
 APPLICATION NOTE

RX62N Group R01AN0629EJ0101
Rev.1.01

Mar 31, 2011Ethernet Transmit and Receive Settings

Introduction

This application note presents a sample program that makes settings for transmitting and receiving
Ethernet/IEEE802.3 frames using the Ethernet controller (ETHERC) and Ethernet DMA controller (EDMAC).

Target Devices

• RX62N Group MCU (product number: R5F562N8BDBG)

• LAN8700i, manufactured by Standard Microsystems Corporation

Target Board

• Renesas Starter Kit +(product number: R0K5562N0C000BE)

Notes

• RX62N group's capacity of built-in ROM and built-in RAM is different in each product. Please correct the section

arrangement in Table 7.1 according to the product used.

• The sample program uses the auto-negotiation function to select the communication mode. If the amount of time

required for auto-negotiation by the RX62N and the connection partner of the RX62 differs considerably,

communication may fail even though auto-negotiation is successful.Please adjust it according to 4.6.1.

• Please note that the Renesas Starter Kit +(product number: R0K5562N0C000BE) supports the MII (Media

Independent Interface) only, and doesn't support RMII (Reduced Media Independent Interface).

Contents

U1. U UIntroductionU.. 2

U2. U UDescription of Initial SettingsU ... 4

U3. U UDescription of Physical Layer Transceiver (PHY) Auto-Negotiation SettingsU 6

U4. U UDescription of Transmit/Receive SettingsU ... 18

U5. U UEndian Mode Selection in Sample ProgramU ... 49

U6. U UInterface (MII/RMII) Selection in Sample ProgramU ... 49

U7. U UAllocation of Sections in Sample Program U .. 50

U8. U UNote on Use of Renesas Starter Kit +U ... 50

U9. U UReference DocumentsU... 51

R01AN0629EJ0101 Rev.1.01 Page 1 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

R01AN0629EJ0101 Rev.1.01 Page 2 of 52

Mar 31, 2011

1. 0BIntroduction

1.1 9BSpecifications

• The sample program supports the big endian and little endian operating modes of the RX62N.

• The sample program supports the Media Independent Interface (MII) and Reduced Media Independent Interface

(RMII).

• The sample program does not include any interrupt handling functionality. In order to use interrupts, it is necessary

for the customer to create the necessary program code separately.

• The sample program does not include routines for handling transmit of receive errors. If error handling functionality

is required, it is necessary for the customer to create the necessary program code separately.

• After a reset is canceled, the sample program makes settings for the clock generation circuit, module stop function,

and I/O registers.

• The LAN8700i from Standard Microsystems Corporation is used as the Ethernet physical layer transceiver (PHY).

• The auto-negotiation function is used for the link to the Ethernet physical layer transceiver (PHY).

• The sample program obtains the auto-negotiation result from the Ethernet physical layer transceiver (PHY)

connected to the RX62N and makes ETHERC settings to match the connection mode information (full-duplex mode

or half-duplex mode, transfer speed* of 10 Mbps or 100 Mbps) obtained.

• The sample program allows selection between the following two types of processing.

⎯ Transmission of 10 Ethernet frames

⎯ Reception of 10 Ethernet frames

Note: * This setting is needed only when using the RMII. When the MII is used, the transfer speed is

detected automatically by the ETHERC from the clock frequency of the physical layer transceiver
(PHY), so there is no need to specify the transfer speed.

1.2 10BFunctions Used

• Clock generation circuit

• Module stop function

• I/O ports

• Ethernet controller (ETHERC)

• Ethernet controller direct memory access controller (EDMAC)

RX62N Group Ethernet Transmit and Receive Settings

R01AN0629EJ0101 Rev.1.01 Page 3 of 52

Mar 31, 2011

1.3 11BApplicable Conditions

• MCU: RX62N Group

• Evaluation board: Renesas Starter Kit +(product number: R0K5562N0C000BE)

• Operating frequencies:

Input clock: 12 MHz

System clock (ICLK): 96 MHz

Peripheral module clock (PCLK): 48 MHz

External bus clock (BCLK) and SDRAM clock (SDCLK): 24 MHz

• Operating mode: Single-chip mode

• Integrated development environment: Renesas Electronics High-performance Embedded Workshop,

 Ver. 4.07.00.007

• C compiler: Renesas Electronics RX Family C/C++ Compiler, Ver. 1.00.00.001

• Compile options:

⎯ Big endian operation

-cpu=rx600 -endian=big -patch=rx610 -include="$(WORKSPDIR)\src\bsp","$(WORKSPDIR)\src\driver"

-output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -debug –nologo

⎯ Little endian operation

-cpu=rx600 -patch=rx610 -include="$(WORKSPDIR)\src\bsp","$(WORKSPDIR)\src\driver"

-output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -debug –nologo

• Optimizing linkage editor: Renesas Electronics Optimizing Linkage Editor, Ver. 10.00.00.001

• Linker options:

-noprelink -rom=D=R,D_1=R_1,D_2=R_2 -nomessage -list="$(CONFIGDIR)\$(PROJECTNAME).map"

-show=all -nooptimize

-start=B_RX_DESC,B_TX_DESC,B_RX_BUFF_1,B_TX_BUFF_1,B_1,R_1,B_2,R_2, B,R,SU,SI, BETH_BUFF/

01000,PResetPRG/0FFFF8000,C_1,C_2,C,C$*,D*,P,PIntPRG,W*/0FFFF8100, FIXEDVECT/0FFFFFFD0 -nologo

-output="$(CONFIGDIR)\$(PROJECTNAME).abs" -end -input="$(CONFIGDIR)\ $(PROJECTNAME).abs"

-form=stype -output="$(CONFIGDIR)\$(PROJECTNAME).mot" -exit

RX62N Group Ethernet Transmit and Receive Settings

2. 1BDescription of Initial Settings

An initial settings program, which performs minimal hardware initialization processing such as memory initialization
after a power-on reset, is required in order to use the Ethernet driver of the sample program. Sample settings for the
initial settings program are described below.

2.1 12BDescription of Initial Settings Program

The initial settings program comprises multiple source files, including resetprg.c, which contains the main
PowerON_Reset_PC function, and hwsetup.c, which is called as a function. The main source files described below.

• resetprg.c

The file resetprg.c is generated automatically by High-performance Embedded Workshop and contains declarations

for the PowerON_Reset_PC function. PowerON_Reset_PC is the first function run after a reset is canceled. The

start address of this function is set in the reset vector defined in vecttbl.c. Figure 2.1 shows the processing sequence

of the PowerON_Reset_PC function.

• hwsetup.c

The file hwsetup.c contains declarations for the HardwareSetup function called by the PowerON_Reset_PC

function. The HardwareSetup function in turn calls the functions that make settings for the clock generation circuit,

module stop function, and I/O ports. These are the minimum hardware settings for the system.

Figure 2.2 shows the processing sequence of the HardwareSetup function.

Start

INTB setting

set_intb()

PowerON_Reset_PC function

Hardware initialization

HardwareSetup()

End

Set the start address of the variable vector table

in the interrupt table register (INTB).

FPSW setting

set_fpsw()
Initialize the floating-point status word (FPSW).

RAM area section initialization

_INITSCT()

Initialize section B (uninitialized data section) to zero.

For section D (initialized data section), copy the initial value

of the ROM area to the RAM area. To change the sections,

modify the table in dbsct.c.

Initialize the operating mode, clock generation circuit,

power-down (low-power) function, I/O ports, and bus.

Defined in hwsetup.c.

PSW setting

set_psw()
Initialize the processor status word (PSW).

Processor mode setting

Change_PSW_PM_to_UserMode()
Change the processor mode from supervisor to user.

Call main function

main()
Call the main function.

Execute BRK instruction

brk()

Figure 2.1 Processing Sequence of Reset Program

R01AN0629EJ0101 Rev.1.01 Page 4 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

Clock generation circuit settings

io_set_cpg()

HardwareSetup function

End

Set the system clock (ICLK), peripheral module clock (PCLK),

external bus clock (BCLK), and SDRAM clock (SDCLK).

I/O port settings

ConfigurePortPins()
Set the I/O ports to be used for Ethernet communication.

Module stop function setting

EnablePeripheralModules()
Disable the module stop function for the Ethernet controller

DMA controller (EDMAC).

Figure 2.2 Processing Sequence of Hardware Initialization Function

2.2 13BDetails of Initial Settings

Table 2.1 lists the settings used in the sample program.

Table 2.1 Sample Program Settings

Module Settings

Operating mode Single-chip mode

Clock generation circuit System clock: 96 MHz

Peripheral module clock: 48 MHz

External bus clock and SDRAM clock: 24 MHz

Module stop function Disabled for Ethernet controller DMA controller (EDMAC)

I/O ports Pin settings used for Ethernet communication

2.3 14BNotes on Initial Settings

Do not access the static variable area before the _INIT_SCT function is executed.

The C language static variable area is initialized by executing the _INIT_SCT function. Note that accessing the area
before the function has been run will return undefined values.

R01AN0629EJ0101 Rev.1.01 Page 5 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

3. 2BDescription of Physical Layer Transceiver (PHY) Auto-Negotiation Settings

The sample program uses the Ethernet physical layer transceiver (PHY) to perform auto-negotiation. The auto-
negotiation result is read via the PHY interface register (PIR) of the ETHERC.

3.1 15BOperation of Functions Used

The actual physical layer link processing is performed using the functionality of the Ethernet physical layer
transceiver (PHY). This enables the RX62N to obtain the link result simply by reading it from the Ethernet physical
layer transceiver (PHY). The sample program enables the auto-negotiation function of the physical layer transceiver
(PHY). For details of the functions of the Ethernet physical layer transceiver (PHY), see the Ethernet physical layer
transceiver (PHY) datasheet.

The interface between the ETHERC and the Ethernet physical layer transceiver (PHY) is standardized according to
the IEEE802.3 Media Independent Interface (MII) or Reduced Media Independent Interface (RMII). Figures 3.1 and 3.2
show connection examples for the RX62N and LAN8700i.

The auto-negotiation result is stored in the internal registers of the Ethernet physical layer transceiver (PHY) and can
be read by using a serial interface (Serial Management Interface) employing the MDC and MDIO pins. The RX62N can
read from and write to these pins by using the PIR register. The procedure for accessing the internal registers of the
Ethernet physical layer transceiver (PHY) is described in 3.2, Procedure for Accessing MII/RMII Registers.

