
 APPLICATION NOTE 

R01AN2213EJ0110  Rev. 1.10  Page 1 of 32 
Dec. 21, 2020  

RX64M, RX71M Group 
Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

Abstract 
This document describes using the data transfer controller (DTC) and the FIFO embedded serial communications 
interface (SCIF) in the RX64M, RX71M Group to perform asynchronous serial transmission and reception. 

 

Products 
RX64M Group 
• RX64M Group 177- and 176-pin versions, ROM capacity: 2 MB to 4 MB 
• RX64M Group 145- and 144-pin versions, ROM capacity: 2 MB to 4 MB 
• RX64M Group 100-pin version, ROM capacity: 2 MB to 4 MB 
 
RX71M Group 
• RX71M Group 177- and 176-pin versions, ROM capacity: 2 MB to 4 MB 
• RX71M Group 145- and 144-pin versions, ROM capacity: 2 MB to 4 MB 
• RX71M Group 100-pin version, ROM capacity: 2 MB to 4 MB 
 
When using this application note with other Renesas MCUs, careful evaluation is recommended after making 
modifications to comply with the alternate MCU. 

R01AN2213EJ0110 
Rev. 1.10 

Dec. 21, 2020 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 2 of 32 
Dec. 21, 2020  

Contents 
1. Specifications ..................................................................................................................................... 3 

2. Confirmed Operating Conditions ........................................................................................................ 4 

3. Reference Application Note ................................................................................................................ 4 

4. Hardware ............................................................................................................................................ 5 
4.1 Hardware Configuration ............................................................................................................... 5 
4.2 Notes on the Board Used ............................................................................................................. 5 
4.3 Pins Used ..................................................................................................................................... 5 

5. Software ............................................................................................................................................. 6 
5.1 Operation Overview ..................................................................................................................... 9 

5.1.1 Data Transmission ................................................................................................................ 9 
5.1.2 Data Reception ................................................................................................................... 11 

5.2 Section Composition .................................................................................................................. 12 
5.3 File Composition ........................................................................................................................ 13 
5.4 Option-Setting Memory .............................................................................................................. 13 
5.5 Constants ................................................................................................................................... 13 
5.6 Structure/Union List ................................................................................................................... 14 
5.7 Variables .................................................................................................................................... 15 
5.8 Functions .................................................................................................................................... 15 
5.9 Function Specifications .............................................................................................................. 16 
5.10 Flowcharts .................................................................................................................................. 21 

5.10.1 Main Processing ................................................................................................................ 21 
5.10.2 Port Initialization ................................................................................................................ 22 
5.10.3 Peripheral Function Initialization ....................................................................................... 22 
5.10.4 SCIFA9 Initialization .......................................................................................................... 23 
5.10.5 DTC Initialization ............................................................................................................... 25 
5.10.6 IRQ Initialization ................................................................................................................ 26 
5.10.7 Start SCIFA9 Transmission and Reception ...................................................................... 27 
5.10.8 SCIFA9 Receive Data Full Interrupt Handling ................................................................... 28 
5.10.9 SCIFA9 Transmit Data Empty Interrupt Handling ............................................................. 28 
5.10.10 GROUPAL0 Interrupt Handling ....................................................................................... 29 
5.10.11 SCIFA9 Transmit End Interrupt Handling ........................................................................ 30 
5.10.12 SCIFA9 Receive Error Interrupt Handling ....................................................................... 30 
5.10.13 SCIFA9 Break Detect and Overrun Error Interrupt Handling .......................................... 30 
5.10.14 SCIFA9 Receive Data Ready Interrupt Handling ............................................................ 31 

6. Note on the Amount of Data to be Transmitted/Received Data and the FIFO Threshold Value ..... 32 

7. Sample Code .................................................................................................................................... 32 

8. Reference Documents ...................................................................................................................... 32 
 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 3 of 32 
Dec. 21, 2020  

1. Specifications 
This chapter explains using the SCIF to perform asynchronous serial transmission and reception. 

Data to be transmitted is set to the RAM transmit data storage area in advance, and the DTC is used to transmit the data. 
The received data is stored in the RAM receive data storage area using the DTC. 

Serial transmission and reception start when a falling edge on the interrupt request pin (IRQ5) is detected. 

Bit rate: 38,400 bps 
Data length: 8 bits, LSB first 
Stop bits: 1 bit 
Parity: None 
Hardware flow control: None 

 

Table 1.1 lists the Peripheral Functions and Their Applications, and Figure 1.1 shows a Block Diagram. 

 
Table 1.1   Peripheral Functions and Their Applications 

Peripheral Function Application 
SCIF Performs serial transmission and reception in asynchronous mode 

DTC Transfers data received in SCIFA9 to the RAM 
Transfers data to be transmitted from the RAM to SCIFA9 

IRQ5 Start trigger for serial transmission and reception (normal transmission 
and reception) 

 
 

Receive data 
storage area

Transmit data 
storage area

RAM

Transmit block

Receive block

SCIFA9

TXD9

RXD9
TXIF9
RXIF9

Data transfer

Data transfer

DTC

IRQ5
Transmission enabled/reception enabled

CPU

DTC vector 
table

DTC transfer 
dataDTC transfer information

Receive data

Transmit data

 

Figure 1.1   Block Diagram 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 4 of 32 
Dec. 21, 2020  

2. Confirmed Operating Conditions 
The sample code accompanying this application note has been run and confirmed under the conditions below. 

 
Table 2.1   Confirmed Operating Conditions 

Item Contents 
MCU used R5F564MLCDFC (RX64M Group) 

Operating frequencies 

• Main clock: 24 MHz 
• PLL clock: 240 MHz (main clock divided by 1 and multiplied by 10) 
• System clock (ICLK): 120 MHzNote1 (PLL clock divided by 2) 
• Peripheral module clock B (PCLKB): 60 MHz (PLL clock divided by 4) 

Operating voltage 3.3 V 
Integrated development 
environment 

Renesas Electronics Corporation 
e2 studio Version: 2020-10 

C compiler 

Renesas Electronics Corporation 
C/C++ Compiler Package for RX Family V3.02.00Note2 
Compile options 
The integrated development environment default settings are used. 

iodefine.h version V0.9a 
Endian Little endian 
Operating mode Single-chip mode 
Processor mode Supervisor mode 
Sample code version Version 1.10 
Board used Renesas Start Kit+ for RX64M (product part no.: R0K50564MSxxxBE) 
 
Note1:  When setting the frequency of ICLK to faster than 120 MHz in RX71M, the value of the MEMWAIT register needs to be 

changed. 
Note2:  If the same version of the toolchain (C compiler) specified in the original project is not in the import destination, 

 the toolchain will not be selected and an error will occur. 
Check the selected status of the toolchain on the project configuration dialog. 
 
For the setting method, refer to FAQ 3000404. 
 
FAQ 3000404 :Program ""make"" not found in PATH’ error when attempting to build an imported project 
 (e² studio)" 

 

3. Reference Application Note 
For additional information associated with this document, refer to the following application note. 

• RX64M Group Initial Setting Rev. 1.00 (R01AN1918EJ) 
 

The initial setting functions in the reference application note are used in the sample code in this application note. The 
revision number of the reference application note is current at the time this document was created. However, the latest 
version is always recommended. The latest version can be downloaded from the Renesas Electronics Corporation 
website. 
 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 5 of 32 
Dec. 21, 2020  

4. Hardware 

4.1 Hardware Configuration 
Figure 4.1 shows a Connection Example for RX64M. 

IRQ5 Switch 
input

PC

E2 Lite

Renesas Starter Kit+ for RX64M

(RXD7) *1

(TXD7) *1

USB cable

RX64M Group

RL78/
G1C

USB

SN74LVC2T45DCT

SN74LVC2T45DCT RXD9

TXD9

Note 1. RXD7 and TXD7 are not used.  

