
 Application Note

R01AN6361EJ0101 Rev.1.01 Page 1 of 30

Jun.30.22

RX65N Group

AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

Introduction

Many embedded systems that utilize the cloud service have the configuration shown in Figure 1.1, consisting
of a primary MCU (1st MCU) that connects directly to internet and provides functionality for communicating
with Amazon Web Services™ (AWS), and a secondary MCU (2nd MCU) that is connected to the 1st MCU via
a local data transmission channel (such as a UART or BLE).

Figure 1.1 Conceptual Diagram of Hypothetical Embedded System Utilizing the Cloud Service

This application note describes a method for implementing OTA updating of the 2nd MCU’s firmware via the
1st MCU (2nd MCU OTA update). By reading this application note you can learn the following.

• How to implement 2nd MCU OTA update using OTA Library in an environment comprising AWS and

FreeRTOS™

• Example of the necessary software implementation for 2nd MCU OTA update on the device side

• How to switch between OTA update execution for the 1st MCU and 2nd MCU on the AWS cloud side

The above knowledge will enable you to make use of the OTA update mechanism provided by the AWS IoT
Device Management service to implement 2nd MCU OTA update.

Refer to the link below for a 2nd MCU OTA update demo based on this design guide.

RX65N Group Sample Code for OTA Update of Secondary Device with Amazon Web Services Using
FreeRTOS

Also, refer to the application note at the link below for basic information on the firmware update design policy
for Renesas MCUs.

Renesas MCU Firmware Update Design Policy

Target Devices

1st MCU: RX65N Group

2nd MCU: RX23W Group

https://www.renesas.com/us/en/document/apn/rx65n-group-sample-code-ota-update-secondary-device-amazon-web-service-using-freertos-rev110?language=en&r=1054466
https://www.renesas.com/us/en/document/apn/rx65n-group-sample-code-ota-update-secondary-device-amazon-web-service-using-freertos-rev110?language=en&r=1054466
https://www.renesas.com/us/en/document/apn/renesas-mcu-firmware-update-design-policy-rev100?language=en
https://www.renesas.com/us/en/document/apn/renesas-mcu-firmware-update-design-policy-rev100?language=en

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 2 of 30

Jun.30.22

Operation of the code and procedures described in this application note and the 2nd MCU OTA update demo
application note have been confirmed on the MCUs listed above. When applying the contents of this
application note to other MCUs, you will need to make changes to match the specifications of the target MCU
and to perform a thorough evaluation.

Related Documents

This application note refers to and explains the following documents. The chapter structure may change
when documents are updated. Please keep this in mind when referencing these documents.

Document Title Document No.

RX Family How to implement FreeRTOS OTA by using Amazon Web Services on

RX65N

R01AN5549EJ0102

RX65N Group Sample Code for OTA Update of Secondary Device with Amazon

Web Services Using FreeRTOS

R01AN6220EJ0110

Renesas MCU Firmware Update Design Policy R01AN5548EJ0100

RX Family Firmware Update Module Using Firmware Integration Technology R01AN5824EJ0103

Additional Links

• Secondary device OTA demonstration video

Secondary Device OTA Update using FreeRTOS and Amazon Web Services

• RX Family Cloud Connectivity Solutions webpage

https://www.renesas.com/rx-cloud

Amazon Web Services, the “Powered by AWS” logo, and any other AWS Marks used in such materials are
trademarks of Amazon.com, Inc. or its affiliates in the United States of America and other countries.

FreeRTOS is a trademark of Amazon Web Services, Inc.

All trademarks or registered trademarks are the property of their respective owners.

https://www.renesas.com/us/en/document/apn/rx-family-how-implement-freertos-ota-using-amazon-web-services-rx65n-rev102?r=1471546
https://www.renesas.com/us/en/document/apn/rx-family-how-implement-freertos-ota-using-amazon-web-services-rx65n-rev102?r=1471546
https://www.renesas.com/us/en/document/apn/rx65n-group-sample-code-ota-update-secondary-device-amazon-web-service-using-freertos-rev110?language=en&r=1054466
https://www.renesas.com/us/en/document/apn/rx65n-group-sample-code-ota-update-secondary-device-amazon-web-service-using-freertos-rev110?language=en&r=1054466
https://www.renesas.com/us/en/document/apn/renesas-mcu-firmware-update-design-policy-rev100?language=en
https://www.renesas.com/us/en/document/apn/rx-family-firmware-update-module-using-firmware-integration-technology-application-notes
https://www.renesas.com/us/en/video/secondary-device-ota-update-using-freertos-and-amazon-web-services
https://www.renesas.com/rx-cloud

