

R01AN3866EJ0100

Rev. 1.00 Sep. 25, 2017

RX65N Group, **RX651Group**

Differences Between Products with 1 Mbyte or Less of Code Flash Memory and Products with 1.5 Mbytes or More of Code Flash Memory

Introduction

This application note is the reference document to show differences in peripheral modules, I/O registers, and pin functions between products with 1 Mbytes or less of the code flash memory (RX65N (CF \leq 1 Mbyte)) and products with 1.5 Mbytes or more of the code flash memory (RX65N (CF \geq 1.5 Mbytes)) in the RX65N Group. This document also provides the important information that needs to be taken into account when replacing the MCU.

Unless explicitly stated, this application note describes differences between RX65N products with 144/145 pins and 1 Mbyte or less of the code flash memory, and RX65N products with 177/176 pins and 1.5 Mbytes or more of the code flash memory. Refer to the User's Manual: Hardware for differences in electrical characteristics, usage notes, and setting procedures.

Target Devices

• RX65N Group

Contents

1.	Comparison of Build-In Functions Between RX65N (CF <= 1 Mbyte) and RX65N (CF >= 1.5	
Mby	tes)	3
2.	Comparison of Specifications Overview	5
2.1	Option-Setting Memory	5
2.2	Clock Generation Circuit	6
2.3	Low Power Consumption	9
2.4	Interrupt Controller 1	0
2.5	Buses1	3
2.6	I/O Ports 2	0
2.7	Multi-Function Pin Controller	4
2.8	I ² C-bus Interface	5
2.9	Boundary Scan2	8
2.10) RAM	9
2.11	Flash Memory	0
3.	Comparison of Pin Functions	5
		_
4.	Important Information when Replacing the MCU	7
4.1	Address Space	7
4.1	.1 Code Flash Memory	7
4.1	.2 Data Flash Memory	7
4.1	.3 RAM	7
4.2	Notes on Pin Design	8
4.2	.1 General Input/Output Ports	8
4.2	.2 A/D Conversion During Accessing an External Bus 4	8
4.3	Notes on Configuring Functions	8
4.3	.1 Option-Setting Memory	8
4.3	.2 Switching of Driving Ability	8
4.3	.3 RAM Error Interrupt Function 4	8
4.3	.4 Rewriting with Self-Programming 4	9
		_
5.	Reference Documents5	0

1. Comparison of Build-In Functions Between RX65N (CF <= 1 Mbyte) and RX65N (CF >= 1.5 Mbytes)

Table 1.1 lists the Comparison of Build-In Functions Between RX65N ($CF \le 1$ Mbyte) and RX65N ($CF \ge 1.5$ Mbytes).

Refer to 2. Comparison of Specifications Overview and the User's Manual: Hardware listed in 5. Reference Documents for details of each function.

Table 1.1 Comparison of Build-In Functions Between RX65N (CF \leq 1 Mbyte) and RX65N (CF \geq 1.5 Mbytes)

Function	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
CPU	· · · · · · · · · · · · · · · · · · ·	(
Operating modes	•	(
Reset	•	(
Option-Setting Memory	•	•
Voltage Detection Circuit (LVDA)	`	/
Clock Generation Circuit	•	+
Clock Frequency Accuracy Measurement Circuit (CAC)	Ŷ	/
Low Power Consumption	•	•
Battery Backup Function	٢	/
Register Write Protection Function	٢	/
Exception Handling	٢	/
Interrupt Controller (ICUB)	•	
Buses	•	•
Memory-Protection Unit (MPU)	۲	1
DMA Controller (DMACAa)	۲	1
EXDMA Controller (EXDMACa)	۲	1
Data Transfer Controller (DTCb)	✓	
Event Link Controller (ELC)	۲	1
I/O Ports	•	•
Multi-Function Pin Controller (MPC)	-	+
Multi-Function Timer Pulse Unit 3 (MTU3a)	Ŷ	(
Port Output Enable 3 (POE3a)	Ŷ	(
16-Bit Timer Pulse Unit (TPUa)	Ŷ	(
Programmable Pulse Generator (PPG)	Ŷ	(
8-Bit Timer (TMR)	`	(
Compare Match Timer (CMT)	`	(
Compare Match Timer W (CMTW)	`	(
Realtime Clock (RTCd)	`	(
Watchdog Timer (WDTA)	`	(
Independent Watchdog Timer (IWDTa)	`	(
Ethernet Controller (ETHERC)	`	(
DMA Controller for the Ethernet Controller (EDMACa)	`	(
USB 2.0 FS Host/Function Module (USBb)	`	(
Serial Communications Interface (SCIg, SCIi, SCIh)	`	(
I ² C-bus Interface (RIICa)	•	•
CAN Module (CAN)	```	/
Serial Peripheral Interface (RSPIc)	```	/
Quad Serial Peripheral Interface (QSPI)	````	(

Function	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
CRC Calculator (CRCA)		\checkmark
SD Host Interface (SDHI)		\checkmark
SD Slave Interface (SDSI)		\checkmark
MultiMediaCard Interface (MMCIF)		\checkmark
Parallel Data Capture Unit (PDC)		✓
Graphic LCD Controller (GLCDC)	×	✓
2D Drawing Engine (DRW2D)		✓
Boundary Scan		+
AESa	~	x (1)
RNG	~	x (1)
Trusted Secure IP (TSIP)	×	✓
12-Bit A/D Converter (S12ADFa)		✓
12-Bit D/A Converter (R12DA)	√	
Temperature Sensor (TEMPS)	✓	
Data Operation Circuit (DOC)	✓	
RAM	+	
Standby RAM	✓	
Flash Memory		+

✓: Available, \star : Not available, \star : There are differences in the function between RX65N (CF ≤ 1 Mbyte) and RX65N (CF ≥ 1.5 Mbytes)

Note 1: The AES and RNG are built into the Trusted Secure IP in RX65N (CF \ge 1.5 Mbytes).

2. Comparison of Specifications Overview

2.1 Option-Setting Memory

Table 2.1 lists the Comparison of Registers for the Option-Setting Memory.

Table 2.1	Comparison	of Registers	for the	Option-	Setting	Memory

Register	Bit Symbol	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
MDE	BANKMD[2:0]	(1)	Bank Mode Select
TMEF	TMEFDB[2:0]	(2)	Dual-Bank TM Enable
BANKSEL	_	—	Bank Select Register

Notes: 1. Dual mode cannot be set for RX65N (CF ≤ 1 Mbyte). When programming, set these bits to linear mode (111b).

2. These bits are reserved bits for RX65N (CF \leq 1 Mbyte). When reading these bits, the value written by the user are returned. The write value should be 111b.

2.2 Clock Generation Circuit

Table 2.2 lists the Comparison of Specifications for the Clock Generation Circuit.

Table 2.2	Comparison of	Specifications	for the Clock	Generation Circuit
-----------	---------------	-----------------------	---------------	---------------------------

ltem	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
Use	 Generates the system clock (ICLK) to be supplied to the CPU, DMAC, DTC, code flash memory, and RAM. 	 Generates the system clock (ICLK) to be supplied to the CPU, DMAC, DTC, code flash memory, and RAM.
	• Generates the peripheral module clock (PCLKA) to be supplied to the ETHERC, EDMAC, RSPI, SCIi, MTU3, and AES.	 Generates the peripheral module clock (PCLKA) to be supplied to the ETHERC, EDMAC, RSPI, SCIi, MTU3, GLCDC, and DRW2D.
	Generates the peripheral module clock (PCLKB) to be supplied to peripheral module.	 Generates the peripheral module clock (PCLKB) to be supplied to peripheral modules.
	 Generates the peripheral module clocks (for analog conversion) (PCLKC: unit 0; PCLKD: unit 1) to be supplied to S12AD. 	 Generates the peripheral module clocks (for analog conversion) (PCLKC: unit 0; PCLKD: unit 1) to be supplied to S12AD.
	• Generates the flash-IF clock (FCLK) to be supplied to the flash interface.	• Generates the flash-IF clock (FCLK) to be supplied to the flash interface.
	 Generates the external bus clock (BCLK) to be supplied to the external bus. 	 Generates the external bus clock (BCLK) to be supplied to the external bus.
	 Generates the SDRAM clock (SDCLK) to be supplied to the SDRAM. 	• Generates the SDRAM clock (SDCLK) to be supplied to the SDRAM.
	• Generates the USB clock (UCLK) to be supplied to the USBb.	• Generates the USB clock (UCLK) to be supplied to the USBb.
	• Generates the CAC clock (CACCLK) to be supplied to the CAC.	• Generates the CAC clock (CACCLK) to be supplied to the CAC.
	• Generates the CAN clock (CANMCLK) to be supplied to the CAN.	• Generates the CAN clock (CANMCLK) to be supplied to the CAN.
	 Generates the RTC sub-clock (RTCSCLK) to be supplied to the RTC. 	 Generates the RTC sub-clock (RTCSCLK) to be supplied to the RTC.
	Generates the RTC main clock (RTCMCLK) to be supplied to the RTC.	Generates the RTC main clock (RTCMCLK) to be supplied to the RTC.
	Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT.	Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT.
	• Generates the JTAG clock (JTAGTCK) to be supplied to the JTAG.	• Generates the JTAG clock (JTAGTCK) to be supplied to the JTAG.

ltem	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
Operating	 ICLK: 120 MHz (max) 	• ICLK: 120 MHz (max)
frequency	PCLKA: 120 MHz (max)	PCLKA: 120 MHz (max)
	PCLKB: 60 MHz (max)	PCLKB: 60 MHz (max)
	PCLKC: 60 MHz (max)	PCLKC: 60 MHz (max)
	PCLKD: 60 MHz (max)	PCLKD: 60 MHz (max)
	FCLK: 4 MHz to 60 MHz (for	FCLK: 4 MHz to 60 MHz (for
	programming and erasing the code	programming and erasing the code
	flash memory)	flash memory and data flash memory)
		data flash memory)
		BCLK: 120 MHz (max)
	BCLK: 120 MHz (max)	BOLK, izo winz (max) BOLK nin output: 60 MHz (max)
	BCLK pin output: 60 MHz (max)	SDCLK pin output: 60 MHz (max)
	SDCLK pin output: 60 MHz (max)	• UCLK: 48 MHz (max)
	UCLK: 48 MHz (max)	CACCLK: Same as the clock from
	CACCLK: Same as the clock from	respective oscillators.
		CANMCLK: 24 MHz (max)
		• RTCSCLK: 32.768 kHz
		RTCMCLK: 8 MHz to 16 MHz
		IWDTCLK: 120 kHz
	 ITAGTCK: 10 MHz (max) 	• JTAGTCK: 10 MHz (max)
Main clock	Pesopator frequency: 8 MHz to 24 MHz	Resonator frequency: 8 MHz to 24 MHz
oscillator	 External clock input frequency: 24 MHz 	External clock input frequency: 24 MHz
	(max)	(max)
	Connectable resonator or additional	Connectable resonator or additional
	circuit: ceramic resonator, crystal	circuit: ceramic resonator, crystal
	Connection pin: EXTAL XTAL	Connection pin: EXTAL XTAL
	Oscillation stop detection function:	Oscillation stop detection function:
	When an oscillation stop is detected	When an oscillation stop is detected
	with the main clock, the system clock	with the main clock, the system clock
	source is switched to LOCO, and	source is switched to LOCO, and
	MTU3 output can be forcedly driven to	MTU3 output can be forcedly driven to
	the high-impedance.	the high-impedance.
SUD-CIOCK oscillator	Resonator frequency: 32.768 kHz	Resonator frequency: 32.768 kHz
oscillator	Connectable resonator of additional circuit: crystal resonator	Connectable resonator or additional circuit: crystal resonator
	Connection pin: XCIN_XCOUT	Connection pin: XCIN_XCOUT
PLL frequency	Input clock source: Main clock, HOCO	Input clock source: Main clock, HOCO
synthesizer	 Input pulse frequency division ratio: 	 Input pulse frequency division ratio:
	Selectable from 1, 2, and 3	Selectable from 1, 2, and 3
	Input frequency: 8 MHz to 24 MHz	Input frequency: 8 MHz to 24 MHz
	Frequency multiplication ratio:	Frequency multiplication ratio:
	Selectable from 10 to 30	Selectable from 10 to 30
	Output clock frequency of the PLL	Output clock frequency of the PLL
	Trequency synthesizer: 120 MHz to 240	MHz

Item	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
High-speed on-	Selectable from 16 MHz, 18 MHz, and	Selectable from 16 MHz, 18 MHz, and
chip oscillator	20 MHz	20 MHz
(HOCO)	 HOCO power supply control 	 HOCO power supply control
Low-speed on-	 Oscillation frequency: 240 kHz 	 Oscillation frequency: 240 kHz
chip oscillator		
(LOCO)		
IWDT-dedicated	 Oscillation frequency: 120 kHz 	 Oscillation frequency: 120 kHz
on-chip		
oscillator		
JTAG external	 Input clock frequency: 10 MHz (max) 	 Input clock frequency: 10 MHz (max)
clock input		
(TCK)		
Control of output	 BCLK clock output or high output is 	 BCLK clock output or high output is
on the BCLK pin	selectable	selectable
	 BCLK or BCLK/2 is selectable 	BCLK or BCLK/2 is selectable
Control of output	SDCLK clock output or high output is	SDCLK clock output or high output is
on the SDCLK	selectable	selectable
pin		
Event linking	Detection of stopping of the main clock	Detection of stopping of the main clock
(output)	oscillator	oscillator
Event linking	 Switching of the clock source to the 	Switching of the clock source to the
(input)	low-speed on-chip oscillator	low-speed on-chip oscillator

2.3 Low Power Consumption

Table 2.3 lists Comparison of Registers for the Low Power Consumption.

Table 2.3 Comparison of Registers for the Low Power Consumption

Register	Bit Symbol	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
MSTPCRB	MSTPB20	(1)	I ² C Bus Interface 1 Module Stop
MSTPCRC	MSTPC29	(1)	Graphic-LCD controller Module
			Stop
	MSTPC28	(1)	2D drawing engine Module Stop
	MSTPC2	(2)	Expansion RAM Module
			Stop
MSTPCRD	MSTPD27	(1)	Trusted Secure IP Module Stop

Notes: 1. This bit is reserved bit in RX65N (CF \leq 1 Mbyte). The bit is read as 1 and the write value should be 1.

2. This bit is reserved bit in RX65N (CF \leq 1 Mbyte). The bit is read as 0 and the write value should be 0.

2.4 Interrupt Controller

Table 2.4 lists the Comparison of Specifications for the Interrupt Controller and Table 2.5 lists the Comparison of Registers for the Interrupt Controller.

ltem		ICUB in RX65N (CF ≤ 1 Mbyte)	ICUB in RX65N (CF ≥ 1.5 Mbytes)
Interrupts	Peripheral interrupts	 Interrupts from peripheral modules Interrupt detection method: Edge detection/level detection (fixed for each interrupt source) Group interrupt: Multiple interrupt sources are grouped together and treated as an interrupt source. Group BE0 interrupt: Interrupt sources of peripheral modules that use PCLKB as the operating clock (edge detection) Group BL0/BL1/BL2 interrupt: Interrupt sources of peripheral modules that use PCLKB as the operating clock (level detection) Group AL0/AL1 interrupt: Interrupt sources of peripheral modules that use PCLKA as the operating clock (level detection) Group AL0/AL1 interrupt: Interrupt sources of peripheral modules that use PCLKA as the operating clock (level detection) Software configurable interrupt B: Any of the interrupt sources for peripheral modules that use PCLKB as the operating clock can be assigned to interrupt vector numbers 128 to 207. Software configurable interrupt A: Any of the interrupt sources for peripheral modules that use PCLKA as the operating clock can be assigned to interrupt vector numbers 128 to 207. 	 Interrupts from peripheral modules Interrupt detection method: Edge detection/level detection (fixed for each interrupt source) Group interrupt: Multiple interrupt sources are grouped together and treated as an interrupt source. Group BE0 interrupt: Interrupt sources of peripheral modules that use PCLKB as the operating clock (edge detection) Group BL0/BL1/BL2 interrupt: Interrupt sources of peripheral modules that use PCLKB as the operating clock (level detection) Group AL0/AL1 interrupt: Interrupt sources of peripheral modules that use PCLKA as the operating clock (level detection) Group AL0/AL1 interrupt: Interrupt sources of peripheral modules that use PCLKA as the operating clock (level detection) Software configurable interrupt B: Any of the interrupt sources for peripheral modules that use PCLKB as the operating clock can be assigned to interrupt vector numbers 128 to 207. Software configurable interrupt A: Any of the interrupt sources for peripheral modules that use PCLKA as the operating clock can be assigned to interrupt vector numbers 208 to 255.
	External pin interrupt	 Interrupt by the input signal to the IRQi pin (i = 0 to 15) Interrupt detection method: Detection of low level, falling edge, rising edge, rising edge, rising and falling edges One of these detection methods can be set for each source. Digital filter can be used to remove noise. 	 Interrupt by the input signal to the IRQi pin (i = 0 to 15) Interrupt detection method: Detection of low level, falling edge, rising edge, rising edge, rising and falling edges One of these detection methods can be set for each source. Digital filter can be used to remove noise.