Figure 4.1   Connection Example 

4.2 Notes on the Board Used 
The Renesas Starter Kit+ for RX64M uses the USB as a virtual COM port to perform serial communication with the PC 
via the RL78/G1C. 

In this application note, SCIFA9 is connected to RL78/G1C for communication with the PC instead of the default SCI7 
being connected to RL78/G1C.When confirming operation, connect the RL78/G1C serial port to SCIFA9 (TXD9 and 
RXD9) that is the RX64M serial port. 

4.3 Pins Used 
Table 4.1 lists the Pins Used and Their Functions. 
 
Table 4.1   Pins Used and Their Functions 

Pin Name I/O Function 
P15/IRQ5 Input Switch input to start transmission and reception (normal transmission) 

PB6/RXD9 Input Input pin for receive data in SCIFA9 

PB7/TXD9 Output Output pin for transmit data in SCIFA9 
 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 6 of 32 
Dec. 21, 2020  

5. Software 
The sample code uses the DTC to automatically perform SCIFA9 transmission and reception. When the switch to start 
transmission and reception is pushed, 32 blocks (256 bytes) of data are transmitted and received. 

Transmission 

If transmission is enabled while the amount of unsent data stored in the FTDR register is less than or equal to the 
transmit FIFO threshold value, the TXIF9 interrupt request is generated, triggering the DTC. 

The DTC block transfers 1 block (8 bytes) of data to the FTDR register. Each time the amount of unsent data becomes 
less than or equal to the transmit FIFO threshold value, the TXIF9 interrupt request is generated, and the DTC is 
triggered. When the DTC transfers a total of 32 blocks (256 bytes), the TXIF9 interrupt request is output to the CPU. In 
this interrupt handling, the TXIF9 interrupt is disabled, and the TEIF9 interrupt is enabled. 

When SCIFA9 transmission is complete, the TEIF9 interrupt is generated. In this interrupt handling, SCIFA9 
transmission is disabled, the TEIF9 interrupt is disabled, and the transmission complete flag is set to 1. 

Reception 

When the amount of received data stored in the FRDR register becomes equal to or more than the receive FIFO 
threshold value, the RXIF9 interrupt request is generated, triggering the DTC. 

The DTC block transfers 1 block (8 bytes) of data to the RAM’s receive data storage area. Each time the amount of 
received data becomes equal to or greater than the receive FIFO threshold value, the RXIF9 interrupt request is 
generated, and the DTC is triggered. When the DTC transfers a total of 32 blocks (256 bytes), the RXIF9 interrupt 
request is output to the CPU. In this interrupt handling, SCIFA9 reception is disabled, the RXIF9 interrupt is disabled, 
and the reception complete flag is set to 1. 
 
Settings for the peripheral functions that are used are as shown below. 

SCIFA9 

 Serial communication mode: Asynchronous 
 Communication speed: 38,400 bps 
 Clock source: PCLKB 
 Data length: 8 bits 
 Stop bits: 1 bit 
 Parity: None 
 Data transfer direction: LSB first 
 Transmit FIFO threshold value: 8 
 Receive FIFO threshold value: 8 
 Interrupts: Receive error interrupt (ERIF9) enabled 

   Receive FIFO data full interrupt (RXIF9) enabled 
   Receive data ready interrupt (DRIF9) enabled 
   Break detection or overrun interrupt (BRIF9) enabled 
   Transmit FIFO data empty interrupt (TXIF9) enabled 
   Transmit end interrupt (TEIF9) enabled 

 

IRQ5 input pin 

 Detection method: Falling edge 
 Digital filter: Disabled 
 Interrupts: Not used 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 7 of 32 
Dec. 21, 2020  

DTC 

 Trigger source: TXIF9 or RXIF9 interrupt request. 
 DTC address mode: Full-address mode 

DTC transfer setting by the TXIF9 interrupt request 
 Transfer mode: Block transfer mode 
 Transfer source addressing mode: The SAR register is incremented after transfer. 
 Transfer source address: RAM (start address in the transmit data storage area) 
 Transfer destination addressing mode: Address in the DAR register is fixed. 
 Transfer destination address: SCIFA9.FTDR register 
 Data transfer size: 8 bits 
 DTC transfer mode: Transfer destination is a block area 
 Single block size: 8 times 
 Number of transfers: 32 
 Chain transfer: Disabled 
 Interrupts: An interrupt is sent to the CPU after the specified data has been transferred. 

 

Transfer source
(transmit data storage area)

An interrupt request is 
generated when the amount 
of data becomes less than or 
equal to the threshold value

TSR register

Transfer destination
(FTDR register -16 stage FIFO)

First block
(8 bytes)

32nd block

16
15
14
13
12

9

11
10

8
7
6
5
4
3
2
1

SAR register is 
incremented

DAR register 
is fixed

1 block transferred
(transferred 32 times)

 

Figure 5.1   Overview of Data Transmission 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 8 of 32 
Dec. 21, 2020  

DTC transfer setting by the RXIF9 interrupt request 
 Transfer mode: Block transfer mode 
 Transfer source addressing mode: The address in the SAR register is fixed. 
 Transfer source address: SCIF9.FRDR register 
 Transfer destination addressing mode: The DAR register is incremented after transfer. 
 Transfer destination address: RAM (start address in the receive data storage area) 
 Data transfer size: 8 bits 
 DTC transfer mode: Transfer source is a block area 
 Single block size: 8 times 
 Number of transfers: 32 
 Chain transfer: Disabled 
 Interrupts: An interrupt is sent to the CPU after the specified data has been transferred. 

 

Transfer destination
(receive data storage area)

An interrupt request is 
generated when the 

amount of receive data
 is equal to or greater 

than the threshold value

RSR register

Transfer source
(FRDR register - 16 stage FIFO)

First block
(8 bytes)

32nd block

DAR register is 
incremented

SAR register is fixed

1 block transferred
(transferred 32 times)

16
15
14
13
12

9

11
10

8
7
6
5
4
3
2
1

 

Figure 5.2   Overview of Data Reception 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 9 of 32 
Dec. 21, 2020  

5.1 Operation Overview 
5.1.1 Data Transmission 
(1) Initialization 

After initialization, the MCU waits for switch input to start transmission and reception. 

(2) Detecting switch input to start transmission and reception 
When switch input to start transmission and reception is detected, the IR flag for the IRQ5 interrupt is set to 0. 
Read the transmission complete flag and reception complete flag. When transmission and reception are confirmed 
to be complete, the transmission complete flag is set to 0 (transmitting data). The DTC transfer source address is set, 
the number of transfers is set, and the DTC start is enabled. The SCIFA9.SCR.REIE, TIE, RIE, TE, and RE bits are 
set to 1 simultaneously to enable transmission and reception. At this time, the amount of unsent data stored in the 
SCIFA9.FTDR register is equal to or less than the transmit FIFO threshold value, then the SCIFA9.SCR.TIE and 
TE bits are set to 1 simultaneously to set the IR flag for the TXIF9 interrupt to 1. 

(3) Start data transfer 
When the TXIF9 interrupt is enabled, one block of transmit data is block transferred from the RAM’s transmit data 
storage area to the SCIFA9.FTDR register. The IR flag for the TXIF9 interrupt automatically becomes 0. 

