

# RX66T Group

# Sensorless vector control for dual permanent magnetic synchronous motor

# Abstract

This application note aims at explaining sensorless vector control software for two permanent magnet synchronous motors, by using functions of RX66T. The explanation includes, how to use the library of 'Renesas Motor Workbench' tool, that is support tool for motor control development.

This application note describes the MTU version that drives two motors with MTU, the GPT version that drives with GPT, and the hardware configuration that operates them.

The only difference between the MTU version and GPT version software is the timer used, and the specifications are the same.

For details on the differences and commonalities between the MTU and GPT versions of the hardware, refer to "2.3.2 Peripheral Functions".

After that, unless otherwise specified, the specifications are common to the MTU version and GPT version.

The target software of this application note is only to be used as reference and Renesas Electronics Corporation does not guarantee the operations. Please use them after carrying out a thorough evaluation in a suitable environment.

# **Operation Checking Device**

Operations of the target software of this application note are checked by using the following devices.

• RX66T (R5F566TEADFP)

# **Target Software**

The target software of this application note is as follows.

MTU version

- RX66T\_MRSSK2\_SPM\_LESS\_FOC\_MTU\_CSP\_RV100 (IDE: CS+)
- RX66T\_MRSSK2\_SPM\_LESS\_FOC\_MTU\_E2S\_RV100 (IDE: e<sup>2</sup>studio)

GPT version

- RX66T\_MRSSK2\_SPM\_LESS\_FOC\_GPT\_CSP\_RV100 (IDE: CS+)
- RX66T\_MRSSK2\_SPM\_LESS\_FOC\_GPT\_E2S\_RV100 (IDE: e<sup>2</sup>studio)
- RX66T Sensorless vector control software for 'Evaluation System for BLDC Motor' and 'RX66T CPU Card'



# Contents

| 1. Overview                                                          | 4  |
|----------------------------------------------------------------------|----|
| 1.1 Development Environment                                          | 4  |
| 2. System Overview                                                   | 5  |
| 2.1 Hardware Configuration                                           |    |
| 2.2 Hardware modification details                                    | 9  |
| 2.2.1 Not using the extender board                                   | 9  |
| 2.2.2 Using an extender board                                        | 13 |
| 2.3 Hardware Specifications                                          | 15 |
| 2.3.1 User Interface                                                 | 15 |
| 2.3.2 Peripheral Functions                                           | 17 |
| 2.4 Software Configuration                                           | 19 |
| 2.4.1 Software File Configuration                                    | 19 |
| 2.4.2 Smart Configurator File Configuration                          | 20 |
| 2.4.3 Module Configuration                                           | 23 |
| 2.5 Software Specifications                                          | 24 |
| 2.6 Interrupt Priority                                               | 25 |
| 3. Descriptions of the Control Program                               | 26 |
| 3.1 Contents of Control                                              | 26 |
| 3.1.1 Motor Start/Stop                                               | 26 |
| 3.1.2 A/D Converter                                                  | 26 |
| 3.1.3 Modulation                                                     |    |
| 3.1.4 State Transition                                               |    |
| 3.1.5 Startup Method                                                 |    |
| 3.1.6 System Protection Function                                     |    |
| 3.1.7 Carrier synchronized interrupt                                 | 34 |
| 3.2 Function Specifications of Sensorless Vector Control Software    | 35 |
| 3.3 Macro Definition of Sensorless Vector Control Software           | 40 |
| 3.4 Control Flowcharts                                               |    |
| 3.4.1 Main Process                                                   |    |
| 3.4.2 100 [µs] Period Interrupt Process                              | 43 |
| 3.4.3 1 [ms] Period Interrupt Process                                |    |
| 3.4.4 Over-Current Detection Interrupt Process                       | 45 |
| 4. How to build Evaluation environment                               | 46 |
| 4.1 Importing the Demo Project                                       |    |
| 4.2 Building and Debugging                                           | 47 |
| 4.3 Motor Control Development Support Tool 'Renesas Motor Workbench' |    |
| 4.3.1 Overview                                                       |    |
| 4.3.2 List of Variables for Analyzer function                        |    |



| 4.3.3 | Operation Example for Analyzer    | 51 |
|-------|-----------------------------------|----|
| 4.3.4 | Operation Example for User Button | 53 |
| 5. F  | Reference Documents               | 54 |
| Revis | ion History                       | 55 |



# 1. Overview

This application note explains how to implement two sensorless vector control software of permanent magnet synchronous motor (PMSM)<sup>\*1</sup> using the RX66T microcontroller. The explanation includes, how to use the library of 'Renesas Motor Workbench' tool, that is support tool for motor control development.

Note that the software uses the algorithm described in the application note 'Sensorless vector control for permanent magnet synchronous motor (Algorithm)' (R01AN3786), so please refer to that for the details of the algorithm.

In this document, motors are called motor A and motor B.

Note: 1. PMSM is also known as brushless DC motor (BLDC).

# 1.1 Development Environment

Table 1-1 and Table 1-2 show development environment of the software explained in this application note.

#### Table 1-1 Hardware Development Environment

| Microcontroller      | Evaluation board            | Motor* <sup>3</sup>     |
|----------------------|-----------------------------|-------------------------|
| RX66T (R5F566TEADFP) | 48V inverter board (2 unit) | TG-55L KA,24V (2 piece) |
|                      | RX66T CPU Card              |                         |
|                      | 2nd motor Extender Board    |                         |

#### Table 1-2 Software Development Environment

| IDE version                           | Smart Configurator for RX                     | Toolchain version*4 |
|---------------------------------------|-----------------------------------------------|---------------------|
| CS+ V8.06.00                          | Standalone Version 2.10.0                     | CC-RX: V3.03.00     |
| e <sup>2</sup> studio version 2021-07 | Bundled with e <sup>2</sup> studio as plug-in |                     |

For purchase and technical support, contact sales representatives and dealers of Renesas Electronics Corporation.

- Notes: 1. 48V 5A Inverter Board for BLDC Motor (RTK0EM0000B10020BJ) and RX66T CPU Card (RTK0EMX870C00000BJ) are products of Renesas Electronics Corporation. 48V 5A Inverter Board for BLDC Motor is included in Evaluation System for BLDC Motor (RTK0EMX270S00020BJ).
  - TG-55L-KA is a product of TSUKASA ELECTRIC. TSUKASA ELECTRIC (<u>https://www.tsukasa-d.co.jp/</u>)
  - 3. Motors conforming to the inverter specifications listed in chapter 2 of Evaluation System for BLDC Motor User's Manual (R12UZ0062) can be connected to the product. When using motors other than the one included with the product, make sure to check the motor specifications carefully.
  - 4. If the same version of the toolchain (C compiler) specified in the project is not in the import destination, the toolchain will not be selected and an error will occur. Check the selected status of the toolchain on the project configuration dialog. For the setting method, refer to FAQ 3000404. (https://en-support.renesas.com/knowledgeBase/18398339)



Overview of this system is explained below.

This APN describes two type hardware configurations.

- 1. Not using the extender board:
- The CPU card and the inverter board need to be modified, and you need to make the cable yourself.
- Using the extender board: The CPU card needs to be modified, and needs to prepare the cable commercially available.

# 2.1 Hardware Configuration

The hardware configuration is shown below.

(1). Overall configuration (Not using the extender board)



Figure 2-1 Hardware Configuration Diagram (Not using the extender board)



#### (2). Overall configuration (Using the extender board)



Figure 2-2 Hardware Configuration Diagram (Using the extender board)



#### (3). Motor A module configuration



Figure 2-3 Hardware Configuration Diagram (Motor A module)

The ports used by the MTU version and the GPT version are common, and only the pin function of the PWM output is different. The pin functions of the PWM output used for each of the MTU version and GPT version are shown below.

| Port | MTU pin functions | GPT pin name functions |
|------|-------------------|------------------------|
| P71  | MTIOC3B           | GTIOC4A                |
| P72  | MTIOC4A           | GTIOC5A                |
| P73  | MTIOC4B           | GTIOC6A                |
| P74  | MTIOC3D           | GTIOC4B                |
| P75  | MTIOC4C           | GTIOC5B                |
| P76  | MTIOC4D GTIOC6B   |                        |

Table 2-1 The pin functions of the PWM output for MTU version/GPT version



### (4). Motor B module configuration



Figure 2-4 Hardware Configuration Diagram (Motor B module)

The ports used by the MTU version and the GPT version are common, and only the pin function of the PWM output is different. The pin functions of the PWM output used for each of the MTU version and GPT version are shown below.

| Table 2-2 The pin functions of the PWM output for M | MTU version/GPT version |
|-----------------------------------------------------|-------------------------|
|-----------------------------------------------------|-------------------------|

| Port | MTU pin functions | GPT pin functions |  |
|------|-------------------|-------------------|--|
| P95  | MTIOC6B           | GTIOC7A           |  |
| P94  | MTIOC7A           | GTIOC8A           |  |
| P93  | MTIOC7B           | GTIOC9A           |  |
| P92  | MTIOC6D           | GTIOC7B           |  |
| P91  | MTIOC7C           | GTIOC8B           |  |
| P90  | MTIOC7D           | GTIOC9B           |  |



# 2.2 Hardware modification details

The hardware modification is required to use this system. Here, it introduce each modification method mentioned above (1. Not using the extender board, 2. Using the extender board). The parts introduced in this chapter are just examples. Be sure to check the parts to be used by yourself.

# 2.2.1 Not using the extender board

(1) Mount the pin header on the "CNE" of the inverter board B.



Figure 2-5 Mounting the pin header to the inverter board B



(2) Mount the 0Ω resistor(size : 0603(mm)) at the R140, R142, R144, R145, R146, R147, R148, R149, R150, R152, R153, R154, R155, R156 on the inverter board 2.



Figure 2-6 Mounting any resistors to the inverter board B

(3) Mount the pin header on the "CNC" of the CPU card.



Figure 2-7 Mounting the pin header to the CPU card



### (4) Connect the corresponding signal between the inverter board and the CPU card.



Figure 2-8 Connection between the inverter board and the CPU card



# Table 2-3 Pin assignment correspondence table

| INV (CNE) |               | RX66T(C | RX66T(CNC)    |  |
|-----------|---------------|---------|---------------|--|
| Pin#      | Pin name      | Pin#    | Pin name      |  |
| 3         | GND_A         | 1       | GND_A         |  |
| 12        | VDC_EX        | 2       | VDC_EX        |  |
| 16        | I_U/A+_EX     | 3       | I_U/A+_EX     |  |
| 18        | I_V/B+_EX     | 4       | I_V/B+_EX     |  |
| 20        | I_W/BEX       | 5       | I_W/BEX       |  |
| 4         | V_U/A+_EX     | 7       | V_U/A+_EX     |  |
| 6         | V_V/B+_EX     | 8       | V_V/B+_EX     |  |
| 8         | V_W/BEX       | 9       | V_W/BEX       |  |
| 23        | GND_D         | 11      | GND_D         |  |
| 19        | GND_A         | 12      | GND_A         |  |
| 41        | LED1          | 13      | LED1          |  |
| 44        | LED2          | 14      | LED2          |  |
| 43        | LED3          | 15      | LED3          |  |
| 40        | FO#_EX        | 16      | FO#_EX        |  |
| 24        | PWM_WL/B-L_EX | 17      | PWM_WL/B-L_EX |  |
| 26        | PWM_VL/B+L_EX | 18      | PWM_VL/B+L_EX |  |
| 28        | PWM_UL/A+L_EX | 19      | PWM_UL/A+L_EX |  |
| 30        | PWM_WH/BEX    | 20      | PWM_WH/BEX    |  |
| 32        | PWM_VH/B+H_EX | 21      | PWM_VH/B+H_EX |  |
| 34        | PWM_UH/A+H_EX | 22      | PWM_UH/A+H_EX |  |
| 46        | SW1           | 23      | SW1           |  |
| 45        | SW2           | 24      | SW2           |  |
| 25        | GND_D         | 25      | GND_D         |  |
| 27        | GND_D         | 26      | GND_D         |  |



### 2.2.2 Using an extender board

If use the extender board that fits the connector accommodation, there is little board modification and it can be realized easy connection with commercially available cable. For the extender board, refer to the information (CAD data, circuit diagram, BOMList) included in the APN for development.

(1) Mount the pin header on the "CNC" of the CPU card.



Figure 2-9 Mounting a pin header to the CPU card

(2) Connect the corresponding signal between the extender board and the CPU card.

Since the CNC of the extender board is 34pin, mount the connector without envelope to connect with the CNC of 36pin RX66T. When connecting with the cable, make sure that the 1PIN side of each board is aligned.



Figure 2-10 Connection between the extender board and the CPU card



# Table 2-4 Pin assignment correspondence table

| Extender board (CNC) |          | RX66T(CNC) |          |  |
|----------------------|----------|------------|----------|--|
| Pin#                 | Pin name | Pin#       | Pin name |  |
| 1                    | PGAVSS_2 | 1          | PGAVSS   |  |
| 2                    | VPN_2    | 2          | VPN      |  |
| 3                    | IU_2     | 3          | IU       |  |
| 4                    | IV_2     | 4          | IV       |  |
| 5                    | IW_2     | 5          | IW       |  |
| 6                    | TEMP_2   | 6          | NC       |  |
| 7                    | VU_2     | 7          | VU       |  |
| 8                    | VV_2     | 8          | VV       |  |
| 9                    | VW_2     | 9          | VW       |  |
| 10                   | VR_2     | 10         | NC       |  |
| 11                   | GND      | 11         | VSS      |  |
| 12                   | GND      | 12         | VSS      |  |
| 13                   | LED1#_2  | 13         | LED1     |  |
| 14                   | LED2#_2  | 14         | LED2     |  |
| 15                   | LED3#_2  | 15         | LED3     |  |
| 16                   | FO#_2    | 16         | OC#      |  |
| 17                   | WN_2     | 17         | WN       |  |
| 18                   | VN_2     | 18         | VN       |  |
| 19                   | UN_2     | 19         | UN       |  |
| 20                   | WP_2     | 20         | WP       |  |
| 21                   | VP_2     | 21         | VP       |  |
| 22                   | UP_2     | 22         | UP       |  |
| 23                   | SW1#_2   | 23         | SW1      |  |
| 24                   | SW2#_2   | 24         | SW2      |  |
| 25                   | GND      | 25         | VSS      |  |
| 26                   | GND      | 26         | VSS      |  |
| 27                   | ENC_A_2  | 27         | ENC_A    |  |
| 28                   | ENC_B_2  | 28         | ENC_B    |  |
| 29                   | ENC_Z_2  | 29         | ENC_Z    |  |
| 30                   | GND      | 30         | VSS      |  |
| 31                   | GND      | 31         | VSS      |  |
| 32                   | HALL_U_2 | 32         | HALL_U   |  |
| 33                   | HALL_V_2 | 33         | HALL_V   |  |
| 34                   | HALL_W_2 | 34         | HALL_W   |  |
| -                    | -        | 35         | VRL2     |  |
| -                    | -        | 36         | NC       |  |



# 2.3 Hardware Specifications

# 2.3.1 User Interface

List of user interfaces of this system is in Table 2-5.

#### Table 2-5 User Interfaces

| ltem           | Interface component                                                           | Function                                               |
|----------------|-------------------------------------------------------------------------------|--------------------------------------------------------|
| Rotation speed | Variable resistor (VR1) for motor A                                           | Reference value of rotation speed input (analog value) |
| START/STOP1    | Toggle switch (SW1_1) for motor A                                             | Command of motor A rotation start/stop                 |
| ERROR RESET1   | Push switch (SW2_1) for motor A                                               | Command of recovery from error status                  |
| LED1_1         | Orange LED for motor A                                                        | - At the time of motor A rotation: ON                  |
|                |                                                                               | - At the time of stop: OFF                             |
| LED3_1         | Orange LED for motor A                                                        | - At the time of error detection: ON                   |
|                |                                                                               | - At the time of normal operation: OFF                 |
| START/STOP2    | Toggle switch (SW1_2) for motor B Command of motor B rotation start/stop      |                                                        |
| ERROR RESET2   | Push switch (SW2_2) for motor B         Command of recovery from error status |                                                        |
| LED1_2         | Orange LED for motor B                                                        | - At the time of motor B rotation: ON                  |
|                |                                                                               | - At the time of stop: OFF                             |
| LED3_2         | Orange LED for motor B                                                        | - At the time of error detection: ON                   |
|                |                                                                               | - At the time of normal operation: OFF                 |
| RESET          | Push switch (RESET1)                                                          | System reset                                           |



List of port interfaces of this system is given in Table 2-6, Table 2-7.

| R5F566TEADFP p          | in functions  |                                                                |
|-------------------------|---------------|----------------------------------------------------------------|
| MTU version GPT version |               | Function                                                       |
| P62 / AN208             |               | Inverter bus voltage measurement                               |
| P21 / AN217             |               | For rotation speed command value input (analog value)          |
| P80                     |               | START/STOP toggle switch (SW1_1)                               |
| P81                     |               | ERROR RESET push switch (SW2_1)                                |
| PE3                     |               | LED1_1 ON/OFF control                                          |
| PB7                     |               | LED3_1 ON/OFF control                                          |
| P40 / AN000             |               | U1 phase current measurement                                   |
| P42 / AN002             |               | W1 phase current measurement                                   |
| P71 / MTIOC3B           | P71 / GTIOC4A | PWM output (U <sub>p</sub> 1) / Low active                     |
| P72 / MTIOC4A           | P72 / GTIOC5A | PWM output (Vp1) / Low active                                  |
| P73 / MTIOC4B           | P73 / GTIOC6A | PWM output (W <sub>p</sub> 1) / Low active                     |
| P74 / MTIOC3D           | P74 / GTIOC4B | PWM output (U <sub>n</sub> 1) / High active                    |
| P75 / MTIOC4C           | P75 / GTIOC5B | PWM output (V <sub>n</sub> 1) / High active                    |
| P76 / MTIOC4D           | P76 / GTIOC6B | PWM output (Wn1) / High active                                 |
| P70 / POE0#             | ·             | PWM emergency stop input at the time of over-current detection |

Table 2-6 Port Interfaces (For motor A)

## Table 2-7 Port Interfaces (For motor B)

| R5F566TEADFP pi         | n functions   |                                                                |
|-------------------------|---------------|----------------------------------------------------------------|
| MTU version GPT version |               | Function                                                       |
| P63 / AN209             |               | Inverter bus voltage measurement                               |
| P10                     |               | START/STOP toggle switch (SW1_2)                               |
| P11                     |               | ERROR RESET push switch (SW2_2)                                |
| PB2                     |               | LED1_2 ON/OFF control                                          |
| PA4                     |               | LED3_2 ON/OFF control                                          |
| P44 / AN100             |               | U2 phase current measurement                                   |
| P46 / AN102             |               | W2 phase current measurement                                   |
| P95 / MTIOC6B           | P95 / GTIOC7A | PWM output (Up2) / Low active                                  |
| P94 / MTIOC7A           | P94 / GTIOC8A | PWM output (V <sub>p</sub> 2) / Low active                     |
| P93 / MTIOC7B           | P93 / GTIOC9A | PWM output (Wp2) / Low active                                  |
| P92 / MTIOC6D           | P92 / GTIOC7B | PWM output (Un2) / High active                                 |
| P91 / MTIOC7C           | P91 / GTIOC8B | PWM output (Vn2) / High active                                 |
| P90 / MTIOC7D           | P90 / GTIOC9B | PWM output (Wn2) / High active                                 |
| P96 / POE4#             |               | PWM emergency stop input at the time of over-current detection |



# 2.3.2 Peripheral Functions

Of the peripheral functions used in this system, Table 2-8 shows the list of the peripheral functions that differ between MTU version and GPT version, and Table 2-9 shows the list of the common peripehral functions.

| Table 2-8 | List of the different Peripheral Functions |
|-----------|--------------------------------------------|
|-----------|--------------------------------------------|

| Peripheral functions | Resource                                         | Use                      |
|----------------------|--------------------------------------------------|--------------------------|
| MTU3                 | Motor A: CH3, CH4<br>Motor B: CH6, CH7           | Complementary PWM output |
| GPTW                 | Motor A: CH4, CH5, CH6<br>Motor B: CH7, CH8, CH9 | Complementary PWM output |

 Table 2-9
 List of the Common Peripheral Functions

| Peripheral functions   | Resource                                                                  | Use                                                                                                                                                     |  |
|------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 12-bit A/D Converter * | Motor A: AN000, AN002,<br>AN208, AN217<br>Motor B: AN100, AN102,<br>AN209 | <ul> <li>Rotation speed command value input</li> <li>Current of each phase U and W<br/>measurement</li> <li>Inverter bus voltage measurement</li> </ul> |  |
| СМТ                    | CH0                                                                       | 1 [ms] interval timer                                                                                                                                   |  |
| POE3B                  | Motor A: POE0#<br>Motor B: POE4#                                          | Set PWM output ports to high impedance state to stop the PWM output.                                                                                    |  |

\*: Resources are common to the MTU / GPT version, but the usage is different because the specifications of each timer are different. Please refer to (3) and (4) below for details.

### (1) Multi-Function Timer Pulse Unit 3 (MTU3)

On the channel 3, 4 (for motor A), and 6, 7 (for motor B) output (p-side active level: low, n-side active level: high) with dead time is performed by using the complementary PWM mode.

# (2) General PWM Timer (GPTW)

On the channel 4, 5, 6 (for motor A), and 7, 8, 9 (for motor B) output with dead time (p-side is low active, n-side is high active) is performed by using the complementary PWM Output Operating Mode.

### (3) 12-Bit A/D Converter (S12ADH) (MTU version)

U-phase current (lu1) and W-phase current (lw1), U-phase current (lu2) and W-phase current (lw2), inverter bus voltage1 (Vdc1) and rotation speed command (VR1), inverter bus boltage2 (Vdc2) are measured in "Single scan mode" (use a hardware trigger).

Detection of the U-phase current(lu1, lu2) and W-phase current(lw1, lw2) uses sample & hold function. A/D conversion is implemented to be synchronized with carrier synchronized interrupt (refer to 3.1.7 Carrier synchronized interrupt) by using A/D Converter Start Request Delaying Function.



### (4) 12-Bit A/D Converter (S12ADH) (GPT version)

U-phase current (lu1) and W-phase current (lw1), U-phase current (lu2) and W-phase current (lw2), inverter bus voltage1 (Vdc1) and rotation speed command (VR1), inverter bus boltage2 (Vdc2) are measured in "Group scan mode" (use a hardware trigger).

- Group A (for motor A) : Iu1, Iw1, Vdc1, VR1

- Group B (for motor B) : Iu2, Iw2, Vdc2

Detection of the U-phase current(lu1, lu2) and W-phase current(lw1, lw2) uses sample & hold function. A/D conversion is implemented to be synchronized with carrier synchronized interrupt (refer to 3.1.7 Carrier synchronized interrupt) by using Event Link Function.

### (5) Compare Match Timer (CMT)

The compare match timer is used as 1 [ms] interval timer.

### (6) Port Output Enable 3 (POE3B)

PWM output ports are set to high impedance state when an over-current is detected (when a falling edge of the POE0#, POE4# port is detected) or when an output short circuit is detected.



# 2.4 Software Configuration

# 2.4.1 Software File Configuration

Folder and file configuration of the software are given below.



'In Circuit Scope') is attached to the name of folders, files, functions, variables related to 'Renesas Motor Workbench'.

Figure 2-11 Folder and File Configuration



### 2.4.2 Smart Configurator File Configuration

Peripheral drivers are configured easily by using Smart Configurator (Hereinafter referred to as SC). Also, by using the components dedicated to the motor, it is possible to generate drivers for the multifunction timer pulse unit, general PWM timer and 12-bit A / D converter.

SC saves information such as the target MCU, peripheral, clock and pin functions setting for the project in \*.scfg file. To check the peripheral function settings of this software, refer to the following file.

- "RX66T\_MRSSK2\_SPM\_LESS\_FOC\_xxx\_yyy\_RVzzz.scfg"
- (xxx: MTU refers to MTU version. GPT refers to GPT version. yyy: CSP refers to CS+ version. E2S refers to e<sup>2</sup> studio version. zzz: revision version number)

Folder and file configuration of SC generated for MTU version and GPT version output are shown below.



Figure 2-12 MTU Version Smart Configurator Folder and File Configurations





 These folders are automatically created when using SC.Refer to Section 6.2 in "RX Smart Configurator User's Guide: e<sup>2</sup> studio (R20AN0451)" or "RX Smart Configurator User's Guide: CS+" for explanation of these files and folder

### Figure 2-13 GPT Version Smart Configurator Folder and File Configurations



SC Motor component configuration name in this software is named according to the following format.

Config\_<Type of motor><Type of sensor><Motor drive method>\_<Motor>

The following table shows definitions for configuring the above format.

| Type of motor                                         | Type of sensor                                                        | Motor drive method                    | Motor      |
|-------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|------------|
| s: stepping motor                                     | r: resolver                                                           | foc: field-oriented control           | a: Motor A |
| b: brushless DC Motor<br>(BLDC)<br>i: induction motor | e: encoder<br>m: magnetic encoder<br>s: sensor-less<br>h: hall sensor | 120: 120-degree<br>conduction control | b: Motor B |

| Table 2-10 | Smart Configurator Motor configuration name format |
|------------|----------------------------------------------------|
|------------|----------------------------------------------------|

In this project, the type of motor used is BLDC motor and driven with sensorless field-oriented control. Therefore, the configuration name is Config\_bsfoc.

Tips:

The application-specific SC Motor component is presented in a simple and easy to understand GUI that consolidates several peripherals to configure peripherals required for basic motor drive in one interface. These peripherals include the multi-function timer pulse unit, general PWM timer and AD converter.

While benefiting from the ease of configuring Motor driver related peripherals in single interface, it is important to note that the Motor component set-up the same registers that could have been set-up by other components, (eg. AD converter) and vice-versa. This will cause overwriting of registers that are commonly set-up by both the Motor or AD converter component. This is expected and user must pay attention to these circumstances and to take appropriate countermeasure. User can make use of the generated <Configuration\_name>\_user.c of affected component to perform the countermeasure.



### 2.4.3 Module Configuration

Module configuration of the software is described below.

The source code of the MTU version and GPT version of Application Layer and Middle Layer is the same. Differences depending on the timer used (initial setting, PWM start / stop, duty update, etc.) are absorbed by the Device Layer (driver generated by SC).



Figure 2-14 Module Configuration



# 2.5 Software Specifications

Table 2-11 shows basic software specification of this system. For details of the sensorless vector control, refer to the application note 'Sensorless vector control for permanent magnet synchronous motor (Algorithm)' (R01AN3786).

Specifications are the same for motor A and B, except for hardware interface.

| Table 2-11 | Basic Specifications of Sensorless Vector Control Software (Common to MTU / GPT) |
|------------|----------------------------------------------------------------------------------|
|------------|----------------------------------------------------------------------------------|

| Item                           | Content                                                                                        |                       |                                                                                      |  |
|--------------------------------|------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------|--|
| Control method                 | Vector control                                                                                 |                       |                                                                                      |  |
| Position detection method      | Sensorless                                                                                     |                       |                                                                                      |  |
| Motor rotation start/stop      | Determined depending on the level of SW1_1(for motor A) or SW1_2(for motor B) ('Low': rotation |                       |                                                                                      |  |
|                                | start, 'High': stop)                                                                           |                       |                                                                                      |  |
|                                | or input from Renesas Mot                                                                      | or Workbench          |                                                                                      |  |
| Input voltage                  | DC 24 [V]                                                                                      |                       |                                                                                      |  |
| Carrier frequency (PWM)        | 20 [kHz] (Carrier period: 50 [                                                                 | [µs])                 |                                                                                      |  |
| Dead time                      | 2 [µs]                                                                                         |                       |                                                                                      |  |
| Control period                 | Current control / Position and                                                                 | d speed estimation:   | 100 [µs]                                                                             |  |
|                                | Speed control:1 [ms]                                                                           |                       |                                                                                      |  |
| Rotation speed control range   | CW: 0 [rpm] to 2650 [rpm]                                                                      |                       |                                                                                      |  |
|                                | CCW: 0 [rpm] to 2650 [rpm]                                                                     |                       |                                                                                      |  |
|                                | When less than 600 [rpm], th                                                                   | ne motor is driven un | der Speed Open-loop control.*                                                        |  |
| Natural frequency              | Current control system: 300                                                                    | [Hz]                  |                                                                                      |  |
| of each control system         | Speed control system: 3 [Hz]                                                                   | ]                     |                                                                                      |  |
|                                | BEMF estimation system: 10                                                                     | 000 [Hz]              |                                                                                      |  |
|                                | Position estimation system: 20 [Hz]                                                            |                       |                                                                                      |  |
| Optimization setting           | Optimization level                                                                             | 2 (-optimize = 2) (d  | lefault setting)                                                                     |  |
| of compiler                    | Optimization method                                                                            | Size priority (-size) | (default setting)                                                                    |  |
| ROM/RAM size                   | ROM: 28.3KB                                                                                    |                       |                                                                                      |  |
|                                | RAM: 11.0KB                                                                                    |                       |                                                                                      |  |
| Processing stop for protection | [Motor A]                                                                                      |                       | [Motor B]                                                                            |  |
|                                | Disables the motor A control                                                                   | signal output (six    | Disables the motor B control signal output (six                                      |  |
|                                | outputs), under any of the following conditions.                                               |                       | outputs), under any of the following conditions.                                     |  |
|                                | 1. Current of each pha                                                                         | se exceeds 0.89       | 1. Current of each phase exceeds 0.89                                                |  |
|                                | [A] (monitored every 100 [µs])                                                                 |                       | [A] (monitored every 100 [μs])                                                       |  |
|                                | 2. Inverter bus voltage exceeds 28 [V]                                                         |                       | 2. Inverter bus voltage exceeds 28 [V]                                               |  |
|                                | (monitored every 100 [µs])                                                                     |                       | (monitored every 100 [µs])                                                           |  |
|                                | 3. Inverter bus voltage                                                                        |                       | 3. Inverter bus voltage is less than 14 [V]                                          |  |
| (monitored every 100 [µs])     |                                                                                                |                       | (monitored every 100 [µs])                                                           |  |
|                                | 4. Rotation speed exce<br>(monitored every 100 [µs                                             |                       | <ol> <li>Rotation speed exceeds 3000 [rpm]<br/>(monitored every 100 [µs])</li> </ol> |  |
|                                |                                                                                                | 5])                   |                                                                                      |  |
|                                | When an external over-curre                                                                    | ent signal is         | When an external over-current signal is                                              |  |
|                                | detected (when a falling edg                                                                   | e of the POE0#        | detected (when a falling edge of the POE4#                                           |  |
|                                | port is detected) or when the                                                                  | •                     | port is detected) or when the output short                                           |  |
|                                | circuit is detected, the PWM                                                                   |                       | circuit is detected, the PWM output ports are                                        |  |
| Note: * Set rotation spee      | set to high impedance state.                                                                   |                       | set to high impedance state.                                                         |  |

Note: \* Set rotation speed command value higher than 600 [rpm] in order to rotate motor by Sensorless vector control.



# 2.6 Interrupt Priority

The interrupts and priorities used in this system are shown below.

| Table | 2-12 | Interrupt | priority |
|-------|------|-----------|----------|
|-------|------|-----------|----------|

| Interrupt level | Priority            | function                                                      |
|-----------------|---------------------|---------------------------------------------------------------|
| 0               | (Interrupt Disable) |                                                               |
| 1               | Min                 |                                                               |
| 2               |                     |                                                               |
| 3               |                     |                                                               |
| 4               |                     |                                                               |
| 5               |                     |                                                               |
| 6               |                     | RWM communication interrupt                                   |
| 7               |                     |                                                               |
| 8               |                     |                                                               |
| 9               |                     |                                                               |
| 10              |                     |                                                               |
| 11              |                     | 1 [msec] Interrupt handling                                   |
| 12              |                     | Carrier synchronized interrupt (Motor A, B are same priority) |
| 13              |                     |                                                               |
| 14              |                     |                                                               |
| 15              | Max                 | Over current error interrupt (Motor A, B are same priority)   |



# 3. Descriptions of the Control Program

The target software of this application note is explained here.

# 3.1 Contents of Control

### 3.1.1 Motor Start/Stop

The start and stop of the motor are controlled by input from 'Renesas Motor Workbench' or SW1\_1, SW1\_2 switch of inverter board.

A general-purpose port is assigned to SW1\_1, SW1\_2. When the port is at a 'Low' level, the software determines that the motor should be started. Conversely, when the level is switched to 'High' level, the software determines that the motor should be stopped.

# 3.1.2 A/D Converter

#### (1) Motor Rotation Speed Reference

The motor rotation speed reference can be set by Renesas Motor Workbench input or A/D conversion of the VR1 output value (analog value). VR1 of inverter board A is used to determine the rotation speed of both motor A and motor B. The A/D converted VR1 value is used as rotation speed command value, as shown below.

#### Table 3-1 Conversion Ratio of the Rotation Speed Reference

| Item                     | Conversi                             | Channel                           |       |
|--------------------------|--------------------------------------|-----------------------------------|-------|
| Rotation speed reference | CW 0 rpm to 2650 rpm: 07FFH to 0000H |                                   | AN217 |
|                          | CCW                                  | 0 rpm to 2650 rpm: 0800H to 0FFFH |       |

### (2) Inverter Bus Voltage

Inverter bus voltage is measured as shown in the table below. It is used for modulation factor calculation and detection of over-voltage / under-voltage (when an abnormality is detected, PWM is stopped).

#### Table 3-2 Inverter Bus Voltage Conversion Ratio

| Item                 | Conversion ratio<br>(Inverter bus voltage: A/D conversion value) | Channel            |
|----------------------|------------------------------------------------------------------|--------------------|
| Inverter bus voltage | 0 [V] to 111 [V]: 0000H to 0FFFH                                 | [Motor A]<br>AN208 |
|                      |                                                                  | [Motor B]<br>AN209 |



# (3) U, W Phase Current

The U and W phase currents are measured as shown below and used for vector control.

| Item               | Conversion ratio<br>(U, W phase current: A/D conversion value)                                                                                                                                                              | Channel                                                                    |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| U, W phase current | -12.5 [A] to 12.5 [A]: 0000H to 0E8BH*<br>Current value = (5V-2.5V)/(0.01Ohm*20) = 12.5A<br>In this system, the current detection circuit is level shifted from 5V<br>to 3V, so 0E8BH is the upper limit of A/D conversion. | [Motor A]<br>Iu: AN000<br>Iw: AN002<br>[Motor B]<br>Iu: AN100<br>Iw: AN102 |

 Table 3-3
 Conversion Ratio of U and W Phase Current

Note: \* For more details of A/D conversion characteristics, refer to 'RX66T Group User's Manual:Hardware'



# 3.1.3 Modulation

The target software of this application note uses pulse width modulation (hereinafter called PWM) to generate the input voltage to the motor. And the PWM waveform is generated by the triangular wave comparison method.

### (1) Triangular Wave Comparison Method

The triangular wave comparison method is used to output the voltage command value. By this method, the pulse width of the output voltage can be determined by comparing the carrier waveform (triangular wave) and voltage command value waveform. The voltage command value of the pseudo sinusoidal wave can be output by turning the switch on or off when the voltage command value is larger or smaller than the carrier wave respectively.



Figure 3-1 Conceptual Diagram of the Triangular Wave Comparison Method



As shown in Figure 3-2, ratio of the output voltage pulse to the carrier wave cycle is called duty.



Figure 3-2 Definition of Duty

Modulation factor m is defined as follows.

$$m = \frac{V}{F}$$

m: Modulation factor V: Voltage command value E: Inverter bus voltage

The voltage command can be generated by setting PWM compare register properly to obtain the desired duty.



# 3.1.4 State Transition

Figure 3-3 is a state transition diagram of the sensorless vector control software. In the target software of this application note, the software state is managed by 'SYSTEM MODE' and 'RUN MODE'. And 'Control Config' shows the active control system in the software. Motor A and B are controlled in the same method.



Figure 3-3 State Transition Diagram of Sensorless Vector Control Software



# (1) SYSTEM MODE

'SYSTEM MODE' indicates the operating states of the system. The state transits on occurrence of each event (EVENT). 'SYSTEM MODE' has 3 states that are motor drive stop (INACTIVE), motor drive (ACTIVE), and abnormal condition (ERROR).

### (2) RUN MODE

'RUN MODE' indicates the condition of the motor control. 'RUN MODE' transits sequentially as shown in Figure 3-3 when 'SYSTEM MODE' is 'ACTIVE'.

### (3) EVENT

When 'EVENT' occurs in each 'SYSTEM MODE', 'SYSTEM MODE' changes as shown in the table of Figure 3-3, according to that 'EVENT'.

| EVENT name | Occurrence factor                |
|------------|----------------------------------|
| INACTIVE   | By user operation                |
| ACTIVE     | By user operation                |
| ERROR      | When the system detects an error |
| RESET      | By user operation                |



# 3.1.5 Startup Method

Figure 3-4 shows startup control of sensorless vector control software. Each reference value setting of d-axis current, q-axis current and speed is managed by respective status. Motor A and B are controlled in the same method.



Figure 3-4 Startup Control of Sensorless Vector Control Software



### 3.1.6 System Protection Function

This control software has the following error status and executes emergency stop functions in case of occurrence of respective errors. Table 3-5 shows each setting value for the system protection function.

• Over-current error

The over-current detection is performed by both hardware detection method and software detection method.

The PWM output ports are set to high impedance state in response to an emergency stop signal (over current detection) from the hardware. In addition, U, V, and W phase currents are monitored in overcurrent monitoring cycle. When an over current (when the current exceeds the over current limit) is detected, the CPU executes emergency stop (software detection). When this error occurs, the CPU performs emergency stop the motor which the error occurred. The over-current limit value is calculated from the nominal current of the motor [MP\_NOMINAL\_CURRENT\_RMS].

- Over-voltage error
- The inverter bus voltage is monitored in over voltage monitoring cycle. When an over-voltage is detected (when the voltage exceeds the over voltage limit), the CPU performs emergency stop. Here, the over-voltage limit is set in consideration of the error of resistance value of the detect circuit. When this error occurs, the CPU performs emergency stop the motor which the error occurred.
- Under-voltage error

The inverter bus voltage is monitored in under-voltage monitoring cycle. The CPU performs emergency stop when under-voltage is detected (when voltage falls below the limit). Here, the under-voltage limit value is set in consideration of the error of resistance value of the detect circuit. When this error occurs, the CPU performs emergency stop the motor which the error occurred.

- Over-speed error
- The rotation speed is monitored in rotation speed monitoring cycle. The CPU performs emergency stop
  when the speed is over the limit. When this error occurs, the CPU performs emergency stop the motor
  which the error occurred.

| Table 3-5 | Setting Values of the System Protection Function  |
|-----------|---------------------------------------------------|
| Table 3-3 | Setting values of the System Protection I unction |

| Error name          | Threshold                     |      |
|---------------------|-------------------------------|------|
| Over-current error  | Over-current limit value [A]  | 0.89 |
|                     | Monitoring cycle [µs]         | 100  |
| Over-voltage error  | Over-voltage limit value [V]  | 28   |
|                     | Monitoring cycle [µs]         | 100  |
| Under-voltage error | Under-voltage limit value [V] | 14   |
|                     | Monitoring cycle [µs]         | 100  |
| Over-speed error    | Speed limit value [rpm]       | 3000 |
|                     | Monitoring cycle [µs]         | 100  |



### 3.1.7 Carrier synchronized interrupt

In the case of the two motors control, if the process is implemented in one interrupt, each control of the motors shall be sequential. Therefore, there will be a difference in the control of each motor A and motor B. To decrease the difference, the carrier synchronized interrupt will be generated in different timing for the motor A and motor B. In addition, by using the interrupt skipping function and generating an interrupt once every two cycles (100µs), motor A and motor B can perform interrupt processing alternately.

In this control program, it has been achieved by adjusting carrier cycle for the motor B.



Figure 3-5 Start carrier output

By this setting, after carrier period 100us for the motor B has been completed at first and later the period of interrupt becomes 50us. Therefore, carrier synchronized interrupt will not occur at the same time. Carrier synchronous interrupts of motor A and motor B occur alternately at periods of 50us. Therefore, it is necessary to implement the processing time of interrupt (including processing time at error occurrence) within 50us.



# 3.2 Function Specifications of Sensorless Vector Control Software

The control process of the target software of this application note is mainly consisted of 100 [µs] period interrupt (carrier interrupt) and 1 [ms] period interrupt. In Figure 3-6 and Figure 3-7, the control process in the red broken line part is executed every 100 [µs] period, and the control process in the blue broken line part is executed every 1 [ms] period.



Figure 3-6 Block Diagram of Sensorless Vector Control (Open-loop Control)



Figure 3-7 Block Diagram of Sensorless Vector Control (Sensorless Control)



This chapter shows the specification of 2 interrupt functions and functions executed in each interrupt period. In the following tables, only primary functions of the sensorless vector control are listed. Regarding the specification of functions not listed in the following tables, refer to source codes.

In a 100 [µs] period interrupts, different interrupt functions are called for each interrupt trigger of motor A and motor B, and mtr\_foc\_interrupt\_carrier is called in each interrupt function. The pointer of the structure for motor A (st\_foc\_a) and motor B (st\_foc\_b) is passed as an argument when calling.

1 [ms] Period interrupt is common to motor A and motor B, and both motor A and motor B are processed by a single interrupt function.

| File name               | Function overview                                                             | Process overview               |
|-------------------------|-------------------------------------------------------------------------------|--------------------------------|
| r_mtr_interrupt_        | mtr_foc_interrupt_carrier                                                     | Calling every 100 [µs]         |
| carrier.c               | Input: (mtr_foc_control_t *) st_foc / Structure pointer for<br>vector control | Current and Vdc     monitoring |
|                         | Output: None                                                                  | Current PI control             |
|                         |                                                                               | Speed/position estimation      |
|                         |                                                                               | PWM duty setting               |
| r_mtr_interrupt_timer.c | mtr_foc_interrupt_1ms                                                         | Calling every 1 [ms]           |
|                         | Input: (mtr_foc_control_t *) st_foc / Structure pointer for                   | Startup control                |
|                         | vector control                                                                | • d-axis/q-axis current and    |
|                         | Output: None                                                                  | speed reference setting        |
|                         |                                                                               | Speed PI control               |

### Table 3-6 List of Interrupt Functions


| File name                          | Function overview                                                                                                                                                                                                                | Process overview                     |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| r_mtr_ctrl_mrssk.c                 | <pre>mtr_get_current_iuiw Input: (float*) f4_iu_ad / U phase current A/D conversion value pointer         (float*) f4_iw_ad / W phase current A/D conversion value pointer         (uint8_t) u1_id / Motor ID Output: None</pre> | Obtaining the U/W phase current      |
|                                    | mtr_get_vdc<br>Input: (uint8_t) u1_id / Motor ID<br>Output: (float) f4_temp_vdc / Vdc value                                                                                                                                      | Obtaining the Vdc                    |
| r_mtr_foc_control_<br>less_speed.c | mtr_error_check<br>Input: (mtr_foc_control_t *) st_foc / Structure pointer for vector control<br>Output: None                                                                                                                    | Error monitoring                     |
|                                    | mtr_current_offset_adjustment<br>Input: (mtr_foc_control_t *) st_foc / Structure pointer for vector control<br>Output: None                                                                                                      | Cancel current<br>offset             |
|                                    | mtr_calib_current_offset<br>Input: (mtr_foc_control_t *) st_foc / Structure pointer for vector control<br>Output: None                                                                                                           | Calculation of<br>current offset     |
|                                    | mtr_angle_speed<br>Input: (mtr_foc_control_t *) st_foc / Structure pointer for vector control<br>Output: None                                                                                                                    | Position and speed estimation        |
|                                    | mtr_foc_voltage_limit<br>Input: (mtr_foc_control_t *) st_foc / Structure pointer for vector control<br>Output: None                                                                                                              | Limiting voltage reference           |
| r_mtr_foc_current.c                | mtr_current_pi_control<br>Input: (mtr_current_control_t *) st_cc / Structure pointer for current<br>control<br>Output: None                                                                                                      | Current PI control                   |
|                                    | <pre>mtr_foc_current_decoupling Input: (mtr_current_control_t *) st_cc / Structure pointer for current</pre>                                                                                                                     | Decoupling control                   |
| r_mtr_transform.c                  | <pre>mtr_transform_uvw_dq_abs Input: (const mtr_rotor_angle_t *) p_angle / Structure pointer for phase management     (const float*) f4_uvw / UVV phase pointer     (float*) f4_dq / dq-axis pointer Output: None</pre>          | Coordinate<br>transform UVW to<br>dq |
|                                    | mtr_transform_dq_uvw_abs<br>Input: (const mtr_rotor_angle_t *) p_angle / Structure pointer for phase<br>management<br>(const float*) f4_dq / dq-axis pointer<br>(float*) f4_uvw / UVW phase pointer<br>Output: None              | Coordinate<br>transform dq to<br>UVW |

### Table 3-7 List of Functions Executed in 100 [µs] Period Interrupt (Carrier Interrupt) (1/2)



| File name                   | Function overview                                                                                                                                                                                                                                                                            | Process overview                                    |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| r_mtr_volt_err_             | mtr_volt_err_comp_main                                                                                                                                                                                                                                                                       | Voltage error                                       |
| comp.obj                    | Input: (mtr_volt_comp_t *) st_volt_comp / Structure pointer for voltage<br>error compensation<br>(float*) p_f4_v_array / Array pointer for 3-phase voltage<br>compensation amount<br>(float*) p_f4_i_array / Array pointer for 3 phase current<br>(float) f4_vdc / Inverter bus voltage      | compensation                                        |
|                             | Output: None                                                                                                                                                                                                                                                                                 |                                                     |
| r_mtr_ctrl_rx66t.c          | mtr_inv_set_uvw<br>Input: (float) f4_duty_u / U phase modulation factor<br>(float) f4_duty_v / V phase modulation factor<br>(float) f4_duty_w / W phase modulation factor<br>(uint8_t) u1_id / Motor ID<br>Output: None                                                                      | PWM output setting                                  |
| r_mtr_bemf_<br>observer.obj | mtr_bemf_observer<br>Input: (mtr_bemf_observer_t *) st_bemf_obs / Structure pointer for<br>BEMF observer<br>(float) f4_vd_ref / d-axis voltage reference<br>(float) f4_vq_ref / q-axis voltage reference<br>(float) f4_id / d-axis current<br>(float) f4_iq / q-axis current<br>Output: None | Calculation for BEMF<br>observer                    |
|                             | <pre>mtr_bemf_calc_d Input: (mtr_bemf_observer_t *) st_bemf_obs / Structure pointer for     BEMF observer     (float) f4_speed_rad / Estimated speed     (float) f4_iq / q-axis current Output: (float) f4_temp / Estimated d-axis BEMF</pre>                                                | Calculation for<br>estimated d-axis<br>BEMF         |
|                             | mtr_bemf_calc_q<br>Input: (mtr_bemf_observer_t *) st_bemf_obs / Structure pointer for<br>BEMF observer<br>(float) f4_speed_rad / Estimated speed<br>(float) f4_id / d-axis current<br>Output: (float) f4_temp / Estimated q-axis BEMF                                                        | Calculation for<br>estimated q-axis<br>BEMF         |
|                             | mtr_angle_speed_pll<br>Input: (mtr_pll_est_t *) st_pll_est / Structure pointer for position and<br>speed estimation<br>(float) f4_phase_err / Phase error<br>(float*) f4_speed / Estimated speed pointer<br>Output: None                                                                     | Calculation for<br>position and speed<br>estimation |
| r_mtr_opl_damp_<br>ctrl.obj | <pre>mtr_opl_damp_ctrl Input: (mtr_opl_damp_t *) st_opl_damp / Structure pointer for open-loop     damping control     (float) f4_ed / Estimated d-axis BEMF     (float) speed_ref / Speed reference Output: (float) f4_temp_damp_comp_speed / Feedback value for speed     reference</pre>  | Open-loop damping<br>control                        |

### Table 3-7 List of Functions Executed in 100 [µs] Period Interrupt (Carrier Interrupt) (2/2)



| File name          | Function overview                                                          | Process overview      |
|--------------------|----------------------------------------------------------------------------|-----------------------|
| r_mtr_foc_control_ | mtr_set_speed_ref                                                          | Speed reference       |
| less_speed.c       | Input: (mtr_foc_control_t *) st_foc / Structure pointer for vector control | setting               |
|                    | Output: (float) f4_speed_rad_ref_buff / Speed reference                    |                       |
|                    | mtr_set_iq_ref                                                             | q-axis current        |
|                    | Input: (mtr_foc_control_t *) st_foc / Structure pointer for vector control | reference setting     |
|                    | Output: (float) f4_iq_ref_buff / q-axis current reference                  |                       |
|                    | mtr_set_id_ref                                                             | d-axis current        |
|                    | Input: (mtr_foc_control_t *) st_foc / Structure pointer for vector control | reference setting     |
|                    | Output: (float) f4_id_ref_buff / d-axis current reference                  |                       |
| r_mtr_foc_speed.c  | mtr_speed_pi_control                                                       | Speed PI control      |
|                    | Input: (mtr_speed_control_t *) st_sc / Structure pointer for speed control |                       |
|                    | (float) f4_speed_rad / Rotation speed                                      |                       |
|                    | Output: (float) f4_iq_ref_calc / q-axis current reference                  |                       |
| r_mtr_opl2less.obj | mtr_opl2less_iq_calc                                                       | Generating q-axis     |
|                    | input: (float) f4_ed / Estimated d-axis BEMF                               | current reference for |
|                    | (float) f4_eq / Estimated q-axis BEMF                                      | sensorless            |
|                    | (float) f4_id / d-axis current reference when open-loop                    | switching control     |
|                    | (float) f4_torque_current / Torque current when open-loop control          |                       |
|                    | (float) f4_phase_err / Phase error                                         |                       |
|                    | Output: (float) f4_temp_iq_ref / q-axis current reference                  |                       |
| r_mtr_fluxwkn.obj  | R_FLUXWKN_Run                                                              | Flux-weakening        |
|                    | Input: (fluxwkn_t *) p_fluxwkn / Structure pointer for flux weakening      | control               |
|                    | control                                                                    |                       |
|                    | (float) f4_speed_rad / Rotation speed                                      |                       |
|                    | (const float*) p_f4_idq / dq-axis current pointer                          |                       |
|                    | (float*) p_f4_idq_ref / dq-axis current reference pointer                  |                       |
|                    | Output: (uint16_t) u2_fw_status / Status of flux-weakening control         |                       |



## 3.3 Macro Definition of Sensorless Vector Control Software

The macro definitions in the target software of this application note are listed below. In the following tables, only definitions set the software configuration are listed. Regarding the macro definitions not listed in the following tables, refer to source codes.

Macro with '\_A' in Macro name are for motor A control. Macros with "\_B" in the macro name are for motor B control, so use the appropriate macro.

| File name          | Macro name               | Definition value | Remarks                  |
|--------------------|--------------------------|------------------|--------------------------|
| r_motor_parameter. | MP_POLE_PAIRS_A          | 2                | Number of pole pairs     |
| h                  | MP_MAGNETIC_FLUX_A       | 0.02159f         | Flux [Wb]                |
|                    | MP_RESISTANCE_A          | 8.5f             | Resistance [Ω]           |
|                    | MP_D_INDUCTANCE_A        | 0.0045f          | d-axis inductance [H]    |
|                    | MP_Q_INDUCTANCE_A        | 0.0045f          | q-axis inductance [H]    |
|                    | MP_ROTOR_INERTIA_A       | 0.000028f        | Rotor inertia [kgm^2]    |
|                    | MP_NOMINAL_CURRENT_RMS_A | 0.42f            | Nominal current [A(rms)] |

Table 3-9 List of Macro Definitions 'r\_mtr\_motor\_parameter.h'

| Table 3-10 | List of Macro Definitions 'r_mtr_control_parameter.h' |
|------------|-------------------------------------------------------|
|            |                                                       |

| File name                     | Macro name                   | Definition value | Remarks                                                                    |
|-------------------------------|------------------------------|------------------|----------------------------------------------------------------------------|
| r_mtr_control_<br>parameter.h | CP_CURRENT_OMEGA_A           | 300.0f           | Natural frequency of current control system [Hz]                           |
|                               | CP_CURRENT_ZETA_A            | 1.0f             | Damping ratio of current control system                                    |
|                               | CP_SPEED_OMEGA_A             | 1.5f             | Natural frequency of speed control system [Hz]                             |
|                               | CP_SPEED_ZETA_A              | 1.0f             | Damping ratio of speed control system                                      |
|                               | CP_E_OBS_OMEGA_A             | 1000.0f          | Natural frequency of BEMF estimation system [Hz]                           |
|                               | CP_E_OBS_ZETA_A              | 1.0f             | Damping ratio of BEMF estimation system                                    |
|                               | CP_PLL_EST_OMEGA_A           | 20.0f            | Natural frequency of position estimation system [Hz]                       |
|                               | CP_PLL_EST_ZETA_A            | 1.0f             | Damping ratio of position estimation system                                |
|                               | CP_ID_DOWN_SPEED_RPM_A       | 600              | Speed (mechanical) when start decreasing d-axis current reference [rpm]    |
|                               | CP_ID_UP_SPEED_RPM_A         | 300              | Speed (mechanical) when start increasing<br>d-axis current reference [rpm] |
|                               | CP_MAX_SPEED_RPM_A           | 2650             | Maximum speed (mechanical) [rpm]                                           |
|                               | CP_OVERSPEED_LIMIT_RPM_<br>A | 3000             | Speed limit value (mechanical) [rpm]                                       |
|                               | CP_OL_ID_REF_A               | 0.3f             | d-axis current reference in open-loop<br>mode [A]                          |



| File name       | Macro name            | Definition value | Remarks                                                    |
|-----------------|-----------------------|------------------|------------------------------------------------------------|
| r_mtr_inverter_ | IP_DEADTIME           | 2.0f             | Dead time [µs]                                             |
| parameter.h     | IP_CURRENT_RANGE      | 25.0f            | Current A/D conversion range [A]<br>(-12.5 [A] ~ 12.5 [A]) |
|                 | IP_VDC_RANGE          | 111.0f           | Vdc A/D conversion range [V]                               |
|                 |                       |                  | (0 [V] ~ 111 [V])                                          |
|                 | IP_INPUT_V            | 24.0f            | Input DC voltage [V]                                       |
|                 | IP_CURRENT_LIMIT      | 10.0f            | Over-current limit [A]*                                    |
|                 | IP_OVERVOLTAGE_LIMIT  | 28.0f            | High voltage limit [V]                                     |
|                 | IP_UNDERVOLTAGE_LIMIT | 14.0f            | Low voltage limit [V]                                      |

#### Table 3-11 List of Macro Definitions 'r\_mtr\_inverter\_parameter.h'

Note: \* This value is calculated from the rated power of the shunt resistance.

Table 3-12 List of Macro Definitions 'r\_mtr\_config.h'

| File name      | Macro name      | Definition value | Remarks                                  |
|----------------|-----------------|------------------|------------------------------------------|
| r_mtr_config.h | RX66T_MRSSK     | —                | MCU select macro                         |
|                | IP_MRSSK        | —                | Inverter select macro                    |
|                | MP_TG55L        | —                | Motor select macro                       |
|                | CP_TG55L        | —                |                                          |
|                | CONFIG_         | ICS_UI           | Default UI selection                     |
|                | DEFAULT_UI      |                  | ICS_UI: Use Analyzer UI                  |
|                |                 |                  | BOARD_UI: Board UI                       |
|                | FUNC_ON         | 1                | Enable                                   |
|                | FUNC_OFF        | 0                | Disable                                  |
|                | DEFAULT_LESS_SW | 1                | Sensorless switching control             |
|                | ITCH_A          |                  | 0: Disable                               |
|                |                 |                  | 1: Enable                                |
|                | DEFAULT_FLUX_   | 0                | Flux weakening control                   |
|                | WEAKENING_A     |                  | 0: Disable                               |
|                |                 |                  | 1: Enable                                |
|                | DEFAULT_VOLT_ER | 1                | Voltage error compensation               |
|                | R_              |                  | 0: Disable                               |
|                | COMP_A          |                  | 1: Enable                                |
|                | DEFAULT_OPENLO  | 1                | Open-loop damping control                |
|                | OP_             |                  | 0: Disable                               |
|                | DAMPING_A       |                  | 1: Enable                                |
|                | GAIN_MODE_A     | MTR_GAIN_        | Gain mode                                |
|                |                 | DESIGN_MODE      | MTR_GAIN_DESIGN_MOD: PI gain design mode |
|                |                 |                  | MTR_GAIN_DIRECT_MODE:                    |
|                |                 |                  | PI gain direct input mode                |
|                | MOD_METHOD_A    | MOD_METHOD_      | Modulation method                        |
|                |                 | SVPWM            | MOD_METHOD_SPWM: Sinusoidal PWM          |
|                |                 |                  | MOD_METHOD_SVPWM: Space Vector PWM       |



#### 3.4 Control Flowcharts

#### 3.4.1 Main Process



Figure 3-8 Main Process Flowchart



#### 3.4.2 100 [µs] Period Interrupt (Carrier synchronized interrupt) Process

Motor A and motor B have different interrupt functions, but since the common function is called from each interrupt function, the processing flow is the same.

The parameter difference between motor A and motor B is commonalized by passing it to interrupt processing as an argument.



Figure 3-9 100 [µs] Period Interrupt Process Flowchart

#### 3.4.3 1 [ms] Period Interrupt Process



Figure 3-10 1[ms] Period Interrupt Process Flowchart



#### 3.4.4 Over-Current Detection Interrupt Process

The over-current detection interrupt occurs when POE0#, POE4# pin detects falling-edge or when output levels of the MTU complementary PWM output pins are compared and simultaneous active-level output continues for one cycle or more. Therefore, when this interrupt process is executed, PWM output pins are already in high-impedance state and the output to the motor is stopped.

This interrupt processing is performed on the motor that generated the interrupt.



Figure 3-11 Over-Current Detection Interrupt Process Flowchart



## 4. How to build Evaluation environment

#### 4.1 Importing the Demo Project

The sample application provided with this document may be imported into e<sup>2</sup>studio using the steps in this section. This operation is not required for the CS+ version.

1. Select File  $\rightarrow$  Import.

Г

| File                                                                                                                                                                                                                                                      | e Edit Source Re                                       | Refactor N   | Navigate | Search | Project |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|----------|--------|---------|
| ۵,                                                                                                                                                                                                                                                        | New<br>Open File<br>Open Projects fron<br>Recent Files | m File Syste |          | Alt+Sh | ift+N > |
|                                                                                                                                                                                                                                                           | Close Editor<br>Close All Editors                      |              |          |        |         |
|                                                                                                                                                                                                                                                           | Save As                                                |              |          |        |         |
| New     Alt+Shift+N >       Open File     Open Projects from File System       Recent Files     >       Close Editor     Ctrl+W       Close All Editors     Ctrl+Shift+W       Save     Ctrl+S       Save As     Save Asl       Save All     Ctrl+Shift+S |                                                        |              |          |        |         |
|                                                                                                                                                                                                                                                           |                                                        |              |          | C      | trl+P   |
|                                                                                                                                                                                                                                                           | Import                                                 |              |          |        |         |
| 4                                                                                                                                                                                                                                                         | Export                                                 |              |          |        |         |
|                                                                                                                                                                                                                                                           | Properties                                             |              |          | Alt+   | Enter   |
|                                                                                                                                                                                                                                                           | Restart                                                | e            |          |        | >       |

Figure 4-1 File Menu



2. Select "Existing Projects into Workspace".

| Import .                                                         | — — × |
|------------------------------------------------------------------|-------|
| Select<br>Create new projects from an archive file or directory. | Ľ     |
| Select an import wizard:                                         |       |
| type filter text                                                 |       |
| 🗸 🔁 General                                                      | ^     |
| ↓ GArchive File                                                  |       |
| CMSIS Pack                                                       |       |
| 🔁 File System                                                    |       |
| Preferences                                                      |       |
| Projects from Folder or Archive                                  |       |
| 😂 Rename & Import Existing C/C++ Project into Workspace          |       |

**Figure 4-2 Import Wizard Selection** 

3. Click "Browse..." button and select the demo project. Click Finish button and the demo project is imported.

| Import                                                                                      |                                |                       |                | _              |                                       |
|---------------------------------------------------------------------------------------------|--------------------------------|-----------------------|----------------|----------------|---------------------------------------|
| Import Projects<br>Select a directory to sear                                               | h for existing Eclipse project | 5,                    |                |                |                                       |
| <ul> <li>Select root directory:</li> <li>Select archive file:</li> <li>Projects:</li> </ul> | C:¥work¥RX66T_2MRSSK_2S        |                       |                | ~              | Browse                                |
| М куррі_тикгэк"                                                                             | SPM_LESS_FOC_MTU_E2S_RV        | 100 (KX661_2M(KSSK_2) | PM_LESS_FOC    | _MTU_E25_KV100 | Select All<br>Deselect All<br>Refresh |
|                                                                                             |                                |                       |                | >              |                                       |
| Working sets Add project to wor Working sets:                                               | ing sets                       |                       |                | ~              | Ne <u>w</u><br>S <u>e</u> lect        |
| ?                                                                                           |                                | < <u>B</u> ack        | <u>N</u> ext > | <u>F</u> inish | Cancel                                |

**Figure 4-3 Import Projects** 

## 4.2 Building and Debugging

For the e2 studio version, Refer to " e<sup>2</sup>studio Getting Started Guide (R20UT4204)", for the CS + version, Refer to "CS+ V8.06.00 Integrated Development Environment User's Manual: RX Debug Tool (R20UT4977)" "CS+ Integrated Development Environment User's Manual: CC-RX Build Tool Operation (R20UT3478)".



## 4.3 Motor Control Development Support Tool 'Renesas Motor Workbench'

#### 4.3.1 Overview

In the target software of this application note, the motor control development support tool "Renesas Motor Workbench" is used as an user interface (rotating/stop motor, set rotation speed reference, etc). Please refer to 'Renesas Motor Workbench User's Manual' for usage and more details.

You can find 'Renesas Motor Workbench' on Renesas Electronics Corporation website.



Figure 4-4 Renesas Motor Workbench – Appearance

Set up for 'Renesas Motor Workbench'

(1) Start 'Renesas Motor Workbench' by clicking this icon.



And select RMT file in '[Project Folder]/src/application/user\_interface/ics/'.

- (3) Use the 'Connection' [COM] select menu to choose the COM port.
- (4) Click the Analyzer button of Select Tool to activate Analyzer function.
- (5) Please refer to '4.3.3 Operation Example for Analyzer' for motor driving operation.





#### 4.3.2 List of Variables for Analyzer function

Table 4-1 is a list of variables for Analyzer. These variables are reflected to the corresponding variables in 'Middle Layer' when the same value as of g\_u1\_enable\_write is written to com\_u1\_enable\_write. However, note that variables with (\*) do not depend on com\_u1\_enable\_write.

Variables with '\_a' in variable name are for motor A control. When controlling motor B, use variables with '\_b' in variable name. In Table 4-1, only variables for motor A control are shown.

| Table 4-1 | List of Variables for Analyzer (1/2) |
|-----------|--------------------------------------|
|-----------|--------------------------------------|

| Variable name                 | Туре     | Content                                                                 |
|-------------------------------|----------|-------------------------------------------------------------------------|
| com_u1_sw_userif (*)          | uint8_t  | User interface switch                                                   |
|                               |          | 0: ICS user interface use (default)                                     |
|                               |          | 1: Board user interface use                                             |
| com_u1_mode_system_a (*)      | uint8_t  | State management                                                        |
|                               |          | 0: Stop mode, 1: Run mode, 3: Reset                                     |
| com_u1_direction_a            | uint8_t  | Rotation direction                                                      |
|                               |          | 0: CW                                                                   |
|                               |          | 1: CCW                                                                  |
| com_s2_ref_speed_rpm_a        | int16_t  | Speed reference (Mechanical) [rpm]                                      |
| com_u2_mtr_pp_a               | uint16_t | Number of pole pairs                                                    |
| com_f4_mtr_r_a_a              | float    | Resistance [Ω]                                                          |
| com_f4_mtr_ld_a               | float    | d-axis Inductance [H]                                                   |
| com_f4_mtr_lq_a               | float    | q-axis Inductance [H]                                                   |
| com_f4_mtr_m_a                | float    | Flux [Wb]                                                               |
| com_f4_mtr_j_a                | float    | Inertia [kgm^2]                                                         |
| com_u2_offset_calc_time_a     | uint16_t | Current offset value calculation time [ms]                              |
| com_f4_limit_speed_change_a   | float    | Speed limit change rate (Electrical) [rpm]                              |
| com_u2_max_speed_rpm_a        | uint16_t | Maximum speed value (Mechanical) [rpm]                                  |
| com_u2_id_up_speed_rpm_a      | uint16_t | Speed when start increasing d-axis current reference (Mechanical)       |
|                               |          | [rpm]                                                                   |
| com_f4_id_up_time_a           | float    | Ramping up time of d-axis current reference [ms]                        |
| com_f4_ref_id_a               | float    | d-axis current reference in open loop mode [A]                          |
| com_u2_id_down_speed_rpm_a    | uint16_t | Speed when start decreasing d-axis current reference (Mechanical) [rpm] |
| com_f4_id_down_time_a         | float    | Decreasing time of d-axis current reference [ms]                        |
| com_f4_speed_omega_a          | float    | Natural frequency of speed control system [Hz]                          |
| com_f4_speed_zeta_a           | float    | Damping ratio of speed control system                                   |
| com_f4_current_omega_a        | float    | Natural frequency of current control system [Hz]                        |
| com_f4_current_zeta_a         | float    | Damping ratio of current control system                                 |
| com_f4_e_obs_omega_a          | float    | Natural frequency of BEMF estimation system [Hz]                        |
| com_f4_e_obs_zeta_a           | float    | Damping ratio of BEMF estimation system                                 |
| com_f4_pll_est_omega_a        | float    | Natural frequency of position estimation system [Hz]                    |
| com_f4_pll_est_zeta_a         | float    | Damping ratio of position estimation system                             |
| com_f4_id_kp_a                | float    | d-axis current PI control proportional gain                             |
| com_f4_id_ki_a                | float    | d-axis current PI control Integral gain                                 |
| com_f4_iq_kp_a                | float    | q-axis current PI control proportional gain                             |
| com_f4_iq_ki_a                | float    | q-axis current PI control Integral gain                                 |
| com_f4_speed_kp_a             | float    | Speed PI control proportional gain                                      |
| com_f4_speed_ki_a             | float    | Speed PI control Integral gain                                          |
| com_u2_overspeed_limit_rpm_a  | uint16_t | Over-speed limit value (Mechanical) [rpm]                               |
| com_f4_nominal_current_rms_a  | float    | Nominal current [A(rpm)]                                                |
| com_f4_switch_phase_err_deg_a | float    | Phase error enabled switching to sensorless control (Electrical) [deg]  |
| com_f4_opl2less_sw_time_a     | float    | Process time of sensorless switching control [s]                        |



| Table 4-1 | List of Variables for Analyzer (2/2) |
|-----------|--------------------------------------|
|           |                                      |

| Variable name                   | Туре    | Content                                                   |
|---------------------------------|---------|-----------------------------------------------------------|
| com_f4_ed_hpf_omega_a           | float   | d-axis BEMF HPF cut-off frequency [Hz]                    |
| com_f4_ol_damping_zeta_a        | float   | Damping ratio of open-loop damping control                |
| com_f4_ol_damp_fb_limit_rate_a  | float   | Feedback limit of open-loop damping control               |
| com_f4_phase_err_lpf_cut_freq_a | float   | Phase error LPF cut-off frequency [Hz]                    |
| com_u1_less_switch_a            | uint8_t | Sensorless switching control                              |
|                                 |         | 0: ON                                                     |
|                                 |         | 1: OFF                                                    |
| com_u1_flux_weakening_a         | uint8_t | Flux weakening control                                    |
|                                 |         | 0: ON                                                     |
|                                 |         | 1: OFF                                                    |
| com_u1_volt_err_comp_a          | uint8_t | Voltage error compensation                                |
|                                 |         | 0: ON                                                     |
|                                 |         | 1: OFF                                                    |
| com_u1_openloop_damping_a       | uint8_t | Open-loop damping control                                 |
|                                 |         | 0: ON                                                     |
|                                 |         | 1: OFF                                                    |
| com_u1_enable_write             | uint8_t | Enable to rewriting variables                             |
|                                 |         | (when the same values as of g_u1_enable_write is written) |

Next, the primary variables that are frequently observed during the motor driving evaluation are listed in Table 4-2. Please refer when using Analyzer function. Regarding variables not listed in Table 4-2, refer to source codes.

Variables with 'A' in variable name are for motor A control. When controlling motor B, use variables with 'B' in variable name. InTable 4-2, only variables for motor A control are shown.

| Name of primary variables                    | Туре     | Content                                  |
|----------------------------------------------|----------|------------------------------------------|
| g_st_foc_a.st_cc.f4_id_ref                   | float    | d-axis current reference [A]             |
| g_st_foc_a.st_cc.f4_id_ad                    | float    | d-axis current [A]                       |
| g_st_foc_a.st_cc.f4_iq_ref                   | float    | q-axis current reference [A]             |
| g_st_foc_a.st_cc.f4_iq_ad                    | float    | q-axis current [A]                       |
| g_st_foc_a.f4_iu_ad                          | float    | U phase current A/D conversion value [A] |
| g_st_foc_a.f4_iv_ad                          | float    | V phase current A/D conversion value [A] |
| g_st_foc_a.f4_iw_ad                          | float    | W phase current A/D conversion value [A] |
| g_st_foc_a.st_cc.f4_vd_ref                   | float    | d-axis output voltage reference [V]      |
| g_st_foc_a.st_cc.f4_vq_ref                   | float    | q-axis output voltage reference [V]      |
| g_st_foc_a.f4_refu                           | float    | U phase voltage reference [V]            |
| g_st_foc_a.f4_refv                           | float    | V phase voltage reference [V]            |
| g_st_foc_a.f4_refw                           | float    | W phase voltage reference [V]            |
| g_st_foc_a.f4_modu                           | float    | U phase modulation factor                |
| g_st_foc_a.f4_modv                           | float    | V phase modulation factor                |
| g_st_foc_a.f4_modw                           | float    | W phase modulation factor                |
| g_st_foc_a.f4_ed                             | float    | Estimated d-axis BEMF [V]                |
| g_st_foc_a.f4_eq                             | float    | Estimated q-axis BEMF [V]                |
| g_st_foc_a.st_rotor_angle.f4_rotor_angle_rad | float    | Estimated position (Electrical) [rad]    |
| g_st_foc_a.st_sc.f4_ref_speed_rad_ctrl       | float    | Speed reference (Electrical) [rad/s]     |
| g_st_foc_a.st_sc.f4_speed_rad                | float    | Estimated speed (Electrical) [rad/s]     |
| g_st_foc_a.f4_phase_err_rad                  | float    | Phase error (Electrical) [rad]           |
| g_st_foc_a.u2_error_status                   | uint16_t | Error status                             |

#### Table 4-2 List of Primary Variables for Sensorless Vector Control



#### 4.3.3 Operation Example for Analyzer

The section shows an example below for motor driving operation using Analyzer. Operation is using 'Control Window' of Analyzer. Regarding specification of 'Control Window', refer to 'Renesas Motor Workbench User's Manual'.

- Driving the motor
  - (1) Confirm the check-boxes of column [W?] for 'com\_u1\_mode\_system\_a', 'com\_s2\_ref\_speed\_rpm\_a', 'com\_u1\_enable\_write' marks.
  - (2) Input a reference speed value in the [Write] box of 'com\_s2\_ref\_speed\_rpm\_a'.
  - (3) Click the 'Write' button.
  - (4) Click the 'Read' button. Confirm the [Read] box of 'com\_s2\_ref\_speed\_rpm\_a', 'g\_u1\_enable\_write'.
  - (5) Set a same value of 'g\_u1\_enable\_write' in the [Write] box of 'com\_u1\_enable\_write'.
  - (6) Write '1' in the [Write] box of 'com\_u1\_mode\_system\_a'.
  - (7) Click the 'Write' button.



Figure 4-5 **Procedure – Driving the Motor** 

- Stop the motor
  - (1) Write '0' in the [Write] box of 'com\_u1\_mode\_system\_a'
  - (2) Click the 'Write' button.

| (2)Click "\                                                       | Nrite" bi           |            |             |                   |                |
|-------------------------------------------------------------------|---------------------|------------|-------------|-------------------|----------------|
| Control Window<br>Read Write C<br>Variable Data Variable List Ali | ommander<br>as Name | <b>2</b> u | lser Button | Status Ir         |                |
|                                                                   |                     | Q0         | R? Read     | W? Write<br>✓ 0 ✓ | - (1)Write "0" |
| com_u1_mode_system_b                                              | INT8                | Q0         |             |                   |                |

Figure 4-6 Procedure – Stop the Motor



#### • Error cancel operation

- (1) Write '3' in the [Write] box of 'com\_u1\_mode\_system\_a'
- (2) Click the 'Write' button.

| (2)                       | Click "V   | Vrite  | ″ butt                  | on         |       |         |
|---------------------------|------------|--------|-------------------------|------------|-------|---------|
| Control Window            |            |        |                         |            |       |         |
| 🥢 Read 🛛 🅢 Write          | Comn       | nander | Us                      | er Button  |       |         |
| Variable Data Variable Li | st Alias N | ame    |                         |            |       |         |
| Variable Name             | Data Type  | Scale  | R? Rea                  | d W? Write |       |         |
| com_u1_mode_system II     | NT8        | Q0     | <ul> <li>✓ 0</li> </ul> | 🗹 o 🔫      | (1)Wr | ite "3" |

Figure 4-7 Procedure – Error Cancel Operation



#### 4.3.4 Operation Example for User Button

The section shows an example below for motor driving operation using User Button.

#### • Driving or Stop the motor

By setting as shown in Figure 4-8, driving and stopping change each time the button is pressed.

| Execution No         Sequence No         Variable Name         Command         Value         Display         Description           0         0         com_u1_mode_system_a         Write         1         Hide         Start_a |              |             | tion No. 0           |         |       |         |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|----------------------|---------|-------|---------|-------------|
|                                                                                                                                                                                                                                  | Execution No | Sequence No | Variable Name        | Command | Value | Display | Description |
|                                                                                                                                                                                                                                  | 0            | 0           | com_u1_mode_system_a | Write   | 1     | Hide    | Start_a     |
| 0 0 com_u1_mode_system_b Write 1 Hide Start_b                                                                                                                                                                                    | 0            | 0           | com_u1_mode_system_b | Write   | 1     | Hide    | Start_b     |
| 1 0 com_u1_mode_system_a Write 0 Hide Stop_a                                                                                                                                                                                     | 1            | 0           | com_u1_mode_system_a | Write   | 0     | Hide    | Stop_a      |
| 1 0 com_u1_mode_system_b Write 0 Hide Stop_b                                                                                                                                                                                     | 1            | 0           | com_u1_mode_system_b | Write   | 0     | Hide    | Stop_b      |

Figure 4-8 Driving or Stop the Motor

#### Change speed

By setting as shown in Figure 4-9, enter the command speed and press the button to change the speed.

| Ē |              | n <set speed<="" th=""><th></th><th></th><th></th><th></th><th></th></set> |                          |         |       |         |                 |
|---|--------------|----------------------------------------------------------------------------|--------------------------|---------|-------|---------|-----------------|
|   | Speed com    | nmand_a                                                                    | on No. 0<br>2650<br>2650 |         |       |         |                 |
| Г | Execution No | Sequence No                                                                | Variable Name            | Command | Value | Display | Description     |
| l | 0            | 0                                                                          | com_s2_ref_speed_rpm_a   | Write   | 2650  | Show    | Speed command_a |
| 1 | 0            | 0                                                                          | com_s2_ref_speed_rpm_t   | Write   | 2650  | Show    | Speed command_b |
|   | 0            | 1                                                                          | g_u1_enable_write        | Read    | A1    | Hide    |                 |
|   | 0            | 2                                                                          | com_u1_enable_write      | Write   | A1    | Hide    |                 |

Figure 4-9 Change speed



## 5. Reference Documents

- RX66T Group User's Manual: Hardware (R01UH0749)
- Application note: 'Sensorless vector control for permanent magnet synchronous motor (Algorithm)' (R01AN3786)
- Renesas Motor Workbench User's Manual (R21UZ0004)
- Evaluation System for BLDC Motor User's Manual (R12UZ0062)
- RX66T CPU Card User's Manual (R12UZ0028)
- Smart Configurator User's Manual: RX API Reference (R20UT4360)
- RX Smart Configurator User's Guide: CS+ (R20AN0470)
- RX Smart Configurator User's Guide: e<sup>2</sup> studio (R20AN0451)



# **Revision History**

|      |           | Description | n                    |
|------|-----------|-------------|----------------------|
| Rev. | Date      | Page        | Summary              |
| 1.00 | Sep.17.21 | —           | First edition issued |



#### General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

#### 1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

#### Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
   Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

## **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

#### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## **Contact information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <a href="http://www.renesas.com/contact/">www.renesas.com/contact/</a>.