Table 2.4 Comparison of Specifications for the Interrupt Controller

Item		ICUB in RX65N (CF ≤ 1 Mbyte)	ICUB in RX65N (CF ≥ 1.5 Mbytes)
Interrupts	Software interrupt	 Interrupt request can be generated by writing to a register. Two interrupt sources 	 Interrupt request can be generated by writing to a register. Two interrupt sources
	Interrupt priority	Priority level can be set with interrupt source priority register r (IPRr) (r = 000 to 255).	Priority level can be set with interrupt source priority register r (IPRr) (r = 000 to 255).
	Fast interrupt function	CPU interrupt response time can be reduced. This function can be used for only one interrupt source.	CPU interrupt response time can be reduced. This function can be used for only one interrupt source.
	DTC/DMAC control	Interrupt sources can be used to start the DTC and DMAC.	Interrupt sources can be used to start the DTC and DMAC.
	EXDMAC control	Interrupt selected by software configurable interrupt B source select register 144 or software configurable interrupt A source select register 208 can be used to start EXDMAC0.	Interrupt selected by software configurable interrupt B source select register 144 or software configurable interrupt A source select register 208 can be used to start EXDMAC0.
		Interrupt selected by software configurable interrupt B source select register 145 or software configurable interrupt A source select register 209 can be used to start EXDMAC1.	Interrupt selected by software configurable interrupt B source select register 145 or software configurable interrupt A source select register 209 can be used to start EXDMAC1.
Non- maskable interrupts	NMI pin interrupt	 Interrupt by the input signal to the NMI pin Interrupt detection: Falling edge/rising edge Digital filter can be used to remove noise. 	 Interrupt by the input signal to the NMI pin Interrupt detection: Falling edge/rising edge Digital filter can be used to remove noise.
	Oscillation stop detection interrupt	This interrupt occurs when the main clock oscillator stop is detected.	This interrupt occurs when the main clock oscillator stop is detected.
	WDT underflow/refresh error interrupt	This interrupt occurs when the watchdog timer (WDT) underflows or a refresh error occurs.	This interrupt occurs when the watchdog timer (WDT) underflows or a refresh error occurs.
	IWDT underflow/refresh error interrupt	This interrupt occurs when the independent watchdog timer (IWDT) underflows or a refresh error occurs.	This interrupt occurs when the independent watchdog timer (IWDT) underflows or a refresh error occurs.
	Voltage monitoring 1 interrupt	Interrupt from voltage detection circuit 1 (LVD1)	Interrupt from voltage detection circuit 1 (LVD1)
	Voltage monitoring 2 interrupt	Interrupt from voltage detection circuit 2 (LVD2)	Interrupt from voltage detection circuit 2 (LVD2)
	RAM error interrupt	This interrupt occurs when a parity check error is detected in the RAM.	This interrupt occurs when a parity check error is detected in the RAM (including the expanded RAM).

Item		ICUB in RX65N (CF ≤ 1 Mbyte)	ICUB in RX65N (CF ≥ 1.5 Mbytes)
Return from	Sleep mode	Exit sleep mode by any interrupt	Exit sleep mode by any interrupt
low power		source.	source.
consumption state	All-module clock stop mode	Exit all-module clock stop mode by the NMI pin interrupt, external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, oscillation stop detection interrupt, USB resume, RTC alarm, RTC period, IWDT, software configurable	Exit all-module clock stop mode by the NMI pin interrupt, external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, oscillation stop detection interrupt, USB resume, RTC alarm, RTC period, IWDT, software configurable interrupt 146
		interrupt 146 to 157).	to 157).
	Software standby mode	Exit software standby mode by the NMI pin interrupt, external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, USB resume, RTC alarm, RTC period, IWDT).	Exit software standby mode by the NMI pin interrupt, external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, USB resume, RTC alarm, RTC period, IWDT).
	Deep software standby mode	Exit deep software standby mode by the NMI pin interrupt, specific external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, USB resume, RTC alarm, RTC period).	Exit deep software standby mode by the NMI pin interrupt, specific external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, USB resume, RTC alarm, RTC period).

Table 2.5 Comparison of Registers for the Interrupt Controller

Register	Bit Symbol	ICUB in RX65N (CF ≤ 1 Mbyte)	ICUB in RX65N (CF ≥ 1.5 Mbytes)
PIBRk	—	Software Configurable Interrupt B	Software Configurable Interrupt B
		Request Register k (k = 0h to Ah)	Request Register k (k = 0h to Bh)

2.5 Buses

Table 2.6 lists the Comparison of Bus Specifications, Table 2.7 lists the Comparison of Addresses Assigned for Each Bus, Table 2.8 lists the Comparison of Bus Master Priorities, Table 2.9 lists the Comparison of Peripheral Modules Connected to Internal Peripheral Buses, Table 2.10 lists the Comparison of External Bus Specifications, Table 2.11 lists the Comparison of Pin Configuration of the External Bus, and Table 2.12 lists the Comparison of Bus Registers.

Bus Type		RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
CPU bus	Instruction bus	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, code flash memory) Operates in synchronization with the system clock (ICLK) 	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, expansion RAM, code flash memory) Operates in synchronization with the system clock (ICLK)
	Operand bus	 Connected to the CPU (for operands) Connected to on-chip memory (RAM, code flash memory) Operates in synchronization with the system clock (ICLK) 	 Connected to the CPU (for operands) Connected to on-chip memory (RAM, expansion RAM, code flash memory) Operates in synchronization with the system clock (ICLK)
Memory bus	Memory bus 1	Connected to RAM	Connected to RAM
	Memory bus 2	Connected to code flash memory	Connected to code flash memory
	Memory bus 3	Reserved area	Connected to expansion RAM
Internal main bus	Internal main bus 1	 Connected to the CPU Operates in synchronization with the system clock (ICLK) 	 Connected to the CPU Operates in synchronization with the system clock (ICLK)
	Internal main bus 2	 Connected to the DMAC, DTC, and extended bus master (EDMAC and SDSI) Connected to on-chip memory (RAM, code flash memory) Operates in synchronization with the system clock (ICLK) 	 Connected to the DMAC, DTC, and extended bus master (EDMAC, GLCDC, DRW2D, and SDSI) Connected to on-chip memory (RAM, expansion RAM, code flash memory) Operates in synchronization with the system clock (ICLK)
Internal peripheral bus	Internal peripheral bus 1	 Connected to peripheral modules (DTC, DMAC, EXDMAC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK) (EXDMAC operates in synchronization with the BCLK) 	 Connected to peripheral modules (DTC, DMAC, EXDMAC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK) (EXDMAC operates in synchronization with the BCLK)

Table 2.6	Comparison	of Bus S	Specifications
	Companison		peomoutions

Bus Type		RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
Internal peripheral bus	Internal peripheral bus 2	 Connected to peripheral modules (modules other than those connected to internal peripheral buses 1, 3, 4, and 5) Operates in synchronization with the peripheral-module clock (PCLKB) 	 Connected to peripheral modules (modules other than those connected to internal peripheral buses 1, 3, 4, and 5) Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 3	 Connected to peripheral modules (USBb, PDC, and standby RAM) Operates in synchronization with the peripheral-module clock (PCLKB) 	 Connected to peripheral modules (USBb, PDC, and standby RAM) Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 4	 Connected to peripheral modules (EDMAC, ETHERC, MTU3, SCIi, RSPI, and AES) Operates in synchronization with the peripheral-module clock (PCLKA) 	 Connected to peripheral modules (EDMAC, ETHERC, MTU3, SCIi, RSPI) Operates in synchronization with the peripheral-module clock (PCLKA)
	Internal peripheral bus 5	Reserved area	 Connected to peripheral modules (GLCDC, DRW2D) Operates in synchronization with the peripheral-module clock (PCLKA)
	Internal peripheral bus 6	 Connected to code flash (in P/E) Operates in synchronization with the FlashIF clock (FCLK) 	 Connected to code flash (in P/E) and data flash memory Operates in synchronization with the FlashIF clock (FCLK)
External bus	CS area	 Connected to the external devices Operates in synchronization with the external-bus clock (BCLK) 	 Connected to the external devices Operates in synchronization with the external-bus clock (BCLK)
	SDRAM area	 Connected to the SDRAM Operates in synchronization with the SDRAM clock (SDCLK) 	 Connected to the SDRAM Operates in synchronization with the SDRAM clock (SDCLK)

	RX65N (CF ≤ 1 Mbyte)		RX65N (CF ≥ 1.5 Mbytes)	
Address	On-Chip ROM	On-Chip ROM	On-Chip ROM	On-Chip ROM
	Enabled	Disabled	Enabled	Disabled
0000 0000h to 0007 FFFFh	Memory bus 1		Memory bus 1	
0008 0000h to 0008 7FFh	Internal periphera	l bus 1	Internal periphera	l bus 1
0008 8000h to 0009 FFFFh	Internal periphera	l bus 2	Internal periphera	l bus 2
000A 0000h to 000B FFFFh	Internal periphera	l bus 3	Internal periphera	l bus 3
000C 0000h to 000D FFFFh	Internal periphera	l bus 4	Internal peripheral bus 4	
000E 0000h to 000F FFFFh	Reserved area		Internal peripheral bus 5	
0010 0000h to 007F FFFFh	Internal Reconved area		Internal	Reserved area
	peripheral bus 6	Reserved area	peripheral bus 6	Reserved alea
0080 0000h to 00FF FFFFh	Reserved area		Memory bus 3	
0100 0000h to 07FF FFFFh	Extornal bus		Extornal buc	
0800 0000h to 0FFF FFFFh	External bus		External bus	
1000 0000h to 7FFF FFFFh	Reserved area		Reserved area	
8000 0000h to FEFF FFFFh	Momony bus 2	Reserved area	Momony bus 2	Reserved area
FF00 0000h to FFFF FFFFh	Welling bus 2	External bus	Welliory Dus 2	External bus

Table 2.7 Comparison of Addresses Assigned for Each Bus

Table 2.8 Comparison of Bus Master Priorities

Priority	Internal Main Bus	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
High	—	EXDMAC	EXDMAC
	2	Extended bus master (1)	Extended bus master (2)
		DMAC	DMAC
		DTC	DTC
Low	1	CPU	CPU

Notes: 1. With RX65N (CF \leq 1 Mbyte), the extended bus master consists of EDMAC and SDSI.

 With RX65N (CF ≥ 1.5 Mbytes), the extended bus master consists of EDMAC, GLCDC, DRW2D, and SDSI.

Table 2.9 Comparison of Peripheral Modules Connected to Internal Peripheral Buses

Bus Type	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
Internal peripheral bus 1	DTC, DMAC, EXDMAC, interrupt	DTC, DMAC, EXDMAC, interrupt
	controller, and bus error monitoring	controller, and bus error monitoring
	section	section
Internal peripheral bus 2	Peripheral modules other than those	Peripheral modules other than those
	connected to internal peripheral buses	connected to internal peripheral buses
	1, 3, 4, and 5	1, 3, 4, and 5
Internal peripheral bus 3	USBb, PDC, and standby RAM	USBb, PDC, and standby RAM
Internal peripheral bus 4	EDMAC, ETHERC, MTU3, SCIi,	EDMAC, ETHERC, MTU3, SCIi, RSPI
	RSPI, and AES	
Internal peripheral bus 5	Reserved area	GLCDC, DRW2D
Internal peripheral bus 6	Code flash memory (in P/E)	Code flash memory (in P/E) or data
		flash memory

Item	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
External address space	 An external address space is divided into eight CS areas (CS0 to CS7) and the SDRAM area (SDCS) for management. Chip select signals can be output for each area. Bus width can be set for each area. Separate bus: An 8 or 16-bit bus space is selectable. Address/data multiplexed bus: An 8 or 16-bit bus space is selectable. An endian mode can be specified for each area. 	 An external address space is divided into eight CS areas (CS0 to CS7) and the SDRAM area (SDCS) for management. Chip select signals can be output for each area. Bus width can be set for each area. Separate bus: An 8, 16, or 32-bit bus space is selectable. Address/data multiplexed bus: An 8 or 16-bit bus space is selectable. An endian mode can be specified for each area.
CS area controller	 Recovery cycles can be inserted. Read recovery: Up to 15 cycles Write recovery: Up to 15 cycles Cycle wait function: Wait for up to 31 cycles (page access: up to 7 cycles) Wait control can be used to set up the following: Timing of assertion and negation for chip-select signals (CS0# to CS7#) Timing of assertion of the read signal (RD#) and write signals (WR0#/WR# and WR1) Timing to start/end outputting data Write access mode: Single write strobe mode/byte strobe mode Separate bus or address/data multiplexed bus can be set for each area. 	 Recovery cycles can be inserted. Read recovery: Up to 15 cycles Write recovery: Up to 15 cycles Cycle wait function: Wait for up to 31 cycles (page access: up to 7 cycles) Wait control can be used to set up the following: Timing of assertion and negation for chip-select signals (CS0# to CS7#) Timing of assertion of the read signal (RD#) and write signals (WR0#/WR#, and WR1# to WR3#) Timing to start/end outputting data Write access mode: Single write strobe mode/byte strobe mode Separate bus or address/data multiplexed bus can be set for each area.
SDRAM area controller	 Multiplexing output of row address/column address (8, 9, 10, or 11 bits) Self-refresh and auto-Refresh selectable CAS latency can be specified from one to three cycles 	 Multiplexing output of row address/column address (8, 9, 10, or 11 bits) Self-refresh and auto-Refresh selectable CAS latency can be specified from one to three cycles
Write buffer function	When write data from the bus master has been written to the write buffer, write access by the bus master is completed.	When write data from the bus master has been written to the write buffer, write access by the bus master is completed.
Frequency	 The CS area controller (CSC) operates in synchronization with the external-bus clock (BCLK). The SDRAM area controller (SDRAMC) operates in synchronization with the SDRAM clock (SDCLK). 	 The CS area controller (CSC) operates in synchronization with the external-bus clock (BCLK). The SDRAM area controller (SDRAMC) operates in synchronization with the SDRAM clock (SDCLK).

