad /回転速度</td>
<td>非干渉制御</td>
</tr>
<tr>
<td></td>
<td>(const mtr_parameter_t *) p_mtr /モータパラメータ構造体ポインタ</td>
<td>非干渉制御</td>
</tr>
<tr>
<td></td>
<td>出力: なし</td>
<td>非干渉制御</td>
</tr>
<tr>
<td>r_mtr_transform.c</td>
<td>mtr_transform_uvw_dq_abs</td>
<td>UVW → dq 座標変換</td>
</tr>
<tr>
<td></td>
<td>入力: (const mtrRotor_angle_t *) p_angle /位相管理用構造体ポインタ</td>
<td>UVW → dq 座標変換</td>
</tr>
<tr>
<td></td>
<td>(const float*) f4_uvw / UVW 相ポインタ</td>
<td>UVW → dq 座標変換</td>
</tr>
<tr>
<td></td>
<td>(float*) f4_dq / dq 軸ポインタ</td>
<td>UVW → dq 座標変換</td>
</tr>
<tr>
<td></td>
<td>出力: なし</td>
<td>UVW → dq 座標変換</td>
</tr>
<tr>
<td></td>
<td>mtr_transform_dq_uvw_abs</td>
<td>dq → UVW 座標変換</td>
</tr>
<tr>
<td></td>
<td>入力: (const mtrRotor_angle_t *) p_angle /位相管理用構造体ポインタ</td>
<td>dq → UVW 座標変換</td>
</tr>
<tr>
<td></td>
<td>(const float*) f4_dq / dq 軸ポインタ</td>
<td>dq → UVW 座標変換</td>
</tr>
<tr>
<td></td>
<td>(float*) f4_uvw / UVW 相ポインタ</td>
<td>dq → UVW 座標変換</td>
</tr>
<tr>
<td></td>
<td>出力: なし</td>
<td>dq → UVW 座標変換</td>
</tr>
</tbody>
</table>
表 3-7 50 [μs]周期割り込み関数内実行関数一覧（2/2）

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>関数名</th>
<th>関数概要</th>
<th>処理概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_mtr_volt_err_comp.obj</td>
<td>mtr_volt_err_comp_main</td>
<td>入力: (mtr_volt_comp_t *) st_volt_comp /電圧誤差補償構造体ポインタ</td>
<td>電圧誤差補償処理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float*) p_f4_v_array /3 相電圧補償量配列ポインタ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float*) p_f4_i_array /3 相電流配列ポインタ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float) f4_vdc /インバータ母線電圧</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>出力: なし</td>
<td></td>
</tr>
<tr>
<td>r_mtr_ctrl_rx72t.c</td>
<td>mtr_inv_set_uvw</td>
<td>入力: (float) f4_duty_u / U 相変調率</td>
<td>PWM duty 設定</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float) f4_duty_v / V 相変調率</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float) f4_duty_w / W 相変調率</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(uint8_t) u1_id / Motor ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>出力: なし</td>
<td></td>
</tr>
<tr>
<td>r_mtr_bemf_observer.obj</td>
<td>mtr_bemf_observer</td>
<td>入力: (mtr_bemf_observer_t *) st_bemf_obs /誘起電圧オブザーバ構造体ポインタ</td>
<td>誘起電圧オブザーバ演算</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float) f4_vd_ref / d 軸電圧指令値</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float) f4_vq_ref / q 軸電圧指令値</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float) f4_id / d 軸電流検出値</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float) f4_iq / q 軸電流検出値</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>出力: なし</td>
<td></td>
</tr>
<tr>
<td>mtr_bemf_calc_d</td>
<td>mtr_bemf_calc_d</td>
<td>入力: (mtr_bemf_observer_t *) st_bemf_obs /誘起電圧オブザーバ構造体ポインタ</td>
<td>d 軸誘起電圧推定値の算出</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float) f4_speed_rad / 速度推定値</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float) f4_iq / q 軸電流検出値</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>出力: (float) f4_temp / d 軸誘起電圧推定値</td>
<td></td>
</tr>
<tr>
<td>mtr_bemf_calc_q</td>
<td>mtr_bemf_calc_q</td>
<td>入力: (mtr_bemf_observer_t *) st_bemf_obs /誘起電圧オブザーバ構造体ポインタ</td>
<td>q 軸誘起電圧推定値の算出</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float) f4_speed_rad / 速度推定値</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float) f4_id / d 軸電流検出値</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>出力: (float) f4_temp / q 軸誘起電圧推定値</td>
<td></td>
</tr>
<tr>
<td>mtr_angle_speed_pll</td>
<td>mtr_angle_speed_pll</td>
<td>入力: (mtr_pll_est_t *) st_pll_est /位置・速度推定構造体ポインタ</td>
<td>位置・速度推定演算</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float) f4_phase_err / 位相誤差</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(float*) f4_speed /速度推定値ポインタ</td>
<td></td>
</tr>
</tbody>
</table>
表 3-8 500 [µs] 周期割り込み関数内実行関数一覧

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>関数概要</th>
<th>处理概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_mtr_interrupt_timer.c</td>
<td>mtr_foc_interrupt_500us</td>
<td>500 µs 周期割り込み管理用下記記載の関数呼出</td>
</tr>
<tr>
<td>r_mtr_foc_controlless_speed.c</td>
<td>mtr_set_speed_ref</td>
<td>速度指令値の設定</td>
</tr>
<tr>
<td>r_mtr_foc_controlless_speed.c</td>
<td>mtr_set_iq_ref</td>
<td>q 軸電流指令値の設定</td>
</tr>
<tr>
<td>r_mtr_foc_speed.c</td>
<td>mtr_set_id_ref</td>
<td>d 軸電流指令値の設定</td>
</tr>
<tr>
<td>r_mtr_foc_speed.c</td>
<td>mtr_speed_pi_control</td>
<td>速度 PI 制御</td>
</tr>
<tr>
<td>r_mtr_opl2less.obj</td>
<td>mtr_opl2less_iq_calc</td>
<td>センサレス切り替え処理時に q 軸電流指令値生成</td>
</tr>
<tr>
<td>r_mtr_fluxwkn.obj</td>
<td>R_FLUXWKN_Run</td>
<td>弱め磁束制御</td>
</tr>
<tr>
<td>r_mtr_opl_damp_ctrl.obj</td>
<td>mtr_opl_damp_ctrl</td>
<td>オープンループダンピング制御処理</td>
</tr>
</tbody>
</table>
3.3 センサレスベクトル制御ソフトウェアマクロ定義