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 3 of 30

Jun.30.22

Contents

1. Overview ... 4

1.1 AWS IoT Services and 2nd MCU OTA Update .. 4

1.2 OTA Update Mechanism Provided by AWS IoT Services... 4

1.3 OTA Library ... 5

1.4 Extension to 2nd MCU OTA Update ... 5

1.5 Confirmed Operation Environment .. 5

2. System Configuration .. 6

2.1 Hardware Configuration .. 6

2.2 Software Configuration .. 7

2.2.1 1st MCU Software Configuration .. 7

2.2.2 2nd MCU Software Configuration ... 7

2.2.3 AWS Configuration .. 8

3. 2nd MCU OTA Update Mechanism ... 9

3.1 General Operation Flow .. 9

3.2 Relationship between fileType Value and OTA Agent Operation .. 10

3.3 Communication between 1st MCU and 2nd MCU ... 11

3.4 Partial Modification of FWUP FIT Module ... 13

3.5 Deploying a Data Communication Protocol for UART Communication .. 13

4. Example of Software Implementation on 1st MCU .. 14

4.1 Creating New ota_second_pal.c File ... 14

4.1.1 OTA PAL2 Function Specifications ... 15

4.2 Creating New ota_pal_wrapper.c and ota_pal_wrapper.h Files ... 17

4.3 Modifying ota_demo_core_mqtt.c File .. 18

5. Example of Software Implementation on 2nd MCU ... 19

5.1 Creating the Bootloader Project .. 19

5.2 Creating the User Program Project ... 19

5.2.1 Implementing the 2nd OTA Controller .. 21

6. Creating Initial Firmware and Firmware Update for 2nd MCU ... 23

6.1 Creating Initial Firmware ... 23

6.2 Creating Firmware Update File ... 23

7. Executing 2nd MCU OTA Update .. 25

Revision History .. 30

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 4 of 30

Jun.30.22

1. Overview

1.1 AWS IoT Services and 2nd MCU OTA Update

The following post on the AWS blog describes a method of implementing 2nd MCU OTA update by modifying
a portion of the existing firmware.

Implementing OTA Update of a Secondary Processor Using FreeRTOS | Amazon Web Services Blog

In addition, the user guide to FreeRTOS issued by AWS and linked to below describes the use of the
fileType parameter, which can be specified when creating an OTA update, as a way to apply an OTA

update to a 2nd MCU, as follows:

Under File Type, enter an integer value in the range 0-255. The file type you enter will be
added to the Job document that is delivered to the MCU. The MCU firmware/software

developer has full ownership on what to do with this value. Possible scenarios include an
MCU that has a secondary processor whose firmware can be updated independently

from the primary processor. When the device receives an OTA update job, it can use the
File Type to identify which processor the update is for.

Creating an OTA update (AWS IoT console) - FreeRTOS (amazon.com)

Using this information as a basis, this application note summarizes the necessary steps to implement 2nd
MCU OTA update on RX Family MCUs.

1.2 OTA Update Mechanism Provided by AWS IoT Services

AWS IoT services implement OTA update functionality using AWS IoT Jobs in the cloud and the AWS IoT
Over-the-air Update Library (OTA Library) on a device running FreeRTOS.

AWS IoT Jobs provides functionality that enables remote execution of jobs on devices managed by AWS IoT
services. A job is an operation defined by the user beforehand. The user defines the specifications of the job
in a Job document. Job documents are created in JSON format and can be freely designed by the user.

When a job is created for a device, a message including the Job document is published to the AWS IoT Jobs
topic for the device in the MQTT protocol. When the device is subscribed to its AWS IoT Jobs topic and
receives the message, it parses the Job document contained in the message and executes the processing
described. It is therefore necessary for the user to implement processing for parsing and executing the
contents of the Job document beforehand.

Thus, in order to actualize the AWS IoT Jobs functionality, the user must define the Job document and
implement on the device the processing for parsing and executing the contents of the Job document.

The OTA update provided by AWS IoT services includes Job documents for OTA update jobs predefined by
AWS, and the OTA Library includes processing for parsing and executing Job documents, which must be
implemented on the device. This provides a mechanism whereby the user can easily implement OTA update
functionality.

https://aws.amazon.com/jp/blogs/news/how-to-perform-secondary-processor-over-the-air-updates-with-freertos/
https://docs.aws.amazon.com/freertos/latest/userguide/ota-console-workflow.html

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 5 of 30

Jun.30.22

1.3 OTA Library

The OTA Library is an OSS project developed by AWS on GitHub. It is publicly available under the MIT
License.

aws/ota-for-aws-iot-embedded-sdk (github.com)

The following demo application is available in Version 202107.00 of FreeRTOS AWS Reference Integrations,
which are FreeRTOS reference implementations created by AWS and utilizes OTA Library v3.0.0.

Over-the-air updates demo application - FreeRTOS (amazon.com)

When a message is published to the device’s AWS IoT Jobs topic, the OTA Library parses the Job document
and starts OTA update processing. The OTA update processing includes processing that performs
operations on the hardware, such as self-programming of data to specific areas in ROM and execution of a
software reset to update to the new firmware. To maintain portability of the library while including processing
such as this, the OTA Library utilizes an API interface called the OTA Platform Abstraction Layer (OTA PAL).
The OTA PAL allows abstraction of the hardware from the viewpoint of the library.

1.4 Extension to 2nd MCU OTA Update

To implement MCU OTA update functionality using AWS IoT Jobs and the OTA Library as the OTA update
mechanism, it is necessary to distinguish the 1st MCU OTA update and 2nd MCU OTA update so that it is
possible to switch between them.

First, the fileType parameter defined in the Job document of the OTA update job provided by AWS is used

to distinguish the target of the OTA update. By default, a 1st MCU OTA update is executed when the OTA
Library’s fileType value is 0. Therefore, the OTA update target can be distinguished by specifying a value

other than 0 (for example, 1).

Next, the OTA PAL is used for switching the OTA processing. Since the OTA PAL abstracts the hardware
processing required for a firmware update, it is possible to switch the update target by preparing a set of
functions composing an OTA PAL for the 2nd MCU OTA update (OTA PAL2) and then using the fileType

value to switch the OTA PAL functions that are called.

1.5 Confirmed Operation Environment

The operation of the 2nd MCU OTA update functionality has been confirmed under the conditions listed
below. Note that the description that follows assumes an environment conforming to these conditions.

