Introduction
The LED lighting control program runs on Target Board for RX66N. The function of this program performs either the user switch interrupt or the timer interrupt according to the mode selection at startup and controls the lighting of the LED by using the corresponding interrupt.

Target Device
RX66N Group

Confirmed Tool
IDE: e2studio v21.7.0
Compiler: CC-RX v3.03.00
Smart Configurator: v21.7.0
Hardware: Target Board for RX66N

Contents
1. Function list ...2
 1.1 Mode selection of start-up ...2
 1.2 Timer interrupt function (Auto-mode)2
 1.3 User switch interrupt function (Manual-mode)2
2. LED lighting control program operation flow3
3. RX66N Internal block diagram ...4
4. RX66N Memory map ...5
5. RX66N Clock generation block diagram6
6. Precautions ...7
Revision History ...9
1. Function list

The functions of the LED lighting control program are shown below.

(1) Start-up mode selection
(2) Timer interrupt function
(3) User switch interrupt function

1.1 Mode selection of start-up

After resetting with the power-on reset or RES # pin, it detects whether the user switch is pressed and switches the start mode. If you reset while pressing down the user switch, it transits to manual mode, and if you reset without pressing the user switch it will transition to automatic mode.

1.2 Timer interrupt function (Auto-mode)

After switching to the automatic mode, set the timer interrupt and control the LED by timer interrupt. The setting list of the timer interrupt function and the processing contents are shown below.

Timer: CMT0
Counter clock: PCLKB / 512
Interrupt interval: 500 ms
Interrupt level: Level 15
Interrupt class: CMI 0
Interrupt processing content: LED 0 (Port: 32), LED 1 (Port: 33) are alternately turned on and off

1.3 User switch interrupt function (Manual-mode)

After manual mode transition, this function is enabled. The setting list and processing contents of the user switch interrupt function are shown below.

Interrupt: IRQ 4 (Port: 34)
Detection type: Falling edge (corresponding to user switch press)
Interrupt level: Level 15
Digital filter: Enable (PCLKB / 64)
Interrupt processing content: LED 0 (Port: 32), LED 1 (Port: 33) are alternately turned on and off
2. LED lighting control program operation flow

Figure 2-1 shows the power-on reset operation flow of the LED lighting control program.

Figure 2-2 shows the operation flow of the main function of the LED lighting control program.

Figure 2-3 shows the user switch interrupt operation flow of the LED lighting control program, and Figure 2-4 shows the timer interrupt operation flow.
3. RX66N Internal block diagram

Figure 3-1 shows the internal block diagram of the RX66N and the used blocks of the LED lighting control program.

![RX66N Internal block diagram](image)

Red frame indicate used blocks.

The display block is the maximum configuration of RX66N.
4. RX66N Memory map

This MCU has a 4-Gbyte address space, consisting of the range of addresses from 0000 0000h to FFFF FFFFh. That is, linear access to an address space of up to 4-Gbytes is possible, and this contains both program and data areas. Figure 4-1 shows the memory maps in the respective operating modes. Accessible areas will differ according to the operating mode and states of control bits.

![Figure 4-1: RX66N Memory map](image)

Note 1. The address space in boot mode is the same as the address space in single-chip mode.
Note 2. Reserved areas should not be accessed.
Note 3. The on-chip ROM (code flash memory) can be used in linear mode, where the user area forms a single area, or in dual mode, where the user area is divided into two banks. For details, refer to section 60.3, Structure of Memory in section 80, Flash Memory (FLASH).
Note 4. The capacities of the code flash memory differ depending on the products.

<table>
<thead>
<tr>
<th>Code Flash Memory</th>
<th>Data Flash Memory</th>
<th>RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>Linear mode</td>
<td>Dual mode (BANKSEL.BANKSWP[2:0] = 11b)</td>
</tr>
<tr>
<td>4 Mbytes</td>
<td></td>
<td>bank 1: FF00 0000h to FF00 00FFh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bank 0: FF00 0000h to FFFF FFFFh</td>
</tr>
<tr>
<td>2 Mbytes</td>
<td></td>
<td>bank 1: FF00 0000h to FF00 00FFh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bank 0: FF00 0000h to FFFF FFFFh</td>
</tr>
</tbody>
</table>

The red frame shows the operation mode and each flash / RAM capacity.

Figure 4-1: RX66N Memory map
5. RX66N Clock generation block diagram

Figure 5-1 shows the clock generation route of the RX66N clock generation block diagram and the LED lighting control program.

Figure 5-1: RX66N Clock generation block diagram
6. Precautions

Please do not incorporate this program into your product. This program does not guarantee the operation. When using it, please check the operation at your own risk.
Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Sep 16, 2021</td>
<td>-</td>
<td>-</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
 A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
 Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
 The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
 Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
 Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
 After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
 Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses
 Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
 Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these devices, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall be responsible for determining which licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from the use of any Renesas Electronics product.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to, any unauthorized access to or use of a Renesas Electronics product or a system that may pose a direct threat to human life or bodily injury (artificial life support devices or systems), surgical implants or devices; or may cause serious property damage (space systems; underwater repeaters; nuclear power control systems; aircraft control systems; key plants; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunction under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation, or other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

Notice

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2021 Renesas Electronics Corporation. All rights reserved.