ET_RX_ER RX_ER

RX62N LAN8700i

MII (Media Independent Interface)

ET_TX_ER

ET_ETXD3

ET_ETXD2

ET_ETXD1

ET_ETXD0

ET_TX_EN

ET_TX_CLK

ET_MDC

ET_MDIO

ET_ERXD3

ET_ERXD2

ET_ERXD1

ET_ERXD0

ET_RX_CLK

ET_CRS

ET_COL

ET_RX_DV

TX_ER

TXD3

TXD2

TXD1

TXD0

TX_EN

TX_CLK

MDC

MDIO

RXD3

RXD2

RXD1

RXD0

RX_CLK

CRS

COL

RX_DV

Figure 3.1 LAN8700i Connection Example (MII)

R01AN0629EJ0101 Rev.1.01 Page 6 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

RMII_RX_ER RX_ER

RX62N LAN8700i

RMII (Reduced Media Independent Interface)

RMII_TXD1

RMII_TXD0

RMII_TXD_EN

ET_MDC

ET_MDIO

RMII_RXD1

RMII_RXD0

REF50CK

RMII_CRS_DV

TXD1

TXD0

TXD_EN

MDC

MDIO

RXD1

RXD0

RX_CLK

CRS_DV

Figure 3.2 LAN8700i Connection Example (RMII)

3.2 16BProcedure for Accessing MII/RMII Registers

The procedure for accessing the internal MII/RMII registers of the Ethernet physical layer transceiver (PHY) is
described below.

The serial interface (Serial Management Interface) used to access the MII/RMII registers consists of MDC and MDIO
(both pin names used on the ETHERC side). MDC is the clock pin used for synchronization, and MDIO is the data I/O
pin. The states of the pins can be referenced or changed by means of the PHY interface register (PIR) of the ETHERC.
There are no control pins, so data must always be output in the format stipulated by the MII/RMII specification
(MII/RMII management frames). Figure 3.3 shows an MII/RMII management frame. The sample program executes Z0
output for one bit period in the IDLE state. The IEEE802.3 specification does not mention clock input, but it is provided
for safety because without it some physical layer transceiver (PHY) devices cannot connect properly.

The MII/RMII management frame I/O is performed in order in 1-bit units, starting from PRE. Figures 3.4 to 3.7
illustrate the I/O sequence for 1-bit units. Make sure that the MDC and MDIO I/O timing conform to the IEEE802.3
specification. Table 3.1 and figure 3.8 show the I/O timing as stipulated in the IEEE802.3 specification.

Access Type MII/RMII Management Frame
Item

Number of bits
Read
Write

PRE

32
1..1

1..1

ST

2
01

01

OP

2
10

01

PHYAD

5
00001

00001

REGAD

5
RRRRR

RRRRR

TA

2
Z0

10

DATA

16
D..D

D..D

IDLE

X

[Legend]
PRE : 32 consecutive 1s
ST : Write 01 to indicate the start of the frame.
OP : Write the code indicating the access type.
PHYAD : Write 0001 if the PHY address is 1 (sequential write starting with the MSB).
 This value varies according to the PHY address.
REGAD : Write 0001 if the register address is 1 (sequential write starting with the MSB).
 This value varies according to the PHY register address.
TA : Time for switching data transmission source on MII/RMII interface
 (a) For write: Write 10.
 (b) For read: Perform bus release (notation: Z0).
DATA : 16 bits of data. Sequentially write or read from MSB.
 (a) For write: Write 16 bits of data.
 (b) For read: Read 16 bits of data.
IDLE : Wait time until next MII management format input
 (a) For write: Perform independent bus release (notation: X).
 (b) For read: Bus already released during TA; control unnecessary.

⎯

⎯

Figure 3.3 MII/RMII Management Frame Format

R01AN0629EJ0101 Rev.1.01 Page 7 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

ET_MDC

MDO

1-bit data write timing relationship

(1) (3)(2)

(1) Write to PHY

 interface register

PIR.MMD = 1

PIR.MDO = write data

PIR.MDC = 0

(2) Write to PHY

 interface register

PIR.MMD = 1

PIR.MDO = write data

PIR.MDC = 1

(3) Write to PHY

 interface register

PIR.MMD = 1

PIR.MDO = write data

PIR.MDC = 0

Figure 3.4 1-Bit Data Write Sequence

ET_MDC

MDO

Bus release timing relationship

(1) Write to PHY

 interface register

PIR.MMD = 0

PIR.MDC = 0

(2) Write to PHY

 interface register

PIR.MMD = 0

PIR.MDC = 1

(3) Write to PHY

 interface register

PIR.MMD = 0

PIR.MDC = 0

(1) (3)(2)

Figure 3.5 Bus Release Sequence (TA During Read)

R01AN0629EJ0101 Rev.1.01 Page 8 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

ET_MDC

MDI

(1) (3)(2)

1-bit data read timing relationship

(1) Write to PHY

 interface register

PIR.MMD = 0

PIR.MDC = 1

(3) Write to PHY

 interface register

PIR.MMD = 0

PIR.MDC = 0

(2) Read from PHY

 interface register

PIR.MMD = 0

PIR.MDC = 1

PIR.MDI is read data

Figure 3.6 1-Bit Data Read Sequence

Independent bus release timing relationship

ET_MDC

MDO

(1)

(1) Write to PHY

 interface register

PIR.MMD = 0

PIR.MDC = 0

Figure 3.7 Independent Bus Release Sequence (IDLE During Write)

Table 3.1 MDC/MDIO I/O Timing

Item Symbol Min. Max. Unit

MDC high-level pulse width t1 160 ns

MDC low-level pulse width t2 160 ns

MDC cycle time t3 400 ns

MDIO setup time t4 10 ns

MDIO hold time t5 10 ns

MDIO output delay time t6 0 300 ns

MDC

MDIO

(EtherC output)

MDIO

(PHY output)

t 4 t 5

t 6

t 1 t 2

t 3

Figure 3.8 MDC/MDIO I/O Timing

R01AN0629EJ0101 Rev.1.01 Page 9 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

3.3 17BDescription of Physical Layer Transceiver (PHY) Auto-Negotiation Settings

• phy.c

This file contains declarations for the function that initializes the physical layer transceiver (PHY) (phy_init

function) and the function that obtains the auto-negotiation result (phy_set_autonegotiate function). Figure 3.9

shows the processing sequence of the phy_init function and figure 3.10 of the phy_set_autonegotiate function.

Figures 3.11 to 3.16 show the processing sequences of the MII/RMII register read function (_phy_read function)

and MII/RMII register write function (_phy_write function), which are executed within the phy_init function and

phy_set_autonegotiate function, and their lower level functions.

Start

Write to MII/RMII register 0

_phy_write()

PHY initialization function

phy_init

End

Write 0x8000 to MII/RMII register 0 to reset the PHY.

Read MII/RMII register 0

_phy_read()
Read MII/RMII register 0.

PHY reset not complete and

no timeout occurred?

Timeout occurred?

Return R_PHY_ERROR Return R_PHY_OK

Yes

No

No

Yes

Check the following two points:

 • Bit 15 in MII/RMII register 0, to determine if the reset completed

 • Wait counter value does not exceed the maximum value

 (PHY_RESET_WAIT), indicating that no timeout has occurred.

PHY_RESET_WAIT is defined in phy.h.

Figure 3.9 Processing Sequence of Physical Layer Transceiver (PHY) Initialization Function

R01AN0629EJ0101 Rev.1.01 Page 10 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

End

Write 0x01E1 to MII/RMII register 4 to enable the following PHY link conditions:

full-duplex, half-duplex, 10 Mbps, 100 Mbps.

Read MII/RMII register 1.

Bit 5 in MII/RMII register 1 of the LAN8700i is read twice because the internal state is

reflected by a latch circuit.

Yes

No

No

Yes

Check the following two points:

 • That bit 5 in the MII/RMII register is set to 1 (auto-negotiation completed)

 • That the wait counter value does not exceed the maximum value

 (PHY_AUTO_NEGOTIATION_WAIT) (timeout)

PHY_AUTO_NEGOTIATON_WAIT is defined in phy.h.

Start

Write to MII/RMII register 4

_phy_write()

Auto-negotiation result acquisition function

phy_set_autonegotiate

Read MII/RMII register 1

_phy_read()

Auto-negotiation not complete

and no timeout occurred?

Timeout occurred?

Return R_PHY_ERROR

Write to MII/RMII register 0

_phy_write()
Write 0x1200 to MII/RMII register 0 to start auto-negotiation.

Read MII/RMII register 5 and return result

_phy_read()

Read MII/RMII register 5 and return the connection modes

supported by the link partner.

Figure 3.10 Auto-Negotiation Result Acquisition Function

Bus release (transmit source switch)

Command output (read command)

Bus release (transmit source switch)

Start

Preamble output

_phy_preamble()

MII/RMII register read function

_phy_read

End

_phy_ta_z0()

_phy_reg_set()

DATA input

_phy_reg_read()

_phy_ta_z0()

Command output (write command)

Start

Preamble output

_phy_preamble()

MII/RMII register write function

_phy_write

End

Output 10

_phy_ta_10()

_phy_reg_set()

DATA output

_phy_reg_write()

Bus release (transmit source switch)

_phy_ta_z0()

Figure 3.11 Processing Sequence of MII/RMII Register Access (1)

R01AN0629EJ0101 Rev.1.01 Page 11 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

1-bit output

_phy_preamble()

Preamble output function

_phy_preamble

End

Output of 32 bits complete?

Yes

No

Start

Set ST code (01) in

command bits 15 and 14

Command output function

_phy_reg_set

End

Highest command bit = 0?

Yes

No

Set OP code (10 or 01) in

command bits 13 and 12

Set PHYAD code (xxxxx) in

command bits 11 to 7

Set REGAD code (xxxxx) in

command bits 6 to 2

Output 1 bit (value: 0)

_phy_mii_write_0()
Output 1 bit (value: 1)

_phy_mii_write_1()

Shift command 1 to left

Output of 14 bits complete?

Yes

No

Figure 3.12 Processing Sequence of MII/RMII Register Access (2)

R01AN0629EJ0101 Rev.1.01 Page 12 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

Write 0x00000000 to PIR register

Data input function

_phy_reg_read

End

MDC wait OK?

Yes

No

Write 0x00000001 to PIR register

MDC wait OK?

Yes

No

Read MDI bit in PIR register

Write 0x00000001 to PIR register

MDC wait OK?

Yes

No

MDC wait OK?

Yes

No

Write 0x00000000 to PIR register

Reading of 16 bits complete?

Yes

No

The MDC wait is defined as MDC_WAIT.

MDC_WAIT is defined in phy.h.

Output low-level from ET_MDC pin.

Set ET_MDIO pin to read direction.

Output high-level from ET_MDC.

Output high-level from ET_MDC.

Output low-level from ET_MDC pin.

Figure 3.13 Processing Sequence of MII/RMII Register Access (3)

R01AN0629EJ0101 Rev.1.01 Page 13 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Yes

No

Output 1 bit (value: 0)

_phy_mii_write_0()

Output 1 bit (value: 1)

_phy_mii_write_1()

Start

Data output function

_phy_reg_write

End

Highest data bit = 0?

Shift data 1 to left

Output of 16 bits complete?

Yes

No

Figure 3.14 Processing Sequence of MII/RMII Register Access (4)

Yes

No

Write 0x00000001 to PIR register

Yes

No

Yes

No

Start

Write 0x00000000 to PIR register

Bus release function
_phy_ta_z0

End

MDC wait OK?