Table 1.1 2nd MCU OTA Update Confirmed Operation Environment

Item Description

1st MCU RX65N

1st MCU board Renesas Starter Kit+ for RX65N-2MB (RSK+RX65N-2MB board)

RTOS FreeRTOS AWS Reference Integrations Version 202107.00

2nd MCU RX23W

2nd MCU board Target Board for RX23W (TB-RX23W board)

FWUP FIT module V1.02

IDE e2 studio 2022-01

Toolchain CC-RX V3.04.00

Firmware concatenation

tool

Renesas Secure Flash Programmer 1.01

Note: Make sure to use version 1.x.x. Version 2.x.x does not support Amazon

FreeRTOS projects.

Firmware programming

tool

Renesas Flash Programmer V3.09.00

https://github.com/aws/ota-for-aws-iot-embedded-sdk
https://github.com/aws/amazon-freertos
https://docs.aws.amazon.com/ja_jp/freertos/latest/userguide/ota-demo.html
https://www.renesas.com/products/microcontrollers-microprocessors/rx-32-bit-performance-efficiency-mcus/rx65n-2mb-starter-kit-plus-renesas-starter-kit-rx65n-2mb
https://www.renesas.com/products/microcontrollers-microprocessors/rx-32-bit-performance-efficiency-mcus/rx23w-32-bit-microcontrollers-and-module-bluetooth-5-iot-endpoint-devices-system-control-and-wireless
https://www.renesas.com/document/scd/rx-family-firmware-update-module-using-firmware-integration-technology-sample-code
https://github.com/renesas/mot-file-converter/releases/tag/1.0.1

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 6 of 30

Jun.30.22

2. System Configuration

The system configuration on which the 2nd MCU OTA update runs is described below.

2.1 Hardware Configuration

A schematic diagram of the hardware configuration is shown below.

Figure 2.1 Schematic Diagram of Hardware Configuration

First, since the 1st MCU connects directly to the internet, it requires an appropriate interface, such as
Ethernet or Wi-Fi (yellow line in Figure 2.1).

In this application note, Renesas Starter Kit+ for RX65N-2MB (RSK+RX65N-2MB board), which is an AWS
qualified device up to and including the OTA update function, is used. It connects to the internet via Ethernet.

Renesas Starter Kit+ for RX65N-2MB | AWS Qualified (amazonaws.com)

Next, a data transmission channel to allow exchanging of data between the 1st MCU and the 2nd MCU is
required (red line in Figure 2.1). In this application note a UART is used to implement this data transfer
channel.

https://devices.amazonaws.com/detail/a3G0L00000AAOkeUAH/Renesas-Starter-Kit-for-RX65N-2MB

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 7 of 30

Jun.30.22

2.2 Software Configuration

The software configuration of the 1st MCU and 2nd MCU is shown below.

Figure 2.2 Software Configuration

2.2.1 1st MCU Software Configuration

This is created using FreeRTOS AWS Reference Integrations Version 202107.00 as the basis. In Figure 2.2,
Software Configuration, the portions in the red boxes are newly created or require additional code.

The OTA update demo application RunOtaCoreMqttDemo is used as the User Application. OtaAppCallback is

a callback function registered when the OTA Library is initialized. Processing that is executed when the
update completion event occurs (OtaJobEventUpdateComplete) is added to this callback function.

OTA PAL2 implements processing to send commands to the 2nd MCU. OTA PAL Wrapper implements
processing to switch between OTA PAL and OTA PAL2 based on the value of fileType.

2.2.2 2nd MCU Software Configuration

The 2nd MCU software comprises two projects: the bootloader and the user program. They are created using
the firmware update (FWUP) FIT module demo project as a basis.

The bootloader runs first at startup and performs tasks such as verifying the code signature of the user
program and switching to the new firmware.

The user program implements the 2nd OTA Controller as an event-driven state machine to which commands
are sent from the 1st MCU via an SCI channel using UART data transfer. It controls the FWUP FIT module.
Firmware update processing is performed by a partially modified version of the FWUP FIT module.

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 8 of 30

Jun.30.22

2.2.3 AWS Configuration

The environment that needs to be constructed on AWS is the same as that for OTA updates using regular
AWS IoT services. Refer to the following application note when constructing the AWS environment.

RX Family How to implement FreeRTOS OTA by using Amazon Web Services on RX65N

https://www.renesas.com/us/en/document/apn/rx-family-how-implement-freertos-ota-using-amazon-web-services-rx65n-rev102?r=1471546

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 9 of 30

Jun.30.22

3. 2nd MCU OTA Update Mechanism

3.1 General Operation Flow

The operation of the 2nd MCU OTA update is as follows.

① The User Application initializes the OTA Library and creates an OTA agent task. From this point forward

the OTA agent performs OTA update processing.

② When the OTA agent receives a job, it parses the Job document and starts OTA update processing.

③ Within the OTA update processing, the OTA agent calls the OTA PAL Wrapper function.

④ The OTA PAL Wrapper function references the fileType value and switches execution to the

appropriate OTA PAL function.

⑤ In the case of a 2nd MCU OTA update, the OTA PAL2 function is run and the UART is used to send

commands to the 2nd MCU.

⑥ When the 2nd MCU receives a command from the 1st MCU, the 2nd OTA Controller runs an API function

from the FWUP FIT module.

⑦ The FWUP FIT module executes firmware update processing.

Figure 3.1 2nd MCU OTA Update Processing Flow

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 10 of 30

Jun.30.22

3.2 Relationship between fileType Value and OTA Agent Operation

The operation of the OTA Library differs according to whether or not the value of fileType matches

configOTA_FIRMWARE_UPDATE_FILE_TYPE_ID. The default value of

configOTA_FIRMWARE_UPDATE_FILE_TYPE_ID is defined as 0U.