(4) Start data transmission 
Data is transferred from the SCIFA9.FTDR register to the SCIFA9.TSR register, and the transmit data is output 
from the TXD9 pin. When the amount of unsent data stored in the SCIFA9.FTDR register becomes equal to or less 
than the transmit FIFO threshold value, the IR flag for the TXIF9 interrupt becomes 1. The TXIF9 interrupt request 
triggers the DTC, and the next transmit data is transferred. 

(5) TXIF9 interrupt 
Step (4) is repeated until 32 blocks of data have been transferred, at which time the TXIF9 interrupt request is 
generated and sent to the CPU. In this interrupt handling, the TXIF9 interrupt is disabled, and the TEIF9 interrupt is 
enabled. 

(6) TEIF9 interrupt 
When SCIFA9 transmission is complete, the TEIF9 interrupt is generated. In this interrupt handling, SCIFA9 
transmission is disabled, the TEIF9 interrupt is disabled, and the transmission complete flag becomes 1. 

This process repeats starting from step (2). 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 10 of 32 
Dec. 21, 2020  

Figure 5.3 shows the Timing Diagram for Data Transmission. 

0 8

(4) (5) (6)

SCR.TE bit

IEN bit for the 
TXIF interrupt

(1)

IR flag for the 
TXIF interrupt

IEN bit for the 
TEIF interrupt

IR flag for the 
TEIF interrupt

DTCE bit

This flag does not become 1 
because the SCR.TIE bit is 0

(2)

RAM → FTDR register
(DTC transferred)

This bit becomes 0 when an 
interrupt request is accepted

Transmission 
complete flag

Switch input pin to start 
transmission and reception

SCR.TIE bit

SCR.TEIE bit

IR flag for the 
IRQ interrupt

(3)

This flag becomes 0 by 
setting the SCR.TEIE bit to 0

Amount of data stored
in the FTDR register

TXD pin
(transmit data)

15 0

00
h

01
h

08
h

14 8 78 1

F0
h

7 8

FF
h

FE
h

F8
h

F7
h

89

0E
h

06
h

1516

07
h

9 1516

EF
h

Processing by a program

High

Low

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1
0

1

0

1

0

This flag becomes 0 after each block is transferred

This bit becomes 0 
after the 32nd block of 
data is DTC transferred

 

Figure 5.3   Timing Diagram for Data Transmission 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 11 of 32 
Dec. 21, 2020  

5.1.2 Data Reception 
(1) Initialization 

After initialization, the MCU waits for switch input to start transmission and reception. 

(2) Detecting switch input to start transmission and reception 
When switch input to start transmission and reception is detected, the IR flag for the IRQ5 interrupt is set to 0. 
Read the transmission complete flag and reception complete flag. When transmission and reception are confirmed 
to be complete, the reception complete flag is set to 0 (receiving data). The DTC transfer source address is set, the 
number of transfers is set, and the DTC is enabled. The SCI7.SCR.REIE, TIE, RIE, TE, and RE bits are set to 1 
simultaneously to enable transmission and reception, and the RXIF9 interrupt is enabled. 

(3) Data reception complete 
After 1 byte of data has been received, the data is transferred from the SCIFA9.RSR register to the SCIFA9.FRDR 
register. If the amount of data received in the SCIFA9.FRDR register is equal to or more than the receive FIFO 
threshold value, the IR flag for the RXIF9 interrupt becomes 1. 

(4) Start data transfer 
The RXIF9 interrupt request triggers the DTC. The IR flag for the RXIF9 interrupt automatically becomes 0. When 
the DTC is triggered, one block of data is transferred from the SCIFA9.FRDR register to the RAM’s receive data 
storage area. 

(5) RXIF9 interrupt 
Step (4) is repeated until 32 blocks of data have been transferred, at which time the RXIF9 interrupt request is 
generated and sent to the CPU. In this interrupt handling, SCIFA9 reception is disabled, the RXIF9 interrupt is 
disabled, and the reception complete flag is set to 1. 

This process repeats starting from step (2). 
 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 12 of 32 
Dec. 21, 2020  

Figure 5.4 shows the Timing Diagram for Data Reception. 

(2)

This flag becomes 0 when 
an interrupt is accepted

(5)

SCR.RE bit

IEN bit for the 
RXIF interrupt

(1)

IR flag for the 
RXIF interrupt

DTCE bit

(4)
(3)

This bit becomes 0 
after the 32nd block of 
data is DTC transferred

SCR.RIE bit

Reception 
complete flag

Switch input pin to start 
transmission and reception

IR flag for the 
IRQ interrupt

FRDR register → RAM
(DTC transferred)

This flag becomes 0 when the last transfer of the block is performed

Amount of data stored 
in the FRDR register

RXD pin 
(received data) 01

h
00

h

02
h

03
h

05
h

04
h

06
h

07
h

09
h

08
h

0A
h

0B
h

0D
h

0C
h

0E
h

0F
h

F9
h

F8
h

FA
h

FB
h

FD
h

FC
h

FE
h

FF
h

0 21 043 65 87 21 43 65 87 21 43 65 87

High

Low

1

0

1

0

1

0

1

0

1

0

1

0

1

0

 

Figure 5.4   Timing Diagram for Data Reception 
 

5.2 Section Composition 
Table 5.1 lists the Section Data Changed in the Sample Code. For details on adding, changing, and deleting sections, 
refer to the RX Family C/C++ Compiler Package User’s Manual. 
 
Table 5.1   Section Data Changed in the Sample Code 

Section Name Change Address Function 
BDTC_SECTION Addition 0000 3000h DTC vector table 

 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 13 of 32 
Dec. 21, 2020  

5.3 File Composition 
Table 5.2 lists the Files Used in the Sample Code. Files generated by the integrated development environment are not 
included in this table. 

 
Table 5.2   Files Used in the Sample Code 

File Name Outline Remarks 

main.c Main processing  

main.h Header file for main.c  

r_init_stop_module.c Stop processing for active peripheral functions after a reset  

r_init_stop_module.h Header file for r_init_stop_module.c  

r_init_non_existent_port.c Nonexistent port initialization  

r_init_non_existent_port.h Header file for r_init_non_existent_port.c  

r_init_clock.c Clock initialization  

r_init_clock.h Header file for r_init_clock.c  
 
 

5.4 Option-Setting Memory 
Table 5.3 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the 
user system. 
 
Table 5.3   Option-Setting Memory Configured in the Sample Code 
Symbol Addresses Setting Value Contents 

OFS0 0012 0068h to 0012 006Bh FFFF FFFFh The IWDT is stopped after a reset. 
The WDT is stopped after a reset. 

OFS1 0012 006Ch to 0012 006Fh FFFF FFFFh The voltage monitor 0 reset is disabled after a 
reset. HOCO oscillation is disabled after a reset. 