Table 2.10	Comparison of External Bus Specifications
------------	--

Pin Name	I/O	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
A23 to A0	Output	Address output pins	Address output pins
D31 to D0	I/O	Data input/output pins	Data input/output pins
			D31 to D0 pins are enabled when the
			32-bit bus space is specified.
		D15 to D0 pins are enabled when the	D15 to D0 pins are enabled when the
		16-bit bus space is specified.	16-bit bus space is specified.
		D7 to D0 pins are enabled when the	D7 to D0 pins are enabled when the
	-	8-bit bus space is specified.	8-bit bus space is specified.
BC0#	Output	The BC0# pin is enabled in single	The BC0# pin is enabled in single
		write strobe mode. The BC0# signal is	write strobe mode. The BC0# signal is
		a strobe signal and when the BCO#	a strobe signal and when the BCO#
		address space) it means that D7 to	address space) it means that D7 to
		D0 are valid.	D0 are valid.
		When an 8-bit bus space is specified.	When an 8-bit bus space is specified.
		this output pin is always held low	this output pin is always held low
		regardless of write access mode.	regardless of write access mode.
BC1#	Output	The BC1# pin is enabled in single	The BC1# pin is enabled in single
		write strobe mode. The BC1# signal is	write strobe mode. The BC1# signal is
		a strobe signal and when the BC1#	a strobe signal and when the BC1#
		signal is low (accessing an external	signal is low (accessing an external
		address space), it means that D15 to	address space), it means that D15 to
		D8 are valid.	D8 are valid.
		I his pin is not used when the 8-bit	I his pin is not used when the 8-bit
BC2#	Output		The BC2# pip is enabled in single
DC2#	Output		write strobe mode. The BC2# signal is
			a strobe signal and when the BC2#
			signal is low (accessing an external
			address space), it means that D23 to
			D16 are valid.
			This pin is not used when the 8- or
			16-bit bus space is specified.
BC3#	Output	—	The BC3# pin is enabled in single
			write strobe mode. The BC3# signal is
			a strobe signal and when the BC3#
			address space), it means that D31 to
			D24 are valid
			This pin is not used when the 8- or
			16-bit bus space is specified.
CS0#	Output	A chip select signal for area 0 (CS0)	A chip select signal for area 0 (CS0)
CS1#	Output	A chip select signal for area 1 (CS1)	A chip select signal for area 1 (CS1)
CS2#	Output	A chip select signal for area 2 (CS2)	A chip select signal for area 2 (CS2)
CS3#	Output	A chip select signal for area 3 (CS3)	A chip select signal for area 3 (CS3)
CS4#	Output	A chip select signal for area 4 (CS4)	A chip select signal for area 4 (CS4)
CS5#	Output	A chip select signal for area 5 (CS5)	A chip select signal for area 5 (CS5)
CS6#	Output	A chip select signal for area 6 (CS6)	A chip select signal for area 6 (CS6)
CS7#	Output	A chip select signal for area 7 (CS7)	A chip select signal for area 7 (CS7)

Table 2.11 Comparison of Pin Configuration of the External Bus

Pin Name	I/O	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
RD#	Output	A strobe signal indicating that reading	A strobe signal indicating that reading
		from an external address space (CS0	from an external address space (CS0
		to CS7) is in progress	to CS7) is in progress
WR0#/WR#	Output	The WR0# pin is enabled in byte strobe mode. The WR0# signal is a strobe signal and when the WR0# signal is low (writing to an external address space), it means that D7 to D0 are valid. The WR# pin is enabled in single write strobe mode. The WR# signal is a strobe signal and indicates writing to an external address space is in progress. When an 8-bit bus space is specified, this output pin is held low during a write access regardless of write	The WR0# pin is enabled in byte strobe mode. The WR0# signal is a strobe signal and when the WR0# signal is low (writing to an external address space), it means that D7 to D0 are valid. The WR# pin is enabled in single write strobe mode. The WR# signal is a strobe signal and indicates writing to an external address space is in progress. When an 8-bit bus space is specified, this output pin is held low during a write access regardless of write
		access mode.	access mode.
WR1#	Output	The WR1# pin is enabled in byte strobe mode. The WR1# signal is a strobe signal and when the WR1# signal is low (writing to an external address space), it means that D15 to D8 are valid. This pin is disabled in single write strobe mode. This pin is not used when the 8-bit bus space is specified	The WR1# pin is enabled in byte strobe mode. The WR1# signal is a strobe signal and when the WR1# signal is low (writing to an external address space), it means that D15 to D8 are valid. This pin is disabled in single write strobe mode. This pin is not used when the 8-bit bus space is specified
WR2#	Output		The WR2# pin is enabled in byte
			strobe mode. The WR2# signal is a strobe signal and when the WR2# signal is low (writing to an external address space), it means that D23 to D16 are valid. This pin is disabled in single write strobe mode. This pin is not used when the 8- or 16-bit bus space is specified.
WR3#	Output		The WR3# pin is enabled in byte strobe mode. The WR3# signal is a strobe signal and when the WR3# signal is low (writing to an external address space), it means that D31 to D24 are valid. This pin is disabled in single write strobe mode. This pin is not used when the 8- or 16-bit bus space is specified.
ALE	Output	Address latch signal when address/data multiplexed bus is selected.	Address latch signal when address/data multiplexed bus is selected.
WAIT#	Input	A wait request signal when accessing the external address space (CS0 to CS7) (Low: Wait request)	A wait request signal when accessing the external address space (CS0 to CS7) (Low: Wait request)

Pin Name	I/O	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
SDCLK	Output	SDRAM clock	SDRAM clock
CKE	Output	SDRAM clock enable signal	SDRAM clock enable signal
SDCS#	Output	SDRAM chip select signal	SDRAM chip select signal
RAS#	Output	SDRAM low address strobe signal	SDRAM low address strobe signal
CAS#	Output	SDRAM column address strobe signal	SDRAM column address strobe signal
WE#	Output	SDRAM write enable signal	SDRAM write enable signal
DQM0	Output	SDRAM I/O data mask enable signal	SDRAM I/O data mask enable signal
		for D7 to D0	for D7 to D0
DQM1	Output	SDRAM I/O data mask enable signal	SDRAM I/O data mask enable signal
		for D15 to D8	for D15 to D8
DQM2	Output	_	SDRAM I/O data mask enable signal
			for D23 to D16
DQM3	Output	—	SDRAM I/O data mask enable signal
			for D31 to D24

Table 2.12 Comparison of Bus Registers

Register	Bit Symbol	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
CSnCR	BSIZE[1:0]	External Bus Width Select	External Bus Width Select
		b5 b4	b5 b4
		0 0: A 16-bit bus space is selected	0 0: A 16-bit bus space is selected
		0 1: Setting prohibited	0 1: A 32-bit bus space is selected
		1 0: An 8-bit bus space is selected	1 0: An 8-bit bus space is selected
		1 1: Setting prohibited	1 1: Setting prohibited
SDCCR	BSIZE[1:0]	SDRAM Bus Width Select	SDRAM Bus Width Select
		b5 b4	b5 b4
		0 0: A 16-bit bus space is selected	0 0: A 16-bit bus space is selected
		0 1: Setting prohibited	0 1: A 32-bit bus space is selected
		1 0: An 8-bit bus space is selected	1 0: An 8-bit bus space is selected
		1 1: Setting prohibited	1 1: Setting prohibited
EBMAPCR	—	—	Extended Bus Master Priority
			Control Register

2.6 I/O Ports

Table 2.13 lists the Comparison of I/O Port Functions and Table 2.14 lists the Comparison of I/O Port Registers.

		RX65N (CF ≤ 1 Mbyte)				RX65	N (CF ≥ 1.5 Mbytes)		
Port Symbol	Port	Input Pull-	Open- Drain	Driving Ability Switching	5-V Tolerant	Input Pull-	Open- Drain	Driving Ability Switching	5-V Tolerant
-		up	Output			up	Output		
PORT0	P00 to P02	~	v	Normal drive/ high drive/high- speed interface high-drive	—	~	v	Normal drive/ high drive/high- speed interface high-drive	—
	P03, P05	~	~	Fixed to high driving ability output	—	~	~	Fixed to high driving ability output	—
	P07	~	√	Fixed to high driving ability output	✓ 	~	√	Fixed to high driving ability output	√
PORT1	P10	_	_		_	v	~	Fixed to high driving ability output	
	P11	_	—	_	_	•	~	Normal drive/high drive/high-speed interface high- drive	~
	P12 to P14	~	×	Fixed to high driving ability output	~	~	×	Normal drive/high drive/high-speed interface high- drive	~
	P15, P16	~	~	Fixed to high driving ability output	~	~	~	Fixed to high driving ability output	~
	P17	~	✓ 	Fixed to high driving ability output	✓ 	~	×	High drive/high- speed interface high-drive	✓
PORT2	P20, P21	~	~	Fixed to high driving ability output	✓	~	~	High drive/high- speed interface high-drive	√
	P22, P23	~	~	Fixed to high driving ability output	_	~	~	High drive/high- speed interface high-drive	_
	P24 to P26	~	~	Fixed to high driving ability output	_	~	~	Fixed to high driving ability output	_
	P27	~	~	Normal drive/high drive/high-speed interface high- drive	—	•	~	Normal drive/high drive/high speed interface high- drive	—
PORT3	P30, P31	~	×	High drive/high- speed interface high-drive	✓	~	×	High drive/high- speed interface high-drive	✓
	P32, P33	~	√	Fixed to high driving ability output	✓	~	~	Fixed to high driving ability output	×

 Table 2.13
 Comparison of I/O Port Functions

		RX65N (CF ≤ 1 Mbyte)			RX65N (CF ≥ 1.5 Mbytes)				
Port Symbol	Port	Input Pull- up	Open- Drain Output	Driving Ability Switching	5-V Tolerant	Input Pull- up	Open- Drain Output	Driving Ability Switching	5-V Tolerant
PORT3	P34, P37	~	~	Fixed to high driving ability output	—	~	~	Fixed to high driving ability output	_
	P35	—	—		—	—	—	<u> </u>	—
	P36	~	~	Fixed to normal output	—	~	~	Fixed to normal output	
PORT4	P40 to P47	~	~	Fixed to normal output	_	~	~	Fixed to normal output	_
PORT5	P50 to P52, P56	~	~	Normal drive/high drive/high-speed interface high- drive		~	~	Normal drive/high drive/high-speed interface high- drive	_
	P53	~	~	High drive/high- speed interface high-drive	_	~	~	High drive/high- speed interface high-drive	_
	P54, P55	~	✓	High drive/high- speed interface high-drive	_	~	✓	Normal drive/high drive/high-speed interface high- drive	
	P57			_	_	~	~	Normal drive/high drive/high-speed interface high- drive	
PORT6	P60 to P66	~	~	Fixed to high driving ability output	—	~	~	Fixed to high driving ability output	_
	P67	~	~	Fixed to high driving ability output	~	~	~	Fixed to high driving ability output	~
PORT7	P70, P73	~	~	High drive/high- speed interface high-drive	—	~	~	High drive/high- speed interface high-drive	—
	P71	~	~	Fixed to high driving ability output	—	~	~	Fixed to high driving ability output	—
	P72	~	~	Fixed to high driving ability output	_	~	~	Normal drive/high drive/high-speed interface high- drive	_
	P74 to P77	~	~	High drive/high- speed interface high-drive	—	~	~	Normal drive/high drive/high-speed interface high- drive	_
PORT8	P80 to P83	~	~	High drive/high- speed interface high-drive	—	~	~	Normal drive/high drive/high-speed interface high- drive	—
	P84, P85					~	~	Normal drive/high drive/high-speed interface high- drive	

		RX65N (CF ≤ 1 Mbyte)			RX65N (CF ≥ 1.5 Mbytes)				
Port Symbol	Port	Input Pull- up	Open- Drain Output	Driving Ability Switching	5-V Tolerant	Input Pull- up	Open- Drain Output	Driving Ability Switching	5-V Tolerant
PORT8	P86	~	~	Fixed to high driving ability output	—	~	~	Fixed to high driving ability output	—
	P87	~	~	Fixed to high driving ability output	_	~	~	High drive/high- speed interface high-drive	_
PORT9	P90 to P93	~	V	Normal drive/high drive/high-speed interface high- drive	_	~	~	Normal drive/high drive/high-speed interface high- drive	_
	P94 to P97			_		~	~	Normal drive/high drive/high-speed interface high- drive	_
PORTA	PA0 to PA7	~	~	Normal drive/high drive/high- speed interface high- drive	_	~	V	Normal drive/high drive/high- speed interface high-drive	_
PORTB	PB0 to PB7	~	~	Normal drive/high drive/high- speed interface high- drive	_	~	V	Normal drive/high drive/high- speed interface high- drive	_
PORTC	PC0 to PC3	V	~	Normal drive/high drive/high- speed interface high-drive	~	V	✓	Normal drive/high drive/high- speed interface high-drive	~
	PC4 to PC7	~	1	Normal drive/high drive/high- speed interface high-drive	_	~	~	Normal drive/high drive/high- speed interface high-drive	_
PORTD	PD0 to PD7	~	1	Normal drive/high drive/high- speed interface high-drive	_	~	~	Normal drive/high drive/high- speed interface high-drive	_
PORTE	PE0 to PE7	✓	V	Normal drive/high drive/high- speed interface high-drive		√	V	Normal drive/high drive/high- speed interface high-drive	
PORTF	PF0 to PF4			_	_	✓	~	Fixed to high driving ability output	_
	PF5	~	~	Fixed to high driving ability output		~	~	Fixed to high driving ability output	

		RX65N (CF ≤ 1 Mbyte)					RX65N (CF ≥ 1.5 Mbytes)			
Port Symbol	Port	Input Pull- up	Open- Drain Output	Driving Ability Switching	5-V Tolerant	Input Pull- up	Open- Drain Output	Driving Ability Switching	5-V Tolerant	
PORTG	PG0, PG1			_	_	~	v	Normal drive/high drive/high- speed interface high-drive	_	
	PG2 to PG7	—	_	—	_	~	~	High drive/high- speed interface high-drive	_	
PORTJ	PJ0 to PJ2			_	_	~	✓	Normal drive/high drive/high- speed interface high-drive	_	
	PJ3, PJ5	~	\checkmark	Fixed to high driving ability output	_	~	\checkmark	Fixed to high driving ability output	_	

Table 2.14 Comparison of I/O Port Registers

Port Symbol	Register	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
PORT1	DSCR	—	Drive Capacity Control Register
	DSCR2	—	Drive Capacity Control Register 2
PORT7	DSCR	—	Drive Capacity Control Register
PORT8	DSCR	—	Drive Capacity Control Register
PORT9	ODR1	—	Open-Drain Control Register 1
PORTF	ODR0	—	Open-Drain Control Register 0
PORTG	PDR	—	Port Direction Register
	PODR	—	Port Output Data Register
	PIDR	—	Port Input Register
	PMR	—	Port Mode Register
	ODR0	—	Open-Drain Control Register 0
	ODR1	—	Open-Drain Control Register 1
	PCR	—	Pull-Up Resistor Control Register
	DSCR	—	Drive Capacity Control Register
	DSCR2	—	Drive Capacity Control Register 2
PORTJ	DSCR	_	Drive Capacity Control Register
	DSCR2	_	Drive Capacity Control Register 2

2.7 Multi-Function Pin Controller

Table 2.15 lists the Comparison of Registers for the Multi-Function Pin Controller and Table 2.16 lists the Comparison of Settings for External Address Buses A16 to A23.

Table 2.15	Comparison of Registers	for the Multi-Function Pin Controller

Register	Bit Name	MPC in RX65N (CF ≤ 1 Mbyte)	MPC in RX65N (CF ≥ 1.5 Mbytes)
PmnPFS	_	For details of the Pin Function Co Manual: Hardware listed in 5. Re	ontrol register, refer to the User's ference Documents.
PFBCR0	DH32E	—	D16 to D31 Output Enable
	WR32BC32E	—	WR3#/BC3# and WR2#/BC2# Output Enable
PFBCR1	ALES	—	ALE Select
PFBCR2	—	—	External Bus Control Register 2
PFBCR3	—	—	External Bus Control Register 3

Table 2.16	Comparison of	Settings f	or External	Address	Buses	A16 to	A23
------------	---------------	------------	-------------	---------	-------	--------	-----

PFBCR0		MPC in $PY65N$ (CE < 1 Mbyta)	MBC in BYSEN (CE > 1.5 Mbytoc)
ADRHMS Bit	ADRHMS2 Bit		MFC III RAOSIN (CF 2 1.5 MIDYLES)
0	0	Set PC0 to PC7.	Set PC0 to PC7.
0	1	Set PC0, PC1, P71, P72, P74, and PC5 to PC7.	Set PC0, PC1, P71, P72, P74, and PC5 to PC7.
1	0	Set P90 to P93. (No allocation of A20 to A23)	Set P90 to P97.
1	1	Setting prohibited.	Setting prohibited.

2.8 I²C-bus Interface

Table 2.17 lists the Comparison of Specifications for the I²C-bus Interface.

