

RX610 Group

On-chip Flash Memory Reprogramming in the User Boot Mode (Master)

R01AN0210EJ0100 Rev.1.00 Feb 14, 2011

Introduction

This application note describes transmitting of the target erasure block number, write data size, and write data by clock synchronous serial communication to another RX610 Group MCU to enable the processing covered in "On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)" (R01AN0223EJ).

See the RX610 Group On-Chip Flash Memory Reprogramming in the User Boot Mode (Slave) application note for details on programming/erasing the internal flash memory (user MAT) using user boot mode.

Target Device

RX610 Group

This program can be used with other RX Family MCUs that have the same I/O registers (peripheral device control registers) as the RX610 Group. Check the latest version of the manual for any additions and modifications to functions. Careful evaluation is recommended before using this application note.

Contents

1.	Specifications	2
2.	Operation Confirmation Environment	3
3.	Functions Used	4
4.	Operation	4
5.	Software Description	. 14
6.	Usage Notes	. 29
7.	Reference Documents	. 30

1. Specifications

- The master sends the erase block number, the write data size, and the write data to the slave using clock synchronous serial communication and the slave programs its own user MAT.
- The SCI channel 0 (SCI0) module is used for clock synchronous serial communication between the master and the slave.
- The clock synchronous serial communication specifications used are a bit rate of 2.5 Mbps, 8 data bits, LSB-first, and transfer clock output by master.
- When the switch connected to the master's external interrupt pin (IRQ8-A) is pressed, the master starts serial communications and controls programming of the slave's user MAT.
- Using communication commands, the master tells the slave which one of its user MAT erase blocks (EB00 to EB27) to erase. In this application note, the slave is told to erase the EB26 erase block.
- After the slave completes erasing EB26, the master transmits the write data size (4 bytes) and the write data (8 KB) to the slave.
- The master and slave perform handshaking for communication control. The slave asserts a busy state (low-level) using an I/O port, and a negate signal (high-level) is output when the busy state is canceled. The master receives output from the slave on an external interrupt pin (IRQ9-A) and starts the next transmission when a rising edge is input.
- When the slave has successfully reprogrammed the user MAT, the master reports the successful completion in the four LEDs connected to its I/O ports.

Figure 1 shows the specifications of the system used in this application note.

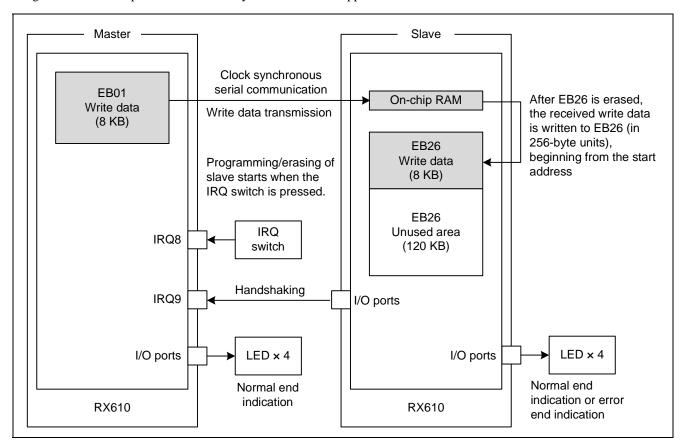


Figure 1 Specifications

Figure 2 shows a hardware configuration diagram of the master device as used in this application note.

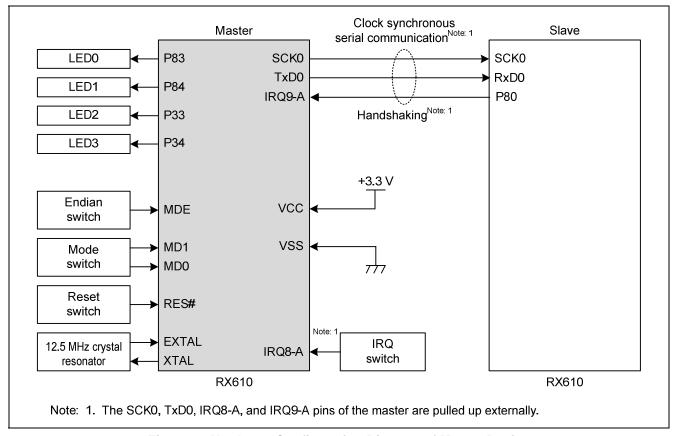


Figure 2 Hardware Configuration Diagram of Master Device

2. Operation Confirmation Environment

Table 1 lists the environment required for confirming master operation.