• When fileType = configOTA_FIRMWARE_UPDATE_FILE_TYPE_ID

The 1st MCU OTA update processing takes place. Figure 3.2 shows a general outline of the operation

flow.

Parse Job document

Program new firmware

Verify code signature

Software reset

Self-test

Succeeded

Figure 3.2 OTA Agent Operation when fileType = configOTA_FIRMWARE_UPDATE_FILE_TYPE_ID

• When fileType ≠ configOTA_FIRMWARE_UPDATE_FILE_TYPE_ID

After programming of the new firmware completes and the code signature has been verified, a job

SUCCEEDED/FAILED message is sent to the AWS IoT service and the job completes without the
OtaJobEventActivate callback function being run. Then the OtaJobEventUpdateComplete callback

function is run. Figure 3.3 shows a general outline of the operation flow.

Parse Job document

Program new firmware

Verify code signature

Succeeded

Figure 3.3 OTA Agent Operation when filetype ≠ configOTA_FIRMWARE_UPDATE_FILE_TYPE_ID

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 11 of 30

Jun.30.22

3.3 Communication between 1st MCU and 2nd MCU

The 1st MCU sends commands to the 2nd MCU when the OTA PAL2 function is called during the OTA
processing. For this reason, the name of each command is the same as the name of the corresponding OTA
PAL API interface. Figure 3.4 shows the communication sequence between the 1st MCU and 2nd MCU when
the OTA update is proceeding normally.

Figure 3.4 Communication Sequence between MCUs

Also, and separate from the above, GetPlatformImageState is called repeatedly during the OTA update
processing.

Figure 3.5 Communication Querying Image State of 2nd MCU

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 12 of 30

Jun.30.22

In addition, if an error during the OTA update causes processing to terminate, Abort is called.

Figure 3.6 Communication when Abort Occurs

The roles of the commands used during the 2nd MCU OTA update are listed below.

Table 3.1 Description of CreateFileForRx Command

Command name CreateFileForRx

Description Notifies the 2nd MCU that OTA processing has started.

Response from

2nd MCU

Success or Failure

Table 3.2 Description of WriteBlock Command

Command name WriteBlock

Description Transfers the new firmware image sent from AWS to the 2nd MCU.

A 1,024-bytes payload for the new firmware image is attached to this command.

Response from

2nd MCU

Success or Failure

Table 3.3 Description of CloseFile Command

Command name CloseFile

Description Directs verification of the code signature of the new firmware programmed to the 2nd

MCU.

Response from

2nd MCU

Success or Failure

Table 3.4 Description of ActivateNewImage Command

Command name ActivateNewImage

Description Instructs the 2nd MCU to perform a software reset to update to the new firmware.

Response from

2nd MCU

Success or Failure

Table 3.5 Description of Abort Command

Command name Abort

Description Notifies the 2nd MCU that OTA processing has been aborted.

Response from

2nd MCU

Success or Failure

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 13 of 30

Jun.30.22

Table 3.6 Description of GetPlatformImageState Command

Command name GetPlatformImageState

Description Requests the firmware state of the 2nd MCU.

Response from

2nd MCU

Current firmware state

3.4 Partial Modification of FWUP FIT Module

Using the FWUP FIT module makes it possible to send the firmware for the update by UART communication
via an SCI channel and execute the firmware update.

However, since the FWUP FIT module takes exclusive control of an SCI channel, the channel is not
available to other applications (for transmitting sensor data, etc.).

To get around this limitation, the FWUP FIT module needs to be partially modified to allow other applications
to use the data transmission channel between the 1st and 2nd MCUs.

3.5 Deploying a Data Communication Protocol for UART Communication

In order to enable two types of communication (communication for the firmware update and communication
for other applications such as transmission of sensor data) on the same SCI channel, it is necessary to
specify a data communication protocol. In the sample code, the protocol shown in Figure 3.7 is specified as
an example. It permits transfer of both data for firmware updates and sensor data on the same channel.

Figure 3.7 Example Data Communication Protocol

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 14 of 30

Jun.30.22

4. Example of Software Implementation on 1st MCU

Version 202107.00 of FreeRTOS AWS Reference Integrations is used as a basis. Implementation of new
processing or modification of existing code to provide 2nd MCU OTA functionality is required in the following
three locations.

1. vendors/renesas/boards/rx65n-rsk/ports/ota_pal_for_aws/ota_second_pal.c (newly created)

2. vendors/renesas/boards/rx65n-rsk/ports/ota_pal_for_aws/ota_pal_wrapper.c (newly created)

3. demos/ota/ota_demo_core_mqtt/ota_demo_core_mqtt.c (modified)

4.1 Creating New ota_second_pal.c File

Create a file named ota_second_pal.c in which the OTA PAL2 functions are defined.

The following OTA PAL2 functions implement the processing sequence:

1. Send command to the 2nd MCU.

2. Wait for a response from the 2nd MCU.

3. Check the response from the 2nd MCU and return the value to exit the function.

For an example implementation, refer to the sample code for the RSK+ RX65N-2MB board using OTA
Library v3.x.x in the following application note.

RX65N Group Sample Code for OTA Update of Secondary Device with Amazon Web Services Using
FreeRTOS

Here, the CreateFileForRx OTA PAL2 function otaPal_Second_createFileForRx() is shown as an

example.