MDC wait OK?

Write 0x00000001 to PIR register

MDC wait OK?

MDC wait OK?

Yes

No

Write 0x00000000 to PIR register

The MDC wait is defined as MDC_WAIT.

MDC_WAIT is defined in phy.h.

Start

Output 1 bit (value: 1)
_phy_mii_write_1()

TA during write function

_phy_ta_10

End

Output 1 bit (value: 0)
_phy_mii_write_0()

Output low-level from ET_MDC pin.

Set ET_MDIO pin to read direction.

Output high-level from ET_MDC.

Output high-level from ET_MDC.

Output low-level from ET_MDC pin.

Figure 3.15 Processing Sequence of MII/RMII Register Access (5)

R01AN0629EJ0101 Rev.1.01 Page 14 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

Write 0x00000006 to PIR register

1-bit (value: 1) output function

_phy_mii_write_1

End

MDC wait OK?

Yes

No

Write 0x00000007 to PIR register

MDC wait OK?

Yes

No

Write 0x00000007 to PIR register

MDC wait OK?

Yes

No

MDC wait OK?

Yes

No

Write 0x00000006 to PIR register

The MDC wait is defined as MDC_WAIT.

MDC_WAIT is defined in phy.h.

Output low-level from ET_MDC pin.

Set ET_MDIO pin to write direction and output high-level.

Output high-level from ET_MDC pin.

Output high-level from ET_MDIO pin.

Output high-level from ET_MDC pin.

Output high-level from ET_MDIO pin.

Output low-level from ET_MDC pin.

Output high-level from ET_MDIO pin.

Figure 3.16 Processing Sequence of MII/RMII Register Access (6)

R01AN0629EJ0101 Rev.1.01 Page 15 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

Write 0x00000002 to PIR register

1-bit (value: 0) output function

_phy_mii_write_0

End

MDC wait OK?

Yes

No

Write 0x00000003 to PIR register

MDC wait OK?

Yes

No

Write 0x00000003 to PIR register

MDC wait OK?

Yes

No

MDC wait OK?

Yes

No

Write 0x00000002 to PIR register

The MDC wait is defined as MDC_WAIT.

MDC_WAIT is defined in phy.h.

Output low-level from ET_MDC pin.

Set ET_MDIO pin to write direction and output low-level.

Output high-level from ET_MDC pin.

Output low-level from ET_MDIO pin.

Output high-level from ET_MDC pin.

Output low-level from ET_MDIO pin.

Output low-level from ET_MDC pin.

Output low-level from ET_MDIO pin.

Figure 3.17 Processing Sequence of MII/RMII Register Access (7)

3.4 18BDetails of Physical Layer Transceiver (PHY) Auto-Negotiation Settings

Table 3.2 lists the settings used in the sample program.

Table 3.2 Sample Program Settings

Item Description

PHY model LAN8700i from Standard Microsystems Corporation

Link modes 100 Mbps (full-duplex, half-duplex) and 10 Mbps (full-duplex, half-duplex)

Link determination method Auto-negotiation

PHY address 0x1F*
1

Setting target MII/RMII
registers

Register 0 — Basic Control (address: 0x00)

Register 1 — Basic Status (address: 0x01)

Register 4 — Auto Negotiation Advertisement (address: 0x04)

Register 5 — Auto Negotiation Link Partner Ability (address: 0x05)

Note: 1. The setting of the Renesas Starter Kit +(product number: R0K5562N0C000BE) is 0x1F. This must
be changed to match the actual PHY address.

R01AN0629EJ0101 Rev.1.01 Page 16 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

R01AN0629EJ0101 Rev.1.01 Page 17 of 52

Mar 31, 2011

3.5 19BNotes on Physical Layer Transceiver (PHY) Auto-Negotiation Settings

• The sample program assumes that auto-negotiation mode is used as the PHY link determination method.

• When the partner device is operating in auto-negotiation mode, the link mode is determined according to the priority

levels shown in table 3.3.

Table 3.3 Link Mode Priority Levels

Priority Level Link Mode

High 1 100 Mbps, full-duplex

 2 100 Mbps, half-duplex

 3 10 Mbps, full-duplex

Low 4 10 Mbps, half-duplex

• The MII/RMII register access timing can be changed by using the following macro definition in the phy.h file. Use

a setting value of 1 or greater.

#define MDC_WAIT 2

• The physical layer transceiver (PHY) reset completion wait duration used by the sample program can be changed by

using the following macro definition in the phy.h file.

#define PHY_RESET_WAIT 0x00020000L

• Auto-negotiation normally takes a few seconds to complete, but the physical layer transceiver (PHY) auto-

negotiation completion wait duration used by the sample program can be changed by using the following macro

definition in the phy.h file.

#define PHY_AUTO_NEGOTIATON_WAIT 0x00800000L

• On the Renesas Starter Kit +(product number: R0K5562N0C000BE) the PHY address is set to 0x1F. The PHY

address used by the sample program can be changed by using the following macro definition in the phy.h file.

#define PHY_ADDR 0x1F

RX62N Group Ethernet Transmit and Receive Settings

4. 3BDescription of Transmit/Receive Settings

The sample program makes use of the Ethernet controller (ETHERC) and Ethernet controller direct memory access
controller (EDMAC).

4.1 20BOperation of Functions Used

The RX62N Group always uses the ETHERC and EDMAC to perform Ethernet communication functions. The
ETHERC handles transmit and receive control. The EDMAC uses DMA transfer exclusively to move data between the
transmit and receive FIFOs and the user-specified data storage destinations (buffers).

4.1.1 31BOverview of ETHERC

The RX62N Group has an on-chip Ethernet controller (ETHERC) conforming to the Ethernet or IEEE802.3 Media
Access Control (MAC) layer standard. Connecting a physical layer transceiver (PHY) complying with this standard
enables the ETHERC to perform transmission and reception of Ethernet/IEEE802.3 frames. The ETHERC has one
MAC layer interface port. The ETHERC is connected internally to the Ethernet direct memory access controller for
Ethernet controller (EDMAC), enabling high-speed memory access.

MAC

ETHERC

PHY

EDMAC interface

Command status

interface

Transmit

controller

Receive

controller

EDMAC

MII

Port

RMII

Figure 4.1 Configuration of ETHERC

R01AN0629EJ0101 Rev.1.01 Page 18 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

4.1.2 32BOverview of ETHERC Transmitter

The ETHERC transmitter assembles transmit data into a frame and outputs it to the MII/RMII when there is a
transmit request from the transmit EDMAC. The transmit data is sent to the lines via the MII/RMII by the physical layer
transceiver (PHY). Figure 4.2 shows the state transitions of the ETHERC transmitter.

• 1. When the transmit enable (ECMR.TE) bit is set to 1, the transmitter enters the transmit idle state.

• 2. When a transmit request is issued by the transmit EDMAC, the ETHERC sends the preamble to the MII/RMII

after carrier detection and a transmission delay equivalent to the frame interval time. If full-duplex transfer, which

does not require carrier detection, is selected, the preamble is sent as soon as a transmit request is issued by the

transmit EDMAC.

• 3. The transmitter sends the SFD, data, and CRC sequentially. At the end of transmission, the transmit EDMAC

generates a transmission complete interrupt (TC). If a collision or the carrier-not-detected state occurs during data

transmission, it is reported as an interrupt source.

• 4. After the frame interval time elapses, the transmitter enters the idle state, and if there is more transmit data,

continues transmission.

Reset

TE set

FDPX

TE reset

Failure of 15

transmission

retries or

collision after

512-bit duration

Collision

Collision

Normal transmission

Carrier detected

Carrier detected

SFD transmission

Data transmission

CRC transmission

Transmission retry

processing*1

Carrier

detected

Start of transmission

(preamble transmission)Idle

Carrier not

detected

Carrier not

detected
Carrier

detected

HDPX

HDPXTransmission

retry start

Transmission

halted

[Legend]

FDPX: Full-duplex

HDPX: Half-duplex

SFD: Start frame delimiter

Error detected

Error

Error

Error

Error

notification

Collision*2

FDPX

Collision*2

Notes: 1. Transmission retry processing includes both jam transmission accompanying collision detection and

 adjustment of the transmission interval by the back-off algorithm.

 2. Transmission is retried only when transmitting 512 or fewer bits of data (including the preamble and SFD).

 When a collision is detected during transmission of more than 512 bits of data, only jam transmission occurs

 and transmission retry using the back-off algorithm is not attempted.

Figure 4.2 ETHERC Transmitter State Transitions

R01AN0629EJ0101 Rev.1.01 Page 19 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

4.1.3 33BOverview of ETHERC Receiver

The ETHERC receiver divides the frame from the MII/RMII into the preamble, SFD, data, and CRC, and the fields
from DA (destination address) to the CRC data are output to the receive EDMAC. Figure 4.3 shows the state transitions
of the ETHERC receiver.

• 1. When the receive enable (ECMR.RE) bit is set to 1, the receiver enters the receive idle state.

• 2. Upon detecting an SFD (start frame delimiter) after a receive packet preamble, the receiver starts receive

processing. It discards frames with an invalid pattern.

• 3. In normal mode, if the destination address of the frame matches the RX62N address, or if the broadcast or

multicast frame type is specified, the receiver starts data reception. In promiscuous mode, the receiver starts

reception for any type of frame.

• 4. After receiving data from the MII/RMII, the receiver performs a CRC check on the frame data field. The result

is indicated as a status bit in the descriptor after the frame data has been written to memory. The receiver reports an

error status in the case of an abnormality.

• 5. After one frame is received, the receiver prepares to receive the next frame if the receive enable bit in the

ETHERC mode register is set to 1 (ECMR.RE = 1).

Reset

RE set Preamble

detected

Promiscuous and other

station destination address

SFD received

ET_RX-DV negation

Own destination address

or broadcast

or multicast

or promiscuous

End of reception

Error

notification*

Receive error

detected

Normal reception

Reception

halted

Illegal carrier

detection

Idle
Start of

frame reception

Destination address

received

Error detected Data received

CRC received

Wait for

SFD reception

RE reset

Receive error

detected

Note: * Data is transmitted to the buffer for error frames as well.

[Legend]

SFD: Start frame delimiter

Figure 4.3 Receiver State Transitions

R01AN0629EJ0101 Rev.1.01 Page 20 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

4.1.4 34BOverview of EDMAC

The RX62N Group has an on-chip direct memory access controller (EDMAC) that is directly connected to the
Ethernet controller (ETHERC). Most buffer management is controlled by the EDMAC by using descriptors. This
reduces the load on the CPU, enabling efficient data transmission and reception.

The EDMAC is connected to the ETHERC, allowing efficient transfer of transmit and receive data to and from the
memory (buffers), bypassing the CPU. The EDMAC itself reads stored control information, such as buffer pointers
(called descriptors) that correspond to the individual buffers. Transmit data is read from the transmit buffers, and
receive data written to the receive buffers, according to the control information. By arranging multiple descriptors
consecutively (in a descriptor list), transmission and reception can be performed continuously.