MDE 0012 0064h to 0012 0067h FFFF FFFFh Little endian 
 
 

5.5 Constants 
Table 5.4 lists the Constants Used in the Sample Code. 
 
Table 5.4   Constants Used in the Sample Code 

Constant Name Setting Value Contents 
BUF_SIZE 256 Size of the storage area for transmit and receive data 
BLOCK_SIZE 8  
DTC_CNT BUF_SIZE/ BLOCK_SIZE Number of DTC transfers 
 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 14 of 32 
Dec. 21, 2020  

5.6 Structure/Union List 
Figure 5.5 shows the Structure/Union Used in the Sample Code. 

/* **** DTC transfer data **** */
#pragma bit_order left /* Bit field order: The bit field members are allocated from upper bits */
#pragma unpack /* Boundary alignment value for structure members: Alignment by member type */
typedef struct
{
    union
    {
        uint32_t    LONG;
        struct
        {
            uint32_t    MRA_MD    :2;
            uint32_t    MRA_SZ    :2;
            uint32_t    MRA_SM    :2;
            uint32_t           :2;
            uint32_t    MRB_CHNE :1;
            uint32_t    MRB_CHNS :1;
            uint32_t    MRB_DISEL :1;
            uint32_t    MRB_DTS    :1;
            uint32_t    MRB_DM :2;
            uint32_t                        :2;
            uint32_t                         :16;
        } BIT;
    } MR;
    void *    SAR;
    void *    DAR;
    struct
    {
        uint32_t    CRA:16;
        uint32_t    CRB:16;
    } CR;
}st_dtc_full_t;
#pragma packoption /* End of specification for the boundary alignment value for structure members */
#pragma bit_order /* End of specification for the bit field order */  

Figure 5.5   Structure/Union Used in the Sample Code 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 15 of 32 
Dec. 21, 2020  

5.7 Variables 
Table 5.5 lists the static Variables. 

 

Table 5.5   static Variables 

Type Variable Name Contents Function 

static volatile uint8_t trn_end_flag 
Transmission complete flag 
0: Transmitting data 
1: Transmission complete 

main 
excep_scifa9_txif9 

static volatile uint8_t rcv_end_flag 
Reception complete flag 
0: Receiving data 
1: Reception complete 

Main 
excep_scifa9_rxif9 

static uint8_t trnbuf[BUF_SIZE] Transmit data storage area 
main 
dtc_init 
scifa9_start 

static uint8_t rcvbuf[BUF_SIZE] Receive data storage area dtc_init 
scifa9_start 

static struct st_dtc_full_t dtc_info_rxif9 DTC transfer data with the RXIF9 
interrupt 

dtc_init 
scifa9_start 

static struct st_dtc_full_t dtc_info_txif9 DTC transfer data with the TXIF9 
interrupt 

dtc_init 
scifa9_start 

static void * pdtc_vect_table[256] DTC vector table dtc_init 
 

5.8 Functions 
Table 5.6 lists the Functions. 
 
Table 5.6   Functions 

Function Name Outline 
main Main processing 
port_init Port initialization 
R_INIT_StopModule Stop processing for active peripheral functions after a reset 
R_INIT_NonExistentPort Nonexistent port initialization 
R_INIT_Clock Clock initialization 
peripheral_init Peripheral function initialization 
scifa9_init SCIFA9 initialization 
dtc_init DTC initialization 
irq_init IRQ initialization 
scifa9_start Start SCIFA9 transmission and reception 
excep_scifa9_rxif9 SCIFA9 receive data full interrupt handling 
excep_scifa9_txif9 SCIFA9 transmit data empty interrupt handling 
excep_icu_groupal0 GROUPAL0 interrupt handling 
excep_scifa9_teif9 SCIFA9 transmit end interrupt handling 
excep_scifa9_erif9 SCIFA9 receive error interrupt handing 
excep_scifa9_brif9 SCIFA9 break detection or overrun interrupt handling 
excep_scifa9_drif9 SCIFA9 receive data ready interrupt handling 
 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 16 of 32 
Dec. 21, 2020  

5.9 Function Specifications 
The following tables list the sample code function specifications. 

 

main 

Outline Main processing 

Header None 

Declaration void main(void) 

Description After initialization, if switch input to start transmission and reception is detected, this function 
starts SCIFA9 transmission and reception. 

Arguments None 

Return values None 
 
 

port_init 

Outline Port initialization 

Header None 

Declaration static void port_init(void) 

Description This function initializes the ports. 

Arguments None 

Return values None 
 
 
R_INIT_StopModule 

Outline Stop processing for active peripheral functions after a reset 

Header r_init_stop_module.h 

Declaration void R_INIT_StopModule(void) 

Description This function configures settings to enter the module-stop state. 
Arguments None 

Return values None 

Remarks 
Transition to the module-stop state is not performed in the sample code. For more 
information on this function, refer to the RX64M Group Initial Setting Rev. 1.00 application 
note. 

 
 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 17 of 32 
Dec. 21, 2020  

R_INIT_NonExistentPort 

Outline Nonexistent port initialization 

Header r_init_non_existent_port.h 
Declaration void R_INIT_NonExistentPort(void) 
Description This function initializes port direction registers for ports that do not exist. 
Arguments None 

Return values None 

Remarks 

The number of pins in the sample code is set for the 176-pin package (PIN_SIZE=176). After 
this function is called, when writing in byte units to the PDR and PODR registers which have 
nonexistent ports, set the corresponding bits for nonexistent ports as follows: set the I/O 
select bits in the PDR registers to 1 and set the output data store bits in the PODR registers 
to 0. For more information on this function, refer to the RX64M Group Initial Setting Rev. 
1.00 application note. 

 
 
R_INIT_Clock 

Outline Clock initialization 

Header r_init_clock.h 

Declaration void R_INIT_Clock(void) 

Description This function initializes the clocks. 

Arguments None 

Return values None 

Remarks 
In the sample code, the PLL clock is selected as the system clock, and the sub-clock is not 
used. For more information on this function, refer to the RX64M Group Initial Setting Rev. 
1.00 application note. 

 
 
peripheral_init 

Outline Peripheral function initialization 

Header None 

Declaration static void peripheral_init(void) 

Description This function initializes the peripheral functions used. 

Arguments None 

Return values None 
 
 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 18 of 32 
Dec. 21, 2020  

scifa9_init 

Outline SCIFA9 initialization 

Header None 

Declaration static void scifa9_init(void) 

Description This function initializes SCIFA9. 

Arguments None 

Return values None 
 
 
dtc_init 

Outline DTC initialization 

Header None 

Declaration static void dtc_init(void) 

Description This function initializes the DTC. 

Arguments None 

Return values None 
 
 
irq_init 

Outline IRQ initialization 

Header None 

Declaration static void irq_init(void) 

Description This function initializes IRQ5. 

Arguments None 

Return values None 
 
 
scifa9_start 

Outline Start SCIFA9 transmission and reception 

Header None 

Declaration static void scifa9_start(void) 

Description This function starts SCIFA9 transmission and reception. 

Arguments None 

Return values None 
 
 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 19 of 32 
Dec. 21, 2020  

excep_scifa9_rxif9 

Outline SCIFA9 receive data full interrupt handling 

Header None 

Declaration void excep_scifa9_rxif9 (void) 

Description This function disables reception, and disables the RXIF9, ERIF9, BRIF9, and DRIF9 
interrupts. This function sets the reception complete flag. 

Arguments None 

Return values None 
 
 
excep_scifa9_txif9 

Outline SCIFA9 transmit data empty interrupt handling 

Header None 

Declaration void excep_scifa9_txif9 (void) 

Description This function disables the TXIF9 interrupt and enables the TEIF9 interrupt. 

Arguments None 

Return values None 
 
 
excep_icu_groupal0 

Outline GROUPAL0 interrupt handling 

Header None 

Declaration void excep_icu_groupal0 (void) 

Description This function performs GROUPAL0 interrupt handling. 

Arguments None 

Return values None 
 
 
excep_scifa9_teif9 

Outline SCIFA9 transmit end interrupt handling 

Header None 

Declaration void excep_scifa9_teif9 (void) 

Description This function disables transmission and disables the TEIF9 interrupt. This function sets the 
transmission complete flag. 

Arguments None 

Return values None 
 
 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 20 of 32 
Dec. 21, 2020  

excep_scifa9_erif9 

Outline SCIFA9 receive error interrupt handling 

Header None 

Declaration void excep_scifa9_erif9 (void) 

Description This function performs receive error processing. 

Arguments None 

Return values None 

Remarks Receive error processing is not performed in the sample code (infinite loop). Add processing 
to the program when necessary. 