OtaPalStatus_t otaPal_Second_CreateFileForRx(OtaFileContext_t * const pFileContext)

{

 OtaPalStatus_t eResult = OtaPalUninitialized;

 uint8_t recv_pkt[8] = { 0 };

 create_send_packet(s_send_packet, FWUP_2nd_Command_LoadJob, 0, 0);

 send_packet_to_secondary();

 if(SUCCESS_ARRIVE_PACKET == wait_arrive_packet(recv_pkt))

 {

 if(is_received_packet_intended_content(recv_pkt, FWUP_2nd_Command_LoadJob_Finish))

 {

 eResult = OtaPalSuccess;

 }

 else

 {

 eResult = OtaPalRxFileCreateFailed;

 }

 pFileContext->pFile = (uint8_t *)pFileContext; /* Casting to uint8_t * type is valid */

 return eResult;

 }

 else

 {

 return OtaPalRxFileCreateFailed;

 }

}

https://www.renesas.com/us/en/document/apn/rx65n-group-sample-code-ota-update-secondary-device-amazon-web-service-using-freertos-rev110?language=en&r=1054466
https://www.renesas.com/us/en/document/apn/rx65n-group-sample-code-ota-update-secondary-device-amazon-web-service-using-freertos-rev110?language=en&r=1054466

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 15 of 30

Jun.30.22

4.1.1 OTA PAL2 Function Specifications

The processing performed by the various OTA PAL2 functions is summarized below.

Table 4.1 otaPal_Second_CreateFileForRx Function Specification

Function name otaPal_Second_CreateFileForRx

Arguments OtaFileContext_t *const pFileContext

Return

values

Type OtaPalStatus_t

Success OtaPalSuccess

Failure OtaPalRxFileCreateFailed

Note It is necessary to replace the pFileContext member pFile, received as an

argument, with a self-referencing pointer. Otherwise, an error occurs when the

following line is processed.

C->pFile = (uint8_t *)C;

Table 4.2 otaPal_Second_WriteBlock Function Specification

Function name otaPal_Second_WriteBlock

Arguments OtaFileContext_t *const pFileContext,

uint32_t offset,

uint8_t *const pData,

uint32_t blockSize

Return

values

Type OtaPalStatus_t

Success blockSize

Failure -2

Note pData, which is received as an argument, contains the start address in memory

where the fragment of the new firmware image to be programmed is stored. Also,

blockSize, also received as an argument, contains the file size (in bytes) of the

fragment of the new firmware image to be programmed.

Thus, a quantity of data equal to blockSize is extracted starting from pData and

transmitted to the 2nd MCU.

Upon successful completion, the file size (blockSize) of the fragment of the new

firmware image that was programmed is returned. In case of failure, a negative

integer value is returned.

Table 4.3 otaPal_Second_CloseFile Function Specification

Function name otaPal_Second_CloseFile

Arguments OtaFileContext_t *const pFileContext

Return

values

Type OtaPalStatus_t

Success OtaPalSuccess

Failure OtaPalSignatureCheckFailed

Table 4.4 otaPal_Second_ActivateNewImage Function Specification

Function name otaPal_Second_ActivateNewImage

Arguments OtaFileContext_t *const pFileContext

Return

values

Type OtaPalStatus_t

Success OtaPalSuccess

Failure OtaPalActivateFailed

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 16 of 30

Jun.30.22

Table 4.5 otaPal_Second_Abort Function Specification

Function name otaPal_Second_Abort

Arguments OtaFileContext_t *const pFileContext

Return

values

Type OtaPalStatus_t

Failure OtaPalSuccess

Success OtaPalAbortFailed

Note Replace the pFileContext member pFile, received as an argument, with a value

of 0.

C->pFile = (uint8_t *)0;

Table 4.6 otaPal_Second_SetPlatformImageState Function Specification

Arguments OtaFileContext_t *const pFileContext,

OtaImageState_t eState

Return

values

Type OtaPalStatus_t

Success OtaPalSuccess

Failure OtaPalBadImageState

Note This function is not called during 2nd MCU OTA update processing, but it is provided

because it is defined as part of PAL.

Table 4.7 otaPal_Second_GetPlatformImageState Function Specification

Arguments OtaFileContext_t *const pFileContext

Return

values

Type OtaPalImageState_t

Success Current ImageState

Failure OtaPalImageStateUnknown

Note This function always returns a value of OtaPalImageStateValid when 2nd MCU

OTA update processing is proceeding normally.

Table 4.8 otaPal_Second_ResetDevice Function Specification

Arguments OtaFileContext_t *const pFileContext

Return

values

Type OtaPalStatus_t

Success OtaPalSuccess

Failure OtaPalAbortFailed

Note This function simply returns a value of OtaPalSuccess because the 1st MCU is not

reset as part of 2nd MCU OTA update processing.

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 17 of 30

Jun.30.22

4.2 Creating New ota_pal_wrapper.c and ota_pal_wrapper.h Files

Create a file named ota_pal_wrapper.c in which wrapper functions for switching between the 1st MCU’s own
OTA PAL functions and the OTA PAL2 functions for 2nd MCU OTA update processing, based on the value of
the fileType member of the OtaFileContext_t type argument passed to the OTA PAL function, are

defined.

Here, the CreateFileForRx wrapper function otaPalWrap_createFileForRx() is shown as an example.

The OTA PAL function is run when the value of fileType is 0, and when the value is 1 the OTA PAL2

function is run.

OtaPalStatus_t otaPalWrap_CreateFileForRx(OtaFileContext_t * const pFileContext)

{

 OtaPalStatus_t eResult = OtaPalUninitialized;

 uint32_t otaTargetID = pFileContext->fileType;

 if (otaTargetID == 0)

 {

 eResult = otaPal_CreateFileForRx(pFileContext);

 }

 else if (otaTargetID == 1)

 {

 eResult = otaPal_Second_CreateFileForRx(pFileContext);

 }

 else

 {

 eResult = OtaPalRxFileCreateFailed;

 }

 return eResult;

}

In like manner, create wrapper functions for the other OTA PAL functions that reference fileType and

switch to the appropriate function to be run.