Table 4.1 lists the EDMAC specifications, and figure 4.4 shows the configuration of the EDMAC and of the
descriptors and transmit/receive buffers in memory.

Table 4.1 Specifications of EDMAC

Item Description

Data transmission and reception • Descriptor management system

• Support for single-frame/multi-buffer operation

Functions • Efficient system bus utilization through use of DMA block transfer
(32-byte units)

• Indication in descriptors of transmit/receive frame status information

• Ability to insert padding in receive data

EDMAC

ETHERC

Transmit FIFO

Receive FIFO

Transmit

descriptors Descriptor

information

Transmit DMAC

Descriptor

information

Receive DMAC

Transmit buffers

Receive buffers

External memory

Receive

descriptors

RX62N Group

External

bus

interface

Internal bus

Internal

bus

interface

Figure 4.4 Configuration of EDMAC, Descriptors, and Buffers

R01AN0629EJ0101 Rev.1.01 Page 21 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

4.1.5 35BOverview of Descriptors

To perform a DMA transfer, the EDMAC requires a unit of data called a descriptor that contains information such as
the storage address of the transmit or receive data. There are two types of descriptors: transmit descriptors and receive
descriptors. The EDMAC automatically starts reading a transmit descriptor when the TR bit in the EDMAC transmit
request register (EDTRR) is set to 1, and when the RR bit in the EDMAC receive request register (EDRRR) is set to 1 it
automatically starts reading a receive descriptor. It is necessary for the user to declare beforehand in the transmit or
receive descriptor the appropriate information regarding the DMA transfer of the transmit or receive data. When
transmission or reception of an Ethernet frame completes, the EDMAC clears to 0 the descriptor’s active bit (TACT for
transmission and RACT for reception) and updates the status bits (TFS25 to TFS0 for transmission and RFS26 to RFS0
for reception) to reflect the transmit or receive result.

The descriptors are allocated to a readable memory space, and the address of the start descriptor (the first descriptor
read by the EDMAC) is specified in the transmit descriptor list start address register (TDLAR) or receive descriptor list
start address register (RDLAR). When preparing multiple descriptors in a descriptor list, allocate the descriptors to
consecutive addresses according to the descriptor length specified by the DL bits in the EDMAC mode register
(EDMR).

4.1.6 36BOverview of Transmit Descriptor

Figure 4.5 shows the correspondence between a transmit descriptor and a transmit buffer.

A transmit descriptor comprises, beginning from the start of the data, 32-bit units designated TD0, TD1, and TD2,
followed by padding. TD0 contains a bit indicating whether the transmit descriptor is active or inactive as well as
descriptor configuration information and status information. TD1 indicates the data length (TBL) of the transmit buffer
containing the data to be transferred according to the designation of the descriptor. TD2 indicates the start address of the
transmit buffer containing the data to be transferred. The length of the padding is determined according to the descriptor
length specified by the DL bits in the EDMR register.

Depending on the transmit descriptor settings, one descriptor can specify a single frame of transmit data (single-
frame/single-descriptor) or multiple descriptors can specify a single frame of transmit data (single-frame/multi-
descriptor). Single-frame/multi-descriptor operation can be used, for example, to set multiple descriptors to specify a
fixed portion of data that is transmitted in every Ethernet frame. Specifically, the data in each Ethernet frame specifying
the destination address and transmit source address could be shared in common by multiple descriptors and the
remaining data stored in its own buffer.

Valid transmit data

T

A

C

T

TFSTD0

TBLTD1

TBA

Padding (4, 20, or 52 bytes)

TD2

31 30 29 28 27 26 0

31

31

16

0

T

W

B

I

T

F

E

T

D

L

E

T

F

P

1

T

F

P

0

Note: The padding is a redundant area whose size is adjusted according to the descriptor length

 (16, 32, or 64 bytes).

Transmit descriptor Transmit buffer

Figure 4.5 Correspondence of Transmit Descriptor and Transmit Buffer

R01AN0629EJ0101 Rev.1.01 Page 22 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

4.1.7 37BOverview of Receive Descriptor

Figure 4.6 shows the correspondence between a receive descriptor and a receive buffer.

A receive descriptor comprises, beginning from the start of the data, 32-bit units designated RD0, RD1, and RD2,
followed by padding. RD0 contains a bit indicating whether the receive descriptor is active or inactive as well as
descriptor configuration information and status information. RD1 indicates the size (RBL) of the receive buffer
referenced by the descriptor and the data length (RFL) of the received frame. RD2 indicates the start address of the
receive buffer. The length of the padding at the end is determined according to the descriptor length specified by the DL
bits in the EDMR register.

Depending on the receive descriptor settings, one descriptor can be used to store all the receive data in a single frame
in a receive buffer (single-frame/single-descriptor) or multiple descriptors can be used to store the receive data in a
single frame to multiple buffers (single-frame/multi-descriptor). To use single-frame/multi-descriptor operation,
multiple descriptors (a descriptor list) must be prepared beforehand. When the length of a received frame exceeds the
descriptor RBL, the EDMAC transfers the data it contains to consecutive receive buffers, continuing on to the next
descriptor as necessary. This would apply, for example, when the descriptor RBL is set to 500 bytes and a 1,514-byte
Ethernet frame is received. Beginning from the first descriptor, the data in the received Ethernet frame is saved 500
bytes at a time to successive buffers, with only the final 14 bytes transferred to the fourth buffer.

Receive descriptor

R

A

C

T

RFSRD0

RBL
RD1

RBARD2

31 30 29 28 27 26 0

31 0

R

F

E

R

D

L

E

R

F

P

1

R

F

P

0

015

31 16

Receive buffer

Valid receive data

RFL

Note: The padding is a redundant area whose size is adjusted according to the descriptor length

 (16, 32, or 64 bytes).

Padding (4, 20, or 52 bytes)

Figure 4.6 Correspondence of Receive Descriptor and Receive Buffer

R01AN0629EJ0101 Rev.1.01 Page 23 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

4.1.8 38BTransmit Descriptor Setting Example

Figure 4.7 shows an example in which three transmit descriptor planes and three transmit buffer planes are used
(single-frame/single-descriptor). In this case, one frame only is transmitted by a single transmit request. The figure is
abbreviated to show only the TD0 portion of each transmit descriptor. The numbers (1), (2), etc., in the figure indicate
the execution sequence.

Settings are performed as follows.

• 1. Since single-frame/single-descriptor operation is used, the TFP1 and TFP0 bits in all the descriptor planes are

set to B'11.

• 2. Bits TACT, TFE, TWBI, and TFS25 to TFS0 in all the descriptor planes are cleared to 0 as the initial value.

• 3. The TDLE bit in the first and second descriptor planes is cleared to 0. The TDLE bit in the third descriptor

plane is set to 1, which causes the first descriptor plane to be read after processing of the third descriptor plane

completes. These settings enable the descriptors to function in a ring configuration.

• 4. Though omitted from figure 4.7, the data length of the transmit buffer referenced by each descriptor is

specified by the TBL bits and the transmit buffer start address by the TBA bits.

• 5. One frame only is transmitted by a single transmit request in this example, so the TACT bit of the first

descriptor plane only is set to 1 for the initial transmission. For the next transmission, the TACT bit of the second

descriptor plane only is set to 1. The transmission procedure is described in more detail in 4.1.10, Function

Operating Procedure (Transmission).

T

A

C

T

T

D

L

E

T

F

P

1

T

F

P

0

T

F

E

T

W

B

I

0

TFS25 to TFS0

0 0 . . 00 1 1 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 . . 0

0 0 . . 0

(1)(4)

(2)(5)

(3)(6)

Transmit descriptors Transmit buffers

1st plane

2nd plane

3rd plane
(Omitted)

(Omitted)

(Omitted)

Figure 4.7 Correspondence of Transmit Descriptors and Transmit Buffers

R01AN0629EJ0101 Rev.1.01 Page 24 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

4.1.9 39BReceive Descriptor Setting Example

Figure 4.8 shows an example in which three receive descriptor planes and three receive buffer planes are used. Each
receive buffer can accommodate 1,536 bytes, and single-frame/single-descriptor operation is used. The figure is
abbreviated to show only the RD0 portion of each receive descriptor. The numbers (1), (2), etc., in the figure indicate
the execution sequence.

Settings are performed as follows.

• 1. Bits RFP1, RFP0, RFE, and RFS26 to RFS0 in all the descriptor planes are cleared to 0.

• 2. The RDLE bit in the first and second descriptor planes is cleared to 0. The RDLE bit in the third descriptor

plane is set to 1, which causes the first descriptor plane to be read after processing of the third descriptor plane

completes. These settings enable the descriptors to function in a ring configuration.

• 3. Though omitted from figure 4.8, before reception starts the receive buffer size is set to 1,536 bytes by the RBL

bits in RD1 of all the descriptor planes, and the receive buffer start address is specified by the RBA bits in RD2.

• 4. The RACT bit of all the descriptor planes is set to 1 for continuous reception. The reception procedure is

described in more detail in 4.1.11, Function Operating Procedure (Reception).

(1)

(2)

(3)

(4)

(5)

(6)

R
D
L
E

R
F
P
1

R
F
P
0

R
A
C
T

R
F
E

RFS26 to RFS0

0 0 01 0 0

0 0 01 0 0

1 0 01 0

0

0

0

0

0

0 0

• •

• •

• •

1st plane

2nd plane

3rd plane

(Omitted)

(Omitted)

(Omitted)

Receive descriptors Receive buffers

Figure 4.8 Correspondence of Receive Descriptors and Receive Buffers

R01AN0629EJ0101 Rev.1.01 Page 25 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

4.1.10 40BFunction Operating Procedure (Transmission)

The EDMAC transmitter is activated when the transmit request (TR) bit in the EDMAC transmit request register
(EDTRR) is set to 1 while the value of the TE bit in the ETHERC mode register (ECMR) is 1. After a software reset of
the ETHERC and EDMAC, the EDMAC reads the descriptor indicated by the transmit descriptor list start address
register (TDLAR). If the TACT bit of the descriptor that was read is set to 1 (active), the EDMAC sequentially reads
transmit frame data from the transmit buffer start address specified by TD2 for transfer to the ETHERC. The ETHERC
creates a transmit frame and starts transmission to the MII/RMII. After DMA transfer of data equivalent to the buffer
length specified in the descriptor, the processing described below is carried out according to the value of TFP.

• TFP = B'00 or B'10 (frame continuation)

Descriptor write-back (writing 0 to the TACT bit) is performed after DMA transfer. Then the TACT bit of the next

descriptor is read.

• TFP = B'01 or B'11 (frame end)

Descriptor write-back (writing 0 to the TACT bit and status bits) is performed after completion of frame

transmission. Then the TACT bit of the next descriptor is read.