Item	RIICa in RX65N (CF ≤ 1 Mbyte)	RIICa in RX65N (CF ≥ 1.5 Mbytes)
Number of channels	2 channels	3 channels
Communications format	 I²C-bus format or SMBus format Master mode or slave mode selectable Automatic securing of the various setup times, hold times, and bus- free times for the transfer rate 	 I²C-bus format or SMBus format Master mode or slave mode selectable Automatic securing of the various setup times, hold times, and bus- free times for the transfer rate
Transfer rate	Fast-mode Plus is supported (up to 1 Mbps)	Fast-mode Plus is supported (up to 1 Mbps)
SCL clock	For master operation, the duty cycle of the SCL clock is selectable in the range from 4 to 96%.	For master operation, the duty cycle of the SCL clock is selectable in the range from 4 to 96%.
Issuing and detecting conditions	Start, restart, and stop conditions are automatically generated. Start conditions (including restart conditions) and stop conditions are detectable.	Start, restart, and stop conditions are automatically generated. Start conditions (including restart conditions) and stop conditions are detectable.
Slave address	 Up to three different slave addresses can be set. 7-bit and 10-bit address formats are supported (7-bit and 10-bit address fomats can be selected together). General call addresses, device ID addresses, and SMBus host addresses are detectable. 	 Up to three different slave addresses can be set. 7-bit and 10-bit address formats are supported (7-bit and 10-bit address fomats can be selected together). General call addresses, device ID addresses, and SMBus host addresses are detectable.
Acknowledgment	 For transmission, the acknowledge bit is automatically loaded. Transfer of the next data for transmission can be automatically suspended on detection of not-acknowledge. For reception, the acknowledge bit is automatically transmitted. When selecting wait processing between the eighth and ninth clock cycles, response with the acknowledge field according to the received data can be controled by the software. 	 For transmission, the acknowledge bit is automatically loaded. Transfer of the next data for transmission can be automatically suspended on detection of not-acknowledge. For reception, the acknowledge bit is automatically transmitted. When selecting wait processing between the eighth and ninth clock cycles, response with the acknowledge field according to the received data can be controled by the software.
Wait function	 In reception, the following periods of wait can be set by holding the SCL clock low: Wait for the period between the eighth and ninth clock cycles Wait for the period between the ninth clock cycle and the first clock cycle of the next transfer 	 In reception, the following periods of wait can be set by holding the SCL clock low: Wait for the period between the eighth and ninth clock cycles Wait for the period between the ninth clock cycle and the first clock cycle of the next transfer

Table 2.17 Comparison of Specifications for the I²C-bus Interface

Item	RIICa in RX65N (CF ≤ 1 Mbyte)	RIICa in RX65N (CF ≥ 1.5 Mbytes)
SDA output delay function	Output timing of the transmit data including the acknowledge bit can be	Output timing of the transmit data including the acknowledge bit can be
Arbitration	 For multi-master operation The SCL clock can be synchronized if a conflict occurs with the SCL clock from another master. When issuing the start condition would create conflict on the bus, loss of arbitration is detected by testing for non- matching between the internal signal for the SDA line and the level on the SDA line. In master operation, loss of 	 For multi-master operation The SCL clock can be synchronized if a conflict occurs with the SCL clock from another master. When issuing the start condition would create conflict on the bus, loss of arbitration is detected by testing for nonmatching between the internal signal for the SDA line and the level on the SDA line. In master operation, loss of
	 arbitration is detected by testing for non-matching between the signal on the SDA line and the internal signal for the SDA line. Loss of arbitration due to detection of the start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). Loss of arbitration in transfer of not- acknowledge due to non-matching of the internal signal for the SDA line and the level on the SDA line is detectable. Loss of arbitration due to non- matching of internal and line levels for data is detectable in slave transmission. 	 arbitration is detected by testing for non-matching between the signal on the SDA line and the internal signal for the SDA line. Loss of arbitration due to detection of the start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). Loss of arbitration in transfer of not- acknowledge due to non-matching of the internal signal for the SDA line and the level on the SDA line is detectable. Loss of arbitration due to non- matching of internal and line levels for data is detectable in slave transmission.
Timeout function	The internal timeout function is capable of detecting long-interval stop of the SCL clock.	The internal timeout function is capable of detecting long-interval stop of the SCL clock.
Noise cancellation	The interface incorporates digital noise filters for both the SCL and SDA signals, and the width for noise cancellation by the filters is adjustable by software.	The interface incorporates digital noise filters for both the SCL and SDA signals, and the width for noise cancellation by the filters is adjustable by software.
Interrupt sources	 Four sources: Error in transfer or occurrence of events: Detection of arbitration, NACK, timeout, start condition including restart condition, or stop condition Receive data full (including when slave addresses match) Transmit data empty (including when slave addresses match) Transmit end 	 Four sources: Error in transfer or occurrence of events: Detection of arbitration, NACK, timeout, start condition including restart condition, or stop condition Receive data full (including when slave addresses match) Transmit data empty (including when slave addresses match) Transmit end

Item	RIICa in RX65N (CF ≤ 1 Mbyte)	RIICa in RX65N (CF ≥ 1.5 Mbytes)
Low power consumption	Transition to module stop state is	Transition to module stop state is
function	available.	available.
RIIC operating modes	• Four modes: Master transmit mode, master receive mode, slave transmit mode, and slave receive mode	• Four modes: Master transmit mode, master receive mode, slave transmit mode, and slave receive mode
Event link function	Four sources (RIIC0):	Four sources (RIIC0):
(output)	 Error in transfer or occurrence of events: Detection of arbitration, NACK, timeout, start condition including restart condition, or stop condition 	Error in transfer or occurrence of events: Detection of arbitration, NACK, timeout, start condition including restart condition, or stop condition
	 Receive data full (including when slave addresses match) 	 Receive data full (including when slave addresses match)
	 Transmit data empty (including when slave addresses match) Transmit end 	 Transmit data empty (including when slave addresses match) Transmit end

2.9 Boundary Scan

Table 2.18 lists the Comparison of Specifications for the Boundary Scan and Table 2.19 lists the Comparison of Registers for the Boundary Scan.

Table 2.18	Comparison	of S	pecifications	for the	Boundary	Scan

ltem	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
Boundary scan enabled/disabled	Boundary scan is enabled when the RES# pin and the BSCANP pin are driven high and the EMLE pin is driven low.	Boundary scan is enabled when the RES# pin and the BSCANP pin are driven high and the EMLE pin is driven low.
Dedicated boundary scan pins	The following pins are dedicated for the JTAG when boundary scan function is enabled (TDO/TCK/TDI/TMS/TRST#).	The following pins are dedicated for the JTAG when boundary scan function is enabled (TDO/TCK/TDI/TMS/TRST#). 177-pin TFLGA/176-pin LFBGA: PF0/PF1/PF2/PF3/PF4
	145-pin TFLGA: P26/P27/P30/P31/P34	P26/P27/P30/P31/P34
Six test modes	 BYPASS mode EXTEST mode SAMPLE/PRELOAD mode CLAMP mode HIGHZ mode IDCODE mode 	 BYPASS mode EXTEST mode SAMPLE/PRELOAD mode CLAMP mode HIGHZ mode IDCODE mode

Table 2.19	Comparison of Registers for the Boundary Sc	an
------------	---	----

Register	Bit Name	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
JTIDR	DID[31:0]	ID code register	ID code register
		Value after a reset: 0831 6447h	Value after a reset: 0835 9447h
JTBSR	—	For details on the boundary scan register (JTBSR), refer to the	
		User's Manual: Hardware listed in 5. Reference Documents.	

2.10 RAM

Table 2.20 lists the Comparison of RAM Specifications and Table 2.21 lists the Comparison of RAM Registers.

Itom	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)	
nem	RAM	RAM	Expansion RAM
Capacity	256 Kbytes	256 Kbytes	384 Kbytes
Address	0000 0000h to 0003 FFFFh	0000 0000h	0080 0000h
		to 0003 FFFFh	to 0085 FFFFh
Memory bus	Memory bus 1	Memory bus 1	Memory bus 3
Access	 Single-cycle access is possible for both reading and writing. 	 Single-cycle access reading and writing. 	is possible for both
	Enabling or disabling of the RAM is selectable	 Enabling or disablin selectable. 	g of the RAM is
Data retention function	Not available in deep software standby mode	Not available in deep s	oftware standby mode
Low power consumption function	The module-stop function can be spedified.	iodule-stop function can be ied.The module stop function can be speci- separately for the RAM and expansion	
Error checking	Parity check: Detection of 1-bit errors	• Parity check: Detection of 1-bit errors	
	A non-maskable interrupt or interrupt is generated in response to an error.	• A non-maskable interrupt or interrupt is generated in response to an error.	

Table 2.20	Comparison of	RAMS	pecifications

Table 2.21 Comparison of RAM Registers

Register	Bit Name	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
EXRAMMODE	—	—	Expansion RAM Operating
			Mode Control Register
EXRAMSTS	—	—	Expansion RAM Error Status
			Register
EXRAMECAD	_		Expansion RAM Error Address
			Capture Register
EXRAMPRCR	_		Expansion RAM Protection
			Register

2.11 Flash Memory

Table 2.22 lists the Comparison of Specifications for the Code Flash Memory, Table 2.23 lists the Comparison of Specifications for the Data Flash Memory, Table 2.24 lists the Comparison of Registers for the Flash Memory, and Table 2.25 lists the Comparison of FCMDR Register Status after Receiving Commands.

ltem	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
Memory capacity	User area: 1 Mbyte max.	User area: 2 Mbytes max.
ROM cache	 Capacity: 256 Bytes max. Mapping method: 8-way set associative Replace method: LRU method Line size: 16 bytes 	 Capacity: 256 Bytes max. Mapping method: 8-way set associative Replace method: LRU method Line size: 16 bytes
Read cycle	 When the cache is hit: One cycle When the cache is missed while ROM cache operation is enabled, or when ROM cache operation is disabled: One cycle if ICLK ≤ 50 MHz Two cycles if 50 MHz < ICLK ≤ 100 MHz Three cycles if ICLK > 100 MHz 	 When the cache is hit: One cycle When the cache is missed while ROM cache operation is enabled, or when ROM cache operation is disabled: One cycle if ICLK ≤ 50 MHz Two cycles if 50 MHz < ICLK ≤ 100 MHz Three cycles if ICLK > 100 MHz
Value after erasure	FFh	FFh
Programming/erasing method	 Self-programming: The code flash memory can be programmed and erased, and the option-setting memory can be programmed with the FACI command specified in the area for issuing the FACI command (007E 0000h). Serial programming: Programming and erasing by the serial programmer through the serial interface communication. 	 Self-programming: The code flash memory can be programmed and erased, and the option-setting memory can be programmed with the FACI command specified in the area for issuing the FACI command (007E 0000h). Serial programming: Programming and erasing by the serial programmer through the serial interface communication.
Security function	Protection against illicit tampering or reading the flash memory	Protection against illicit tampering or reading the flash memory
Protection	Protection against erroneous rewriting of the flash memory	Protection against erroneous rewriting of the flash memory
Dual bank function		 The program can be updated safely with the dual bank structure even if programming is canceled. Linear mode: The code flash memory is used as one area. Dual mode: The code flash memory is divided into two areas.
Trusted memory (TM) function	Protection against illicit reading of the code flash memory:Linear mode: blocks 8 and 9	 Protection against illicit reading of the code flash memory Linear mode: blocks 8 and 9 Dual mode: blocks 8, 9, 46, and 47

Table 2.22	Comparison of	Specifications	for the C	Code Flash	Memory
------------	---------------	-----------------------	-----------	------------	--------

Item	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
Background operations (BGOs)		 The code flash memory can be read while the code flash memory is being programmed or erased. The data flash memory can be read while the code flash memory is being programmed or erased. The code flash memory can be read while the data flash memory is being programmed or erased.
Units of programming	Units of programming for the user	Units of programming for the user
and erasure	Units of erasure for the user area: Block units	Units of erasure for the user area: Block units
Other functions	Interrupts can be accepted during self-programming	Interrupts can be accepted during self-programming.
	The startup area of the code flash memory is selectable from blocks 0 and 1.	The startup area of the code flash memory is selectable from blocks 0 and 1.
On-board programming (Serial programming/ Self-programming)	 Programming/erasure in boot mode (for the SCI interface) The asynchronous serial interface (SCI1) is used The transfer rate is adjusted automatically Programming/erasure in boot mode (for the USB interface) USBb is used Dedicated hardware is not required, so direct connection to a PC is possible Programming/erasure in boot mode (for the FINE interface) FINE is used Programming/erasure by self- programming The code flash memory can be programmed and erased without resetting the system 	 Programming/erasure in boot mode (for the SCI interface) The asynchronous serial interface (SCI1) is used The transfer rate is adjusted automatically Programming/erasure in boot mode (for the USB interface) USBb is used Dedicated hardware is not required, so direct connection to a PC is possible Programming/erasure in boot mode (for the FINE interface) FINE is used Programming/erasure by self- programming The code flash memory can be programmed and erased without resetting the system
Off-board programming	Programming and erasure of the code flash memory and option-setting memory by using a parallel programmer is possible	Programming and erasure of the code flash memory and option-setting memory by using a parallel programmer is possible
Unique ID	16-byte ID code specific to each MCU	16-byte ID code specific to each MCU

Item	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
Memory capacity	—	Data area: 32 Kbytes
Read cycle	—	Reading proceeds in every cycle of FCLK
Value after erasure		Undefined
Programming/erasing method	_	 Self-programming: The data flash memory can be programmed and erased with the FACI command specified in the area for issuing the FACI command (007E 0000h). Serial programming: Programming and erasing by the serial programmer through the serial interface communication.
Security function	_	Protection against illicit tampering or reading the flash memory
Protection	_	Protection against erroneous rewriting of the flash memory
Background operations (BGOs)	_	 The data flash memory can be read while the code flash memory is being programmed or erased. The code flash memory can be read while the data flash memory is being programmed or erased.
Units of programming and erasure	_	Unit of programming for the data area: 4 bytes Unit of erasure for the data area: 64/128/256 bytes
Other functions	_	Interrupts can be accepted during self- programming.
On-board programming (Serial programming/ Self-programming)		 Programming/erasure in boot mode (for the SCI interface) The asynchronous serial interface (SCI1) is used. The transfer rate is adjusted automatically. Programming/erasure in boot mode (for the USB interface) USBb is used. Dedicated hardware is not required, so direct connection to a PC is possible. Programming/erasure in boot mode (for the FINE interface) FINE is used Programming and erasure by self-programming The flash memory can be programmed and erased without resetting the system.

Table 2.23 Comparison of Specifications for the Data Flash Memory

Register	Bit Name	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
FWEPROR	FLWE[1:0]	Flash Programming and Erasure Enable	Flash Programming and Erasure Enable
		b1 b0	b1 b0
		0 0: Programming/erasure is disabled.	0 0: Programming/erasure and blank checking are disabled.
		0 1: Programming/erasure is enabled.	0 1: Programming/erasure and blank checking are enabled.
		1 0: Programming/erasure is disabled.	1 0: Programming/erasure and blank checking are disabled.
		1 1: Programming/erasure is disabled.	1 1: Programming/erasure and blank checking are disabled.
FASTAT	DFAE	_	Data Flash Memory Access Violation Flag
FAEINT	DFAEIE	_	Data Flash Memory Access Violation Interrupt Enable
FEADDR	—	_	FACI Command End Address Register
FENTRYR	FENTRYD		Data Flash Memory P/E Mode Entry
FCMDR	CMDR[7:0]	Refer to Table 2.25 Comparison of	Refer to Table 2.25 Comparison of
	PCMDR[7:0]	FCMDR Register Status after	FCMDR Register Status after
		Receiving Commands.	Receiving Commands.
FBCCNT	—	—	Data Flash Blank Check Control Register
FBCSTAT	—	—	Data Flash Blank Check Status Register
FPSADDR	—	_	Data Flash Programming Start Address Register
FSUACR	—	Start-Up Area Control Register	Start-Up Area Control Register
			Do not use this register when dual mode
			(MDE.BANKMD[2:0] = 000b) is selected.
			In dual mode, starting up proceeds from
			startup area 0.
EEPFCLK	—	—	Data Flash Memory Access
			Frequency Setting Register

Command	RX65N (CF ≤ 1 Mbyte)		RX65N (CF ≥ 1.5 Mbytes)	
Commanu	CMDR	FCMDR	CMDR	FCMDR
Programming	E8h	Previous command	E8h	Previous command
Block erase	D0h	20h	D0h	20h
Multi-block erase	—	—	D0h	21h
P/E suspend	B0h	Previous command	B0h	Previous command
P/E resume	D0h	Previous command	D0h	Previous command
Status clear	50h	Previous command	50h	Previous command
Forced stop	B3h	Previous command	B3h	Previous command
Blank check	—	—	D0h	71h
Configuration setting	40h	Previous command	40h	Previous command

Table 2.25 Comparison of FCMDR Register Status after Receiving Commands

3. Comparison of Pin Functions

Table 3.1 lists the Comparison of Pin Functions for 144/145 Pin Packages and Table 3.2 lists the Comparison of Pin Functions for 100 Pin Packages. The item which exists only in either of the product is indicated as blue text. Black text indicates there is no differences between the products.