Table 1 Master Operation Confirmation Environment

Item	Description
Device	RX610 Group: R5F56108VNFP
	(ROM: 2 MB, RAM: 128 KB)
Board	Evaluation board
Power supply voltage	5.0 V (CPU operating voltage: 3.3 V)
Input clock	12.5 MHz (ICLK = 100 MHz, PCLK = 50 MHz, BCLK = 25 MHz)
Operating temperature	Room temperature
HEW	Version 4.07.00.007
Toolchain	RX Standard Toolchain (V.1.0.0.0)
Debugger/Emulator	E20 emulator
Debugger component	RX E1/E20 SYSTEM V.1.00.00.000

3. Functions Used

- Clock generation circuit
- Low Power Consumption
- Interrupt control unit
- I/O ports
- Serial Communications Interface (SCI)
 For details, see the Hardware Manual listed in 7, Reference Documents.

4. Operation

4.1 Operation Mode Settings

In the sample program, the master's mode pins are set to MD1 = 1, MD0 = 1 to select single-chip mode as the operating mode, the ROME bit in system control register 0 (SYSCR0) is set to 1 to enable the on-chip ROM, and the EXBE bit in the SYSCR0 register is cleared to 0 to disable the external bus.

The master is activated from the user MAT in single-chip mode.

Table 2 lists the master operating mode settings used in the sample program.

Table 2 Operating Mode Settings of Master Device

Mode F	Pin	SYSCR0	Register				
MD1	MD0	ROME	EXBE	Operating Mode	On-Chip ROM	External Bus	
1	1	1	0	Single-chip mode	Enabled	Disabled	

Note: The initial settings of the ROME and EXBE bits in the SYSCR0 register are SYSCR0.ROME = 1 and SYSCR0.EXBE = 0, so it is not necessary for the sample program to make settings to the SYSCR0 register.

4.2 Clock Settings

The evaluation board used for this application note includes a 12.5 MHz crystal oscillator.

Therefore this application note uses the following settings for the system clock (ICLK), the peripheral module clock (PCLK), and the external bus clock (BCLK): $8 \times (100 \text{ MHz})$, $4 \times (50 \text{ MHz})$, and $2 \times (25 \text{ MHz})$.

4.3 Endian Mode Setting

The sample program presented in this application note supports both big- and little-endian mode. Table 3 lists the hardware (MDE pin) endian mode settings of the master device. Note that the master and slave must be set to the same endian mode.

Table 3 Endian Mode Settings of Master Device (Hardware)

MDE pin	Endian	
0	Little endian	
1	Big endian	

Table 4 lists the endian settings used in the compiler options.

Table 4 Endian Mode Settings of Master Device (Compiler Options)

MCU Option	Endian	
endian = little	Little endian	
endian = big	Big endian	

Note: Set the MDE bit to match the endian mode selected as a compiler option.

4.4 Clock Synchronous Serial Communication Specifications

The sample program uses clock synchronous serial communication for transmission of communication commands, erasure block number, write data size, and write data between the master and slave. The transfer clock output by master. The pins used, SCK0 and TxD0 in SCI0, are each pulled up externally.

Table 5 lists the clock synchronous serial communication specifications.

Table 5 Clock Synchronous Serial Communication Specifications

Item	Description
Channel	SCI channel 0 (SCI0)
Communication mode	Clock synchronous mode
Bit rate	2.5 Mbps (PCLK = 50 MHz)
Data transfer direction	LSB-first

4.4.1 Communication Command Specifications

Table 6 lists the specifications of the communication commands sent between the master and slave.

Table 6 Communication Command Specifications

Command	Value	Description	Communication Direction
FSTART	10h	Command to start programming/erasing of the user MAT of the slave	Master → slave
ERASE	11h	Command to start erasing of the user MAT of the slave	Master → slave
WRITE	12h	Command to start programming of the user MAT of the slave	Master → slave

4.4.2 Communication Sequence

Figures 3 to 6 show the communication sequence between master and slave.