When the TACT bit of the descriptor that was read is set to 1 (active), frame transmission continues and the next
descriptor is read. When a descriptor with the TACT bit cleared to 0 (inactive) is read, the EDMAC clears the TR bit in
EDTRR to 0 and transmit processing completes. Setting the TR bit to 1 after it has been cleared to 0 reactivates the
EDMAC transmitter, and in this case the next descriptor after the descriptor from the last transmission is read. Figure
4.9 shows a sample transmission sequence.

Transmission sequence

EDMAC ETHERC Ethernet

ETHERC/EDMAC

initialization

Descriptor and

transmit buffer

settings

Transmit instruction

Descriptor write-back

Descriptor read

Transmit data transfer

Transmit data transfer

Frame transmission

Transmission end

Descriptor read

Descriptor write-back

RX62N Group + memory Transmit FIFO

Figure 4.9 Sample Transmission Sequence

R01AN0629EJ0101 Rev.1.01 Page 26 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

4.1.11 41BFunction Operating Procedure (Reception)

The EDMAC receiver is activated when the receive request (RR) bit in the EDMAC receive request register
(EDRRR) is set to 1 while the value of the RE bit in ECMR is 1. After a software reset of the ETHERC and EDMAC,
the EDMAC reads the descriptor indicated by the receive descriptor list start address register (RDLAR) and, if the
RACT bit is set to 1 (active), enters the receive standby state. When the ETHERC receives a frame for a local
destination (an address for which local reception is enabled), it stores it in the receive FIFO. If the value of the RACT
bit in the receive descriptor is 1, the EDMAC transfers the frame to the receive buffer specified by RD2. (If the value of
the RACT bit is 0 (inactive), the RR bit is cleared to 0 and EDMAC receive operation stops.) If the data length of a
received frame is longer than the buffer length specified by RD1, the EDMAC performs a write-back operation to the
descriptor (RFP = B'10 or B'00) when the buffer becomes full, then reads the next descriptor. When frame reception is
completed, or if frame reception is aborted because of an error, the EDMAC performs write-back to the relevant
descriptor (RFP = B'11 or B'01).

When continuous reception is selected (receive request bit reset (RNR) bit in receiving method control register
(RMCR) set to 1), the EDMAC reads the next descriptor and, if the RACT bit is set to 1, enters the receive standby state.
When continuous reception is selected, setting the receive request bit non-reset mode (RNC) bit in the RMCR register
to 1 causes EDMAC receive operation to continue, with no clearing of the RR bit even if the RACT bit is cleared to 0
(inactive). (Receive descriptors are fetched consecutively, and receive frame DMA continues.) When continuous
reception is not selected (value of RNR bit in RMCR register is 0), the RR bit in the EDRRR register is cleared to 0 and
EDMAC receive operation ends. Setting the RR bit to 1 once again causes the EDMAC to read the next descriptor after
the descriptor from the last receive operation and then enter the receive standby state.

Figure 4.10 shows a sample reception sequence.

RX62N Group + memory

Reception sequence

EDMAC ETHERCReceive FIFO Ethernet

Reception end

Receive data transfer

Receive data transfer

Frame reception

ETHERC/EDMAC

initialization

Descriptor and

receive buffer

settings

Receive instruction

Descriptor read
(preparation for receiving

next frame)

Descriptor read

Descriptor read

Descriptor write-back

Descriptor write-back

Figure 4.10 Sample Reception Sequence (Single-Frame/Single-Descriptor)

R01AN0629EJ0101 Rev.1.01 Page 27 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

4.1.12 42BFunction Operating Procedure (Transmission/Reception)

The basic settings needed for Ethernet transmission and reception are described below. Figures 4.11 to 4.13 show
sample Ethernet transmit/receive setting sequences.

Start

1

Reset ETHERC/EDMAC

ETHERC settings

• Clear status

• MAC address settings

• Transmit/receive settings

Descriptor settings

• Transmit/receive descriptor initial settings

• Clear transmit/receive buffer to 0

• Initial pointer setting in transmit/receive descriptor

Software reset of ETHERC/EDMAC

Write 1 to the SWR bit in the EDMAC mode register (EDMR).

Do not allow access to the registers of all Ethernet-related modules

during the software reset issue duration (64 cycles).

• Transmit/receive descriptor initial settings

 TD0: (TACT) Set for frame transmission.

 (TDLE) Set to 1 in last plane (and to 0 in other planes).

 (TFP) Set for frame transmission.

 (TWBI) Set to 1 in plane triggering write-back end interrupt.

 TD1: (TBL) Set for frame transmission.

 TD2: (TBA) Set to start address of transmit buffer corresponding to each descriptor.

 The transmit buffer must be aligned with a 32-byte boundary.

 Padding area: The EDMAC does not use this area. It may be set to any user-defined value.

 RD0: (RACT) Set to 1 (active).

 (RDLE) Set to 1 in last plane (and to 0 in other planes).

 (RFP) No need to set. Manipulated by write-back by EDMAC.

 RD1: (RBL) Set to maximum transfer byte length of receive buffer.

 (RFL) No need to set. Manipulated by write-back by EDMAC.

 RD2: (RBA) Set to start address of transmit buffer corresponding to each descriptor.

 The receive buffer must be aligned with a 32-byte boundary.

 Padding area: The EDMAC does not use this area. It may be set to any user-defined value.

• Clear transmit/receive buffer to 0

 Clear transmit/receive data buffer area in memory to 0.

• Transmit/receive descriptor initial pointer setting

 Initialize the pointer variable for managing the current descriptor.

 Set the start address of the transmit/receive descriptor list to the initial value.

• Clear status

 Write 1 to flag bits in ETHERC status register (ECSR) to clear them.

• MAC address settings

 Set the upper 32 bits of the 48-bit MAC address in the MAC address high register (MAHR).

 Set the lower 16 bits of the 48-bit MAC address in the MAC address low register (MALR).

• Transmit/receive settings

 Set the following registers/bit according to the operation settings:

 Bits other than transmit enable (TE) and receive enable (RE) in ETHERC mode register (ECMR)

 Receive frame length register (RFLR)

 IPG register (IPGR)

 Automatic PAUSE frame register (APR)

 Manual PAUSE frame register (MPR)

 Automatic PAUSE frame retransmit count register (TPAUSER)

 Random number generation counter upper limit setting register (RDMLR)

 Broadcast frame receive count setting register (BCFRR)

Figure 4.11 Sample Ethernet Transmit/Receive Setting Sequence (1)

R01AN0629EJ0101 Rev.1.01 Page 28 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Yes

No

Yes

No
TACT = 0?

1

2

PHY initialization and link

• PHY initialization

 Use the PIR register to reset the PHY.

• Auto-negotiation

 Use the PIR register to start auto-negotiation by the PHY.

EDMAC settings

• Clear status

• Transmit/receive settings

PHY initialization and link

• PHY initialization

• Auto-negotiation

Auto-negotiation

complete?

Start reception

Enable transmission/reception

Enable interrupts

Set to connection mode supported

by link partner

• Clear status

 Write 1 to flag bits in ETHERC/EDMAC status register (EESR) to clear them.

• Transmit/receive settings

 Set the following registers/bit according to the operation settings:

 Bits other than software reset (SWR) in EDMAC mode register (EDMR)

 Transmit descriptor list start address register (TDLAR)

 Receive descriptor list start address register (RDLAR)

 Transmit/receive status copy enable register (TRSCER)

 Transmit FIFO threshold register (TFTR)

 FIFO depth register (FDR)

 Receiving method control register (RMCR)

 Flow control start FIFO threshold setting register (FCFTR)

 Receive data padding insert register (RPADIR)

 Transmit interrupt setting register (TRIMD)

Confirmation that operation using current descriptor is not underway

Using the descriptor management pointer for transmission,

confirm that the TACT bit of the current descriptor is cleared to 0,

indicating that transmission has completed or been aborted.

Wait for auto-negotiation to complete.

Set the duplex mode (DM) bit in the ETHERC mode register (ECMR)

to match the auto-negotiation result. For RMII,

set the transmission/reception rate (RTM) bit as well.

In the ETHERC interrupt permission register (ECSIPR) and

ETHERC/EDMAC status interrupt permission register (EESIPR)

set the bits for the interrupts to be used to 1 (enabled).

Set the IEN0 bit to 1 in interrupt request enable register 04 (IER04)

of the interrupt control unit (ICUa).

Set the priority level in interrupt priority register 08 (IPR08) of

the interrupt control unit (ICUa).

Set the transmit enable (TE) and receive enable (RE) bits

in the ETHERC mode register (ECMR) to 1 to enable transmission

and reception.

Set the receive request (RR) bit in the EDMAC receive request

register (EDRRR) to 1 to enable the receive function.

Figure 4.12 Sample Ethernet Transmit/Receive Setting Sequence (2)

R01AN0629EJ0101 Rev.1.01 Page 29 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

End

2

Set transmit data in the buffer specified by the current descriptor.

Set the transmit request (TR) bit in the EDMAC transmit request register (EDTRR)

to 1 to start the transmit function.

Set the next descriptor as the current descriptor.

Set the current descriptor to the transmit-enabled state.

Set TFP to a position within the transmit frame.

Set TDL to the transmit data length.

Set the TACT bit to 1. (This bit is set last.)

Set transmit frame in transmit buffer

Transmit descriptor settings

Update transmit descriptor

management pointer

Start transmission

Figure 4.13 Sample Ethernet Transmit/Receive Setting Sequence (3)

4.2 21BOperation of Sample Program

The sample program performs one of the two tasks listed below according to the test type selected in the main routine.
In both cases, the same settings are used for the Ethernet initial state.

• Transmission of 10 Ethernet frames

• Reception of 10 Ethernet frames

4.2.1 43BOperation of Sample Program (Transmission)

When the transmission test is selected, the sample program uses the ETHERC and EDMAC to transmit 10 frames to
the partner host.

Eight transmit descriptor planes and eight 1,536-byte transmit buffer planes are prepared. The transmit descriptors are
put into a linked state for use.

After writing 10 frames worth of transmit data to the transmit buffer, the sample program uses the transmit request
(TR) bit in the EDMAC transmit request register (EDTRR) to determine when transmission of the 10 frames is
complete, then ends the transmission test.

4.2.2 44BOperation of Sample Program (Reception)

When the reception test is selected, the sample program uses the ETHERC and EDMAC to receive 10 frames from
the partner host.

Eight receive descriptor planes and eight 1,536-byte receive buffer planes are prepared. The receive request bit reset
(RNR) bit in the receiving method control register (RMCR) is set to 1 to enable continuous reception.

The sample program checks the RFE bit in the receive descriptor (bit 27 in RD0) and, if there is no error (RFE = 0),
copies 1 frame of data from the receive buffer to the user buffer. Then it initializes the relevant descriptor to prepare for
the next transmission. If an error has occurred (RFE = 1), the sample program just initializes the relevant descriptor but
does not copy a frame to the user buffer. Note that the data transferred to the receive buffer consists of the portion of the
Ethernet frame other than the preamble, SFD, and CRC.