Next, create a file named ota_pal_wrapper.h containing declarations for the wrapper functions defined as
described above.

OtaPalStatus_t otaPalWrap_Abort(OtaFileContext_t * const pFileContext);

OtaPalStatus_t otaPalWrap_CreateFileForRx(OtaFileContext_t * const pFileContext);

OtaPalStatus_t otaPalWrap_CloseFile(OtaFileContext_t * const pFileContext);

int16_t otaPalWrap_WriteBlock(OtaFileContext_t * const pFileContext,

 uint32_t ulOffset,

 uint8_t * const pData,

 uint32_t ulBlockSize);

OtaPalStatus_t otaPalWrap_ActivateNewImage(OtaFileContext_t * const pFileContext);

OtaPalStatus_t otaPalWrap_SetPlatformImageState(OtaFileContext_t * const pFileContext,

 OtaImageState_t eState);

OtaPalImageState_t otaPalWrap_GetPlatformImageState(OtaFileContext_t * const pFileContext);

OtaPalStatus_t otaPalWrap_ResetDevice(OtaFileContext_t * const pFileContext);

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 18 of 30

Jun.30.22

4.3 Modifying ota_demo_core_mqtt.c File

Make the described modification and additions to the following three locations in the ota_demo_core_mqtt.c
file.

1. Include ota_pal_wrapper.h.

#include "ota_pal_wrapper.h"

2. The OTA PAL interfaces called in the OTA Library are initialized in the prvSetOtaInterfaces function.

Configure these settings for the OTA PAL Wrapper functions created earlier.

 /* Initialize the OTA library PAL Interface.*/

 pxOtaInterfaces->pal.getPlatformImageState = otaPalWrap_GetPlatformImageState;

 pxOtaInterfaces->pal.setPlatformImageState = otaPalWrap_SetPlatformImageState;

 pxOtaInterfaces->pal.writeBlock = otaPalWrap_WriteBlock;

 pxOtaInterfaces->pal.activate = otaPalWrap_ActivateNewImage;

 pxOtaInterfaces->pal.closeFile = otaPalWrap_CloseFile;

 pxOtaInterfaces->pal.reset = otaPalWrap_ResetDevice;

 pxOtaInterfaces->pal.abort = otaPalWrap_Abort;

 pxOtaInterfaces->pal.createFile = otaPalWrap_CreateFileForRx;

3. In the prvOtaAppCallback function, add the following code after case in the switch statement.

OtaJobEventUpdateComplete is called when the OTA update job completes if fileType ≠ 0. Here,

the OTA_ActivateNewImage function runs and a software reset command is sent to update the firmware

of the 2nd MCU.

 case OtaJobEventUpdateComplete:

 if(pData != NULL)

 {

 const OtaJobDocument_t *pJobDoc = (const OtaJobDocument_t *)pData;

 if(pJobDoc->fileTypeId == 1)

 {

 OTA_ActivateNewImage();

 }

 }

 break;

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 19 of 30

Jun.30.22

5. Example of Software Implementation on 2nd MCU

The 2nd MCU programs comprise two projects: the bootloader and the user program. The FWUP FIT module
demo project is used as a basis for both projects.

5.1 Creating the Bootloader Project

First, follow the steps below to create the bootloader project.

1. From the FWUP FIT module sample code, import the boot_loader project for rx231-rsk.

2. Use Smart Configurator to change the target device to the TB-RX23W board.

3. Since the boot_loader/src/src/tinycrypt folder in the project folder is empty, obtain the Tinycrypt library

from the link below and add the lib folder to boot_loader/src/src/tinycrypt.

amazon-freertos/libraries/3rdparty/tinycrypt at master · renesas/amazon-freertos (github.com)

4. In CODE_SIGNER_PUBLIC_KEY_PEM in the boot_loader/src/key/code_signer_public_key.h file, enter the

public key information for code-signer verification. For the method of entering the public key information,

refer to the following steps at the link below:

4. Creating a key for firmware verification using OpenSSL

5. Inserting secp256r1.publickey into the bootloader as the public key for signature verification in order to

use ECDSA+SHA256 for firmware verification

Utilizing OTA renesas/amazon-freertos Wiki (github.com)

5.2 Creating the User Program Project

Next, follow the steps below to create the user program project.

1. From the FWUP FIT module sample code, import the fwup_main project for rx231-rsk.

2. Follow the same steps used when creating the boot_loader project as described above to change the

target device, add Tinycript, and enter public key information.

3. Make the following partial modifications to the FWUP FIT module source code to make it suitable for the

2nd MCU OTA update processing.

① Create a function to enable the FWUP FIT module to accept firmware data received via UART

communication. Add the following function in the r_fwup.c file.

void fwup_receive_fileblock(uint8_t received_packet[])

{

 if (s_sci_receive_control_block.p_sci_buffer_control->buffer_full_flag ==

FWUP_SCI_RECEIVE_BUFFER_EMPTY)

 {

 for (uint16_t i = 0; i < 1024; ++i)

 {

 s_sci_receive_control_block.p_sci_buffer_control->buffer[i] = received_packet[8 +

i];

 s_sci_receive_control_block.p_sci_buffer_control->buffer_occupied_byte_size++;

 }

#if (FLASH_CFG_CODE_FLASH_BGO == 0)

 /* RTS HIGH */

 FWUP_CFG_PORT_SYMBOL.PODR.BIT.FWUP_CFG_BIT_SYMBOL = 1; /* Set RTS to HIGH */

 FWUP_CFG_PORT_SYMBOL.PDR.BIT.FWUP_CFG_BIT_SYMBOL = 1;