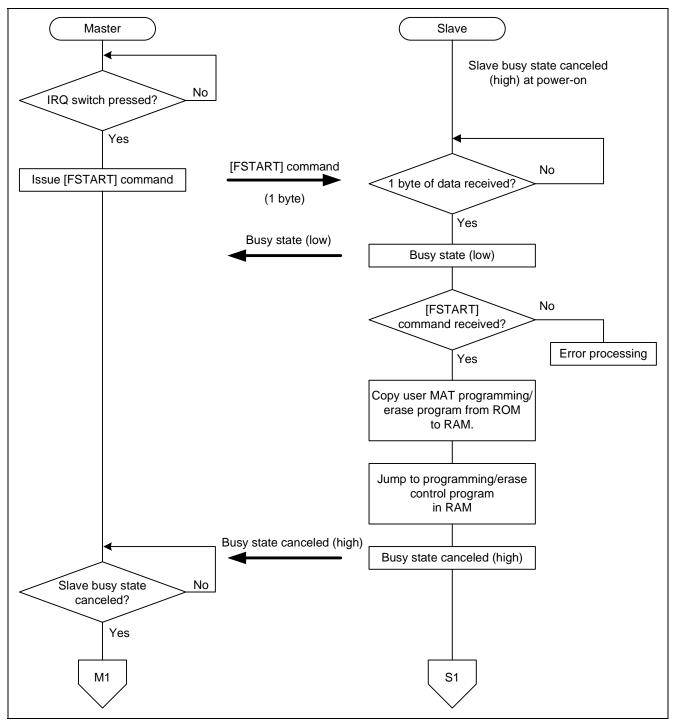


Figure 3 Communication Sequence (1)

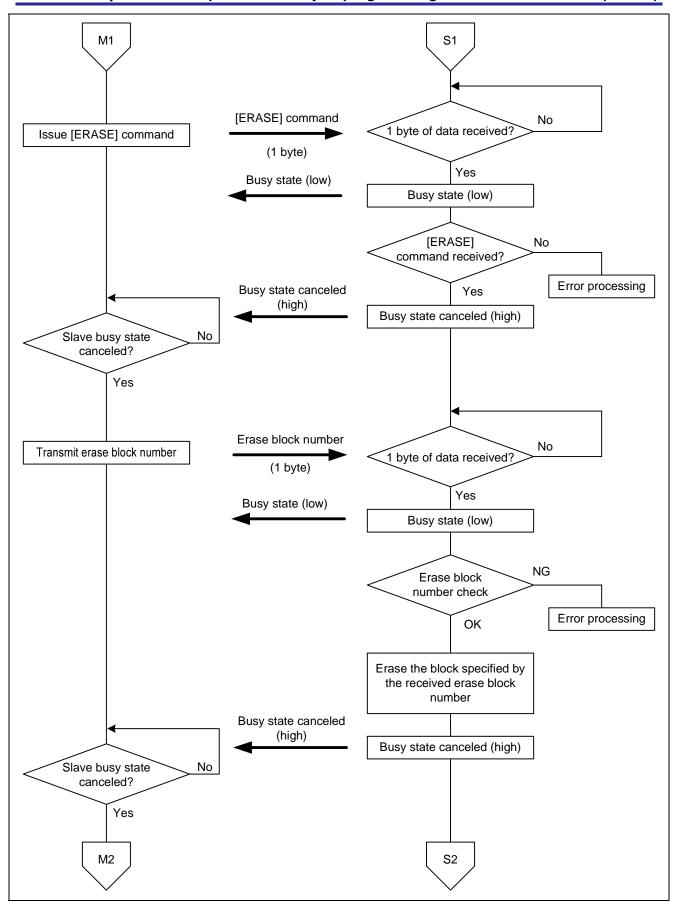


Figure 4 Communication Sequence (2)