 
 
excep_scifa9_brif9 

Outline SCIFA9 break detect or overrun error interrupt handling 

Header None 

Declaration void excep_scifa9_brif9 (void) 

Description This function performs the break detect and overrun error interrupt handling. 

Arguments None 

Return values None 

Remarks Break detection and overrun error interrupt handling are not performed in the sample code 
(infinite loop). Add processing to the program when necessary. 

 
 
excep_scifa9_drif9 

Outline SCIFA9 receive data ready interrupt handling 

Header None 

Declaration void excep_scifa9_drif9 (void) 

Description This function performs receive data ready interrupt handling. 

Arguments None 

Return values None 

Remarks Receive data ready interrupt handling is not performed in the sample code (infinite loop). 
Add processing to the program when necessary. 

 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 21 of 32 
Dec. 21, 2020  

5.10 Flowcharts 
5.10.1 Main Processing 
Figure 5.6 shows the Main Processing. 

main

Disable maskable interrupts I flag ← 0

Port initialization
port_init()

Stop processing for active peripheral 
functions after a reset
R_INIT_StopModule()

Nonexistent port initialization
R_INIT_NonExistentPort()

Clock initialization
R_INIT_Clock()

Peripheral function initialization
peripheral_init()

Enable maskable interrupts I flag ← 1

Set transmit data to the RAM trnbuf[0] to trnbuf[255] ← 00h to FFh

Clear the receive data storage area rcvbuf[0] to rcvbuf[255] ← 00h

Set the transmission complete flag
and reception complete flag

trn_end_flag ← 1: Transmission complete
rcv_end_flag ← 1: Reception complete

Has the switch to
start transmission and reception been 

pushed? (normal transmission)
No

Yes

Read the IRn register
IR flag: 0: IRQ5 interrupt request is not generated

1: IRQ5 interrupt request is generated

Clear the IRQ5 interrupt request

Clear the transmission complete flag
and reception complete flag

trn_end_flag ← 0: Transmitting data
rcv_end_flag ← 0: Receiving data

Start SCIFA9 transmission and reception
scifa9_start()

Wait for transmission and
reception to be completed

Read trn_end_flag
0: Transmitting data
1: Transmission completed

Read rcv_end_flag
0: Receiving data
1: Reception completed

 

Figure 5.6   Main Processing 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 22 of 32 
Dec. 21, 2020  

5.10.2 Port Initialization 
Figure 5.7 shows Port Initialization. 

port_init

Set the port output data PORTB.PODR register
B7 bit ← 1: PB7/TXD9 output is high

Set the port direction PORT1.PDR register
B5 bit ← 0: P15/IRQ5 is set to input

PORTB.PDR register
B6 bit ← 0: PB6/RXD9 is set to input
B7 bit ← 1: PB7/TXD9 is set to output

Set the port mode PORT1.PMR register
B5 bit ← 0: P15/IRQ5 is used as a general I/O pin.

PORTB.PMR register
B6 bit ← 0: PB6/RXD9 is used as a general I/O pin.
B7 bit ← 0: PB7/TXD9 is used as a general I/O pin.

return  

Figure 5.7   Port Initialization 
 

5.10.3 Peripheral Function Initialization 
Figure 5.8 shows Peripheral Function Initialization. 

peripheral_init

Enable writing to associated registers

Exit the module-stop state

PRCR register ← A502h
PRC1 bit = 1

MSTPCRC register
MSTPC26 bit ← 0: SCIF9 is released from the module-stop state

Exit the module-stop state MSTPCRA register
MSTPC28 bit ← 0: DTC is released from the module-stop state

Disable writing to associated registers PRCR register ← A500h
PRC1 bit = 0

SCIFA9 initialization
scifa9_init()

DTC initialization
dtc_init()

IRQ initialization
irq_init()

return  

Figure 5.8   Peripheral Function Initialization 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 23 of 32 
Dec. 21, 2020  

5.10.4 SCIFA9 Initialization 
Figure 5.9 and Figure 5.10 show the SCIFA9 initialization. 

scifa9_init

Disable the SCIFA9 interrupt request IER0C register
IEN6 bit ← 0: SCIFA9.RXIF9 interrupt request is disabled.
IEN7 bit ← 0: SCIFA9.TXIF9 interrupt request is disabled.

IER0E register
IEN0 bit ← 0: GROUPAL0 interrupt request is disabled.

GENAL0 register
EN4 bit ← 0: SCIFA9.TEIF9 interrupt request is disabled.
EN5 bit ← 0: SCIFA9.ERIF9 interrupt request is disabled.
EN6 bit ← 0: SCIFA9.BRIF9 interrupt request is disabled.
EN7 bit ← 0: SCIFA9.DRIF9 interrupt request is disabled.

Disable transmission, reception, and 
interrupt requests *1

SCIFA9.SCR register ← 0000h
TEIE bit = 0: TEIF interrupt request disabled
REIE bit = 0: ERIF interrupt request and BRIF interrupt request disabled
RE bit = 0: Serial reception disabled
TE bit = 0: Serial transmission disabled
RIE bit = 0: RXIF interrupt request, DRIF interrupt request, ERIF interrupt

request, and BRIF interrupt request disabled
TIE bit = 0: TXIF interrupt disabled

Reset the FRDR and FTDR registers SCIFA9.FCR register
RFRST bit ← 1: FRDR register is reset
TFRST bit ← 1: FTDR register is reset

Clear the status flags FSR register ← 0000h
DR flag = 0: Clear the receive data ready flag
RDF flag = 0: Clear the receive FIFO data full flag
BRK flag = 0: Clear the break signal detection flag
TDFE flag = 0: Clear the transmit FIFO data empty flag
TEND flag = 0: Clear the transmission complete flag
ER flag = 0: Clear the reception error flag

LSR register
ORER flag ← 0: Clear the overrun error flag

Select the clock SCIFA9.SCR register
CKE[1:0] bits ← 00b: The baud rate generator output is the clock source, and 

the SCK pin status is determined by the SPTR.SCKIO 
and SCKDT bit settings.

Set the transmission and
reception formats

SCIFA9.SMR register ← 0000h
CKS[1:0] bits = 00b: PCLKA
STOP bit = 0: 1 stop bit
PM bit = 0: Even parity
PE bit = 0: Parity bit is neither added nor checked
CHR bit = 0: 8 bits
CM bit = 0: Asynchronous mode

A

Note 1. After writing to the SCR register, confirm that the value written can be read.  

Figure 5.9   SCIFA9 Initialization (1/2) 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 24 of 32 
Dec. 21, 2020  

A

Select the modulation register *1 SCIFA9.SEMR register
MDDRS bit ← 0: BRR register is accessible

Set the BRR register SCIFA9.BRR register ← 73: Write a value corresponding to the bit rate

Select the modulation register *1 SCIFA9.SEMR register
MDDRS bit ← 1: MDDR register is accessible
BRME bit ← 1: Bit rate modulation function enabled

Set the MDDR register SCIFA9.MDDR register ← 194: Write a value corresponding to the bit rate

Has a 1-bit
period elapsed?

