Introduction
The LED lighting control program runs on Target Board for RX65N. The function of this program performs either the user switch interrupt or the timer interrupt according to the mode selection at startup and controls the lighting of the LED by using the corresponding interrupt.

Target Device
RX65N Group

Target Device
IDE: e2studio v6.0.0
Compiler: CC-RX v2.07.00
Smart Configurator: v1.2.0
Hardware: Target Board for RX65N

Contents
1. Function list ... 2
 1.1 Mode selection of start-up .. 2
 1.2 Timer interrupt function (Auto-mode) 2
 1.3 User switch interrupt function (Manual-mode) 2
2. LED lighting control program operation flow 3
3. RX65N Internal block diagram .. 4
4. RX65N Memory map .. 5
5. RX65N Clock generation block diagram 6
6. Precautions .. 7
1. Function list
The functions of the LED lighting control program are shown below.

(1) Start-up mode selection
(2) Timer interrupt function
(3) User switch interrupt function

1.1 Mode selection of start-up
After resetting with the power-on reset or RES # pin, it detects whether the user switch is pressed and switches the start mode. If you reset while pressing down the user switch, it transits to manual mode, and if you reset without pressing the user switch it will transition to automatic mode.

1.2 Timer interrupt function (Auto-mode)
After switching to the automatic mode, set the timer interrupt and control the LED by timer interrupt. The setting list of the timer interrupt function and the processing contents are shown below.

- Timer: CMT0
- Counter clock: PCLKB / 512
- Interrupt interval: 500 ms
- Interrupt level: Level 15
- Interrupt class: CMI 0
- Interrupt processing content: LED 0 (Port: D6), LED 1 (Port: D7) are alternately turned on and off

1.3 User switch interrupt function (Manual-mode)
After manual mode transition, this function is enabled. The setting list and processing contents of the user switch interrupt function are shown below.

- Interrupt: IRQ 4 (Port: B1)
- Detection type: Falling edge (corresponding to user switch press)
- Interrupt level: Level 15
- Digital filter: Enable (PCLKB / 64)
- Interrupt processing content: LED 0 (Port: D6), LED 1 (Port: D7) are alternately turned on and off
2. LED lighting control program operation flow

Figure 2-1 shows the power-on reset operation flow of the LED lighting control program.

![Figure 2-1: Power-on reset operation flow](image)

Figure 2-2 shows the operation flow of the main function of the LED lighting control program.

![Figure 2-2: LED lighting control program operation flow](image)

Figure 2-3 shows the user switch interrupt operation flow of the LED lighting control program, and Figure 2-4 shows the timer interrupt operation flow.

![Figure 2-3: User switch interrupt operation flow](image)
![Figure 2-4: Timer interrupt operation flow](image)
3. RX65N Internal block diagram

Figure 3-1 shows the internal block diagram of the RX65N and the used blocks of the LED lighting control program.

![RX65N Internal block diagram]

Red borders indicate used blocks.
The display block is the maximum configuration of RX65N.
4. RX65N Memory map

This MCU has a 4-Gbyte address space, consisting of the range of addresses from 0000 0000h to FFFF FFFFh. That is, linear access to an address space of up to 4-Gbytes is possible, and this contains both program and data areas. Figure 4-1 shows the memory maps in the respective operating modes. Accessible areas will differ according to the operating mode and states of control bits.

![RX65N Memory map diagram]

Figure 4-1: RX65N Memory map

The red frame shows the operation mode and each flash / RAM capacity.
5. RX65N Clock generation block diagram

Figure 5-1 shows the clock generation route of the RX65N clock generation block diagram and the LED lighting control program.

![RX65N Clock generation block diagram](image)

Figure 5-1: RX65N Clock generation block diagram

Note 1. This module is only available for products with 1 Mbyte of code flash memory or less.

Note 2. This module is only available for products with at least 1.5 Mbytes of code flash memory.
6. Precautions

Please do not incorporate this program into your product. This program does not guarantee the operation. When using it, please check the operation at your own risk.
Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Oct 13, 2017</td>
<td>-</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
 Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.
 - The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implants etc.), or may cause serious property damages (space and underwater repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disrupting international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reproduced, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product” means any product developed or manufactured by or for Renesas Electronics.