 FWUP_CFG_PORT_SYMBOL.PMR.BIT.FWUP_CFG_BIT_SYMBOL = 0; /* Change to general I/O port

*/

#endif /* FLASH_CFG_CODE_FLASH_BGO == 0 */

 s_sci_receive_control_block.total_byte_size +=

 s_sci_receive_control_block.p_sci_buffer_control->buffer_occupied_byte_size;

 s_sci_receive_control_block.p_sci_buffer_control->buffer_occupied_byte_size = 0;

 s_sci_receive_control_block.p_sci_buffer_control->buffer_full_flag =

FWUP_SCI_RECEIVE_BUFFER_FULL;

 if (FWUP_SCI_CONTROL_BLOCK_A == s_sci_receive_control_block.current_state)

https://github.com/renesas/amazon-freertos/tree/master/libraries/3rdparty/tinycrypt
https://github.com/renesas/amazon-freertos/wiki/OTA%E3%81%AE%E6%B4%BB%E7%94%A8#%E6%89%8B%E9%A0%86%E3%81%BE%E3%81%A8%E3%82%81

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 20 of 30

Jun.30.22

 {

 s_sci_receive_control_block.current_state = FWUP_SCI_CONTROL_BLOCK_B;

 s_sci_receive_control_block.p_sci_buffer_control =

&s_sci_buffer_control[FWUP_SCI_CONTROL_BLOCK_B];

 }

 else

 {

 s_sci_receive_control_block.current_state = FWUP_SCI_CONTROL_BLOCK_A;

 s_sci_receive_control_block.p_sci_buffer_control =

&s_sci_buffer_control[FWUP_SCI_CONTROL_BLOCK_A];

 }

 }

}

The following lines of the source code shown above

 for (uint16_t i = 0; i < 1024; ++i)

 {

 s_sci_receive_control_block.p_sci_buffer_control->buffer[i] = received_packet[8 +

i];

 s_sci_receive_control_block.p_sci_buffer_control->buffer_occupied_byte_size++;

 }

store the new firmware fragment (1,024 bytes) that is received as a payload attached to the

WriteBlock command in s_sci_receive_control_block.p_sci_buffer_control->buffer and increment

s_sci_receive_control_block.p_sci_buffer_control->buffer_occupied_byte_size.

② Create a wrapper function for the Abort function without arguments to allow it to be called from

outside the FWUP FIT module.

fwup_err_t R_FWUP_Abort_global(void)

{

 return (fwup_err_t)R_FWUP_Abort(&g_file_context);

}

③ Add declarations to the r_fwup_if.h file for the two functions added in ① and ②.

void fwup_receive_fileblock(uint8_t []);

fwup_err_t R_FWUP_Abort_global(void);

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 21 of 30

Jun.30.22

5.2.1 Implementing the 2nd OTA Controller

An example design of state transitions of the 2nd OTA Controller in which FWUP FIT module API functions
are called using commands from the 1st MCU as events is shown below.

Figure 5.1 Example Design of 2nd OTA Controller State Transitions

In the figure above, FWUP FIT module API functions appear in the blue rectangle at the right, and a diagram
of state transitions of the 2nd OTA Controller is shown within the red rectangle. In the diagram of 2nd OTA
Controller state transitions, the items in gray boxes represent states, the items in green boxes represent
events, and the green arrows indicate the FWUP FIT module API functions called when events occur.

A table summarizing the 2nd OTA Controller state transitions illustrated in Figure 5.1 is shown below.

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 22 of 30

Jun.30.22

Table 5.1 2nd OTA Controller State Transitions

Current State Event Function Executed Next State

Init ⎯ R_FWUP_Open() WaitingForJob

WaitingForJob CreateFileForRx

command received

R_FWUP_Operation() WaitingForFileBlock

WaitingForFileB
lock

WriteBlock

command received

fwup_receive_fileblock()

R_FWUP_Operation()

R_FWUP_Operation()

*1 *2

WriteCom
pleted

WaitingFor
FileBlock

WriteCompleted CloseFile command

received

R_FWUP_Operation() WaitingForActivate

WaitingForActiv
ate

ActivateNewImage

command received

R_FWUP_SoftwareReset() ⎯

⎯ Abort command

received

R_FWUP_Abort_global()

fwup_communication_close()

fwup_state_monitoring_clos
e()

fwup_flash_close()

R_FWUP_Close()

R_FWUP_Open()

WaitingForJob

Error during

processing by 2nd

OTA Controller

⎯ GetPlatformImageS
tate command

received

R_FWUP_GetPlatformImageSta
te()

⎯

Notes: 1. When fwup_get_status() == FWUP_STATE_CHECK_SIGNATURE

 2. When fwup_get_status() == FWUP_STATE_DATA_RECEIVE

For an example implementation, refer to the sample code for the TB-RX23W board using OTA Library v3.x.x
in the following application note.

RX65N Group Sample Code for OTA Update of Secondary Device with Amazon Web Services Using
FreeRTOS

https://www.renesas.com/us/en/document/apn/rx65n-group-sample-code-ota-update-secondary-device-amazon-web-service-using-freertos-rev110?language=en&r=1054466
https://www.renesas.com/us/en/document/apn/rx65n-group-sample-code-ota-update-secondary-device-amazon-web-service-using-freertos-rev110?language=en&r=1054466

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 23 of 30

Jun.30.22

6. Creating Initial Firmware and Firmware Update for 2nd MCU

6.1 Creating Initial Firmware

Build the bootloader and user program projects created as described above and generate mot files. Use
Renesas Secure Flash Programmer to concatenate the two .mot files to create the initial firmware mot file.
The parameters are listed below.

Table 6.1 Parameter Settings when Creating Initial Firmware File in Renesas Secure Flash

Programmer

Select MCU RX23W(ROM 512KB)/Secure Bootloader=64KB

Select Firmware Verification Type sig-sha256-ecdsa

Private Key Path(PEM Format) Path to private key generated above

Select Output Format Bank 0 User Program + Boot Loader (Motorola S Format)

Boot Loader

File Path (Motorola Format)

Path to bootloader mot file

Bank0 User program

Firmware Sequence Number

1

Bank0 File Path (Motorola Format) Path to user program mot file

Figure 6.1 Renesas Secure Flash Programmer Settings Screen when Creating Initial Firmware File

6.2 Creating Firmware Update File

Build the updated user program project created as described above and generate a mot file. Use Renesas
Secure Flash Programmer to convert the mot file to a rsu file in Renesas’ proprietary binary firmware data
format. For details of the Renesas Secure Update (RSU) format, refer to section 7 of Renesas MCU
Firmware Update Design Policy, Rev.1.00 (Renesas.com).

https://www.renesas.com/us/en/document/apn/renesas-mcu-firmware-update-design-policy-rev100?language=en
https://www.renesas.com/us/en/document/apn/renesas-mcu-firmware-update-design-policy-rev100?language=en

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 24 of 30

Jun.30.22

Table 6.2 Parameter Settings when Creating Firmware Update File in Renesas Secure Flash

Programmer

Select MCU RX23W(ROM 512KB)/Secure Bootloader=64KB

Select Firmware Verification Type sig-sha256-ecdsa

Private Key Path(PEM Format) Path to private key generated above

Bank0 User program

Firmware Sequence Number

1

Bank0 File Path (Motorola Format) Path to firmware update mot file

Figure 6.2 Renesas Secure Flash Programmer Settings Screen when Creating Firmware Update File

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 25 of 30

Jun.30.22

7. Executing 2nd MCU OTA Update

The procedure for creating a 2nd MCU OTA update job from the AWS IoT Core browser console is as follows.

1. Open the AWS IoT Core browser console, select Manage → Jobs from the menu bar at left, and click the

Create job button.

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 26 of 30

Jun.30.22

2. On the Create job page, select Create FreeRTOS OTA update job and click the Next button.

3. On the OTA job Properties page, enter a name for Job name and click the Next button.

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 27 of 30

Jun.30.22

4. On the OTA file configuration page, enter information for each item as follows.

① For Device to update, enter the thing name registered on AWS IoT services for the 1st MCU.

② For Code signing profile, enter a profile of your choice.

Note: The code signing profile specified here is not used for code-signer verification of the 2nd MCU

firmware. The code signature is designated in the file when the firmware update rsu file is

created using Renesas Secure Flash Programmer. It is therefore not necessary to create a

code signing profile using the certificate and private key used when creating the new firmware

for the 2nd MCU.

③ For File to upload, select the new firmware file (rsu format) for the 2nd MCU.

④ For File type, enter the value assigned to 2nd MCU OTA update when the firmware was created.

For the other items, enter the same values used when creating ordinary OTA jobs, then click the Next

button.

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 28 of 30

Jun.30.22

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 29 of 30

Jun.30.22

5. There is no need to make changes on the OTA job configuration page, so simply click the Create job

button.

The procedure described above will create an OTA job for the 2nd MCU OTA update and deliver it to the

specified device.

If you check the Job document of the newly created OTA job, you can confirm that the member
"filetype": 1 has been added. This means that when the Job document is received by the 1st MCU,

control will branch to processing for the 2nd MCU OTA update.

RX65N Group AWS FreeRTOS 2nd MCU OTA Firmware Update Design Guide

R01AN6361EJ0101 Rev.1.01 Page 30 of 30

Jun.30.22

Revision History

Rev. Date

Description

Page Summary

1.01 Jun. 30, 2022 ⎯ First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	Related Documents
	Additional Links
	1. Overview
	1.1 AWS IoT Services and 2nd MCU OTA Update
	1.2 OTA Update Mechanism Provided by AWS IoT Services
	1.3 OTA Library
	1.4 Extension to 2nd MCU OTA Update
	1.5 Confirmed Operation Environment

	2. System Configuration
	2.1 Hardware Configuration
	2.2 Software Configuration
	2.2.1 1st MCU Software Configuration
	2.2.2 2nd MCU Software Configuration
	2.2.3 AWS Configuration

	3. 2nd MCU OTA Update Mechanism
	3.1 General Operation Flow
	3.2 Relationship between fileType Value and OTA Agent Operation
	3.3 Communication between 1st MCU and 2nd MCU
	3.4 Partial Modification of FWUP FIT Module
	3.5 Deploying a Data Communication Protocol for UART Communication

	4. Example of Software Implementation on 1st MCU
	4.1 Creating New ota_second_pal.c File
	4.1.1 OTA PAL2 Function Specifications

	4.2 Creating New ota_pal_wrapper.c and ota_pal_wrapper.h Files
	4.3 Modifying ota_demo_core_mqtt.c File

	5. Example of Software Implementation on 2nd MCU
	5.1 Creating the Bootloader Project
	5.2 Creating the User Program Project
	5.2.1 Implementing the 2nd OTA Controller

	6. Creating Initial Firmware and Firmware Update for 2nd MCU
	6.1 Creating Initial Firmware
	6.2 Creating Firmware Update File

	7. Executing 2nd MCU OTA Update
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