No

Yes

Set the FIFO threshold values FTCR register ← 0808h
TFTC[4:0] bits = 01000b: Transmit FIFO threshold value becomes 8
TTRGS bit = 0: Transmit FIFO threshold value set in the FCR.TTRG[1:0] bits
RFTC[4:0] bits = 01000b: Receive FIFO threshold value becomes 8
RTRGS bit = 0: Receive FIFO threshold value set in the FCR.RTRG[1:0] bits

FCR register ← 0080h
LOOP bit = 0: Loopback test disabled
RFRST bit = 0: FRDR register is not reset
TFRST bit = 0: FTDR register is not reset
MCE bit = 0: Hardware flow control by the modem control signal is disabled
TTRG[1:0] bits = 00b: 8 (8)
RTRG[1:0] bits = 10b: 8

Set the I/O port functions PWPR register
B0WI bit ← 0: Writing to the PFSWE bit is enabled

PWPR register
PFSWE bit ← 1: Writing to the PFS register is enabled

PB6PFS register ← 0Ah
PSEL[5:0] bits = 001010b: RXD9 selected for the PB6 pin function

PB7PFS register ← 0Ah
PSEL[5:0] bits = 001010b: TXD9 selected for the PB7 pin function

PWPR register
PFSWE bit ← 0: Writing to the PFS register is disabled

PWPR register
B0WI bit ← 1: Writing to the PFSWE bit is disabled

PORTB.PMR register
B6 bit ← 1: Uses the PB6/RXD9 pin as an I/O port for peripheral modules.

Set the interrupt priority level IPR102 register
IPR[3:0] bits ← 0001b: SCIFA9.RXIF9 interrupt priority level 1

IPR103 register
IPR[3:0] bits ← 0001b: SCIFA9.TXIF9 interrupt priority level 1

IPR112 register
IPR[3:0] bits ← 0002b: GROUPAL0 interrupt priority level 2

(TEIF9, ERIF9, BRIF9, DRIF9)

Clear the interrupt requests IR102 register
IR flag ← 0: SCIFA9.RXIF9 interrupt request not generated

IR103 register
IR flag ← 0: SCIFA9.TXIF9 interrupt request not generated

return

Note 1. After writing to the MDDRS bit, confirm that the value written can be read.  

Figure 5.10   SCIFA9 Initialization (2/2) 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 25 of 32 
Dec. 21, 2020  

5.10.5 DTC Initialization 
Figure 5.11 shows DTC Initialization. 

dtc_init

Stop the DTC module *1 DTCST register ← 00h
DTCST bit = 0: DTC module stop

Disable the transfer
information read skip

DTCCR register
RRS bit ← 0: Transfer information read is not skipped

Set the DTC address mode DTCADMOD register ← 00h
SHORT bit = 0: Full-address mode

Set the information for DTC transfer  
with RXIF9

dtc_info_rxif9.MR.LONG ← 0000 0000h: Initialized by 0
dtc_info_rxif9.MR.BIT.MRA_MD ← 10b: Block transfer mode
dtc_info_rxif9.MR.BIT.MRA_SZ ← 00b: Byte (8-bit) transfer
dtc_info_rxif9.MR.BIT.MRA_SM ← 00b: Address in the SAR register is fixed.
dtc_info_rxif9.MR.BIT.MRB_CHNE ← 0: Chain transfer is disabled.
dtc_info_rxif9.MR.BIT.MRB_DISEL ← 0: An interrupt request to the CPU is generated when 

specified data transfer is completed.
dtc_info_rxif9.MR.BIT.MRB_DTS ← 1: Transfer source side is block area.
dtc_info_rxif9.MR.BIT.MRB_DM ← 10b: DAR value is incremented after data transfer.
dtc_info_rxif9.SAR ← Address in the SCIFA9.FRDR register
dtc_info_rxif9.DAR ← Address in rcvbuf
dtc_info_rxif9.CR.CRA ← 0808h: Block size: 8

Block size count: 8
dtc_info_rxif9.CR.CRB ← DTC_CNT: Number of DTC transfers

Set the information for DTC transfer 
information with TXIF9

dtc_info_txif9.MR.LONG ← 0000 0000h: Initialized by 0
dtc_info_txif9.MR.BIT.MRA_MD ← 10b: Block transfer mode
dtc_info_txif9.MR.BIT.MRA_SZ ← 00b: Byte (8-bit) transfer
dtc_info_txif9.MR.BIT.MRA_SM ← 10b: SAR value is incremented after data transfer.
dtc_info_txif9.MR.BIT.MRB_CHNE ← 0: Chain transfer is disabled.
dtc_info_txif9.MR.BIT.MRB_DISEL ← 0: An interrupt request to the CPU is generated when 

specified data transfer is completed.
dtc_info_txif9.MR.BIT.MRB_DTS ← 1: Transfer source side is block area.
dtc_info_txif9.MR.BIT.MRB_DM ← 00b: Address in the DAR register is fixed.
dtc_info_txif9.SAR ← Address in trnbuf
dtc_info_txif9.DAR ← Address in the SCIFA9.FTDR register
dtc_info_txif9.CR.CRA ← 0808h: Block size: 8

Block size count: 8
dtc_info_txif9.CR.CRB ← DTC_CNT: Number of DTC transfers

Set the address of the DTC transfer 
information to the DTC vector

dtc_vect_table[102] ← Address of dtc_info_rxif9
dtc_vect_table[103] ← Address of dtc_info_txif9

Set the base address DTCVBR register ← Address of dtc_vect_table

return

Note 1. After writing to the DTCST register, confirm that the value written can be read.  

Figure 5.11   DTC Initialization 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 26 of 32 
Dec. 21, 2020  

5.10.6 IRQ Initialization 
Figure 5.12 shows IRQ Initialization. 

irq_init

Disable the IRQ5 interrupt request IER08 register
IEN5 bit ← 0

Set the IRQ5 port PWPR register
B0WI bit ← 0: Writing to the PFSWE bit is enabled

PWPR register
PFSWE bit ← 1: Writing to the PFS register is enabled

P15PFS register
ISEL bit ← 1: Used as the IRQ5 input pin

PWPR register
PFSWE bit ← 0: Writing to the PFS register is disabled

PWPR register
B0WI bit ← 1: Writing to the PFSWE bit is disabled

Set the IRQ5 detection method IRQCR5 register ← 04h
IRQMD[1:0] bits = 01b: Falling edge

Clear the IRQ5 interrupt request IR069 register
IR flag ← 0

return  

Figure 5.12   IRQ Initialization 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 27 of 32 
Dec. 21, 2020  

5.10.7 Start SCIFA9 Transmission and Reception 
Figure 5.13 shows Start SCIFA9 Transmission and Reception. 

scifa9_start

Stop the DTC module *1 DTCST register ← 00h
DTCST bit = 0: DTC module stop

Disable the SCIFA9 interrupt request *1 IER0C register
IEN6 bit ← 0: SCIFA9.RXIF9 interrupt request is disabled.
IEN7 bit ← 0: SCIFA9.TXIF9 interrupt request is disabled.

IER0E register
IEN0 bit ← 0: GROUPAL0 interrupt request is disabled.

GENAL0 register
EN4 bit ← 0: SCIFA9.TEIF9 interrupt request is disabled.
EN5 bit ← 0: SCIFA9.ERIF9 interrupt request is disabled.
EN6 bit ← 0: SCIFA9.BRIF9 interrupt request is disabled.
EN7 bit ← 0: SCIFA9.DRIF9 interrupt request is disabled.

Clear the interrupt requests IR102 register
IR flag ← 0: SCIFA9.RXIF9 interrupt request is not generated.

IR103 register
IR flag ← 0: SCIFA9.TXIF9 interrupt request is not generated.

Reset the information for DTC transfer  
with RXIF9

dtc_info_rxif9.DAR ← Address of rcvbuf
dtc_info_rxif9.CR.CRB ← DTC_CNT

Reset the information for DTC transfer 
with TXIF9

dtc_info_txif9.SAR ← Address of trnbuf
dtc_info_txif9.CR.CRB ← DTC_CNT

Enable the transfer information read skip DTCCR register
RRS bit ← 1: Transfer information read is skipped when vector numbers match.