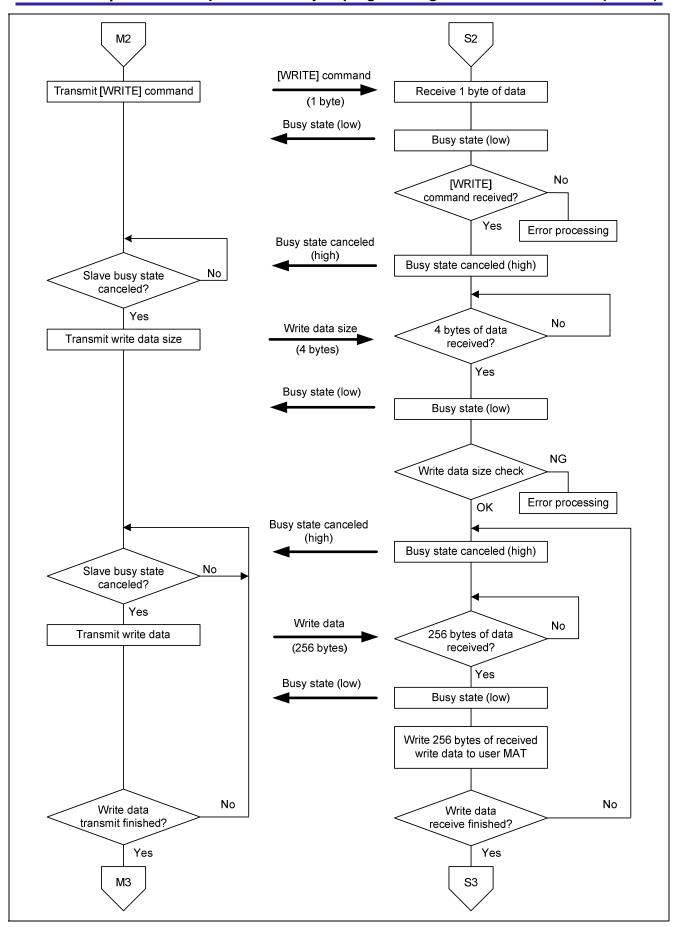


Figure 5 Communication Sequence (3)

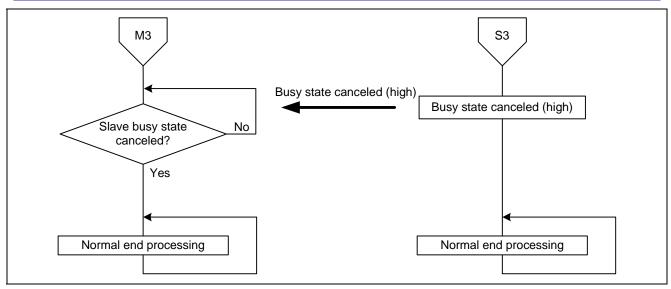


Figure 6 Communication Sequence (4)

4.4.3 Erasure Block Number

After transmitting an [ERASE] command, the master transmits 1 byte of erasure block number (1 byte of data defined by a symbolic constant). Table 7 lists the erasure block number values. Figure 7 shows the specifications of the erasure block number.

Table 7 Erasure Block Number Values

Erasure Block Number

0	17-1	- Paradattan
Symbolic Constant	Value	Description
EB27_INDEX	00h	Specifies erasure block EB27 (size: 128 KB)
EB26_INDEX	01h	Specifies erasure block EB26 (size: 128 KB)
EB25_INDEX	02h	Specifies erasure block EB25 (size: 128 KB)
EB24_INDEX	03h	Specifies erasure block EB24 (size: 128 KB)
EB23_INDEX	04h	Specifies erasure block EB23 (size: 128 KB)
EB22_INDEX	05h	Specifies erasure block EB22 (size: 128 KB)
EB21_INDEX	06h	Specifies erasure block EB21 (size: 128 KB)
EB20_INDEX	07h	Specifies erasure block EB20 (size: 128 KB)
EB19_INDEX	08h	Specifies erasure block EB19 (size: 128 KB)
EB18_INDEX	09h	Specifies erasure block EB18 (size: 128 KB)
EB17_INDEX	0Ah	Specifies erasure block EB17 (size: 128 KB)
EB16_INDEX	0Bh	Specifies erasure block EB16 (size: 64 KB)
EB15_INDEX	0Ch	Specifies erasure block EB15 (size: 64 KB)
EB14_INDEX	0Dh	Specifies erasure block EB14 (size: 64 KB)
EB13_INDEX	0Eh	Specifies erasure block EB13 (size: 64 KB)
EB12_INDEX	0Fh	Specifies erasure block EB12 (size: 64 KB)
EB11_INDEX	10h	Specifies erasure block EB11 (size: 64 KB)
EB10_INDEX	11h	Specifies erasure block EB10 (size: 64 KB)
EB09_INDEX	12h	Specifies erasure block EB09 (size: 64 KB)
EB08_INDEX	13h	Specifies erasure block EB08 (size: 64 KB)
EB07_INDEX	14h	Specifies erasure block EB07 (size: 8 KB)
EB06_INDEX	15h	Specifies erasure block EB06 (size: 8 KB)
EB05_INDEX	16h	Specifies erasure block EB05 (size: 8 KB)
EB04_INDEX	17h	Specifies erasure block EB04 (size: 8 KB)
EB03_INDEX	18h	Specifies erasure block EB03 (size: 8 KB)
EB02_INDEX	19h	Specifies erasure block EB02 (size: 8 KB)
EB01_INDEX	1Ah	Specifies erasure block EB01 (size: 8 KB)
EB00_INDEX	1Bh	Specifies erasure block EB00 (size: 8 KB)