R01AN0629EJ0101 Rev.1.01 Page 30 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

4.2.3 45BOperating Environment of Sample Program

Figure 4.14 shows the operating environment of the sample program. For points to be borne in mind with regard to
the operating environment, see 4.6.1, Notes on Operating Environment.

Figure 4.14 Operating Environment of Sample Program

4.2.4 46BEthernet Frame Format

The transmit data that must be prepared consists of the portion of the Ethernet frame other than the preamble, start
frame delimiter (SFD), and CRC. The destination MAC address and transmit source MAC address in the header must
be changed to match the MAC addresses of the devices used. Note that the ETHERC does not check the transmit source
MAC address.

SFD CRC

Data stored in transmit buffer, 60 to 1,514 bytes

66 21 46 to 1,500 47Unit: byte

Preamble
Destination

MAC address

Transmit

source

MAC address

Type/

length
Data

Figure 4.15 Ethernet Frame Format (Transmission)

The data transferred to the receive buffer consists of the portion of the Ethernet frame other than the preamble, SFD,
and CRC.

SFD CRC

66 21 46 to 1,500 47

Data transferred to receive buffer, 60 to 1,514 bytes

Unit: byte

Preamble
Destination

MAC address

Transmit

source

MAC address

Type/

length
Data

Figure 4.16 Ethernet Frame Format (Reception)

R01AN0629EJ0101 Rev.1.01 Page 31 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

4.3 22BDescriptor Definition in Sample Program
The EDMAC does not use the padding area of the descriptor. It can be used freely by the user. The sample program

uses this area to specify the start address of the next descriptor, creating a linked structure in software.

Figure 4.17 shows the transmit and receive descriptors, and the buffers, used by the sample program.

Receive Descriptors

status

Char *buf_p RX_BUFF

RX_BUFF

RX_BUFF

Discript *next

bufsize size

status

Char *buf_p

Discript *next

bufsize size

status

Char *buf_p

Discript *next

bufsize size

Transmit Descriptors

status

Char *buf_p TX_BUFF

TX_BUFF

TX_BUFF

Discript *next

bufsize size

status

Char *buf_p

Discript *next

bufsize size

status

Char *buf_p

Discript *next

bufsize size

Figure 4.17 Transmit and Receive Descriptors, and Buffers

The descriptors comprise the transmit descriptors TD0, TD1, and TD2, which are 32-bit units, and the receive
descriptors RD0, RD1, and RD2, which are also 32-bit units. The sample program defines RBL, the upper 16 bits of the
32-bit unit RD1 (TBL, the upper 16 bits of the 32-bit unit TD1), as the structure member bufsize, and the lower 16 bits
of RD1 as the structure member size. The other 32-bit units are defined as members of 32-bit size.

When allocated in the RAM, the descriptors operate according to the endian setting of the bus. (The on-chip RAM
uses the endian mode of the CPU.) The EDMAC accesses the descriptors in 32-bit units. Therefore, bufsize and size
must be allocated in the RAM according to the conditions below to ensure that their contents match when accessed in
32-bit or 16-bit units. No such conditions apply to the other members because they are defined as 32-bit size.

• When the RAM to which a descriptor is allocated is set to big-endian mode

Set the address allocation of the 32-bit unit RD1 (TD1) such that the member bufsize defined for the upper 16 bits is

assigned the low-order address and the member size defined for the lower 16 bits is assigned the high-order address.

• When the RAM to which a descriptor is allocated is set to little-endian mode

Set the address allocation of the 32-bit unit RD1 (TD1) such that the member bufsize defined for the upper 16 bits is

assigned the high-order address and the member size defined for the lower 16 bits is assigned the low-order address.

The descriptors of the sample program are defined as structures using macros defined by the compiler, as described
below.

R01AN0629EJ0101 Rev.1.01 Page 32 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

R01AN0629EJ0101 Rev.1.01 Page 33 of 52

Mar 31, 2011

struct Descriptor

{

 __evenaccess uint32_t status;

#if __LIT

 __evenaccess uint16_t size;

 __evenaccess uint16_t bufsize;

#else

 __evenaccess uint16_t bufsize;

 __evenaccess uint16_t size;

#endif

 int8_t *buf_p;

 struct Descriptor *next;

};

It is possible to change the number of descriptors and the buffer size by changing the macros below, which are
defined in r_ether.h. BUFSIZE specifies the size of the receive buffers (RX_BUFF) and transmit buffers (TX_BUFF),
and ENTRY specifies the number of descriptors.

The buffers must align with a 32-byte boundary, so the value defined by BUFSIZE in the r_ether.h file assures a 32-
byte aligned value in RAM.

#define BUFSIZE 1536

#define ENTRY 8

RX62N Group Ethernet Transmit and Receive Settings

R01AN0629EJ0101 Rev.1.01 Page 34 of 52

Mar 31, 2011

4.4 23BEthernet Driver API

The functions below are provided as TCP/IP stack driver interfaces. They compose the standard Renesas API (RAPI)
for Renesas Ethernet devices.

• R_Ether_Open

• R_Ether_Close

• R_Ether_Read

• R_Ether_Write

• R_Ether_Write_Sync

4.4.1 47BR_Ether_Open

The R_Ether_Open function initializes the ETHERC, EDMAC, physical layer transceiver (PHY), and
transmit/receive data buffers. The initialization of the ETHERC and EDMAC is separate from the power-on reset.

• Prototype

int32_t R_Ether_Open(uint32_t ch, uint8_t mac_addr[]);

• Arguments

⎯ ch

ETHERC channel number specification

⎯ mac_addr

ETHERC MAC address specification

• Return values

R_ETHER_OK(0): Normal completion

R_ETHER_ERROR(-1): Error

• Properties

Declared in r_ether.h file

Defined in r_ether.c file

• Description

The R_Ether_Open function initializes the ETHERC and EDMAC. It sets the EDMAC descriptors and buffers to

their initial state. The MAC address is used to initialize the MAC address register of the ETHERC.

The initial settings specify auto-negotiation mode for the physical layer transceiver (PHY).

The RX62N has only one Ethernet channel, so Ethernet driver processing does not branch according to the channel

number. The function will operate normally regardless of the channel number value, but setting the channel number

to 0 is recommended.

The Ethernet driver of the RX62N does not include code for processing when the MAC address is set to 0.

Therefore, make sure to input a value other than 0 as the MAC address, or add appropriate program code for

processing when the MAC address is set to 0.

RX62N Group Ethernet Transmit and Receive Settings

R01AN0629EJ0101 Rev.1.01 Page 35 of 52

Mar 31, 2011

4.4.2 48BR_Ether_Close

The R_Ether_Close function disables the transmit and receive functions of the ETHERC. This function does not
power-down the ETHERC and EDMAC.

• Prototype

int32_t R_Ether_Close(uint32_t ch);

• Arguments

⎯ ch

ETHERC channel number specification

• Return values

R_ETHER_OK(0): Normal completion

R_ETHER_ERROR(-1): Error

• Properties

Declared in r_ether.h file

Defined in r_ether.c file

• Description

The R_Ether_Close function disables the transmit and receive functions of the ETHERC.

The RX62N has only one Ethernet channel, so Ethernet driver processing does not branch according to the channel

number. The function will operate normally regardless of the channel number value, but setting the channel number

to 0 is recommended.

4.4.3 49BR_Ether_Read

The R_Ether_Read function receives data to the application’s receive buffer.

• Prototype

int32_t R_Ether_Read(uint32_t ch, void *buf);

• Arguments

⎯ ch

ETHERC channel number specification

⎯ *buf

Receive data buffer pointer

• Return values

Value of 0 or greater: Number of bytes received. 0 indicates no receive data.

R_ETHER_ERROR(-1): Error (Covers both hardware and software errors.)

R_ETHER_HARD_ERROR(-3): Hardware error (Software reset required to recover.)

R_ETHER_RECOVERABLE(-4): Recoverable error (Software reset not required to recover.)

R_ETHER_NODATA(-5): No receive data

Note: The sample program does not use the R_ETHER_HARD_ERROR(-3), R_ETHER_RECOVERABLE(-

4), and R_ETHER_NODATA(-5) return values.

• Properties

Declared in r_ether.h file

Defined in r_ether.c file

• Description

The R_Ether_Read function reads data from the buffer designated by the receive descriptor. The receive descriptor

status is updated each time new data is processed. After reading the data, the function copies it to the receive data

buffer.

The RX62N has only one Ethernet channel, so Ethernet driver processing does not branch according to the channel

number. The function will operate normally regardless of the channel number value, but setting the channel number

to 0 is recommended.

The data associated with a descriptor that generates a receive frame error is discarded, the status is cleared, and read

operation continues.

RX62N Group Ethernet Transmit and Receive Settings

R01AN0629EJ0101 Rev.1.01 Page 36 of 52

Mar 31, 2011

4.4.4 50BR_Ether_Write

The R_Ether_Write function transmits data from the application’s transmit buffer.

• Prototype

int32_t R_Ether_Write(uint32_t ch, void *buf, uint32_t len);

• Arguments

⎯ ch

ETHERC channel number specification

⎯ *buf

Pointer to Ethernet data to be transmitted

⎯ len

Ethernet frame length

• Return values

R_ETHER_OK(0): Normal completion

R_ETHER_ERROR(-1): Error

• Properties

Declared in r_ether.h file

Defined in r_ether.c file

• Description

The R_Ether_Write function writes transmit data to the buffer designated by the transmit descriptor. The transmit

descriptor status is updated each time new data is processed. After the data is written, it is transmitted by the

ETHERC.

The R_Ether_Write function does not check transmit completion.

The RX62N has only one Ethernet channel, so Ethernet driver processing does not branch according to the channel

number. The function will operate normally regardless of the channel number value, but setting the channel number

to 0 is recommended.

The function does not check for transmit frame errors.

4.4.5 51BR_Ether_Write_Sync

The Ether_Write_Sync function writes transmit data to the transmit buffer and waits for data transmission to
complete.

• Prototype

int32_t R_Ether_Write_Sync(uint32_t ch, void *buf, uint32_t len);

• Arguments

⎯ ch

ETHERC channel number specification

⎯ *buf

Pointer to Ethernet data to be transmitted

⎯ len

Ethernet frame length

• Return values

R_ETHER_OK(0): Normal completion

R_ETHER_ERROR(-1): Error

R_ETHER_TIMEOUT(-2): Timeout

R_ETHER_HARD_ERROR(-3): Hardware error (Software reset required to recover.)

R_ETHER_RECOVERABLE(-4): Recoverable error (Software reset not required to recover.)

• Properties

Declared in r_ether.h file

Defined in r_ether.c file

• Description

The R_Ether_Write function writes transmit data to the buffer designated by the transmit descriptor. In addition to

processing new data and waiting for transmission to complete, it updates the transmit descriptor status.

RX62N Group Ethernet Transmit and Receive Settings

Note: Do not use this function because it is not supported by the RX62N Ethernet driver. Use the
R_Ether_Write function to transmit data from the transmit buffer.