144 Pin LFQFP	145 Pin TFLGA	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
1	A1	AVSS0	AVSS0
2	B3	P05/IRQ13/DA1	P05/IRQ13/DA1
3	B1	AVCC1	AVCC1
4	D3	P03/IRQ11/DA0	P03/IRQ11/DA0
5	C1	AVSS1	AVSS1
6	C2	P02/TMCI1/SCK6/IRQ10/AN120	P02/TMCI1/SCK6/IRQ10/AN120
7	D4	P01/TMCI0/RXD6/SMISO6/SSCL6/IRQ9 /AN119	P01/TMCI0/RXD6/SMISO6/SSCL6/IRQ9 /AN119
8	D1	P00/TMRI0/TXD6/SMOSI6/SSDA6/IRQ8 /AN118	P00/TMRI0/TXD6/SMOSI6/SSDA6/IRQ8 /AN118
9	D2	PF5/IRQ4	PF5/IRQ4
10	E4	EMLE	EMLE
11	E3	PJ5/POE8#/CTS2#/RTS2#/SS2#	PJ5/POE8#/CTS2#/RTS2#/SS2#
12	A10	VSS	VSS
13	F3	PJ3/EDACK1/MTIOC3C/ET0_EXOUT/C	PJ3/EDACK1/MTIOC3C/ET0_EXOUT/C
		TS6#/RTS6/#SS6#/CTS0#/RTS0#/SS0#	TS6#/RTS6#/SS6#/CTS0#/RTS0#/SS0#
14	E2	VCL	VCL
15	F4	VBATT	VBATT
16	G3	MD/FINED	MD/FINED
17	F1	XCIN	XCIN
18	F2	XCOUT	XCOUT
19	G2	RES#	RES#
20	G1	P37/XTAL	P37/XTAL
21	C6	VSS	VSS
22	H1	P36/EXTAL	P36/EXTAL
23	B10	VCC	VCC
24	H4	P35/UPSEL/NMI	P35/UPSEL/NMI
25	J1	P34/TRST#/MTIOC0A/TMCI3/PO12/PO E10#/ET0_LINKSTA/SCK6/SCK0/IRQ4	P34/TRST#/MTIOC0A/TMCI3/PO12/PO E10#/ET0_LINKSTA/SCK6/SCK0/IRQ4

 Table 3.1
 Comparison of Pin Functions for 144/145 Pin Packages

144 Pin LFQFP	145 Pin TFLGA	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
26	J2	P33/EDREQ1/MTIOC0D/TIOCD0/TMRI3 /PO11/POE4#/POE11#/RXD6/SMISO6/ SSCL6/RXD0/SMISO0/SSCL0/CRX0/PC KO/IRQ3-DS	P33/EDREQ1/MTIOC0D/TIOCD0/TMRI3 /PO11/POE4#/POE11#/RXD6/SMISO6/ SSCL6/RXD0/SMISO0/SSCL0/CRX0/PC KO/IRQ3-DS
27	J3	P32/MTIOC0C/TIOCC0/TMO3/P010/RT CIC2/RTCOUT/POE0#/POE10#/TXD6/S MOSI6/SSDA6/TXD0/SMOSI0/SSDA0/C TX0/USB0_VBUSEN/VSYNC/IRQ2-DS	P32/MTIOC0C/TIOCC0/TMO3/P010/RT CIC2/RTCOUT/POE0#/POE10#/TXD6/S MOSI6/SSDA6/TXD0/SMOSI0/SSDA0/C TX0/USB0_VBUSEN/VSYNC/IRQ2-DS
28	К3	P31/TMS/MTIOC4D/TMCI2/PO9/RTCIC 1/CTS1#/RTS1#/SS1#/SSLB0-A/IRQ1- DS	P31/TMS/MTIOC4D/TMCI2/PO9/RTCIC 1/CTS1#/RTS1#/SS1#/SSLB0-A/IRQ1- DS
29	J4	P30/TDI/MTIOC4B/TMRI3/PO8/RTCIC0/ POE8#/RXD1/SMISO1/SSCL1/MISOB- A/IRQ0-DS	P30/TDI/MTIOC4B/TMRI3/PO8/RTCIC0/ POE8#/RXD1/SMISO1/SSCL1/MISOB- A/IRQ0-DS
30	K1	P27/TCK/CS7#/MTIOC2B/TMCI3/PO7/S CK1/RSPCKB-A	P27/TCK/CS7#/MTIOC2B/TMCI3/PO7/S CK1/RSPCKB-A
31	K2	P26/TDO/CS6#/MTIOC2A/TMO1/PO6/T XD1/SMOSI1/SSDA1/CTS3#/RTS3#/SS 3#/MOSIB-A	P26/TDO/CS6#/MTIOC2A/TMO1/PO6/T XD1/SMOSI1/SSDA1/CTS3#/RTS3#/SS 3#/MOSIB-A
32	L1	P25/CS5#/EDACK1/MTIOC4C/MTCLKB/ TIOCA4/PO5/RXD3/SMISO3/SSCL3/ HSYNC/ADTRG0#	P25/CS5#/EDACK1/MTIOC4C/MTCLKB/ TIOCA4/PO5/RXD3/SMISO3/SSCL3/ SDHI_CD/HSYNC/ADTRG0#
33	L4	P24/CS4#/EDREQ1/MTIOC4A/MTCLKA/ TIOCB4/TMRI1/PO4/SCK3/USB0_VBUS EN/PIXCLK	P24/CS4#/EDREQ1/MTIOC4A/MTCLKA/ TIOCB4/TMRI1/PO4/SCK3/USB0_VBUS EN/SDHI_WP/PIXCLK
34	L2	P23/EDACK0/MTIOC3D/MTCLKD/TIOC D3/PO3/TXD3/SMOSI3/SSDA3/CTS0#/ RTS0#/SS0#/PIXD7	P23/EDACK0/MTIOC3D/MTCLKD/TIOC D3/PO3/TXD3/SMOSI3/SSDA3/CTS0#/ RTS0#/SS0#/SDHI_D1-C/PIXD7
35	M1	P22/EDREQ0/MTIOC3B/MTCLKC/TIOC C3/TMO0/PO2/SCK0/USB0_OVRCURB/ PIXD6	P22/EDREQ0/MTIOC3B/MTCLKC/TIOC C3/TMO0/PO2/SCK0/USB0_OVRCURB/ SDHI_D0-C/PIXD6
36	N1	P21/MTIOC1B/MTIOC4A/TIOCA3/TMCI 0/PO1/RXD0/SMISO0/SSCL0/USB0_EX ICEN/PIXD5/IRQ9	P21/MTIOC1B/MTIOC4A/TIOCA3/TMCI 0/PO1/RXD0/SMISO0/SSCL0/SCL1/US B0_EXICEN/SDHI_CLK-C/PIXD5/IRQ9
37	N2	P20/MTIOC1A/TIOCB3/TMRI0/PO0/TXD 0/SMOSI0/SSDA0/USB0_ID/PIXD4/IRQ 8	P20/MTIOC1A/TIOCB3/TMRI0/PO0/TXD 0/SMOSI0/SSDA0/SDA1/USB0_ID/SDHI _CMD-C/PIXD4/IRQ8
38	M2	P17/MTIOC3A/MTIOC3B/MTIOC4B/TIO CB0/TCLKD/TMO1/PO15/POE8#/SCK1/ TXD3/SMOSI3/SSDA3/SDA2- DS/PIXD3/IRQ7/ADTRG1#	P17/MTIOC3A/MTIOC3B/MTIOC4B/TIO CB0/TCLKD/TMO1/PO15/POE8#/SCK1/ TXD3/SMOSI3/SSDA3/SDA2- DS/SDHI_D3-C/PIXD3/IRQ7/ADTRG1#
39	N3	P87/MTIOC4C/TIOCA2/SMOSI10/SSDA 10/TXD10/PIXD2	P87/MTIOC4C/TIOCA2/SMOSI10/SSDA 10/TXD10/SDHI_D2-C/PIXD2
40	L3	P16/MTIOC3C/MTIOC3D/TIOCB1/TCLK C/TMO2/PO14/RTCOUT/TXD1/SMOSI1/ SSDA1/RXD3/SMISO3/SSCL3/SCL2- DS/USB0_VBUSEN/USB0_VBUS/USB0 _OVRCURB/IRQ6/ADTRG0#	P16/MTIOC3C/MTIOC3D/TIOCB1/TCLK C/TMO2/PO14/RTCOUT/TXD1/SMOSI1/ SSDA1/RXD3/SMISO3/SSCL3/SCL2- DS/USB0_VBUSEN/USB0_VBUS/USB0 _OVRCURB/IRQ6/ADTRG0#
41	M3	P86/MTIOC4D/TIOCA0/SMISO10/SSCL 10/RXD10/PIXD1	P86/MTIOC4D/TIOCA0/SMISO10/SSCL 10/RXD10/PIXD1
42	K4	P15/MTIOC0B/MTCLKB/TIOCB2/TCLKB /TMCI2/PO13/RXD1/SMISO1/SSCL1/SC K3/CRX1-DS/PIXD0/IRQ5	P15/MTIOC0B/MTCLKB/TIOCB2/TCLKB /TMCI2/PO13/RXD1/SMISO1/SSCL1/SC K3/CRX1-DS/PIXD0/IRQ5

144 Pin	145 Pin	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
	IFLGA		
43	N4		
		/TMRI2/PU15/CTS1#/RTS1#/SS1#/	/TMRI2/PU15/CTS1#/RTS1#/SS1#/
4.4	1.5		
44	L5		
			DZ/SMOSIZ/SSDAZ/SDAU[FM+]/IRQ3/
45	N/A		
45	1014	SCL0[FM+1/IRQ2	SCL0[FM+1/IRQ2
46	M5	VCC USB	VCC USB
47	N5	USB0 DM	USB0 DM
48	N6	USB0 DP	USB0 DP
49	M6	VSS USB	VSS USB
50	16		
50			
51	IN7		
			/SMOSI7/SSDA7/CRX1/IRQ10
52	K5	P54/TRDATA2/ALE/EDACK0/MTIOC4B/	P54/TRDATA2/ALE/D1[A1/D1]/EDACK0/
		TMCI1/ET0 LINKSTA/CTS2#/RTS2#/	MTIOC4B/TMCI1/ET0 LINKSTA/CTS2#/
		SS2#/CTX1	RTS2#/SS2#/CTX1
53	K6	P53/BCLK	P53/BCLK
54	L7	P52/RD#/RXD2/SMISO2/SSCL2/	P52/RD#/RXD2/SMISO2/SSCL2/
		SSLB3-A	SSLB3-A
55	K7	P51/WR1#/BC1#/WAIT#/SCK2/SSLB2-A	P51/WR1#/BC1#/WAIT#/SCK2/SSLB2-A
56	M7	P50/WR0#/WR#/TXD2/SMOSI2/SSDA2/	P50/WR0#/WR#/TXD2/SMOSI2/SSDA2/
		SSLB1-A	SSLB1-A
57	C13	VSS	VSS
58	L8	P83/TRCLK/EDACK1/MTIOC4C/ET0_C	P83/TRCLK/EDACK1/MTIOC4C/ET0_C
		RS/RMII0_CRS_DV/SCK10/SS10#/	RS/RMII0_CRS_DV/SCK10/SS10#/
		CTS10#	CTS10#
59	D5	VCC	VCC
60	N9	PC7/UB/A23/CS0#/MTIOC3A/MTCLKB/	PC7/UB/A23/CS0#/MTIOC3A/MTCLKB/
		TMO2/PO31/TOC0/CACREF/ET0_COL/	TMO2/PO31/TOC0/CACREF/ET0_COL/
		TXD8/SMOSI8/SSDA8/SMOSI10/SSDA1	TXD8/SMOSI8/SSDA8/SMOSI10/SSDA1
		0/TXD10/MISOA-A/MMC_D7-A/IRQ14	0/TXD10/MISOA-A/MMC_D7-A/IRQ14
61	M8	PC6/A22/CS1#/MTIOC3C/MTCLKA/TMC	PC6/D2[A2/D2]/A22/CS1#/MTIOC3C/MT
		08/350L6/51VII5010/350L10/RAD10/IVI	
62	10		PC5/D2[A2/D2]/A21/CS2#/M/AIT#/MTIO
02	L9		
		K10/RSPCKA-A/MMC_D5-A	/SCK8/SCK10/RSPCKA-A/MMC_D5-A
63	N10	P82/TRSYNC/EDREQ1/MTIOC4A/PO28	P82/TRSYNC/EDREQ1/MTIOC4A/PO28
00	1110	/ET0_ETXD1/RMII0_TXD1/SMOSI10/SS	/ET0_ETXD1/RMII0_TXD1/SMOSI10/SS
		DA10/TXD10/MMC D4-A	DA10/TXD10/MMC D4-A
64	M9		 P81/TRDATA1/EDACK0/MTIOC3D/PO2
-		7/ET0_ETXD0/RMII0_TXD0/SMISO10/S	7/ET0_ETXD0/RMII0_TXD0/SMISO10/S
		SCL10/RXD10/QIO3-	SCL10/RXD10/QIO3-A/
		A/SDHI_CD/MMC_D3-A	SDHI_CD/MMC_D3-A
65	K9	P80/TRDATA0/EDREQ0/MTIOC3B/PO2	P80/TRDATA0/EDREQ0/MTIOC3B/PO2
		6/ET0_TX_EN/RMII0_TXD_EN/SCK10/R	6/ET0_TX_EN/RMII0_TXD_EN/SCK10/R
		TS10#/QIO2-A/SDHI_WP/MMC_D2-A	TS10#/QIO2-A/SDHI_WP/MMC_D2-A

144 Pin LFQFP	145 Pin TFLGA	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
66	L10	PC4/A20/CS3#/MTIOC3D/MTCLKC/TM CI1/PO25/POE0#/ET0_TX_CLK/SCK5/C TS8#/RTS8#/SS8#/SS10#/CTS10#/RTS 10#/SSLA0-A/QMI-A/QIO1-A/SDHI_D1- A/SDSI_D1-A/MMC_D1-A	PC4/A20/CS3#/MTIOC3D/MTCLKC/TM CI1/PO25/POE0#/ET0_TX_CLK/SCK5/C TS8#/RTS8#/SS8#/SS10#/CTS10#/RTS 10#/SSLA0-A/QMI-A/QIO1-A/ SDHI_D1-A/SDSI_D1-A/MMC_D1-A
67	N11	PC3/A19/MTIOC4D/TCLKB/PO24/ET0_ TX_ER/TXD5/SMOSI5/SSDA5/QMO- A/QIO0-A/SDHI_D0-A/SDSI_D0-A/ MMC_D0-A	PC3/A19/MTIOC4D/TCLKB/PO24/ET0_ TX_ER/TXD5/SMOSI5/SSDA5/QMO- A/QIO0-A/SDHI_D0-A/SDSI_D0-A/ MMC_D0-A
68	M10	P77/TRDATA7/CS7#/PO23/ET0_RX_ER /RMII0_RX_ER/SMOSI11/SSDA11/TXD 11/QSPCLK-A/SDHI_CLK-A/ SDSI_CLK-A/MMC_CLK-A	P77/TRDATA7/CS7#/PO23/ET0_RX_ER /RMII0_RX_ER/SMOSI11/SSDA11/TXD 11/QSPCLK-A/SDHI_CLK-A/ SDSI_CLK-A/MMC_CLK-A
69	K10	P76/TRDATA6/CS6#/PO22/ET0_RX_CL K/REF50CK0/SMISO11/SSCL11/RXD11 /QSSL-A/SDHI_CMD-A/SDSI_CMD-A/ MMC_CMD-A	P76/TRDATA6/CS6#/PO22/ET0_RX_CL K/REF50CK0/SMISO11/SSCL11/RXD11 /QSSL-A/SDHI_CMD-A/SDSI_CMD-A/ MMC_CMD-A
70	L11	PC2/A18/MTIOC4B/TCLKA/PO21/ET0_ RX_DV/RXD5/SMISO5/SSCL5/SSLA3- A/SDHI_D3-A/SDSI_D3-A/MMC_CD-A	PC2/A18/MTIOC4B/TCLKA/PO21/ET0_ RX_DV/RXD5/SMISO5/SSCL5/SSLA3- A/SDHI_D3-A/SDSI_D3-A/MMC_CD-A
71	N12	P75/TRSYNC1/CS5#/PO20/ET0_ERXD 0/RMII0_RXD0/SCK11/RTS11#/SDHI_D 2-A/SDSI_D2-A/MMC_RES#-A	P75/TRSYNC1/CS5#/PO20/ET0_ERXD 0/RMII0_RXD0/SCK11/RTS11#/SDHI_D 2-A/SDSI_D2-A/MMC_RES#-A
72	N13	P74/TRDATA5/A20/CS4#/PO19/ET0_E RXD1/RMII0_RXD1/SS11#/CTS11#	P74/TRDATA5/A20/CS4#/PO19/ET0_E RXD1/RMII0_RXD1/SS11#/CTS11#
73	M12	PC1/A17/MTIOC3A/TCLKD/PO18/ET0_ ERXD2/SCK5/SSLA2-A/IRQ12	PC1/A17/MTIOC3A/TCLKD/PO18/ET0_ ERXD2/SCK5/SSLA2-A/IRQ12
74	D11	VCC	VCC
75	M11	PC0/A16/MTIOC3C/TCLKC/PO17/ET0_ ERXD3/CTS5#/RTS5#/SS5#/SSLA1-A/ IRQ14	PC0/A16/MTIOC3C/TCLKC/PO17/ET0_ ERXD3/CTS5#/RTS5#/SS5#/SSLA1-A/ IRQ14
76	E1	VSS	VSS
77	L12	P73/TRDATA4/CS3#/PO16/ET0_WOL	P73/TRDATA4/CS3#/PO16/ET0_WOL
78	K11	PB7/A15/MTIOC3B/TIOCB5/PO31/ET0_ CRS/RMII0_CRS_DV/TXD9/SMOSI9/SS DA9/SMOSI11/SSDA11/TXD11/ SDSI_D1-B	PB7/A15/MTIOC3B/TIOCB5/PO31/ET0_ CRS/RMII0_CRS_DV/TXD9/SMOSI9/SS DA9/SMOSI11/SSDA11/TXD11/ SDSI_D1-B
79	K12	PB6/A14/MTIOC3D/TIOCA5/PO30/ET0_ ETXD1/RMII0_TXD1/RXD9/SMISO9/SS CL9/SMISO11/SSCL11/RXD11/ SDSI_D0-B	PB6/A14/MTIOC3D/TIOCA5/PO30/ET0_ ETXD1/RMII0_TXD1/RXD9/SMISO9/SS CL9/SMISO11/SSCL11/RXD11/ SDSI_D0-B
80	K13	PB5/A13/MTIOC2A/MTIOC1B/TIOCB4/T MRI1/PO29/POE4#/ET0_ETXD0/RMII0_ TXD0/SCK9/SCK11/SDSI_CLK-B	PB5/A13/MTIOC2A/MTIOC1B/TIOCB4/T MRI1/PO29/POE4#/ET0_ETXD0/RMII0_ TXD0/SCK9/SCK11/SDSI_CLK-B/ LCD_CLK-B
81	J11	PB4/A12/TIOCA4/PO28/ET0_TX_EN/R MII0_TXD_EN/CTS9#/RTS9#/SS9#/SS1 1#/CTS11#/RTS11#/SDSI_CMD-B	PB4/A12/TIOCA4/PO28/ET0_TX_EN/R MII0_TXD_EN/CTS9#/RTS9#/SS9#/SS1 1#/CTS11#/RTS11#/SDSI_CMD-B/ LCD_TCON0-B
82	J10	PB3/A11/MTIOC0A/MTIOC4A/TIOCD3/T CLKD/TMO0/PO27/POE11#/ET0_RX_E R/RMII0_RX_ER/SCK4/SCK6/ SDSI_D3-B	PB3/A11/MTIOC0A/MTIOC4A/TIOCD3/T CLKD/TMO0/PO27/POE11#/ET0_RX_E R/RMII0_RX_ER/SCK4/SCK6/ SDSI_D3-B/LCD_TCON1-B