Erasure block number (unsigned char type)

b7	b6	b5	b4	b3	b2	b1	b0	
BD7	BD6	BD5	BD4	BD3	BD2	BD1	BD0	

The sample program presented in this application note programs and erases erasure block EB26 of the slave, so the erasure block number value is [EB26 INDEX(01h)].

Note: A value shown in table 7, [EB27_INDEX(00h)] to [EB00_INDEX(1Bh)], should be specified as the erasure block number. If a value of [1Ch] to [FFh] is specified as the erasure block number, the slave determines an error to have occurred and error handling takes place.

Figure 7 Erasure Block Number Specifications

4.4.4 Write Data Size

After transmitting a [WRITE] command, the master transmits 4 bytes of write data size. Figure 8 shows the specifications of the write data size.

W	Nrite data size (unsigned long type)							
	b31	b30	b29	b28	b27	b26	b25	b24
	SZ31	SZ30	SZ29	SZ28	SZ27	SZ26	SZ25	SZ24
	b23	b22	b21	b20	b19	b18	b17	b16
	SZ23	SZ22	SZ21	SZ20	SZ19	SZ18	SZ17	SZ16
	b15	b14	b13	b12	b11	b10	b9	b8
	SZ15	SZ14	SZ13	SZ12	SZ11	SZ10	SZ09	SZ08
	b7	b6	b5	b4	b3	b2	b1	b0
	SZ07	SZ06	SZ05	SZ04	SZ03	SZ02	SZ01	SZ00

The sample program uses a write size of 8 KB, so the write data size value is [0000 2000h].

- Notes: 1. The write data size must be greater than zero and less than or equal to the erase block size for the specified erase block. If 0 or a value greater than the erase block size is specified, the slave will recognize an error and perform error handling.
 - 2. The size of write data transmissions is fixed at 256 bytes. Consequently, if the write data size specifies a value that is not a multiple of 256 bytes, the master transmits write data in units of 256 bytes and then fills in the final unit of write data, which is less than 256 bytes, with bytes of value FFh as padding to reach a total of 256 bytes, which it transmits to the slave.

Figure 8 Write Data Size Specifications

4.5 Normal End Processing

When programing/erasing of the slave's user MAT completes successfully, the master makes a normal end indication by means of four LEDs connected to the I/O ports. The normal end indication consists of LED0 to LED3 illuminating one after another in a sequence that is repeated multiple times.

4.6 LED Connections

Figure 9 shows the connections of the master I/O ports and LED0 to LED3.

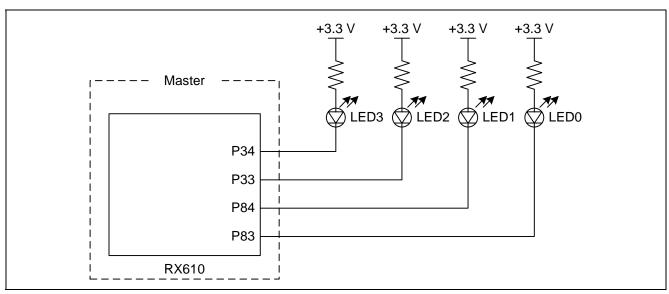


Figure 9 Master Device LED Connection Diagram

As shown in figure 9, high-level output from an I/O port (P83, P84, P33, or P34) causes the corresponding LED among LED0 to LED3 to turn off, and low-level output causes the corresponding LED to illuminate. Table 8 shows the correspondence between I/O port output and LED states.

Table 8 Master I/O Port Output and LED States

I/O Port	Register Setting	I/O Port State	LED Star	te
P83	PORT8.DR.B3 = 1, PORT8.DDR.B3 = 1	High-level output	LED0	Off
	PORT8.DR.B3 = 0, PORT8.DDR.B3 = 1	Low-level output		On
P84	PORT8.DR.B4 = 1, PORT8.DDR.B4 = 1	High-level output	LED1	Off
	PORT8.DR.B4 = 0, PORT8.DDR.B4 = 1	Low-level output		On
P33	PORT3.DR.B3 = 1, PORT3.DDR.B3 = 1	High-level output	LED2	Off
	PORT3.DR.B3 = 0, PORT3.DDR.B3 = 1	Low-level output		On
P34	PORT3.DR.B4 = 1, PORT3.DDR.B4 = 1	High-level output	LED3	Off
	PORT3.DR.B4 = 0, PORT3.DDR.B4 = 1	Low-level output		On

4.7 IRQ Switch

Figure 10 shows a diagram of the connection between the external interrupt pin (IRQ8-A) of the master and the IRQ switch. Programming/erasing of the user MAT of the slave starts when the IRQ switch connected to the master is pressed.

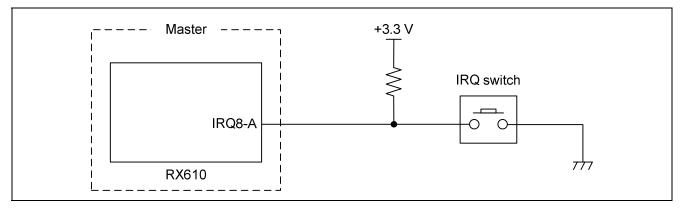


Figure 10 Master IRQ Switch Connection Diagram

The master determines that the IRQ switch is in the depressed state by detecting the falling edge of the IRQ8-A pin. No interrupt handling is performed, and the determination of the IRQ switch state is made by detecting that the IRQ8 interrupt status flag (bit IR in IR072) has been set to 1.

4.8 Handshaking Control

The master performs handshaking with the slave for communication control. The output signal from the Busy port of the slave is input to the external interrupt pin (IRQ9-A) of the master.

For handshaking control, the master waits after serial transmission for a negate (high-level) signal output from the Busy port of the slave. When the slave outputs a negate (high-level) signal on the Busy port, the master detects the rising edge and starts the next serial transmission.

4.9 Section Settings

Table 9 shows the section settings for the master device.

Table 9 Section Settings of Master Device

Section	Start Address	Description
В	000 1000h	Uninitialized data area (ALIGN = 4)
R	_	Area in RAM to which [D] section is mapped by ROM option
SU	_	User stack area
SI	_	Interrupt stack area
CP_DATA_1	FFFF C000h	Constant area (ALIGN = 1) (write data (8 bytes))
PResetPRG	FFFF E000h	Program area (PowerON_Reset_PC program)
С	FFFF E100h	Constant area (ALIGN = 4)
C\$DSEC	_	Section initialization table of initialized data area
C\$BSEC		Section initialization table of uninitialized data area
C\$VECT	_	Relocatable vector area
D	_	Initialized data area (ALIGN = 4)
Р		Program area
PIntPRG	_	Program area (interrupt program)
FIXEDVECT	FFFF FFD0h	Fixed vector area

5. Software Description

5.1 File Structure

Table 10 shows the file structure of the master device. In addition to the files listed in table 10, some files generated automatically by HEW are used as well.

Table 10 File Structure of Master Device

File Name	Description
resetprg.c ^{Note: 1}	Initial settings
main.c	In addition to main processing, this program handles send control for communication commands transmitted to the slave via clock synchronous serial communication, transmission control for sending the erase block number, write data size, and write data, and LED display control for normal completion.

Note: 1. This file is generated automatically by HEW. In the sample program it has been edited to restore a line in the PowerON_Reset_PC function calling the HardwareSetup function, which was originally commented out. In the edited version the HardwareSetup function in the main.c file is called from the PowerON_Reset_PC function.

5.2 Function Structure

Table 11 lists the functions for the master device and figure 11 shows the hierarchy of these functions.

Table 11 Master Device Functions

Function	File Name	Description
PowerON_Reset_PC	resetprg.c	Initial settings function
HardwareSetup	main.c	MCU initial settings function
main	main.c	Main function
Indicate_Ending_LED	main.c	Normal end processing function
SCI_Trs1byte	main.c	1 byte data transmission function
SCI_Trsnbyte	main.c	n byte data transmission function

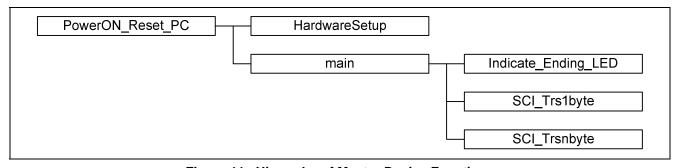


Figure 11 Hierarchy of Master Device Functions

5.3 Symbolic Constants

Table 12 lists the symbolic constants used by the master device.

Table 12 Symbolic Constants of Master Device

Symbolic Constant	Setting Value	Description	Functions Used By
FSTART	0x10	Programming/erase start command	main
ERASE	0x11	Erase start command	main
WRITE	0x12	Programming start command	main
LED_ON	0	Set value used when the LED is on	Indicate_Ending_LED
LED_OFF	1	Set value used when the LED is off	HardwareSetup Indicate_Ending_LED
RSK_LED0	PORT8.DR.BIT.B3	On/off control of LED 0 on the evaluation board	HardwareSetup Indicate_Ending_LED
RSK_LED1	PORT8.DR.BIT.B4	On/off control of LED 1 on the evaluation board	HardwareSetup Indicate_Ending_LED
RSK_LED2	PORT3.DR.BIT.B3	On/off control of LED 2 on the evaluation board	HardwareSetup Indicate_Ending_LED
RSK_LED3	PORT3.DR.BIT.B4	On/off control of LED 3 on the evaluation board	HardwareSetup Indicate_Ending_LED
RSK_LED0_DDR	PORT8.DDR.BIT.B3	I/O control for LED 0 on the evaluation board	HardwareSetup
RSK_LED1_DDR	PORT8.DDR.BIT.B4	I/O control for LED 1 on the evaluation board	HardwareSetup
RSK_LED2_DDR	PORT3.DDR.BIT.B3	I/O control for LED 2 on the evaluation board	HardwareSetup
RSK_LED3_DDR	PORT3.DDR.BIT.B4	I/O control for LED 3 on the evaluation board	HardwareSetup
FALL_EDGE	1	Falling edge setting	HardwareSetup
RISE_EDGE	2	Rising edge setting	HardwareSetup
SW_ON	1	START_SW_IR value when the IRQ switch is on	_
SW_OFF	0	START_SW_IR value when the IRQ switch is off	HardwareSetup
START_SW_IR	ICU.IR[IR_ICU_IRQ8]. BIT.IR	IRQ switch state	main
START_SW_PFC	IOPORT.PFCR8.BIT. ITS8	IRQ switch pin selection	HardwareSetup
START_SW_ICR	PORT0.ICR.BIT.B0	IRQ switch input buffer setting	HardwareSetup
START_SW_IRQMD	ICU.IRQCR[8].BIT. IRQMD	IRQ switch detection setting	HardwareSetup
START_SW_IRQEN	ICU.IRQER[8].BIT. IRQEN	IRQ switch detection enable setting	HardwareSetup
ASSERT	0	Setting value at Busy port assert	main
NEGATE	1	Setting value at Busy port negate	main
SLAVE_BUSY_IR	ICU.IR[IR_ICU_IRQ9]. BIT.IR	Busy port signal state	HardwareSetup main
SLAVE_BUSY_PFC	IOPORT.PFCR8.BIT. ITS9	Busy port signal pin select	HardwareSetup

RX610 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Master)