4.5 24BProcessing Procedure of Sample Program

Figures 4.18 and 4.19 show the processing sequence of the sample program, which uses the Ethernet driver API, and
figures 4.20 to 4.28 show the processing sequence of the Ethernet driver API and its subordinate functions.

Start

i = 2?
Yes

No

Yes

No

Sample receive program

i = 1?

Sample transmit program

Select test type (i = 1 or 2)

Main function

main

Figure 4.18 Main Processing Sequence of Sample Program (1)

R01AN0629EJ0101 Rev.1.01 Page 37 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

Yes

No
Success?

R_Ether_Open

Sample transmit program

SampleEthernetTransmission

R_Ether_Write

Yes

No

Yes

No 10 frames

transmitted?

Yes

No

R_Ether_Close

End

Start

Yes

No
Success?

Success?

R_Ether_Open

Sample receive program

SampleEthernetReception

R_Ether_Read

Yes

No

Yes

No

R_Ether_Close

End

10 frames

received?

Transmission complete?
(TR = 0 in EDTRR?)

Success?

Figure 4.19 Main Processing Sequence of Sample Program (2)

R01AN0629EJ0101 Rev.1.01 Page 38 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

Transmit/receive descriptor initialization

_eth_fifoInit

Open function

R_Ether_Open

Initial pointer setting for

transmit/receive descriptor

Reset ETHERC/EDMAC

Yes

No
i < 0x00000100?

i = 0

i + 1

Yes

No

Check MAC address

MAC address = 0?

1

MAC address register setting

Set MAC address register

Read MAC address

Initialize the transmit descriptor and receive descriptor.

Initialization of pointer variable for managing the current descriptor

Set the initial value of the start address of the transmit/receive descriptor list.

Software reset of ETHERC/EDMAC

Write 1 to the SWR bit in the EDMAC mode register (EDMR).

Wait because access to the registers of all Ethernet-related modules is

prohibited during the software reset issue duration (64 cycles).

Set the MAC address in the MAC address high register

(MAHR) and MAC address low register (MALR). The

sample program does not include code for processing when

the MAC address is set to 0. The user must add appropriate

program code for processing when the MAC address is set

to 0.

Write 0x00000037 to the ETHERC status register (ECSR) to clear the

ETHERC internal status.

Write 0x00000020 to the ETHERC interrupt permission register (ECSIPR) to

prohibit interrupt notification by reports from the ECSR register.

Set the receive frame length bits in the receive frame length register (RFLR)

to specify 1,518 bytes.

Set the inter packet gap bits in the IPG register (IPGR) to specify 96 bits.

ETHERC settings

Figure 4.20 Ethernet API Processing Sequence of Sample Program (1)

R01AN0629EJ0101 Rev.1.01 Page 39 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

End

1

Yes

No

Yes

No

2

Return R_ETHER_ERROR

Write 0x47FF0F9F to the ETHERC/EDMAC status register (EESR) to clear

the transmit status.

Set the start address of the receive descriptor list in the receive descriptor

list start address register (RDLAR).

Set the start address of the transmit descriptor list in the transmit

descriptor list start address register (TDLAR).

Write 0x00000000 to the transmit/receive status copy enable register

(TRSCER) to disable updating of transmit and receive status information in

the relevant descriptors, TFS25 to TFS0 and RFS26 to RFS0.

Write 0x00000000 to the transmit FIFO threshold register (TFTR) to select

store and forward mode.

Write 0x00000707 to the FIFO depth register (FDR) to set the capacity of

the transmit and receive FIFOs to 2,048 bytes.

Write 0x00000001 to the receiving method control register (RMCR) to

select continuous reception.

Only applicable for little endian operation

Write 1 to the big/little endian mode bit in the

EDMAC mode register (EDMR) to select little

endian mode.

EDMAC settings

Set transmit/receive data to

little endian mode

PHY initialization

phy_init

Initialization

successful?

Auto-negotiation result

acquisition

Auto-negotiation

successful?

Figure 4.21 Ethernet API Processing Sequence of Sample Program (2)

R01AN0629EJ0101 Rev.1.01 Page 40 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

2

Yes

No

Set to half-duplex mode

ECMR.DM = 0

Yes

Yes

No

Set to 100 Mbps

ECMR.RTM = 1

Set to 10 Mbps

ECMR.RTM = 0

No

End

Start

Close function

R_Ether_Close

End

Link partner supports

100 Mbps?

Start reception

Return R_ETHER_OK

Return R_ETHER_ERROR

Link partner supports

full-duplex mode?

Set to full-duplex mode

ECMR.DM = 1

Enable transmit/receive

Disable transmit/receive

Set the duplex mode (DM) bit in the ETHERC mode register

(ECMR) to match the mode supported by the link partner.

Only applicable for RMII

Set the transmission/reception rate

(RTM) bit in the ETHERC mode register

(ECMR) to match the mode supported

by the link partner.

Set the transmit enable (TE) or receive enable (RE) bit in

the ETHERC mode register (ECMR) to 1 to enable transmit/receive.

Set the receive request (RR) bit in the EDMAC receive request

register (EDRRR) to 1 to enable the receive function.

Wait until the link partner is ready. The duration of the wait depends

on the system characteristics of the link partner, so careful evaluation

is necessary when setting the value.

Write 0x00000000 to the ETHERC mode register (ECMR)

to disable transmit/receive operation.

i < 0x00000100?

i = 0

i + 1

Figure 4.22 Ethernet API Processing Sequence of Sample Program (3)

R01AN0629EJ0101 Rev.1.01 Page 41 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

Data write function

R_Ether_Write

End

Yes

No

flag = 0

Yes

No

Yes

No

Initialize variable flag

Transmit data write

_eth_fifoWrite

Can entire transmit size

be written to buffer?

Set variable flag

Update transmit descriptor pointer

Data equivalent to transmit

size written to buffers?

Transmit function enabled?

Enable transmit function

Clear bits TFP1 and TFP0 in

transmit descriptor 0 (TD0)

Set bits TACT, TFP1, and TFP0 in

transmit descriptor 0 (TD0)

Return R_ETHER_OK

The variable flags are used to write to bits TFP1, TFP0, and TACT in

receive descriptor 0 (TD0). Set the variable flag to correspond to

TACT = 0, TFP1 = 1, and TFP0 = 0.

Set the variable flag to correspond to TFP0 = 1. TACT and TFP1

retain their pre-setting values.

Set the variable flag to correspond to TACT = 0, TFP1 = 0, and TFP0 = 0.

Write data to the transmit descriptor and transmit buffer.

Set the variable flag to correspond to TACT = 1,

and write the variable flag values to bits TFP1, TFP0,

and TACT in transmit descriptor 0 (TD0).

Set the transmit request (TR) bit in the EDMAC

transmit request register (EDTRR) to 1.

Figure 4.23 Ethernet API Processing Sequence of Sample Program (4)

R01AN0629EJ0101 Rev.1.01 Page 42 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

Data read function

R_Ether_Read

End

Receive data read

_eth_fifoRead

Yes

No

Yes

No

Yes

No

Yes

No

End

Start

End

Yes

No

No receive data?

Receive error?

Receive error handling

Receive error handling

Normal receive processing

Return receive size

Activate receive descriptor

Receive function

enabled?

Enable receive function

Internal variable initialization

2 or more receive frames

and receive size = 0?

Receive loop on?

Set receive size to 0

Clear receive flags

Initialize the internal variable for receive size to 0

and for receive loop to on.

Read data from receive buffer.

Return R_ETHER_OK

See other sequences for processing details.

Clear the receive frame position (RFP), receive frame error (RFE),

and receive frame status (RFS) flags of receive descriptor 0 (RD0).

Set RACT to 1 to activate the receive descriptor.

Set the receive request (RR) bit in the EDMAC receive request

register (EDRRR) to 1 to enable the receive function.

Figure 4.24 Ethernet API Processing Sequence of Sample Program (5)

R01AN0629EJ0101 Rev.1.01 Page 43 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

End

Yes

No
RFP0 = 1?

Yes

No

Yes

No
RFP1 = 1?

Set the receive request (RR) bit in the EDMAC receive

request register (EDRRR) to 1 to enable the receive function.

Normal receive processing

Set receive size to 0

Turn off receive loop

Update receive size

Clear RFP

Activate receive descriptor

Update receive descriptor pointer

Update receive data pointer

Receive function enabled?

Enable receive function

Clear the receive size to 0 when the contents of

the receive buffer are the start of the frame.

Turn off the receive loop if the contents of the receive

buffer include the end of the frame.

Add the size of the read data to the receive size.

Clear the receive frame position (RFP).

Set RACT to 1 to activate the receive descriptor.

Update the pointer to the relevant descriptor.

Update the pointer for writing receive data

by the size of the read data.

Figure 4.25 Ethernet API Processing Sequence of Sample Program (6)

R01AN0629EJ0101 Rev.1.01 Page 44 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

descriptor initialization function

_eth_fifoInit

End

No

Yes

Yes

No

Clear the relevant data buffer to 0.

Update pointer to descriptor to be initialized

Transmit descriptor?

Set transmit data buffer Set receive data buffer

Clear data buffer

Set buffer size

Clear buffer internal size

Clear frame status

Set next descriptor address

All descriptors initialized?

Set descriptor ring end

Set start of next descriptor ring

Set pointer to descriptor to be initialized.

Set the buffer address of the relevant descriptor.

In the last descriptor in the descriptor list, set the bit that indicates the

end of the descriptor ring (TDLE or RDLE) to 1.

Also, set the address of the next descriptor to the address of the first

descriptor.

Set the buffer size for a receive descriptor in RFL and the

buffer size for a transmit descriptor in the padding area.

For a receive descriptor clear RBL to 0 and for a transmit

descriptor clear TBL to 0.

For a receive descriptor set RACT in RD0 to 1 (otherwise 0).

For a transmit descriptor clear all bits in TD0 to 0.

Set the address of the next descriptor to be referenced.

Figure 4.26 Sample Program Descriptor Processing Sequence (1)

R01AN0629EJ0101 Rev.1.01 Page 45 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

FIFO write function

_eth_fifoWrite

End

Yes

No

End

No

Yes

No

Yes

Descriptor active?

Written data exceeds

buffer size?

Write data to buffer

Entire data size written?

Return size written

Return –1

Figure 4.27 Sample Program Descriptor Processing Sequence (2)

R01AN0629EJ0101 Rev.1.01 Page 46 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

Start

FIFO read function

_eth_fifoRead

End

Yes

No

End

No

Yes

No

Yes

No

Yes

No

Yes

Descriptor active?

Frame error?

Frame complete?

Set buffer size to read size

Read data from buffer

Entire read size was read?

Return read size

Set descriptor buffer data size

to read size

Read size exceeds buffer size?

Subtract buffer size

from read size

Return –2 Return –1

Figure 4.28 Sample Program Descriptor Processing Sequence (3)

R01AN0629EJ0101 Rev.1.01 Page 47 of 52

Mar 31, 2011

RX62N Group Ethernet Transmit and Receive Settings

R01AN0629EJ0101 Rev.1.01 Page 48 of 52

Mar 31, 2011

4.6 25BNotes on Transmit/Receive Settings

4.6.1 52BNote on Operating Environment

The sample program uses the auto-negotiation function to select the communication mode. If the amount of time
required for auto-negotiation by the RX62N and the connection partner of the RX62N (the hub in figure 4.14) differs
considerably, communication may fail even though auto-negotiation is successful.

If the connection partner of the RX62N cannot receive even after auto-negotiation completes successfully, insert a
wait period on the RX62N side to enable the connection partner to enter the ready-to-receive state. The amount of time
needed for the connection partner to enter the ready-to-receive state will differ depending on the system, so the user
should perform sufficient evaluation when determining the wait period.

To adjust the duration of the wait period, modify the following lines of code in the R_EtherOpen function (lines 278
to 280) in the r_ether.c file.

 /* Delay to stabilize */

 /* Set the count according to the system */

 for(i = 0 ; i < 0x0000100 ; i++);

4.6.2 53BNote on Interrupt Handling

The sample program does not use interrupt functions. In order to use interrupts, the user must add appropriate
program code.

4.6.3 54BNote on Error Handling

The sample program does not include routines for handling transmit or receive errors. If error handling is required,
the user must add appropriate program code.

4.6.4 55BNote on Transmit/Receive Buffer Size

The buffers must align with a 32-byte boundary, so the value defined by BUFSIZE in the r_ether.h file assures a 32-
byte aligned value in RAM.

4.6.5 56BNote on Reception Mode

When continuous reception is selected (receive request bit reset (RNR) bit in receiving method control register
(RMCR) set to 1), the EDMAC reads the next descriptor and enters the receive standby state if the value of the RACT
bit is 1.

In continuous reception mode, setting the receive request bit non-reset mode (RNC) bit in the RMCR register to 1
causes EDMAC receive operation to continue, with no clearing of the RR bit even if the RACT bit is cleared to 0
(inactive). (Receive descriptors are fetched consecutively, and receive frame DMA continues.)

This means that data may be overwritten before the receive data is passed to a higher layer. The setting that causes
DMA to continue even when the RACT bit is cleared to 0 (inactive) should not be used under conditions requiring
handshaking, such as TCP communication. This setting is recommended for use in conditions such as UDP
communication where real-time performance is essential and retransmission is not required.

RX62N Group Ethernet Transmit and Receive Settings

R01AN0629EJ0101 Rev.1.01 Page 49 of 52

Mar 31, 2011

5. 4BEndian Mode Selection in Sample Program

In the compile options of the RX compiler, big endian is defined as the predefined macro __BIG and little endian as
__LIT. The sample program uses these macros to absorb the difference due to the endian mode selection.

5.1 26BBig Endian Mode

For big-endian operation, make the following settings, and set the Pin3 of SW4 on the Renesas Starter Kit +(product
number: R0K5562N0C000BE) to OFF (MDE=Hi).

• 1. Launch RX Standard Toolchain by selecting Build → RX Standard Toolchain from the HEW toolbar.

• 2. On the CPU tab select Big under Endian, then click OK.

• 3. Build the file once again.

5.2 27BLittle Endian Mode

For little-endian operation, make the following settings, and set the Pin3 of SW4 on the Renesas Starter Kit
+(product number: R0K5562N0C000BE) to ON (MDE=Low).

• 1. Launch RX Standard Toolchain by selecting Build → RX Standard Toolchain from the HEW toolbar.

• 2. On the CPU tab select Little under Endian, then click OK.

• 3. Build the file once again.

6. 5BInterface (MII/RMII) Selection in Sample Program

MII/RMII selection can be accomplished by switching macros. Make the appropriate change to ETH_MODE_SEL,
which is defined in r_ether.h.

6.1 28BMII

As shown below, set ETH_MODE_SEL to ETH_MII_MODE in the r_ether.h file.

#define ETH_MODE_SEL ETH_MII_MODE

6.2 29BRMII

As shown below, set ETH_MODE_SEL to ETH_RMII_MODE in the r_ether.h file. Please note that the Renesas
Starter Kit +(product number: R0K5562N0C000BE) supports the MII (Media Independent Interface) only, and doesn't
support RMII (Reduced Media Independent Interface).

#define ETH_MODE_SEL ETH_RMII_MODE

RX62N Group Ethernet Transmit and Receive Settings

R01AN0629EJ0101 Rev.1.01 Page 50 of 52

Mar 31, 2011

7. 6BAllocation of Sections in Sample Program

Table 7.1 shows the allocation of sections by the sample program.

For details on the compiler, see section 5, Optimizing Linkage Editor Options, and 8.1, Program Structure, in RX

Family C/C++ Compiler, Assembler, Optimizing Linkage Editor: Compiler Package User’s Manual.

Table 7.1 Allocation of Sections in Sample Program

Address Device Section Description

B_RX_DESC Receive descriptor area

B_TX_DESC Transmit descriptor area

B_RX_BUFF_1 Receive buffer area

B_TX_BUFF_1 Transmit buffer area

B_1 Uninitialized data area with 1-byte alignment

R_1 Initialized data area (variable) with 1-byte alignment

B_2 Uninitialized data area with 2-byte alignment

R_2 Initialized data area (variable) with 2-byte alignment

B Uninitialized data area with 4-byte alignment

R Initialized data area (variable) with 4-byte alignment

SU User stack area

SI Interrupt stack area

0x00001000 On-chip RAM

BETH_BUFF Transmit/receive data buffer of main routine

0xFFF80000 On-chip ROM PResetPRG Program area of ResetPRG section
(initial settings program)

 C_1 Constant area with 1-byte alignment

 C_2 Constant area with 2-byte alignment

 C Constant area with 4-byte alignment

 C$* Constant area of C$* sections
(C$DSEC, C$BSEC, C$VECT)

 D* Initialized data area (initial value)

 P Program area with no section definition

 PIntPRG Program area of IntPRG section (interrupt)

0xFFF80100

 W* Switch statement branch table area

0xFFFFFFD0 FIXEDVECT FIXEDVECT section area

7.1 30BNotes on Allocation of Sections

• The sample program set the transmit/receive descriptor length (DL) bits in the EDMAC mode register (EDMR) to

specify 16 bytes, so the B_RX_DESC and B_TX_DESC sections should be allocated so that they are aligned with

16-byte boundaries.

• Allocate the B_RX_BUFF_1 and B_TX_BUFF_1 sections so that they are aligned with 32-byte boundaries.

8. 7BNote on Use of Renesas Starter Kit +

Please note that the Renesas Starter Kit +(product number: R0K5562N0C000BE) supports the MII (Media
Independent Interface) only, and doesn't support RMII (Reduced Media Independent Interface). Must select MII from
the interface of the reference program (MII/RMII) according to 6.1.

RX62N Group Ethernet Transmit and Receive Settings

R01AN0629EJ0101 Rev.1.01 Page 51 of 52

Mar 31, 2011

9. 8BReference Documents

• RX62N Group Hardware Manual

(The latest version can be downloaded from the Renesas Electronics Web site.)

• RX Family Software Manual

(The latest version can be downloaded from the Renesas Electronics Web site.)

• RX Family Compiler Package User’s Manual

(The latest version can be downloaded from the Renesas Electronics Web site.)

• Standard Microsystems Corporation LAN8700/LAN8700i Datasheet

(The latest version can be downloaded from the Standard Microsystems Corporation Web site.)

RX62N Group Ethernet Transmit and Receive Settings

R01AN0629EJ0101 Rev.1.01 Page 52 of 52

Mar 31, 2011

Website and Support

• Renesas Electronics Website

HUhttp://www.renesas.com/ U

• Inquiries

HUhttp://www.renesas.com/inquiry U

All trademarks and registered trademarks are the property of their respective owners.

A-1

Revision Record

Description

Rev.

Date Page Summary

1.00 Dec.27.10 — First edition issued

1.01 Mar.31.11 1,3,16,17,
31,49,50

Change target board to the Renesas Starter Kit +(product
number: R0K5562N0C000BE).

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2011 Renesas Electronics Corporation. All rights reserved.

Colophon 1.1

	1. Introduction
	1.1 Specifications
	1.2 Functions Used
	1.3 Applicable Conditions

	2. Description of Initial Settings
	2.1 Description of Initial Settings Program
	2.2 Details of Initial Settings
	2.3 Notes on Initial Settings

	3. Description of Physical Layer Transceiver (PHY) Auto-Negotiation Settings
	3.1 Operation of Functions Used
	3.2 Procedure for Accessing MII/RMII Registers
	3.3 Description of Physical Layer Transceiver (PHY) Auto-Negotiation Settings
	3.4 Details of Physical Layer Transceiver (PHY) Auto-Negotiation Settings
	3.5 Notes on Physical Layer Transceiver (PHY) Auto-Negotiation Settings

	4. Description of Transmit/Receive Settings
	4.1 Operation of Functions Used
	4.1.1 Overview of ETHERC
	4.1.2 Overview of ETHERC Transmitter
	4.1.3 Overview of ETHERC Receiver
	4.1.4 Overview of EDMAC
	4.1.5 Overview of Descriptors
	4.1.6 Overview of Transmit Descriptor
	4.1.7 Overview of Receive Descriptor
	4.1.8 Transmit Descriptor Setting Example
	4.1.9 Receive Descriptor Setting Example
	4.1.10 Function Operating Procedure (Transmission)
	4.1.11 Function Operating Procedure (Reception)
	4.1.12 Function Operating Procedure (Transmission/Reception)

	4.2 Operation of Sample Program
	4.2.1 Operation of Sample Program (Transmission)
	4.2.2 Operation of Sample Program (Reception)
	4.2.3 Operating Environment of Sample Program
	4.2.4 Ethernet Frame Format

	4.3 Descriptor Definition in Sample Program
	4.4 Ethernet Driver API
	4.4.1 R_Ether_Open
	4.4.2 R_Ether_Close
	4.4.3 R_Ether_Read
	4.4.4 R_Ether_Write
	4.4.5 R_Ether_Write_Sync

	4.5 Processing Procedure of Sample Program
	4.6 Notes on Transmit/Receive Settings
	4.6.1 Note on Operating Environment
	4.6.2 Note on Interrupt Handling
	4.6.3 Note on Error Handling
	4.6.4 Note on Transmit/Receive Buffer Size
	4.6.5 Note on Reception Mode

	5. Endian Mode Selection in Sample Program
	5.1 Big Endian Mode
	5.2 Little Endian Mode

	6. Interface (MII/RMII) Selection in Sample Program
	6.1 MII
	6.2 RMII

	7. Allocation of Sections in Sample Program
	7.1 Notes on Allocation of Sections

	8. Note on Use of Renesas Starter Kit +
	9. Reference Documents