Starting the DTC is enabled with the 
RXIF9 or TXIF9 interrupt

DTCER102 register
DTCE bit ← 1

DTCER103 register
DTCE bit ← 1

Start the DTC module DTCST register ← 01h
DTCST bit = 0: DTC module start

Start SCIFA9 transmission
and reception *1

SCIFA9.SCR register ← SCIFA9.SCR register | F8h
REIE bit = 1: ERIF interrupt request and BRIF interrupt request enabled
RE bit = 1: Serial reception enabled
TE bit = 1: Serial transmission enabled
RIE bit = 1: RXIF interrupt request, DRIF interrupt request, ERIF interrupt 

request, and BRIF interrupt request enabled
TIE bit = 1: TXIF interrupt enabled

Set the I/O port functions *1 PORTB7.PMR register
B7 bit ← 1: Uses the PB7/TXD9 pin as an I/O port for peripheral modules.

Enable the ERIF9 interrupt request, BRIF9 
interrupt request, and DRIF9 interrupt 

request

IER0E register
IEN0 bit ← 1: GROUPAL0 interrupt request is enabled.

GENAL0 register
EN5 bit ← 1: SCIFA9.ERIF9 interrupt request is enabled.

GENAL0 register
EN6 bit ← 1: SCIFA9.BRIF9 interrupt request is enabled.

GENAL0 register
EN7 bit ← 1: SCIFA9.DRIF9 interrupt request is enabled.

Enable the RXIF9 interrupt request IER0C register
IEN6 bit ← 1: SCIFA9.RXIF9 interrupt request is enabled.

Enable the TXIF9 interrupt request IER0C register
IEN7 bit ← 1: SCIFA9.TXIF9 interrupt request is enabled.

return

Note 1. After writing to each register, confirm that the value written can be read.  

Figure 5.13   Start SCIFA9 Transmission and Reception 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 28 of 32 
Dec. 21, 2020  

5.10.8 SCIFA9 Receive Data Full Interrupt Handling 
Figure 5.14 shows SCIFA9 Receive Data Full Interrupt Handling. 

excep_scifa9_rxif9

Disable serial reception *1

Disable the RXIF9 interrupt request

Disable the ERIF9 interrupt request

Disable the BRIF9 interrupt request

Disable the DRIF9 interrupt request

Disable interrupt requests *1

Set the reception complete flag

return

Note 1. After writing to the RE and RIE bits, confirm that the value written can be read. 

SCIFA9.SCR register
RE bit ← 0

IER0C register
IEN6 bit ← 0: SCIFA9.RXIF9 interrupt request is disabled.

GENAL0 register
EN5 bit ← 0: SCIFA9.ERIF9 interrupt request is disabled.

GENAL0 register
EN6 bit ← 0: SCIFA9.BRIF9 interrupt request is disabled.

GENAL0 register
EN7 bit ← 0: SCIFA9.DRIF9 interrupt request is disabled.

SCIFA9.SCR register
RIE bit ← 0: RXIF interrupt request, DRIF interrupt request, ERIF interrupt 

request, and BRIF interrupt request disabled
REIE bit ← 0: ERIF interrupt request and BRIF interrupt request disabled

rcv_end_flag ← 1: Reception complete

 

Figure 5.14   SCIFA9 Receive Data Full Interrupt Handling 
 

5.10.9 SCIFA9 Transmit Data Empty Interrupt Handling 
Figure 5.15 shows SCIFA9 Transmit Data Empty Interrupt Handling. 

excep_scifa9_txif9

Disable the TXIF9 interrupt request

Disable interrupt requests *1

Enable interrupt requests *1

Enable the TEIF9 interrupt request

return

Note 1. After writing to the TIE and TEIE bits, confirm that the value written can be read. 

IER0C register
IEN7 bit ← 0: SCIFA9.TXIF9 interrupt request is disabled.

SCIFA9.SCR register
TIE bit ← 0: TXIF interrupt request disabled

SCIFA9.SCR register
TEIE bit ← 1: TEIF interrupt request enabled

GENAL0 register
EN4 bit ← 1: SCIFA9.TEIF9 interrupt request is enabled.

 

Figure 5.15   SCIFA9 Transmit Data Empty Interrupt Handling 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 29 of 32 
Dec. 21, 2020  

5.10.10 GROUPAL0 Interrupt Handling 
Figure 5.16 shows GROUPAL0 Interrupt Handling. 

excep_icu_groupal0

Read the IR flag

IR flag is 1

IR flag is 0 Read the IR112 register
IR flag = 0: No interrupt request is generated.

= 1: An interrupt request is generated.

Was an FER
interrupt request or PER 

interrupt request
generated?

Yes

No

SCIFA9.ERIF9 interrupt handling
excep_scifa9_erif9()

Was a BRK
interrupt request or ORER 

interrupt request
generated?

Read the ICU.GENAL0 register
EN5 bit = 0: SCIFA9.ERIF9 interrupt request is disabled.

= 1: SCIFA9.ERIF9 interrupt request is enabled.
Read the ICU.GRPAL0 register

IS5 bit = 0: SCIFA9.ERIF9 interrupt request is disabled.
= 1: SCIFA9.ERIF9 interrupt request is enabled.

Yes

No

SCIFA9.BRIF9 interrupt handling
excep_scifa9_brif9()

Was the receive data
ready interrupt request

generated?

Yes

No

SCIFA9.DRIF9 interrupt handling
excep_scifa9_drif9()

Was the
transmit end interrupt request

generated?

Yes

No

SCIFA9.TEIF9 interrupt handling
excep_scifa9_teif9()

return

Read the ICU.GENAL0 register
EN6 bit = 0: SCIFA9.BRIF9 interrupt request is disabled.

= 1: SCIFA9.BRIF9 interrupt request is enabled.
Read the ICU.GRPAL0 register

IS6 bit = 0: SCIFA9.BRIF9 interrupt request is disabled.
= 1: SCIFA9.BRIF9 interrupt request is enabled.

Read the ICU.GENAL0 register
EN7 bit = 0: SCIFA9.DRIF9 interrupt request is disabled.

= 1: SCIFA9.DRIF9 interrupt request is enabled.
Read the ICU.GRPAL0 register

IS7 bit = 0: SCIFA9.DRIF9 interrupt request is disabled.
= 1: SCIFA9.DRIF9 interrupt request is enabled.

Read the ICU.GENAL0 register
EN4 bit = 0: SCIFA9.TEIF9 interrupt request is disabled.

= 1: SCIFA9.TEIF9 interrupt request is enabled.
Read the ICU.GRPAL0 register

IS4 bit = 0: SCIFA9.TEIF9 interrupt request is disabled.
= 1: SCIFA9.TEIF9 interrupt request is enabled.

 

Figure 5.16   GROUPAL0 Interrupt Handling 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 30 of 32 
Dec. 21, 2020  

5.10.11 SCIFA9 Transmit End Interrupt Handling 
Figure 5.17 shows SCIFA9 Transmit End Interrupt Handling. 

excep_scifa9_teif9

Was the
transmit end interrupt request 

generated?

No

Yes

Read the SCIFA9.SCR register
TEIE bit: 0: TEIF interrupt request disabled

1: TEIF interrupt request enabled
Read the SCIFA9.FSR register

TEND flag: 0: Waiting for data to transmit or data is being transmitted
1: Transmission complete

Set the I/O port function PORTB.PMR register
B7 bit ← 0: Uses the PB7/TXD9 pin as a general I/O pin

Disable serial transmission *1 SCIFA9.SCR register
TE bit ← 0

Disable the TEIF9 interrupt request GENAL0 register
EN4 bit ← 0: SCIFA9.TEIF9 interrupt request is disabled.