144 Pin LFQFP	145 Pin TFLGA	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
83	J12	PB2/A10/TIOCC3/TCLKC/PO26/ET0_R X_CLK/REF50CK0/CTS4#/RTS4#/SS4#/ CTS6#/RTS6#/SS6#/SDSI_D2-B	PB2/A10/TIOCC3/TCLKC/PO26/ET0_R X_CLK/REF50CK0/CTS4#/RTS4#/SS4#/ CTS6#/RTS6#/SS6#/SDSI_D2-B/ LCD_TCON2-B
84	J13	PB1/A9/MTIOC0C/MTIOC4C/TIOCB3/ TMCI0/PO25/ET0_ERXD0/RMII0_RXD0/ TXD4/SMOSI4/SSDA4/TXD6/SMOSI6/ SSDA6/IRQ4-DS	PB1/A9/MTIOC0C/MTIOC4C/TIOCB3/ TMCI0/PO25/ET0_ERXD0/RMII0_RXD0/ TXD4/SMOSI4/SSDA4/TXD6/SMOSI6/ SSDA6/LCD_TCON3-B/IRQ4-DS
85	H10	P72/A19/CS2#/ET0_MDC	P72/A19/CS2#/ET0_MDC
86	H11	P71/A18/CS1#/ET0_MDIO	P71/A18/CS1#/ET0_MDIO
87	H12	PB0/A8/MTIC5W/TIOCA3/PO24/ET0_E RXD1/RMII0_RXD1/RXD4/SMISO4/SSC L4/RXD6/SMISO6/SSCL6/IRQ12	PB0/A8/MTIC5W/TIOCA3/PO24/ET0_E RXD1/RMII0_RXD1/RXD4/SMISO4/SSC L4/RXD6/SMISO6/SSCL6/ LCD_DATA0-B/IRQ12
88	H13	PA7/A7/TIOCB2/PO23/ET0_WOL/ MISOA-B	PA7/A7/TIOCB2/PO23/ET0_WOL/ MISOA-B/LCD_DATA1-B
89	G11	PA6/A6/MTIC5V/MTCLKB/TIOCA2/TMCI 3/PO22/POE10#/ET0_EXOUT/CTS5#/R TS5#/SS5#/MOSIA-B	PA6/A6/MTIC5V/MTCLKB/TIOCA2/TMCI 3/PO22/POE10#/ET0_EXOUT/CTS5#/R TS5#/SS5#/MOSIA-B/LCD_DATA2-B
90	G10	PA5/A5/MTIOC6B/TIOCB1/PO21/ET0_L INKSTA/RSPCKA-B	PA5/A5/MTIOC6B/TIOCB1/PO21/ET0_L INKSTA/RSPCKA-B/LCD_DATA3-B
91	G12	VCC	VCC
92	G13	PA4/A4/MTIC5U/MTCLKA/TIOCA1/TMRI 0/PO20/ET0_MDC/TXD5/SMOSI5/SSDA 5/SSLA0-B/IRQ5-DS	PA4/A4/MTIC5U/MTCLKA/TIOCA1/TMRI 0/PO20/ET0_MDC/TXD5/SMOSI5/SSDA 5/SSLA0-B/LCD_DATA4-B/IRQ5-DS
93	F11	VSS	VSS
94	F10	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/TC LKB/PO19/ET0_MDIO/RXD5/SMISO5/ SSCL5/IRQ6-DS	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/TC LKB/PO19/ET0_MDIO/RXD5/SMISO5/ SSCL5/LCD_DATA5-B/IRQ6-DS
95	F13	PA2/A2/MTIOC7A/PO18/RXD5/SMISO5/ SSCL5/SSLA3-B	PA2/A2/MTIOC7A/PO18/RXD5/SMISO5/ SSCL5/SSLA3-B/LCD_DATA6-B
96	F12	PA1/A1/MTIOC0B/MTCLKC/MTIOC7B/ TIOCB0/PO17/ET0_WOL/SCK5/ SSLA2-B/IRQ11	PA1/A1/MTIOC0B/MTCLKC/MTIOC7B/ TIOCB0/PO17/ET0_WOL/SCK5/ SSLA2-B/LCD_DATA7-B/IRQ11
97	E10	PA0/BC0#/A0/MTIOC4A/MTIOC6D/TIOC A0/PO16/CACREF/ET0_TX_EN/RMII0_ TXD_EN/SSLA1-B	PA0/BC0#/A0/MTIOC4A/MTIOC6D/TIOC A0/PO16/CACREF/ET0_TX_EN/RMII0_ TXD_EN/SSLA1-B/LCD_DATA8-B
98	E13	P67/DQM1/CS7#/MTIOC7C/IRQ15	P67/DQM1/CS7#/MTIOC7C/IRQ15
99	E11	P66/DQM0/CS6#/MTIOC7D	P66/DQM0/CS6#/MTIOC7D
100	E12	P65/CKE/CS5#	P65/CKE/CS5#
101	D10	PE7/D15[A15/D15]/MTIOC6A/TOC1/MIS OB-B/SDHI_WP/MMC_RES#-B/ IRQ7/AN105	PE7/D15[A15/D15]/D7[A7/D7]/MTIOC6A /TOC1/MISOB-B/ SDHI_WP/MMC_RES#-B/ LCD_DATA9-B/IRQ7/AN105
102	D13	PE6/D14[A14/D14]/MTIOC6C/TIC1/MOS IB-B/SDHI_CD/MMC_CD-B/IRQ6/AN104	PE6/D14[A14/D14]/D6[A6/D6]/MTIOC6C /TIC1/MOSIB-B/SDHI_CD/MMC_CD-B/ LCD_DATA10-B/IRQ6/AN104
103	H2	VCC	VCC
104	C12	P70/SDCLK	P70/SDCLK
105	H3	I VSS	I VSS

144 Pin LFQFP	145 Pin TFLGA	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
106	D12	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B/ ET0_RX_CLK/REF50CK0/RSPCKB-B/	PE5/D13[A13/D13]/D5[A5/D5]/MTIOC4C /MTIOC2B/ET0_RX_CLK/REF50CK0/RS
107	B13	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A/ PO28/ET0_ERXD2/SSLB0-B/AN102	PCKB-B/LCD_DATATI-B/IRQ3/ANT03 PE4/D12[A12/D12]/D4[A4/D4]/MTIOC4D /MTIOC1A/PO28/ET0_ERXD2/SSLB0-B/ LCD_DATA12-B/AN102
108	A13	PE3/D11[A11/D11]/MTIOC4B/PO26/TO C3/POE8#/ET0_ERXD3/CTS12#/RTS12 #/SS12#/MMC_D7-B /AN101	PE3/D11[A11/D11]/D3[A3/D3]/MTIOC4B /PO26/TOC3/POE8#/ET0_ERXD3/CTS1 2#/RTS12#/SS12#/MMC_D7-B/ LCD_DATA13-B/AN101
109	B12	PE2/D10[A10/D10]/MTIOC4A/PO23/TIC 3/RXD12/SMISO12/SSCL12/RXDX12/S SLB3-B/MMC_D6-B/IRQ7-DS/AN100	PE2/D10[A10/D10]/D2[A2/D2]/MTIOC4A /PO23/TIC3/RXD12/SMISO12/SSCL12/ RXDX12/SSLB3-B/MMC_D6-B/ LCD_DATA14-B/IRQ7-DS/AN100
110	A12	PE1/D9[A9/D9]/MTIOC4C/MTIOC3B/PO 18/TXD12/SMOSI12/SSDA12/TXDX12/S IOX12/SSLB2-B/MMC_D5-B/ANEX1	PE1/D9[A9/D9]/D1[A1/D1]/MTIOC4C/MT IOC3B/PO18/TXD12/SMOSI12/SSDA12/ TXDX12/SIOX12/SSLB2-B/MMC_D5-B/ LCD_DATA15-B/ANEX1
111	C11	PE0/D8[A8/D8]/MTIOC3D/SCK12/ SSLB1-B/MMC_D4-B/ANEX0	PE0/D8[A8/D8]/D0[A0/D0]/MTIOC3D/ SCK12/SSLB1-B/MMC_D4-B/ LCD_DATA16-B/ANEX0
112	D9	P64/WE#/CS4#	P64/WE#/D3[A3/D3]/CS4#
113	C10	P63/CAS#/CS3#	P63/CAS#/D2[A2/D2]/CS3#
114	A11	P62/RAS#/CS2#	P62/RAS#/D1[A1/D1]/CS2#
115	B11	P61/SDCS#/CS1#	P61/SDCS#/D0[A0/D0]/CS1#
116	L13	VSS	VSS
117	D8	P60/CS0#	P60/CS0#
118	K8	VCC	VCC
119	C9	PD7/D7[A7/D7]/MTIC5U/POE0#/SSLC3- A/QMI-B/QIO1-B/SDHI_D1-B/MMC_D1- B/IRQ7/AN107	PD7/D7[A7/D7]/MTIC5U/POE0#/SSLC3- A/QMI-B/QIO1-B/SDHI_D1-B/MMC_D1- B/LCD_DATA17-B/IRQ7/AN107
120	A9	PD6/D6[A6/D6]/MTIC5V/MTIOC8A/POE 4#/SSLC2-A/QMO-B/QIO0-B/SDHI_D0- B/MMC_D0-B/IRQ6/AN106	PD6/D6[A6/D6]/MTIC5V/MTIOC8A/POE 4#/SSLC2-A/QMO-B/QIO0-B/SDHI_D0- B/MMC_D0-B/LCD_DATA18-B/ IRQ6/AN106
121	D7	PD5/D5[A5/D5]/MTIC5W/MTIOC8C/POE 10#/SSLC1-A/QSPCLK-B/SDHI_CLK- B/MMC_CLK-B/IRQ5/AN113	PD5/D5[A5/D5]/MTIC5W/MTIOC8C/POE 10#/SSLC1-A/QSPCLK-B/SDHI_CLK- B/MMC_CLK-B/LCD_DATA19-B/ IRQ5/AN113
122	B9	PD4/D4[A4/D4]/MTIOC8B/POE11#/SSL C0-A/QSSL-B/SDHI_CMD- B/MMC_CMD-B/IRQ4/AN112	PD4/D4[A4/D4]/MTIOC8B/POE11#/SSL C0-A/QSSL-B/SDHI_CMD- B/MMC_CMD-B/LCD_DATA20-B/ IRQ4/AN112
123	C8	PD3/D3[A3/D3]/MTIOC8D/TOC2/POE8#/ RSPCKC-A/QIO3-B/SDHI_D3-B/ MMC_D3-B/IRQ3/AN111	PD3/D3[A3/D3]/MTIOC8D/TOC2/POE8#/ RSPCKC-A/QIO3-B/SDHI_D3-B/ MMC_D3-B/LCD_DATA21-B/IRQ3/ AN111
124	A8	PD2/D2[A2/D2]/MTIOC4D/TIC2/MISOC- A/CRX0/QIO2-B/SDHI_D2-B/MMC_D2- B/IRQ2/AN110	PD2/D2[A2/D2]/MTIOC4D/TIC2/MISOC- A/CRX0/QIO2-B/SDHI_D2-B/MMC_D2- B/LCD_DATA22-B/IRQ2/AN110
125	C7	PD1/D1[A1/D1]/MTIOC4B/POE0#/MOSI C-A/CTX0/IRQ1/AN109	PD1/D1[A1/D1]/MTIOC4B/POE0#/MOSI C-A/CTX0/LCD DATA23-B/IRQ1/AN109

144 Pin LFQFP	145 Pin TFLGA	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
126	B8	PD0/D0[A0/D0]/POE4#/IRQ0/AN108	PD0/D0[A0/D0]/POE4#/
			LCD_EXTCLK-B/IRQ0/AN108
127	D6	P93/A19/POE0#/CTS7#/RTS7#/SS7#/A	P93/A19/POE0#/CTS7#/RTS7#/SS7#/
		N117	AN117
128	A7	P92/A18/POE4#/RXD7/SMISO7/SSCL7/	P92/A18/POE4#/RXD7/SMISO7/SSCL7/
		AN116	AN116
129	B7	P91/A17/SCK7/AN115	P91/A17/SCK7/AN115
130	N8	VSS	VSS
131	A6	P90/A16/TXD7/SMOSI7/SSDA7/AN114	P90/A16/TXD7/SMOSI7/SSDA7/AN114
132	M13	VCC	VCC
133	B6	P47/IRQ15-DS/AN007	P47/IRQ15-DS/AN007
134	C5	P46/IRQ14-DS/AN006	P46/IRQ14-DS/AN006
135	A5	P45/IRQ13-DS/AN005	P45/IRQ13-DS/AN005
136	E5	P44/IRQ12-DS/AN004	P44/IRQ12-DS/AN004
137	B5	P43/IRQ11-DS/AN003	P43/IRQ11-DS/AN003
138	A4	P42/IRQ10-DS/AN002	P42/IRQ10-DS/AN002
139	C4	P41/IRQ9-DS/AN001	P41/IRQ9-DS/AN001
140	B4	VREFL0	VREFL0
141	A3	P40/IRQ8-DS/AN000	P40/IRQ8-DS/AN000
142	C3	VREFH0	VREFH0
143	B2	AVCC0	AVCC0
144	A2	P07/IRQ15/ADTRG0#	P07/IRQ15/ADTRG0#
-	G4	BSCANP	BSCANP

100 Pin LFQFP	100 Pin TFLGA	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
1	A2	AVCC1	AVCC1
2	B1	EMLE	EMLE
3	C2	AVSS1	AVSS1
4	C3	PJ3/EDACK1/MTIOC3C/ET0_EXOUT/C TS6#/RTS6#/SS6#/CTS0#/RTS0#/SS0#	PJ3/EDACK1/MTIOC3C/ET0_EXOUT/C TS6#/RTS6#/SS6#/CTS0#/RTS0#/SS0#
5	C1	VCL	VCL
6	D4	VBATT	VBATT
7	D3	MD/FINED	MD/FINED
8	D1	XCIN	XCIN
9	D2	XCOUT	XCOUT
10	E3	RES#	RES#
11	E1	P37/XTAL	P37/XTAL
12	E2	VSS	VSS
13	F1	P36/EXTAL	P36/EXTAL
14	F2	VCC	VCC
15	F3	P35/UPSEL/NMI	P35/UPSEL/NMI
16	E4	P34/TRST#/MTIOC0A/TMCI3/PO12/PO	P34/TRST#/MTIOC0A/TMCI3/PO12/PO
		E10#/ET0_LINKSTA/SCK6/SCK0/IRQ4	E10#/ET0_LINKSTA/SCK6/SCK0/IRQ4
17	G1	P33/EDREQ1/MTIOC0D/TIOCD0/TMRI 3/PO11/POE4#/POE11#/RXD6/SMISO6	P33/EDREQ1/MTIOC0D/TIOCD0/TMRI 3/PO11/POE4#/POE11#/RXD6/SMISO6
		/SSCL6/RXD0/SMISO0/SSCL0/CRX0/	/SSCL6/RXD0/SMISO0/SSCL0/CRX0/
		IRQ3-DS	IRQ3-DS
18	F4	P32/MTIOC0C/TIOCC0/TMO3/PO10/RT	P32/MTIOC0C/TIOCC0/TMO3/PO10/RT
		CIC2/RTCOUT/POE0#/POE10#/TXD6/	CIC2/RTCOUT/POE0#/POE10#/TXD6/
		SMOSI6/SSDA6/TXD0/SMOSI0/SSDA0	SMOSI6/SSDA6/TXD0/SMOSI0/SSDA0
		/CTX0/USB0_VBUSEN/IRQ2-DS	/CTX0/USB0_VBUSEN/IRQ2-DS
19	G2	P31/TMS/MTIOC4D/TMCI2/PO9/RTCIC	P31/TMS/MTIOC4D/TMCI2/PO9/RTCIC
	-	DS	1/CTS1#/RTS1#/SS1#/SSLB0-A/IRQ1- DS
20	G3	P30/TDI/MTIOC4B/TMRI3/PO8/RTCIC0	P30/TDI/MTIOC4B/TMRI3/PO8/RTCIC0
		/POE8#/RXD1/SMISO1/SSCL1/	/POE8#/RXD1/SMISO1/SSCL1/
0.1	0.1	MISOB-A/IRQU-DS	MISUB-A/IRQU-DS
21	G4	SCK1/RSPCKB-A	SCK1/RSPCKB-A
22	H1	P26/TDO/CS6#/MTIOC2A/TMO1/PO6/	P26/TDO/CS6#/MTIOC2A/TMO1/PO6/
		TXD1/SMOSI1/SSDA1/CTS3#/RTS3#/	TXD1/SMOSI1/SSDA1/CTS3#/RTS3#/
	110		
23	H2		
		/TIUCA4/PU5/RXD3/SMISU3/SSCL3/	ADTRCO#
24	11		
24	JI	TIOCB4/TMP14/PO4/SCK3/USB0_VB1	TIOCB4/TMP11/PO4/SCK3/USB0_VBU
		SEN	SEN
25	K1	P23/EDACK0/MTIOC3D/MTCLKD/TIOC	
20		D3/PO3/TXD3/SMOSI3/SSDA3/CTS0#/	D3/PO3/TXD3/SMOSI3/SSDA3/CTS0#/
		RTS0#/SS0#	RTS0#/SS0#
26	K2	P22/EDREQ0/MTIOC3B/MTCLKC/TIOC	P22/EDREQ0/MTIOC3B/MTCLKC/TIOC
-		C3/TMO0/PO2/SCK0/USB0 OVRCURB	C3/TMO0/PO2/SCK0/USB0 OVRCURB
27	J2	P21/MTIOC1B/MTIOC4A/TIOCA3/TMCI	P21/MTIOC1B/MTIOC4A/TIOCA3/TMCI
		0/PO1/RXD0/SMISO0/SSCL0/	0/PO1/RXD0/SMISO0/SSCL0/SCL1/
		USB0_EXICEN/IRQ9	USB0_EXICEN/IRQ9

 Table 3.2
 Comparison of Pin Functions for 100 Pin Packages

100 Pin LFQFP	100 Pin TFLGA	RX65N (CF \leq 1 Mbyte)RX65N (CF \geq 1.5 Mbytes)		
28	K3	P20/MTIOC1A/TIOCB3/TMRI0/PO0/ TXD0/SMOSI0/SSDA0/USB0_ID/IRQ8	P20/MTIOC1A/TIOCB3/TMRI0/PO0/ TXD0/SMOSI0/SSDA0/SDA1/USB0_ID/ IRQ8	
29	J3	P17/MTIOC3A/MTIOC3B/MTIOC4B/TIO CB0/TCLKD/TMO1/PO15/POE8#/SCK1 /TXD3/SMOSI3/SSDA3/SDA2-DS/ IRQ7/ADTRG1#	P17/MTIOC3A/MTIOC3B/MTIOC4B/TIO CB0/TCLKD/TMO1/PO15/POE8#/SCK1 /TXD3/SMOSI3/SSDA3/SDA2-DS/ IRQ7/ADTRG1#	
30	H3	P16/MTIOC3C/MTIOC3D/TIOCB1/TCL KC/TMO2/PO14/RTCOUT/TXD1/SMOS I1/SSDA1/RXD3/SMISO3/SSCL3/SCL2- DS/USB0_VBUSEN/USB0_VBUS/USB0 _OVRCURB/IRQ6/ADTRG0#	P16/MTIOC3C/MTIOC3D/TIOCB1/TCL KC/TMO2/PO14/RTCOUT/TXD1/SMOS I1/SSDA1/RXD3/SMISO3/SSCL3/SCL2- DS/USB0_VBUSEN/USB0_VBUS/USB0 _OVRCURB/IRQ6/ADTRG0#	
31	H4	P15/MTIOC0B/MTCLKB/TIOCB2/TCLK B/TMCI2/PO13/RXD1/SMISO1/SSCL1/ SCK3/CRX1-DS/IRQ5	P15/MTIOC0B/MTCLKB/TIOCB2/TCLK B/TMCI2/PO13/RXD1/SMISO1/SSCL1/ SCK3/CRX1-DS/IRQ5	
32	K4	P14/MTIOC3A/MTCLKA/TIOCB5/TCLK A/TMRI2/PO15/CTS1#/RTS1#/SS1#/ CTX1/USB0_OVRCURA/IRQ4	P14/MTIOC3A/MTCLKA/TIOCB5/TCLK A/TMRI2/PO15/CTS1#/RTS1#/SS1#/ CTX1/USB0_OVRCURA/IRQ4	
33	J4	P13/MTIOC0B/TIOCA5/TMO3/PO13/TX D2/SMOSI2/SSDA2/SDA0[FM+]/IRQ3/ ADTRG1#	P13/MTIOC0B/TIOCA5/TMO3/PO13/TX D2/SMOSI2/SSDA2/SDA0[FM+]/IRQ3/ ADTRG1#	
34	F5	P12/TMCI1/RXD2/SMISO2/SSCL2/ SCL0[FM+]/IRQ2	P12/TMCI1/RXD2/SMISO2/SSCL2/ SCL0[FM+]/IRQ2	
35	J6	VCC_USB	VCC_USB	
36	K5	USB0 DM	USB0 DM	
37	K6	USB0 DP	USB0 DP	
38	.15	VSS USB	VSS USB	
39	H5	P55/WAIT#/EDREQ0/MTIOC4D/TMO3/ ET0 EXOUT/CRX1/IRQ10	P55/D0[A0/D0]/WAIT#/EDREQ0/MTIOC 4D/TMO3/ET0 EXOUT/CRX1/IRQ10	
40	H6	P54/ALE/EDACK0/MTIOC4B/TMCI1/ET 0_LINKSTA/CTS2#/RTS2#/SS2#/CTX1	P54/ALE/D1[A1/D1]/EDACK0/MTIOC4B /TMCI1/ET0_LINKSTA/CTS2#/RTS2#/ SS2#/CTX1	
41	G5	P53/BCLK	P53/BCLK	
42	G6	P52/RD#/RXD2/SMISO2/SSCL2/ SSLB3-A	P52/RD#/RXD2/SMISO2/SSCL2/ SSLB3-A	
43	K7	P51/WR1#/BC1#/WAIT#/SCK2/ SSLB2-A	P51/WR1#/BC1#/WAIT#/SCK2/ SSLB2-A	
44	J7	P50/WR0#/WR#/TXD2/SMOSI2/SSDA2 /SSLB1-A	P50/WR0#/WR#/TXD2/SMOSI2/SSDA2 /SSLB1-A	
45	H7	PC7/UB/A23/CS0#/MTIOC3A/MTCLKB/ TMO2/PO31/TOC0/CACREF/ET0_COL/ TXD8/SMOSI8/SSDA8/SMOSI10/ SSDA10/TXD10/MISOA-A/IRQ14	PC7/UB/A23/CS0#/MTIOC3A/MTCLKB/ TMO2/PO31/TOC0/CACREF/ET0_COL/ TXD8/SMOSI8/SSDA8/SMOSI10/ SSDA10/TXD10/MISOA-A/IRQ14	
46	H8	PC6/A22/CS1#/MTIOC3C/MTCLKA/TM CI2/PO30/TIC0/ET0_ETXD3/RXD8/SMI SO8/SSCL8/SMISO10/SSCL10/RXD10/ MOSIA-A/IRQ13	PC6/D2[A2/D2]/A22/CS1#/MTIOC3C/M TCLKA/TMCI2/PO30/TIC0/ET0_ETXD3/ RXD8/SMISO8/SSCL8/SMISO10/ SSCL10/RXD10/MOSIA-A/IRQ13	
47	K8	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCL KD/TMRI2/PO29/ET0_ETXD2/SCK8/ SCK10/RSPCKA-A	PC5/D3[A3/D3]/A21/CS2#/WAIT#/MTIO C3B/MTCLKD/TMRI2/PO29/ET0_ETXD 2/SCK8/SCK10/RSPCKA-A	
48	J8	PC4/A20/CS3#/MTIOC3D/MTCLKC/TM CI1/PO25/POE0#/ET0_TX_CLK/SCK5/ CTS8#/RTS8#/SS8#/SS10#/CTS10#/ RTS10#/SSLA0-A	PC4/A20/CS3#/MTIOC3D/MTCLKC/TM CI1/PO25/POE0#/ET0_TX_CLK/SCK5/ CTS8#/RTS8#/SS8#/SS10#/CTS10#/ RTS10#/SSLA0-A	
49	K9	PC3/A19/MTIOC4D/TCLKB/PO24/	PC3/A19/MTIOC4D/TCLKB/PO24/ ET0_TX_EB/TXD5/SMOSI5/SSDA5	

100 Pin LFQFP	100 Pin TFLGA	RX65N (CF \leq 1 Mbyte)RX65N (CF \geq 1.5 Mby	
50	K10	PC2/A18/MTIOC4B/TCLKA/PO21/ ET0_RX_DV/RXD5/SMISO5/SSCL5/ SSLA3-A	PC2/A18/MTIOC4B/TCLKA/PO21/ ET0_RX_DV/RXD5/SMISO5/SSCL5/ SSLA3-A
51	J10	PC1/A17/MTIOC3A/TCLKD/PO18/ ET0 ERXD2/SCK5/SSLA2-A/IRQ12	PC1/A17/MTIOC3A/TCLKD/PO18/ ET0 ERXD2/SCK5/SSLA2-A/IRQ12
52	J9	PC0/A16/MTIOC3C/TCLKC/PO17/ ET0_ERXD3/CTS5#/RTS5#/SS5#/ SSLA1-A/IRQ14	PC0/A16/MTIOC3C/TCLKC/PO17/ ET0_ERXD3/CTS5#/RTS5#/SS5#/ SSLA1-A/IRQ14
53	H10	PB7/A15/MTIOC3B/TIOCB5/PO31/ET0 _CRS/RMII0_CRS_DV/TXD9/SMOSI9/ SSDA9/SMOSI11/SSDA11/TXD11/ SDSI_D1-B	PB7/A15/MTIOC3B/TIOCB5/PO31/ET0 _CRS/RMII0_CRS_DV/TXD9/SMOSI9/ SSDA9/SMOSI11/SSDA11/TXD11/ SDSI_D1-B
54	H9	PB6/A14/MTIOC3D/TIOCA5/PO30/ET0 _ETXD1/RMII0_TXD1/RXD9/SMISO9/ SSCL9/SMISO11/SSCL11/RXD11/ SDSI_D0-B	PB6/A14/MTIOC3D/TIOCA5/PO30/ET0 _ETXD1/RMII0_TXD1/RXD9/SMISO9/ SSCL9/SMISO11/SSCL11/RXD11/ SDSI_D0-B
55	G7	PB5/A13/MTIOC2A/MTIOC1B/TIOCB4/ TMRI1/PO29/POE4#/ET0_ETXD0/RMII 0_TXD0/SCK9/SCK11/SDSI_CLK-B	PB5/A13/MTIOC2A/MTIOC1B/TIOCB4/ TMRI1/PO29/POE4#/ET0_ETXD0/RMII 0_TXD0/SCK9/SCK11/SDSI_CLK-B/ LCD_CLK-B
56	G8	PB4/A12/TIOCA4/PO28/ET0_TX_EN/ RMII0_TXD_EN/CTS9#/RTS9#/SS9#/ SS11#/CTS11#/RTS11#/SDSI_CMD-B	PB4/A12/TIOCA4/PO28/ET0_TX_EN/ RMII0_TXD_EN/CTS9#/RTS9#/SS9#/ SS11#/CTS11#/RTS11#/SDSI_CMD-B/ LCD_TCON0-B
57	F6	PB3/A11/MTIOC0A/MTIOC4A/TIOCD3/ TCLKD/TMO0/PO27/POE11#/ET0_RX_ ER/RMII0_RX_ER/SCK6/SDSI_D3-B	PB3/A11/MTIOC0A/MTIOC4A/TIOCD3/ TCLKD/TMO0/PO27/POE11#/ET0_RX_ ER/RMII0_RX_ER/SCK6/SDSI_D3-B/ LCD_TCON1-B
58	F7	PB2/A10/TIOCC3/TCLKC/PO26/ET0_R X_CLK/REF50CK0/CTS6#/RTS6#/SS6# /SDSI_D2-B	PB2/A10/TIOCC3/TCLKC/PO26/ET0_R X_CLK/REF50CK0/CTS6#/RTS6#/SS6# /SDSI_D2-B/LCD_TCON2-B
59	G9	PB1/A9/MTIOC0C/MTIOC4C/TIOCB3/T MCI0/PO25/ET0_ERXD0/RMII0_RXD0/ TXD6/SMOSI6/SSDA6/IRQ4-DS	PB1/A9/MTIOC0C/MTIOC4C/TIOCB3/T MCI0/PO25/ET0_ERXD0/RMII0_RXD0/ TXD6/SMOSI6/SSDA6/LCD_TCON3-B/ IRQ4-DS
60	G10	VCC	VCC
61	F8	PB0/A8/MTIC5W/TIOCA3/PO24/ET0_E RXD1/RMII0_RXD1/RXD6/SMISO6/ SSCL6/IRQ12	PB0/A8/MTIC5W/TIOCA3/PO24/ET0_E RXD1/RMII0_RXD1/RXD6/SMISO6/ SSCL6/LCD_DATA0-B/IRQ12
62	F10	VSS	VSS
63	F9	PA7/A7/TIOCB2/PO23/ET0_WOL/ MISOA-B	PA7/A7/TIOCB2/PO23/ET0_WOL/ MISOA-B/LCD_DATA1-B
64	E7	PA6/A6/MTIC5V/MTCLKB/TIOCA2/TMC I3/PO22/POE10#/ET0_EXOUT/CTS5#/ RTS5#/SS5#/MOSIA-B	PA6/A6/MTIC5V/MTCLKB/TIOCA2/TMC I3/PO22/POE10#/ET0_EXOUT/CTS5#/ RTS5#/SS5#/MOSIA-B/LCD_DATA2-B
65	E9	PA5/A5/MTIOC6B/TIOCB1/PO21/ET0_ LINKSTA/RSPCKA-B	PA5/A5/MTIOC6B/TIOCB1/PO21/ET0_ LINKSTA/RSPCKA-B/LCD_DATA3-B
66	E8	PA4/A4/MTIC5U/MTCLKA/TIOCA1/TM RI0/PO20/ET0_MDC/TXD5/SMOSI5/SS DA5/SSLA0-B/IRQ5-DS	PA4/A4/MTIC5U/MTCLKA/TIOCA1/TM RI0/PO20/ET0_MDC/TXD5/SMOSI5/SS DA5/SSLA0-B/LCD_DATA4-B/IRQ5-DS
67	E10	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/T CLKB/PO19/ET0_MDIO/RXD5/SMISO5/ SSCL5/IRQ6-DS	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/T CLKB/PO19/ET0_MDIO/RXD5/SMISO5/ SSCL5/LCD_DATA5-B/IRQ6-DS
68	E6	PA2/A2/MTIOC7A/PO18/RXD5/SMISO5	PA2/A2/MTIOC7A/PO18/RXD5/SMISO5

100 Pin LFQFP	100 Pin TFLGA	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
69	D9	PA1/A1/MTIOC0B/MTCLKC/MTIOC7B/ TIOCB0/PO17/ET0_WOL/SCK5/ SSLA2-B/IRQ11	PA1/A1/MTIOC0B/MTCLKC/MTIOC7B/ TIOCB0/PO17/ET0_WOL/SCK5/ SSLA2-B/LCD_DATA7-B/IRQ11
70	D10	PA0/BC0#/A0/MTIOC4A/MTIOC6D/ TIOCA0/PO16/CACREF/ET0_TX_EN/ RMII0_TXD_EN/SSLA1-B	PA0/BC0#/A0/MTIOC4A/MTIOC6D/ TIOCA0/PO16/CACREF/ET0_TX_EN/R MII0_TXD_EN/SSLA1-B/LCD_DATA8-B
71	D8	PE7/D15[A15/D15]/MTIOC6A/TOC1/MI SOB-B/SDHI_WP/MMC_RES#-B/ IRQ7/AN105	PE7/D15[A15/D15]/D7[A7/D7]/MTIOC6 A/TOC1/MISOB-B/ SDHI_WP/MMC_RES#-B/ LCD_DATA9-B/IRQ7/AN105
72	D7	PE6/D14[A14/D14]/MTIOC6C/TIC1/MO SIB-B/SDHI_CD/MMC_CD-B/ IRQ6/AN104	PE6/D14[A14/D14]/D6[A6/D6]/MTIOC6 C/TIC1/MOSIB-B/SDHI_CD/MMC_CD- B/LCD_DATA10-B/IRQ6/AN104
73	C9	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B /ET0_RX_CLK/REF50CK0/RSPCKB-B/ IRQ5/AN103	PE5/D13[A13/D13]/D5[A5/D5]/MTIOC4 C/MTIOC2B/ET0_RX_CLK/REF50CK0/ RSPCKB-B/LCD_DATA11-B/ IRQ5/AN103
74	C10	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A /PO28/ET0_ERXD2/SSLB0-B/AN102	PE4/D12[A12/D12]/D4[A4/D4]/MTIOC4 D/MTIOC1A/PO28/ET0_ERXD2/SSLB0- B/LCD_DATA12-B/AN102
75	B10	PE3/D11[A11/D11]/MTIOC4B/PO26/TO C3/POE8#/ET0_ERXD3/CTS12#/RTS1 2#/SS12#/MMC_D7-B/AN101	PE3/D11[A11/D11]/D3[A3/D3]/MTIOC4 B/PO26/TOC3/POE8#/ET0_ERXD3/CT S12#/RTS12#/SS12#/MMC_D7-B/ LCD_DATA13-B/AN101
76	A10	PE2/D10[A10/D10]/MTIOC4A/PO23/ TIC3/RXD12/SMISO12/SSCL12/RXDX1 2/SSLB3-B/MMC_D6-B/IRQ7-DS/ AN100	PE2/D10[A10/D10]/D2[A2/D2]/MTIOC4 A/PO23/TIC3/RXD12/SMISO12/SSCL1 2/RXDX12/SSLB3-B/MMC_D6-B/ LCD_DATA14-B/IRQ7-DS/AN100
77	A9	PE1/D9[A9/D9]/MTIOC4C/MTIOC3B/PO 18/TXD12/SMOSI12/SSDA12/TXDX12/ SIOX12/SSLB2-B/MMC_D5-B/ANEX1	PE1/D9[A9/D9]/D1[A1/D1]/MTIOC4C/ MTIOC3B/PO18/TXD12/SMOSI12/SSD A12/TXDX12/SIOX12/SSLB2-B/ MMC_D5-B/LCD_DATA15-B/ANEX1
78	A8	PE0/D8[A8/D8]/MTIOC3D/SCK12/SSLB 1-B/MMC_D4-B/ANEX0	PE0/D8[A8/D8]/D0[A0/D0]/MTIOC3D/ SCK12/SSLB1-B/MMC_D4-B/ LCD_DATA16-B/ANEX0
79	B9	PD7/D7[A7/D7]/MTIC5U/POE0#/ SSLC3-A/QMI-B/QIO1-B/SDHI_D1-B/ MMC_D1-B/IRQ7/AN107	PD7/D7[A7/D7]/MTIC5U/POE0#/ SSLC3-A/QMI-B/QIO1-B/SDHI_D1-B/ MMC_D1-B/LCD_DATA17-B/IRQ7/ AN107
80	B8	PD6/D6[A6/D6]/MTIC5V/MTIOC8A/POE 4#/SSLC2-A/QMO-B/QIO0-B/SDHI_D0- B/MMC_D0-B/IRQ6/AN106	PD6/D6[A6/D6]/MTIC5V/MTIOC8A/POE 4#/SSLC2-A/QMO-B/QIO0-B/SDHI_D0- B/MMC_D0-B/LCD_DATA18-B/ IRQ6/AN106
81	C8	PD5/D5[A5/D5]/MTIC5W/MTIOC8C/ POE10#/SSLC1-A/QSPCLK-B/ SDHI_CLK-B/MMC_CLK-B/IRQ5/AN113	PD5/D5[A5/D5]/MTIC5W/MTIOC8C/ POE10#/SSLC1-A/QSPCLK-B/ SDHI_CLK-B/MMC_CLK-B/ LCD_DATA19-B/IRQ5/AN113
82	A7	PD4/D4[A4/D4]/MTIOC8B/POE11#/ SSLC0-A/QSSL-B/SDHI_CMD-B/ MMC_CMD-B/IRQ4/AN112	PD4/D4[A4/D4]/MTIOC8B/POE11#/ SSLC0-A/QSSL-B/SDHI_CMD-B/ MMC_CMD-B/LCD_DATA20-B/IRQ4/ AN112
83	Β7	PD3/D3[A3/D3]/MTIOC8D/TOC2/ POE8#/RSPCKC-A/QIO3-B/SDHI_D3- B/MMC_D3-B/QIO3-B/IRQ3/AN111	PD3/D3[A3/D3]/MTIOC8D/TOC2/ POE8#/RSPCKC-A/QIO3-B/SDHI_D3- B/MMC_D3-B/LCD_DATA21-B/IRQ3/ AN111

100 Pin LFQFP	100 Pin TFLGA	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
84	C7	PD2/D2[A2/D2]/MTIOC4D/TIC2/MISOC- A/CRX0/QIO2-B/SDHI_D2-B/MMC_D2- B/IRQ2/AN110	PD2/D2[A2/D2]/MTIOC4D/TIC2/ MISOC-A/CRX0/QIO2-B/SDHI_D2-B/ MMC_D2-B/LCD_DATA22-B/IRQ2/ AN110
85	B6	PD1/D1[A1/D1]/MTIOC4B/POE0#/MOSI C-A/CTX0/IRQ1/AN109	PD1/D1[A1/D1]/MTIOC4B/POE0#/ MOSIC-A/CTX0/LCD_DATA23-B/IRQ1/ AN109
86	A6	PD0/D0[A0/D0]/POE4#/IRQ0/AN108	PD0/D0[A0/D0]/POE4#/ LCD_EXTCLK-B/IRQ0/AN108
87	C6	P47/IRQ15-DS/AN007	P47/IRQ15-DS/AN007
88	D6	P46/IRQ14-DS/AN006	P46/IRQ14-DS/AN006
89	D5	P45/IRQ13-DS/AN005	P45/IRQ13-DS/AN005
90	B5	P44/IRQ12-DS/AN004	P44/IRQ12-DS/AN004
91	A5	P43/IRQ11-DS/AN003	P43/IRQ11-DS/AN003
92	C5	P42/IRQ10-DS/AN002	P42/IRQ10-DS/AN002
93	E5	P41/IRQ9-DS/AN001	P41/IRQ9-DS/AN001
94	A4	VREFL0	VREFL0
95	B4	P40/IRQ8-DS/AN000	P40/IRQ8-DS/AN000
96	C4	VREFH0	VREFH0
97	B3	AVCC0	AVCC0
98	A3	P07/IRQ15/ADTRG0#	P07/IRQ15/ADTRG0#
99	B2	AVSS0	AVSS0
100	A1	P05/IRQ13/DA1	P05/IRQ13/DA1

4. Important Information when Replacing the MCU

4.1 Address Space

4.1.1 Code Flash Memory

RX65N (CF \geq 1.5 Mbytes) has two modes for handling the code flash memory; linear mode which uses the code flash memory as one area and dual mode which divides the code flash memory into two areas. Note that dual mode is not included in RX65N (CF \leq 1 Mbyte).

Table 4.1 lists the Comparison of Code Flash Memory.

Table 4.1 Comparison of Code Flash Memory

Modo	RX65N (CF ≤ 1 Mbyte)			RX65N (CF ≥ 1.5 Mbytes)	
WOUE	512 Kbytes	768 Kbytes	1 Mbyte	1.5 Mbytes	2 Mbytes
Linear mode	FFF8 0000h to	FFF4 0000h to	FFF0 0000h to	FFE8 0000h to	FFE0 0000h to
	FFFF FFFFh	FFFF FFFFh	FFFF FFFFh	FFFF FFFFh	FFFF FFFFh
Dual mode				Bank 1:	Bank 1:
(BANKSEL.BANKSW				FFE4 0000h to	FFE0 0000h to
P[2:0] ⁽¹⁾ = 111b)				FFEF FFFFh	FFEF FFFFh
		_		Bank 0:	Bank 0:
				FFF4 0000h to	FFF0 0000h to
				FFFF FFFFh	FFFF FFFFh

Note: 1. BANKSEL is the bank select register of the option-setting memory. Only RX65N (CF ≥ 1.5 Mbytes) can use the bank select register (BANKSEL). BANKSEL is a reserved area in RX65N (CF ≤ 1 Mbyte).

4.1.2 Data Flash Memory

Only RX65N (CF ≥ 1.5 Mbytes) has the data flash memory.

Table 4.2 lists the Comparison of Data Flash Memory.

Table 4.2 Comparison of Data Flash Memory

RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
—	32 Kbytes
	0010 0000h to 0010 7FFFh

4.1.3 RAM

Only RX65N (CF \ge 1.5 Mbytes) has the expansion RAM.

Table 4.3 lists the Comparison of the Expansion RAM.

Table 4.3 Comparison of the Expansion RAM

	RX65N (CF ≤ 1 Mbyte)	RX65N (CF ≥ 1.5 Mbytes)
RAM	256 Kbytes	256 Kbytes
	0000 0000h to 0003 FFFFh	0000 0000h to 0003 FFFFh
Expansion RAM	—	384 Kbytes
		0080 0000h to 0085 FFFFh

4.2 Notes on Pin Design

4.2.1 General Input/Output Ports

PORTG is include in RX65N (CF \geq 1.5 Mbytes) only.

When using 177/176-pin package of RX65N (CF \ge 1.5 Mbytes) and PORTG is not used, or when using 100/144/145-pin package of RX65N (CF \ge 1.5 Mbytes), PORTG must be processed as an unused pin.

The PDR register for PORTG must not be accessed in RX65N (CF \leq 1 Mbyte) as it does not have PORTG. For processing unused pins, refer to the RX65N Group, RX651 Group User's Manual: Hardware listed in 5. Reference Documents.

4.2.2 A/D Conversion During Accessing an External Bus

When performing A/D conversion during accessing an external bus, the accuracy may become worse.

In this case, some measure has to be taken by the software, e.g., perform A/D conversion multiple times, discard the maximum and minimum values of the A/D conversion results, and then take the average of rest of the A/D conversion values.

With RX65N (CF \geq 1.5 Mbytes), the accuracy of A/D conversion can be held in some measure by changing the assignment of the external data bus. For details, refer to the RX65N Group, RX651 Group User's Manual: Hardware listed in 5. Reference Documents.

4.3 Notes on Configuring Functions

4.3.1 Option-Setting Memory

For RX65N (CF \leq 1 Mbyte), dual mode cannot be selected with the bank mode select bits (BANKMD[2:0]) in the endian select register (MDE). When programming these bits, write 111b (linear mode).

Also, the dual-bank TM enable bit (TMEFDB[2:0]) in the TM enable flag register (TMEF) are reserved bits in RX65N (CF \leq 1 Mbyte). When reading these bits, the value programmed by the user is read. When programming these bits, write 111b.

The bank select register (BANKSEL) can be used only in RX65N (CF \ge 1.5 Mbytes).

The bank select register (BANKSEL) is a reserved area in RX65N (CF \leq 1 Mbyte).

For details on the option-setting memory, refer to the RX65N Group, RX651 Group User's Manual: Hardware listed in 5. Reference Documents.

4.3.2 Switching of Driving Ability

Switching of driving ability for pins may differ between RX65N (CF \leq 1 Mbyte) and RX65N (CF \geq 1.5 Mbytes) even for the same pin.

For details on switching of driving ability, refer to the RX65N Group, RX651 Group User's Manual: Hardware listed in 5. Reference Documents.

4.3.3 RAM Error Interrupt Function

With RX65N (CF \geq 1.5 Mbytes), when either of the RAMSTS.RAMERR flag (indicates a parity check error) or the EXRAMSTS.EXRAMERR flag (indicates an expansion RAM parity check error) is changed to 1, the RAM error interrupt occurs.

With RX65N (CF \leq 1 Mbyte), when the RAMSTS.RAMERR flag (indicates parity check error) is changed to 1 while the parity check is enabled, the RAM error interrupt occurs.

The RAM error interrupt is cleared by writing 0 to the flags described above.

4.3.4 Rewriting with Self-Programming

The BGO function is available only in RX65N (CF \geq 1.5 Mbytes). If the MCU used does not support the BGO function, the program for rewriting needs to be transferred to the internal RAM or the external memory before executing the program.

For details on self-programming, refer to RX65N Group, RX651 Group User's Manual: Hardware and Flash Memory User's Manual: Hardware listed in 5. Reference Documents.

5. Reference Documents

User's Manual: Hardware

RX65N Group, RX651 Group User's Manual: Hardware Rev.2.10 (R01UH0590) (The latest version can be downloaded from the Renesas Electronics website.)

RX65N Group, RX651 Group Flash Memory User's Manual: Hardware Rev.2.00 (R01UH0602) (The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest version can be downloaded from the Renesas Electronics website.)

Related Technical Updates

This module reflects the content of the following technical updates. None

Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u>

Inquiries http://www.renesas.com/contact

All trademarks and registered trademarks are the property of their respective owners.

Revision Record

		Descript	ion	
Rev.	Date	Page	Summary	
1.00	Sep. 25, 2017	_	First edition issued	

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

- 2. Processing at Power-on
 - The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment: and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

Notice

- such as hockeal weapons, chemical weapons, or biological weapons, or missies (including unmarined aerial vences (OAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.
- 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

(Rev.3.0-1 November 2016)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Soci Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Disseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics Chring Loo, Ltd. Room 1709, Quantum Phaza, No.27 ZhiChuncu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301 Tower A, Central Towers, S55 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Taiwan Co., Ltd. Unit 1001-1611, 1, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +85-2256-5688, Fax: +86-213-2226-0999 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +86-231-2220, Fax: +86-213-0300 Renesas Electronics Mingsore Pte. Ltd. 80 Bendemer Road, Unit #060-2 Hyltux Innovation Centre, Singapore 339949 Tel: +65-231-2020, Fax: +86-2417-9907 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Ancorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +05-235-017 Renesas Electronics Gnia Pyt.Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +60-3-7955-9390, Fax: +05-67208777 Renesas Electronics Gangamer Coa, Ltd. 12F, 234 Teheran-ro, Gangamer Coa, Ltd. 12F, 234 Teheran-ro,