本アプリケーションノート対象ソフトウェアで使用するマクロ定義一覧を次に示します。また下記一覧には、本アプリケーションノート対象ソフトウェアにおけるコンフィグレーションを設定するマクロ定義のみを記載しています。一覧に記載のないマクロ定義の詳細については、ソースコードを参照してください。

表 3-9 “r_mtr_motor_parameter.h”マクロ定義一覧

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>モータ</th>
<th>マクロ名</th>
<th>定義値</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>MP_1_POLE_PAIRS</td>
<td>2</td>
<td>極対数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_1_MAGNETIC_FLUX</td>
<td>0.02159f</td>
<td>磁束 [Wb]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_1_RESISTANCE</td>
<td>8.5f</td>
<td>抵抗 [Ω]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_1_D_INDUCTANCE</td>
<td>0.0045f</td>
<td>d軸インダクタンス [H]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_1_Q_INDUCTANCE</td>
<td>0.0045f</td>
<td>q軸インダクタンス [H]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_1_ROTOR_INERTIA</td>
<td>0.0000028f</td>
<td>イナーシャ [kgm²]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_1_NOMINAL_CURRENT_RMS</td>
<td>0.42f</td>
<td>定格電流 [A (rms)]</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MP_2_POLE_PAIRS</td>
<td>2</td>
<td>極対数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_2_MAGNETIC_FLUX</td>
<td>0.02159f</td>
<td>磁束 [Wb]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_2_RESISTANCE</td>
<td>8.5f</td>
<td>抵抗 [Ω]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_2_D_INDUCTANCE</td>
<td>0.0045f</td>
<td>d軸インダクタンス [H]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_2_Q_INDUCTANCE</td>
<td>0.0045f</td>
<td>q軸インダクタンス [H]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_2_ROTOR_INERTIA</td>
<td>0.0000028f</td>
<td>イナーシャ [kgm²]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_2_NOMINAL_CURRENT_RMS</td>
<td>0.42f</td>
<td>定格電流 [A (rms)]</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>MP_3_POLE_PAIRS</td>
<td>2</td>
<td>極対数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_3_MAGNETIC_FLUX</td>
<td>0.02159f</td>
<td>磁束 [Wb]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_3_RESISTANCE</td>
<td>8.5f</td>
<td>抵抗 [Ω]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_3_D_INDUCTANCE</td>
<td>0.0045f</td>
<td>d軸インダクタンス [H]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_3_Q_INDUCTANCE</td>
<td>0.0045f</td>
<td>q軸インダクタンス [H]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_3_ROTOR_INERTIA</td>
<td>0.0000028f</td>
<td>イナーシャ [kgm²]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_3_NOMINAL_CURRENT_RMS</td>
<td>0.42f</td>
<td>定格電流 [A (rms)]</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>MP_4_POLE_PAIRS</td>
<td>2</td>
<td>極対数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_4_MAGNETIC_FLUX</td>
<td>0.02159f</td>
<td>磁束 [Wb]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_4_RESISTANCE</td>
<td>8.5f</td>
<td>抵抗 [Ω]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_4_D_INDUCTANCE</td>
<td>0.0045f</td>
<td>d軸インダクタンス [H]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_4_Q_INDUCTANCE</td>
<td>0.0045f</td>
<td>q軸インダクタンス [H]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_4_ROTOR_INERTIA</td>
<td>0.0000028f</td>
<td>イナーシャ [kgm²]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP_4_NOMINAL_CURRENT_RMS</td>
<td>0.42f</td>
<td>定格電流 [A (rms)]</td>
</tr>
</tbody>
</table>

表 3-10 “r_mtr_control_parameter.h”マクロ定義一覧（1/3）

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>モータ</th>
<th>マクロ名</th>
<th>定義値</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>CP_CARRIER_FREQ_MGU</td>
<td>20.0f</td>
<td>キャリア周波数 [kHz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_CARRIER_FREQ_MGU</td>
<td>20.0f</td>
<td>キャリア周波数 [kHz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_INT_DECIMATION</td>
<td>0</td>
<td>割り込み間引き回数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_CURRENT_OMEGA</td>
<td>300.0f</td>
<td>電流制御系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_CURRENT_ZETA</td>
<td>1.0f</td>
<td>電流制御系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_SPEED_OMEGA_1</td>
<td>3.0f</td>
<td>速度制御系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_SPEED_ZETA</td>
<td>1.0f</td>
<td>速度制御系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_MIN_SPEED_RPM</td>
<td>0</td>
<td>最小速度（機械角） [rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_E_OBS_OMEGA</td>
<td>1000.0f</td>
<td>誘起電圧推定系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_E_OBS_ZETA</td>
<td>1.0f</td>
<td>誘起電圧推定系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_PLL_EST_OMEGA</td>
<td>20.0f</td>
<td>位置推定系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_PLL_EST_ZETA</td>
<td>1.0f</td>
<td>位置推定系減衰係数</td>
</tr>
</tbody>
</table>
表 3-10 “r_mtr_control_parameter.h” マクロ定義一覧（2/3）