Disable interrupt requests *1 SCIFA9.SCR register ← 0: SCIFA9.SCR register & 7Bh
TEIE bit = 0: TEIF interrupt request disabled
TIE bit = 0: TXIF interrupt disabled

Set the transmission complete flag tm_end_flag ← 1: Transmission complete

return

Note 1. After writing to the SCR register, confirm that the value written can be read.  

Figure 5.17   SCIFA9 Transmit End Interrupt Handling 
 

5.10.12 SCIFA9 Receive Error Interrupt Handling 
Figure 5.18 shows SCIFA9 Receive Error Interrupt Handling. 

excep_scifa9_erif9

Processing for SCIFA9 receive error
interrupt

return

Processing for SCIFA9 receive error interrupt is not performed in the sample 
code. (infinite loop)
Add processing to the program as needed.

 

Figure 5.18   SCIFA9 Receive Error Interrupt Handling 
 

5.10.13 SCIFA9 Break Detect and Overrun Error Interrupt Handling 
Figure 5.19 shows SCIFA9 Break Detect and Overrun Error Interrupt Handling. 

excep_scifa9_brif9

Processing for SCIFA9 break detect 
and overrun error interrupt

return

Processing for SCIFA9 break detection and overrun error interrupt is not performed in the 
sample code. (infinite loop)
Add processing to the program as needed.

 

Figure 5.19   SCIFA9 Break Detect and Overrun Error Interrupt Handling 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 31 of 32 
Dec. 21, 2020  

5.10.14 SCIFA9 Receive Data Ready Interrupt Handling 
Figure 5.20 shows SCIFA9 Receive Data Ready Interrupt Handling. 

excep_scifa9_drif9

Processing for SCIFA9 receive data 
ready interrupt

return

Processing for SCIFA9 receive data ready interrupt is not performed in the sample 
code. (infinite loop)
Add processing to the program as needed.

 

Figure 5.20   SCIFA9 Receive Data Ready Interrupt Handling 



RX64M, RX71M Group  Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

R01AN2213EJ0110  Rev. 1.10  Page 32 of 32 
Dec. 21, 2020  

6. Note on the Amount of Data to be Transmitted/Received Data and the FIFO 
Threshold Value 

In this application note, when changing the amount of data to be transmitted/received, set the amount of data so it is a 
whole-number multiple of the transmit/receive FIFO threshold value (in this application note, it is a multiple of 8). 

7. Sample Code 
Sample code can be downloaded from the Renesas Electronics website. 

8. Reference Documents 
User’s Manual: Hardware 

RX64M Group User’s Manual: Hardware (R01UH0377EJ) 
RX71M Group User’s Manual: Hardware (R01UH0493EJ) 
The latest version can be downloaded from the Renesas Electronics website. 

 
Technical Update/Technical News 

The latest information can be downloaded from the Renesas Electronics website. 
 
User’s Manual: Development Tools 

RX Family Compiler CC-RX V.2.01.00 User’s Manual: RX Coding Rev.1.00 (R20UT2748EJ) 
The latest version can be downloaded from the Renesas Electronics website. 

 
 
 
Website and Support 
 
Renesas Electronics website 

http://www.renesas.com 
 
Inquiries 

http://www.renesas.com/contact/ 
 
 

http://www.renesas.com/
http://www.renesas.com/contact/


 

 

REVISION HISTORY 
RX64M, RX71M Group Application Note 

Using the DTC and SCIFA to Perform 
Asynchronous Serial Transmission and Reception 

 

Rev. Date 
Description 

Page Summary 
1.00 Oct. 1, 2014 — First edition issued 
1.01 Nov. 2, 2015 — RX71M Group is added to the target device 

13 “MDE” in table 5.3 is corrected 
1.10 Dec. 21, 2020 — Update the toolchain version. 

    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

All trademarks and registered trademarks are the property of their respective owners. 

 



 

 

 General Precautions in the Handling of Microprocessing Unit and Microcontroller 
Unit Products 
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the 
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 

1. Precaution against Electrostatic Discharge (ESD) 

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps 

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be 

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. 

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and 

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor 

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. 
2. Processing at power-on 

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of 

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset 

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins 

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the 

level at which resetting is specified. 
3. Input of signal during power-off state 

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O 

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal 

elements. Follow the guideline for input signal during power-off state as described in your product documentation. 
4. Handling of unused pins 

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are 

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of 

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal 

become possible. 
5. Clock signals 

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program 

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator 

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal 

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. 
6. Voltage application waveform at input pin 

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL 

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the 

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). 
7. Prohibition of access to reserved addresses 

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these 

addresses as the correct operation of the LSI is not guaranteed. 
8. Differences between products 

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. 

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms 

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, 

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product. 
 
 



 

 

A-1 

 

Notice 
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products 

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your 
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use 
of these circuits, software, or information. 

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, 
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this 
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.  

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics 
or others. 

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any 
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for 
each Renesas Electronics product depends on the product’s quality grade, as indicated below. 
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home 

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. 
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key 

financial terminal systems; safety control equipment; etc. 
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas 
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to 
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space 
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics 
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product 
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. 

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for 
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by 
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas 
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such 
specified ranges. 

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific 
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability 
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics 
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily 
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as 
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for 
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are 
responsible for evaluating the safety of the final products or systems manufactured by you. 

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas 
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of 
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these 
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance 
with applicable laws and regulations. 

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is 
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations 
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or 
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas 

Electronics products. 

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled 
subsidiaries. 

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 
 

(Rev.4.0-1  November 2017) 

 

Corporate Headquarters  Contact information 
TOYOSU FORESIA, 3-2-24 Toyosu, 
Koto-ku, Tokyo 135-0061, Japan 
www.renesas.com 

 For further information on a product, technology, the most up-to-date 
version of a document, or your nearest sales office, please visit: 
www.renesas.com/contact/. 

Trademarks   
Renesas and the Renesas logo are trademarks of Renesas Electronics 
Corporation. All trademarks and registered trademarks are the property 
of their respective owners. 

  

 

 

https://www.renesas.com/
https://www.renesas.com/contact/

	1.  Specifications
	2.  Confirmed Operating Conditions
	3. Reference Application Note
	4.  Hardware
	4.1 Hardware Configuration
	4.2 Notes on the Board Used
	4.3 Pins Used

	5.  Software
	5.1  Operation Overview
	5.1.1 Data Transmission
	5.1.2  Data Reception

	5.2 Section Composition
	5.3  File Composition
	5.4 Option-Setting Memory
	5.5 Constants
	5.6  Structure/Union List
	5.7  Variables
	5.8 Functions
	5.9  Function Specifications
	5.10  Flowcharts
	5.10.1 Main Processing
	5.10.2  Port Initialization
	5.10.3 Peripheral Function Initialization
	5.10.4  SCIFA9 Initialization
	5.10.5  DTC Initialization
	5.10.6  IRQ Initialization
	5.10.7  Start SCIFA9 Transmission and Reception
	5.10.8  SCIFA9 Receive Data Full Interrupt Handling
	5.10.9 SCIFA9 Transmit Data Empty Interrupt Handling
	5.10.10  GROUPAL0 Interrupt Handling
	5.10.11  SCIFA9 Transmit End Interrupt Handling
	5.10.12 SCIFA9 Receive Error Interrupt Handling
	5.10.13 SCIFA9 Break Detect and Overrun Error Interrupt Handling
	5.10.14  SCIFA9 Receive Data Ready Interrupt Handling


	6.  Note on the Amount of Data to be Transmitted/Received Data and the FIFO Threshold Value
	7. Sample Code
	8. Reference Documents
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice