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>モータ</th>
<th>マクロ名</th>
<th>定義値</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_mtr_control_parameter.h</td>
<td>1</td>
<td>CP_1_ID_DOWN_SPEED_RPM</td>
<td>600</td>
<td>d 軸電流指令値減算開始速度（機械角）[rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_ID_UP_SPEED_RPM</td>
<td>400</td>
<td>d 軸電流指令値加算開始速度（機械角）[rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_MAX_SPEED_RPM</td>
<td>2650</td>
<td>最大速度（機械角）[rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_OVERSPEED_LIMIT_RPM</td>
<td>3000</td>
<td>回転速度エラー閾値 [rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_SPEED_RATE_LIMIT</td>
<td>0.5f</td>
<td>速度変化制限 [rpm/ms]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_1_OL_ID_REF</td>
<td>0.3f</td>
<td>低速時d軸電流指令値 [A]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_INT_DECIMATION</td>
<td>0</td>
<td>割り込み間引き回数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_CURRENT_OMEGA</td>
<td>300.0f</td>
<td>電流制御系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_CURRENT_ZETA</td>
<td>1.0f</td>
<td>電流制御系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_SPEED_OMEGA_1</td>
<td>3.0f</td>
<td>速度制御系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_SPEED_ZETA</td>
<td>1.0f</td>
<td>速度制御系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_MIN_SPEED_RPM</td>
<td>0</td>
<td>最小速度（機械角）[rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_E_OBS_OMEGA</td>
<td>1000.0f</td>
<td>誘起電圧推定系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_E_OBS_ZETA</td>
<td>1.0f</td>
<td>誘起電圧推定系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_PLL_EST_OMEGA</td>
<td>20.0f</td>
<td>位置推定系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_PLL_EST_ZETA</td>
<td>1.0f</td>
<td>位置推定系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_ID_DOWN_SPEED_RPM</td>
<td>600</td>
<td>d 軸電流指令値減算開始速度（機械角）[rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_ID_UP_SPEED_RPM</td>
<td>400</td>
<td>d 軸電流指令値加算開始速度（機械角）[rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_MAX_SPEED_RPM</td>
<td>2650</td>
<td>最大速度（機械角）[rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_SPEED_RATE_LIMIT</td>
<td>0.5f</td>
<td>速度変化制限 [rpm/ms]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_2_OL_ID_REF</td>
<td>0.3f</td>
<td>低速時d軸電流指令値 [A]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_INT_DECIMATION</td>
<td>0</td>
<td>割り込み間引き回数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_CURRENT_OMEGA</td>
<td>300.0f</td>
<td>電流制御系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_CURRENT_ZETA</td>
<td>1.0f</td>
<td>電流制御系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_SPEED_OMEGA_1</td>
<td>3.0f</td>
<td>速度制御系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_SPEED_ZETA</td>
<td>1.0f</td>
<td>速度制御系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_MIN_SPEED_RPM</td>
<td>0</td>
<td>最小速度（機械角）[rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_E_OBS_OMEGA</td>
<td>1000.0f</td>
<td>誘起電圧推定系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_E_OBS_ZETA</td>
<td>1.0f</td>
<td>誘起電圧推定系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_PLL_EST_OMEGA</td>
<td>20.0f</td>
<td>位置推定系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_PLL_EST_ZETA</td>
<td>1.0f</td>
<td>位置推定系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_ID_DOWN_SPEED_RPM</td>
<td>600</td>
<td>d 軸電流指令値減算開始速度（機械角）[rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_ID_UP_SPEED_RPM</td>
<td>400</td>
<td>d 軸電流指令値加算開始速度（機械角）[rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_MAX_SPEED_RPM</td>
<td>2650</td>
<td>最大速度（機械角）[rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_SPEED_RATE_LIMIT</td>
<td>0.5f</td>
<td>速度変化制限 [rpm/ms]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_3_OL_ID_REF</td>
<td>0.3f</td>
<td>低速時d軸電流指令値 [A]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_INT_DECIMATION</td>
<td>0</td>
<td>割り込み間引き回数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_CURRENT_OMEGA</td>
<td>300.0f</td>
<td>電流制御系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_CURRENT_ZETA</td>
<td>1.0f</td>
<td>電流制御系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_SPEED_OMEGA_1</td>
<td>3.0f</td>
<td>速度制御系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_SPEED_ZETA</td>
<td>1.0f</td>
<td>速度制御系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_MIN_SPEED_RPM</td>
<td>0</td>
<td>最小速度（機械角）[rpm]</td>
</tr>
</tbody>
</table>
表 3-10 “r_mtr_control_parameter.h” マクロ定義一覧（3/3）

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>モータ</th>
<th>マクロ名</th>
<th>定義値</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_mtr_control_</td>
<td>4</td>
<td>CP_4_E_OBS_OMEGA</td>
<td>1000.0f</td>
<td>誘起電圧推定系固有周波数 [Hz]</td>
</tr>
<tr>
<td>parameter.h</td>
<td></td>
<td>CP_4_E_OBS_ZETA</td>
<td>1.0f</td>
<td>誘起電圧推定系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_PLL_EST_OMEGA</td>
<td>20.0f</td>
<td>位置推定系固有周波数 [Hz]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_PLL_EST_ZETA</td>
<td>1.0f</td>
<td>位置推定系減衰係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_ID_DOWN_SPEED_RPM</td>
<td>600</td>
<td>d 軸電流指令値減算開始速度 (機械角) [rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_ID_UP_SPEED_RPM</td>
<td>400</td>
<td>d 軸電流指令値加算開始速度 (機械角) [rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_MAX_SPEED_RPM</td>
<td>2650</td>
<td>最大速度 (機械角) [rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_OVERSPEED_LIMIT_RPM</td>
<td>3000</td>
<td>回転速度エラー閾値 [rpm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4_SPEED_RATE_LIMIT</td>
<td>0.5f</td>
<td>速度変化制限 [rpm/ms]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP_4 OL_ID_REF</td>
<td>0.3f</td>
<td>低速時 d 軸電流指令値 [A]</td>
</tr>
</tbody>
</table>

表 3-11 “r_mtr_inverter_parameter.h” マクロ定義一覧

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>モータ</th>
<th>マクロ名</th>
<th>定義値</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_mtr_inverter_</td>
<td>1</td>
<td>IP_1 DEADTIME</td>
<td>2.0f</td>
<td>デッドタイム [µs]</td>
</tr>
<tr>
<td>parameter.h</td>
<td></td>
<td>IP_1 CURRENT RANGE</td>
<td>25.0f</td>
<td>電流 A/D 変換範囲 [A] (p-p 値)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_1 VDC RANGE</td>
<td>111.0f</td>
<td>インバータ母線電圧 A/D 変換範囲 [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_1 INPUT V</td>
<td>24.0f</td>
<td>インバータ入力電圧 [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_1 CURRENT LIMIT</td>
<td>10.0f</td>
<td>過電流リミット値 [A]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_1 OVERVOLTAGE LIMIT</td>
<td>28.0f</td>
<td>過電圧リミット値 [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_1 UNDervoltage LIMIT</td>
<td>14.0f</td>
<td>低電圧リミット値 [V]</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>IP_2 DEADTIME</td>
<td>2.0f</td>
<td>デッドタイム [µs]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_2 CURRENT RANGE</td>
<td>25.0f</td>
<td>電流 A/D 変換範囲 [A] (p-p 値)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_2 VDC RANGE</td>
<td>111.0f</td>
<td>インバータ母線電圧 A/D 変換範囲 [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_2 INPUT V</td>
<td>24.0f</td>
<td>インバータ入力電圧 [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_2 CURRENT LIMIT</td>
<td>10.0f</td>
<td>過電流リミット値 [A]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_2 OVERVOLTAGE LIMIT</td>
<td>28.0f</td>
<td>過電圧リミット値 [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_2 UNDervoltage LIMIT</td>
<td>14.0f</td>
<td>低電圧リミット値 [V]</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>IP_3 DEADTIME</td>
<td>2.0f</td>
<td>デッドタイム [µs]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_3 CURRENT RANGE</td>
<td>25.0f</td>
<td>電流 A/D 変換範囲 [A] (p-p 値)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_3 VDC RANGE</td>
<td>111.0f</td>
<td>インバータ母線電圧 A/D 変換範囲 [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_3 INPUT V</td>
<td>24.0f</td>
<td>インバータ入力電圧 [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_3 CURRENT LIMIT</td>
<td>10.0f</td>
<td>過電流リミット値 [A]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_3 OVERVOLTAGE LIMIT</td>
<td>28.0f</td>
<td>過電圧リミット値 [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_3 UNDervoltage LIMIT</td>
<td>14.0f</td>
<td>低電圧リミット値 [V]</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>IP_4 DEADTIME</td>
<td>2.0f</td>
<td>デッドタイム [µs]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_4 CURRENT RANGE</td>
<td>25.0f</td>
<td>電流 A/D 変換範囲 [A] (p-p 値)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_4 VDC RANGE</td>
<td>111.0f</td>
<td>インバータ母線電圧 A/D 変換範囲 [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_4 INPUT V</td>
<td>24.0f</td>
<td>インバータ入力電圧 [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_4 CURRENT LIMIT</td>
<td>10.0f</td>
<td>過電流リミット値 [A]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_4 OVERVOLTAGE LIMIT</td>
<td>28.0f</td>
<td>過電圧リミット値 [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP_4 UNDervoltage LIMIT</td>
<td>14.0f</td>
<td>低電圧リミット値 [V]</td>
</tr>
</tbody>
</table>

【注】* シャント抵抗の定格電力から算出した値です。
表 3-12 “r_mtr_config.h” マクロ定義一覧

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>マクロ名</th>
<th>定義値</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_mtr_config.h</td>
<td>RX72T_MRSSK</td>
<td>—</td>
<td>MCU選択マクロ定義</td>
</tr>
<tr>
<td></td>
<td>IP_MRSSK</td>
<td>—</td>
<td>インバータ選択マクロ定義</td>
</tr>
<tr>
<td></td>
<td>MP_TG55L</td>
<td>—</td>
<td>モータ選択マクロ定義</td>
</tr>
<tr>
<td></td>
<td>CP_TG55L</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFIG_DEFAULT_UI</td>
<td>BOARD_UI</td>
<td>デフォルト UI選択</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ICS_UI：RMW の Analyzer を利用した UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BOARD_UI：ボード UI</td>
</tr>
<tr>
<td></td>
<td>FUNC_ON</td>
<td>1</td>
<td>Enable</td>
</tr>
<tr>
<td></td>
<td>FUNC_OFF</td>
<td>0</td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td>DEFAULT_LESS_SWITCH</td>
<td>FUNC_ON</td>
<td>センサレス切り替え処理</td>
</tr>
<tr>
<td></td>
<td>DEFAULT_FLUX_WEAKENING</td>
<td>FUNC_OFF</td>
<td>弱め磁束制御</td>
</tr>
<tr>
<td></td>
<td>DEFAULT_VOLT_ERR_COMP</td>
<td>FUNC_ON</td>
<td>電圧誤差補償</td>
</tr>
<tr>
<td></td>
<td>DEFAULT_OPENLOOP_DAMPING</td>
<td>FUNC_ON</td>
<td>オープンループダンピング制御</td>
</tr>
<tr>
<td></td>
<td>GAIN_MODE</td>
<td>MTR_GAIN_DESIGN_MODE</td>
<td>ゲインモード</td>
</tr>
<tr>
<td></td>
<td>MOD_METHOD</td>
<td>MOD_METHOD_SVPWM</td>
<td>変調方式</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MTR_GAIN_DESIGN_MODE : PIゲイン設計モード</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MTR_GAIN_DIRECT_MODE : PIゲイン直接入力モード</td>
</tr>
</tbody>
</table>

表 3-13 “r_mtr_common.h” マクロ定義一覧

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>マクロ名</th>
<th>定義値</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_mtr_common.h</td>
<td>MTR_TFU_OPTIMIZE</td>
<td>1</td>
<td>1: TFUコード使用</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0: 標準ライブラリコード使用</td>
</tr>
</tbody>
</table>
3.4 制御フロー（フローチャート）

3.4.1 メイン処理

図3-7 メイン処理フローチャート
3.4.2 50 [µs]周期割り込み処理

図 3-8 50 [µs]周期割り込み処理フローチャート
3.4.3 500 [µs]周期割り込み処理

図 3-9 500 [µs]周期割り込み処理フローチャート
3.4.4 過電流検出割り込み処理

過電流検出割り込みは、本アプリケーションノート対象ソフトウェアにおける PWM 出力端子のハイインピーダンス制御条件である POE#端子の立ち下がりエッジ検出時、もしくは出力レベル比較動作による出力短絡検出時に発生する割り込みです。そのため、本割り込み処理の実行開始時点では既に PWM 出力端子はハイインピーダンス状態になっており、モータへの出力は停止しています。

モータに対応する POE#端子一覧を表 3-14 に示します。

図 3-10 過電流検出割り込み処理フローチャート

表 3-14 モータ POE#端子対応一覧

<table>
<thead>
<tr>
<th>モータ</th>
<th>POE#端子</th>
<th>割り込み要因</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POE0#</td>
<td>OEI1</td>
</tr>
<tr>
<td>2</td>
<td>POE4#</td>
<td>OEI2</td>
</tr>
<tr>
<td>3</td>
<td>POE12#</td>
<td>OEI5</td>
</tr>
<tr>
<td>4</td>
<td>POE14#</td>
<td>OEI5</td>
</tr>
</tbody>
</table>

*ICSR7.POE12F フラグで判断
*ICSR10.POE14F フラグで判断
4. モータ制御開発支援ツール「Renesas Motor Workbench」

4.1 概要

本アプリケーションノート対象ソフトウェアでは、モータ制御開発支援ツール「Renesas Motor Workbench」をユーザインタフェース（回転／停止指令、回転速度指令等）として使用します。使用方法などの詳細は「Renesas Motor Workbench ユーザーズマニュアル」を参照してください。

モータ制御開発支援ツール「Renesas Motor Workbench」は弊社 WEB サイトより入手してください。

モータ制御開発支援ツール「Renesas Motor Workbench」の使い方

① ツールアイコンをクリックしツールを起動する。
② Main Panel の MENU バーから、[RMTFile] → [Open RMT File(O)]を選択。プロジェクトフォルダの“ics”フォルダ内にある RMT ファイルを読み込む。
③ “Connection” の COM で接続されたキットの COM を選択する。
④ Select Tool 右上の‘Analyzer’ボタンをクリックし、Analyzer 機能画面を表示する。
⑤ “4.3 Analyzer 機能操作例”を元にモータを駆動させる。

図 4-1 Renesas Motor Workbench 外観
4.2 Analyzer機能用変数一覧

Analyzerユーザインタフェース使用時の入力用変数一覧を表4-1に示します。なお、これらの変数への入力値はcom_if_t構造体のメンバu1_enable_writeにg_u1_enable_writeと同じ値を書き込んだ場合に「Middle Layer」内の対応する変数へ反映され、モータ制御に使用されます。ただし、(*)が付けられた変数はu1_enable_writeに依存しません。詳細な設定方法については4.3を参照してください。

表4-1 Analyzer機能入力用変数一覧

<table>
<thead>
<tr>
<th>Analyzer機能入力変数名</th>
<th>型</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>com_u1_sw_userif (*)</td>
<td>uint8_t</td>
<td>ユーザインタフェーススイッチ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0：Analyzer使用（デフォルト）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1：ボード使用</td>
</tr>
<tr>
<td>st_com_1</td>
<td>com_if_t</td>
<td>モータ1用機能入力構造体</td>
</tr>
<tr>
<td>st_com_2</td>
<td>com_if_t</td>
<td>モータ2用機能入力構造体</td>
</tr>
<tr>
<td>st_com_3</td>
<td>com_if_t</td>
<td>モータ3用機能入力構造体</td>
</tr>
<tr>
<td>st_com_4</td>
<td>com_if_t</td>
<td>モータ4用機能入力構造体</td>
</tr>
<tr>
<td>com_u1_mode_system_motor1</td>
<td>uint8_t</td>
<td>モータ1用ステート管理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0：ストップモード</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1：ランモード</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3：リセット</td>
</tr>
<tr>
<td>com_u1_mode_system_motor2</td>
<td>uint8_t</td>
<td>モータ2用ステート管理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0：ストップモード</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1：ランモード</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3：リセット</td>
</tr>
<tr>
<td>com_u1_mode_system_motor3</td>
<td>uint8_t</td>
<td>モータ3用ステート管理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0：ストップモード</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1：ランモード</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3：リセット</td>
</tr>
<tr>
<td>com_u1_mode_system_motor4</td>
<td>uint8_t</td>
<td>モータ4用ステート管理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0：ストップモード</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1：ランモード</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3：リセット</td>
</tr>
</tbody>
</table>
表 4-2 com_if_t 構造体主要メンバー一覧 (1/2)

<table>
<thead>
<tr>
<th>com_if_t 構造体メンバ</th>
<th>型</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>u1_direction</td>
<td>uint8_t</td>
<td>回転方向</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: CW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: CCW</td>
</tr>
<tr>
<td>s2_ref_speed_rpm</td>
<td>uint16_t</td>
<td>速度指令値（機械角）[rpm]</td>
</tr>
<tr>
<td>u2_mtr_pp</td>
<td>uint16_t</td>
<td>極対数</td>
</tr>
<tr>
<td>f4_mtr_r</td>
<td>float</td>
<td>抵抗 [\Omega]</td>
</tr>
<tr>
<td>f4_mtr_id</td>
<td>float</td>
<td>d 軸インダクタンス [H]</td>
</tr>
<tr>
<td>f4_mtr_lq</td>
<td>float</td>
<td>q 軸インダクタンス [H]</td>
</tr>
<tr>
<td>f4_mtr_m</td>
<td>float</td>
<td>磁束 [Wb]</td>
</tr>
<tr>
<td>f4_mtr_j</td>
<td>float</td>
<td>イナーシャ [kgm²]</td>
</tr>
<tr>
<td>u2_offset_calc_time</td>
<td>uint16_t</td>
<td>電流オフセット値計算時間 [ms]</td>
</tr>
<tr>
<td>f4_speed_rate_limit</td>
<td>float</td>
<td>速度指令最大増減幅（電気角）[krpm/s]</td>
</tr>
<tr>
<td>u2_max_speed_rpm</td>
<td>uint16_t</td>
<td>速度最大値（機械角）[rpm]</td>
</tr>
<tr>
<td>u2_id_up_speed_rpm</td>
<td>uint16_t</td>
<td>d 軸電流指令値加算開始速度（機械角）[rpm]</td>
</tr>
<tr>
<td>f4_id_up_time</td>
<td>float</td>
<td>d 軸電流指令値加算時間 [ms]</td>
</tr>
<tr>
<td>f4_ol_ref_id</td>
<td>float</td>
<td>オープンループ制御時 d 軸電流指令値 [A]</td>
</tr>
<tr>
<td>u2_id_down_speed_rpm</td>
<td>uint16_t</td>
<td>d 軸電流指令値減算開始速度（機械角）[rpm]</td>
</tr>
<tr>
<td>f4_id_down_time</td>
<td>float</td>
<td>d 軸電流指令値減算時間 [ms]</td>
</tr>
<tr>
<td>f4_speed_omega_1</td>
<td>float</td>
<td>速度制御系固有周波数 [Hz]</td>
</tr>
<tr>
<td>f4_speed_omega_2</td>
<td>float</td>
<td>速度制御系固有周波数 [Hz]</td>
</tr>
<tr>
<td>f4_speed_zeta</td>
<td>float</td>
<td>速度制御系減衰係数</td>
</tr>
<tr>
<td>f4_current_omega</td>
<td>float</td>
<td>電流制御系固有周波数 [Hz]</td>
</tr>
</tbody>
</table>
表4-2 com_if_t構造体主要メンバ一覧（2/2）

<table>
<thead>
<tr>
<th>com_if_t構造体メンバ</th>
<th>型</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>f4_current_zeta</td>
<td>float</td>
<td>電流制御系減衰係数</td>
</tr>
<tr>
<td>f4_e_obs_omega</td>
<td>float</td>
<td>誘起電圧推定系固有周波数 [Hz]</td>
</tr>
<tr>
<td>f4_e_obs_zeta</td>
<td>float</td>
<td>誘起電圧推定系減衰係数</td>
</tr>
<tr>
<td>f4_pll_est_omega</td>
<td>float</td>
<td>位置推定系固有周波数 [Hz]</td>
</tr>
<tr>
<td>f4_pll_est_zeta</td>
<td>float</td>
<td>位置推定系減衰係数</td>
</tr>
<tr>
<td>f4_id_kp</td>
<td>float</td>
<td>d軸電流 PI制御比例ゲイン</td>
</tr>
<tr>
<td>f4_id_ki</td>
<td>float</td>
<td>d軸電流 PI制御積分ゲイン</td>
</tr>
<tr>
<td>f4_iq_kp</td>
<td>float</td>
<td>q軸電流 PI制御比例ゲイン</td>
</tr>
<tr>
<td>f4_iq_ki</td>
<td>float</td>
<td>q軸電流 PI制御積分ゲイン</td>
</tr>
<tr>
<td>f4_speed_kp</td>
<td>float</td>
<td>速度 PI制御比例ゲイン</td>
</tr>
<tr>
<td>f4_speed_ki</td>
<td>float</td>
<td>速度 PI制御積分ゲイン</td>
</tr>
<tr>
<td>u2_speed_limit_rpm</td>
<td>uint16_t</td>
<td>速度超過エラー閾値（機械角） [rpm]</td>
</tr>
<tr>
<td>f4_nominal_current_rms</td>
<td>float</td>
<td>定格電流 [A(rms)]</td>
</tr>
<tr>
<td>f4_damping_zeta</td>
<td>float</td>
<td>オープンループダンピング制御減衰係数</td>
</tr>
<tr>
<td>f4_pll_damping_fb_limit_rate</td>
<td>float</td>
<td>オープンループダンピング制御フィードバックリミット率</td>
</tr>
<tr>
<td>f4_pll_damping_zeta</td>
<td>float</td>
<td>オープンループダンピング制御減衰係数</td>
</tr>
<tr>
<td>u1_less_switch</td>
<td>uint8_t</td>
<td>センサレス切り替え処理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0：ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1：OFF</td>
</tr>
<tr>
<td>u1_flux_weakening</td>
<td>uint8_t</td>
<td>弱め磁束制御</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0：ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1：OFF</td>
</tr>
<tr>
<td>u1_volt_err_comp</td>
<td>uint8_t</td>
<td>電圧誤差補償</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0：ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1：OFF</td>
</tr>
<tr>
<td>u1_pll_damping</td>
<td>uint8_t</td>
<td>オープンループダンピング制御</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0：ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1：OFF</td>
</tr>
<tr>
<td>u1_enable_write</td>
<td>uint8_t</td>
<td>変数書き換え許可</td>
</tr>
<tr>
<td></td>
<td></td>
<td>（g_u1_enable_writeと同じ値を書き込んだ場合に書き込み許可）</td>
</tr>
</tbody>
</table>
永久磁石同期モータのセンサレスベクトル制御（4モータ制御） RX72T実装編

次にセンサレスベクトル制御の駆動評価を行う際に観測することの多い構造体を表4-3に示します。また、主要な構造体変数の一覧を表4-4に示します。Analyzer機能で波形表示する際や変数の値を読み込む際参考にしてください。一覧にない変数の詳細についてはソースコードを参照してください。

表4-3 センサレスベクトル制御構造体一覧

<table>
<thead>
<tr>
<th>構造体名</th>
<th>型</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_st_foc_1</td>
<td>mtr_foc_control_t</td>
<td>モータ1用速度制御構造体</td>
</tr>
<tr>
<td>g_st_foc_2</td>
<td>mtr_foc_control_t</td>
<td>モータ2用速度制御構造体</td>
</tr>
<tr>
<td>g_st_foc_3</td>
<td>mtr_foc_control_t</td>
<td>モータ3用速度制御構造体</td>
</tr>
<tr>
<td>g_st_foc_4</td>
<td>mtr_foc_control_t</td>
<td>モータ4用速度制御構造体</td>
</tr>
</tbody>
</table>

表4-4 mtr_foc_control_t型構造体主要メンバ名一覧

<table>
<thead>
<tr>
<th>mtr_foc_control_t型構造体メンバ名</th>
<th>型</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>st_cc.f4_id_ref</td>
<td>float</td>
<td>d軸電流指令値 [A]</td>
</tr>
<tr>
<td>st_cc.f4_id_ad</td>
<td>float</td>
<td>d軸電流検出値 [A]</td>
</tr>
<tr>
<td>st_cc.f4_iq_ref</td>
<td>float</td>
<td>q軸電流指令値 [A]</td>
</tr>
<tr>
<td>st_cc.f4_iq_ad</td>
<td>float</td>
<td>q軸電流検出値 [A]</td>
</tr>
<tr>
<td>f4_iu_ad</td>
<td>float</td>
<td>U相電流検出値 [A]</td>
</tr>
<tr>
<td>f4_iv_ad</td>
<td>float</td>
<td>V相電流検出値 [A]</td>
</tr>
<tr>
<td>f4_iw_ad</td>
<td>float</td>
<td>W相電流検出値 [A]</td>
</tr>
<tr>
<td>st_cc.f4_vd_ref</td>
<td>float</td>
<td>d軸電圧指令値 [V]</td>
</tr>
<tr>
<td>st_cc.f4_vq_ref</td>
<td>float</td>
<td>q軸電圧指令値 [V]</td>
</tr>
<tr>
<td>f4_refu</td>
<td>float</td>
<td>U相電圧指令値 [V]</td>
</tr>
<tr>
<td>f4_refv</td>
<td>float</td>
<td>V相電圧指令値 [V]</td>
</tr>
<tr>
<td>f4_refw</td>
<td>float</td>
<td>W相電圧指令値 [V]</td>
</tr>
<tr>
<td>f4_modu</td>
<td>float</td>
<td>U相変調率</td>
</tr>
<tr>
<td>f4_modv</td>
<td>float</td>
<td>V相変調率</td>
</tr>
<tr>
<td>f4_modw</td>
<td>float</td>
<td>W相変調率</td>
</tr>
<tr>
<td>f4_ed</td>
<td>float</td>
<td>d軸誘起電圧推定値 [V]</td>
</tr>
<tr>
<td>f4_eq</td>
<td>float</td>
<td>q軸誘起電圧推定値 [V]</td>
</tr>
<tr>
<td>st_rotor_angle.f4Rotor_angle_rad</td>
<td>float</td>
<td>磁極位置推定値（電気角）[rad]</td>
</tr>
<tr>
<td>st_sc.f4_ref_speed_rad_ctrl</td>
<td>float</td>
<td>速度指令値（電気角）[rad/s]</td>
</tr>
<tr>
<td>st_sc.f4_speed_rad</td>
<td>float</td>
<td>速度推定値（電気角）[rad/s]</td>
</tr>
<tr>
<td>f4_phase_err_rad</td>
<td>float</td>
<td>位相誤差（電気角）[rad]</td>
</tr>
<tr>
<td>u2_error_status</td>
<td>uint16_t</td>
<td>エラーメッセージ</td>
</tr>
</tbody>
</table>
4.3 Analyzer 機能操作例

Analyzer 機能を使用し、モータを操作する例を以下に示します。操作は、“Control Window”で行いま
す。“Control Window”の詳細は、「Renesas Motor Workbench ユーザーズマニュアル」を参照してくだ
さい。

- モータを回転させる（以下にモータ 1 の場合を説明します。）
 1. “com_u1_mode_system_motor1”、“st_com_1.s2_ref_speed_rpm”、“st_com_1.u1_enable_write”の
 [W?]欄に“チェック”が入っていることを確認する。
 2. 指令回転速度を“st_com1.s2_ref_speed_rpm”的[Write]欄に入力する。
 3. “Write”ボタンを押す。
 4. “Read”ボタンを押して現在の“st_com1.s2_ref_speed_rpm”、“g_u1_enable_write”の[Read]欄を確認
 する。
 5. MCU 内の変数値へ反映させるため、“st_com1.u1_enable_write”に④で確認した、
 “g_u1_enable_write”と同じ値を入力する。
 6. “com_u1_mode_system_motor1”の[Write]欄に“1”を入力する。
 7. “Write”ボタンを押す。

図 4-2 モータ回転の手順

以下にモータ 1/2/3/4 で使用する変数を示します。

表 4-5 各モータ毎の使用変数

<table>
<thead>
<tr>
<th>モータ 1</th>
<th>モータ 2</th>
<th>モータ 3</th>
<th>モータ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>com_u1_mode_system_motor1</td>
<td>com_u1_mode_system_motor2</td>
<td>com_u1_mode_system_motor3</td>
<td>com_u1_mode_system_motor4</td>
</tr>
<tr>
<td>st_com_1.s2_ref_speed_rpm</td>
<td>st_com_2.s2_ref_speed_rpm</td>
<td>st_com_3.s2_ref_speed_rpm</td>
<td>st_com_4.s2_ref_speed_rpm</td>
</tr>
<tr>
<td>st_com_1.u1_enable_write</td>
<td>st_com_2.u1_enable_write</td>
<td>st_com_3.u1_enable_write</td>
<td>st_com_4.u1_enable_write</td>
</tr>
<tr>
<td>g_u1_enable_write</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
モータを停止させる（以下にモータ1の場合を説明します。）
① "com_u1_mode_system_motor1"の[Write]欄に“0”を入力する。
② “Write”ボタンを押す。

※モータ2はcom_u1_mode_system_motor2、モータ3はcom_u1_mode_system_motor3、モータ4はcom_u1_mode_system_motor4になります。

図 4-3 モータ停止の手順

止まってしまった（エラー）場合の処理（以下にモータ1の場合を説明します。）
① "com_u1_mode_system_motor1"の[Write]欄に“3”を入力する。
② “Write”ボタンを押す。

※モータ2はcom_u1_mode_system_motor2、モータ3はcom_u1_mode_system_motor3、モータ4はcom_u1_mode_system_motor4になります。

図 4-4 エラー解除の手順
4.4 User Button 機能操作例

User Button 機能を使用し、モータを操作する例を以下に示します。

- モータを駆動する／停止する
 図 4-5 のように設定することで、ボタンを押すごとに駆動と停止が切り替わります。

![User Button 機能操作例](image)

図 4-5 モータの回転／停止

※上記はモータ 1 の場合です。モータ 2 は com_u1_mode_system_motor2、モータ 3 は com_u1_mode_system_motor3、モータ 4 は com_u1_mode_system_motor4 になります。
速度指令を変更する
図4-6のように設定することで、速度指令を入力し、ボタンを押すことで速度指令が変更できます。

図4-6 速度指令の変更
以下にモータ1/2/3/4で使用する変数を示します。

表4-6 各モータ毎の使用変数

<table>
<thead>
<tr>
<th>モータ1</th>
<th>モータ2</th>
<th>モータ3</th>
<th>モータ4</th>
</tr>
</thead>
<tbody>
<tr>
<td>st_com_1.u2_ref_speed_rpm</td>
<td>st_com_2.u2_ref_speed_rpm</td>
<td>st_com_3.u2_ref_speed_rpm</td>
<td>st_com_4.u2_ref_speed_rpm</td>
</tr>
<tr>
<td>st_com_1.u1_enable_write</td>
<td>st_com_2.u1_enable_write</td>
<td>st_com_3.u1_enable_write</td>
<td>st_com_4.u1_enable_write</td>
</tr>
</tbody>
</table>
5. 測定データ

5.1 駆動波形

モータ4つを同時に駆動した場合の動作例として、速度情報及びq軸電流情報について駆動中の波形を以下に示します。参考用波形デーテータとして、起動時駆動波形、定常時駆動波形、過渡時駆動波形を順に示します。

図5-1 起動時駆動波形（1/3）（モータ1、モータ2、モータ3、モータ4）

図5-2 起動時駆動波形（2/3）（モータ1、モータ2）
永久磁石同期モータのセンサレスベクトル制御（4 モータ制御）

図 5-3 起動時駆動波形（3/3）（モータ 3、モータ 4）

図 5-4 モータ 1 定常時駆動波形
図 5-5 過渡時駆動波形（1/2）（モータ 1、モータ 2）

図 5-6 過渡時駆動波形（2/2）（モータ 3、モータ 4）
5.2 CPU 負荷

本システム実行時の CPU 負荷率を以下に示します。表のデータは以下の条件で動作させた場合となります。

・CPU クロック周波数：200 MHz
・PWM キャリア周波数：20 KHz

<table>
<thead>
<tr>
<th></th>
<th>処理時間[μs]</th>
<th>負荷率[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 μs 周期割込み</td>
<td>21.2 1</td>
<td>1.32 2</td>
</tr>
<tr>
<td>モータ 1 PWM 周期割込み</td>
<td>8.36</td>
<td>16.72</td>
</tr>
<tr>
<td>モータ 2 PWM 周期割込み</td>
<td>7.36</td>
<td>14.72</td>
</tr>
<tr>
<td>モータ 3 PWM 周期割込み</td>
<td>7.26</td>
<td>14.52</td>
</tr>
<tr>
<td>モータ 4 PWM 周期割込み</td>
<td>7.24</td>
<td>14.48</td>
</tr>
<tr>
<td>CPU 負荷率</td>
<td></td>
<td>61.76</td>
</tr>
</tbody>
</table>

【注】1. PWM 周期割込み（多重割込み）を含んだ時間です。
2. 多重割り込みを考慮した処理時間より算出した負荷率です。

5.3 ROM/RAM 使用量

本システムでの ROM/RAM 使用量は以下の通りです。

<table>
<thead>
<tr>
<th></th>
<th>サイズ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM</td>
<td>33.8KB</td>
</tr>
<tr>
<td>RAM</td>
<td>13.5KB</td>
</tr>
<tr>
<td>Rev.</td>
<td>発行日</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>1.00</td>
<td>Sep.06.21</td>
</tr>
</tbody>
</table>
製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静電気対策
CMOS製品の取り扱いの際は静電気防止を心がけてください。CMOS製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のレーヨンマガジンケース、導電性の緩衝材、金属ケースを用い、組立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置
電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内部パワーオンリセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号
当該製品の電源がオフ状態のときに、入力信号や入出力パルス入力を入れないでください。入力信号や入出力パルス入力からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理
未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて
リセット時には、クロックが安定した後にリセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え前のクロックが安定した後に切り替えしてください。リセット時、外部発振子（または外部発振回路）を用いたクロックで動作を開始するシステムでは、クロックが充分安定した後に、リセットを解除してください。また、プログラムの途中で外部発振子（または外部発振回路）を用いたクロックに切り替える場合は、切り替え前のクロックが十分安定してから切り替えください。

6. 入力端子の波形
入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS製品の入力がノイズなどに起因して、VIL(Max.)からVIH(Min.)までに起因する場合、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、VIL(Max.)からVIH(Min.)までの領域を通過する遷移時間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス（予約領域）のアクセス禁止
リザーブアドレス（予約領域）のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられているリザーブアドレス（予約領域）があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について
型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ放射量などが異なる場合があります。型名が違った製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。
ご注意書き

1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報は、お客様の機器・システムを設計するための参考資料であり、お客様の責任において製作される機器・システムの設計に使用することを前提としています。これらを使用に起因して生じた損害（お客様または第三者に生じた損害も含みます。以下同じです。）に関しては、当社は一切その責任を負いません。

2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、何らの保証を行うものでなく、また責任を負うものでありません。

3. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、一切その責任を負いません。

4. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、一切その責任を負いません。

5. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、一切その責任を負いません。

6. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、一切その責任を負いません。

7. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、一切その責任を負いません。

8. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、一切その責任を負いません。

9. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、一切その責任を負いません。

10. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、一切その責任を負いません。

11. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、一切その責任を負いません。

12. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、一切その責任を負いません。

13. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、一切その責任を負いません。

14. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路図等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に関する紛争について、当社は、一切その責任を負いません。

注1. 本文中において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に支配する会社をいいます。

注2. 本文中において使用されている「お客様」は、当社製品の開発、製造、販売、使用、および第三者に輸出、販売または移転等する場合の、当社製品の取引先を指し、当社製品の取引先がルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社の支配する会社であることを前提としています。