Symbolic Constant	Setting Value	Description	Functions Used By
SLAVE_BUSY_ICR	PORT0.ICR.BIT.B1	Busy port signal input buffer setting	HardwareSetup
SLAVE_BUSY_IRQMD	ICU.IRQCR[9].BIT. IRQMD	Busy port signal detection setting	HardwareSetup
SLAVE_BUSY_IRQEN	ICU.IRQER[9].BIT. IRQEN	Busy port signal detect enable setting	HardwareSetup
EB27_INDEX	0x00	Erasure block data transmitted	main
EB26_INDEX	0x01	to specify the erasure block of	
EB25_INDEX	0x02	the slave to be programmed/	
EB24_INDEX	0x03	erased	
EB23_INDEX	0x04		
EB22_INDEX	0x05		
EB21_INDEX	0x06	_	
EB20_INDEX	0x07	_	
EB19_INDEX	0x08	_	
EB18 INDEX	0x09	_	
EB17_INDEX	0x0A	_	
EB16_INDEX	0x0B	_	
 EB15_INDEX	0x0C	_	
EB14_INDEX	0x0D	_	
EB13_INDEX	0x0E	_	
EB12_INDEX	0x0F	_	
 EB11_INDEX	0x10	_	
EB10_INDEX	0x11	_	
EB09_INDEX	0x12	_	
EB08_INDEX	0x13		
EB07_INDEX	0x14	_	
EB06_INDEX	0x15		
EB05_INDEX	0x16		
EB04_INDEX	0x17	_	
EB03_INDEX	0x18	_	
EB02 INDEX	0x19	_	
EB01_INDEX	0x1A	_	
EB00_INDEX	0x1B	_	
WAIT_SCI1BIT	23	Standby time data used after setting the SCI0 BRR register	HardwareSetup
WAIT_LED	2000000	LED illumination interval data for indication of successful completion of programming/ erasing of slave user MAT	Indicate_Ending_LED
TRS_SIZE	256	Write data transmit size	main
BUF_SIZE	8192	Write buffer size	main
WRITE_SIZE	BUF_SIZE	Write data storage area size	main
		 	

5.4 Constant Variables

Table 13 lists the constant variables used by the master device.

Table 13 Constant Variables of Master Device

Constant	Туре	Description
SAMPLE_DATA	const unsigned char	Write data (8,192) to be sent to the slave for programming
[BUF_SIZE]		the user MAT

5.5 RAM Variables

The master program portion of the sample program does not use RAM variables.

5.6 I/O Registers

The I/O registers of the master device used by the sample program are listed below. Note that the setting values shown are those used in the sample program and differ from the initial setting values.

(1) Clock Generation Circuit

System Clock Control Register (SCKCR) Number of Bits: 32 Address: 0008 0020h

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b11 to b8	PCK[3:0]	0001	Peripheral module clock (PCLK) select bits	0001: × 4 PCLK = 50 MHz	R/W
			,	(when EXTAL clock = 12.5 MHz)	
b19 to b16	BCK[3:0]	0010	External bus clock (BCLK)	0010: × 2	R/W
			select bits	BCLK = 25 MHz	
				(when EXTAL clock = 12.5 MHz)	
b23	PSTOP1	0	BCLK output stop bit	0: BCLK output	R/W
b27 to b24	ICK[3:0]	0000	System clock (ICLK) select	0000: × 8	R/W
			bits	ICLK = 100 MHz	
				(when EXTAL clock = 12.5 MHz)	

(2) I/O Ports

Port 8 Data Register (P8.DR) Number of Bits: 8 Address: 0008 C028h

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b3	B3	0	P83 output data storage bit	0: Output data = 0	R/W
		1	_	1: Output data = 1	
b4	B4	0	P84 output data storage bit	0: Output data = 0	R/W
		1	_	1: Output data = 1	

Port 3 Data Register (P3.DR) Number of Bits: 8 Address: 0008 C023h

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b3	B3	0	P33 output data storage bit	0: Output data = 0	R/W
		1	_	1: Output data = 1	
b4	B4	0	P34 output data storage bit	0: Output data = 0	R/W
		1	_	1: Output data = 1	

RX610 Group	On-chip Flash Memory	y Reprogramming in the Use	er Boot Mode (Master)
		, ,, , , , , , , , , , , , , , , , , , ,	

Port 8 Data Direction Register (P8.DDR)			P8.DDR)	Number of Bits: 8	Address: 0008 C008h
		Setting			
Bit	Symbol	Value	Bit Name	Function	R/W
b3	B3	1	P83 I/O select bit	1: Output port	R/W
b4	B4	1	P84 I/O select bit	1: Output port	R/W

Port 3 Data Direction Register (P3.DDR) Number of Bits: 8 Address: 0008 C003h

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b3	В3	1	P33 I/O select bit	1: Output port	R/W
b4	B4	1	P34 I/O select bit	1: Output port	R/W

Port Function Register 8 (PFCR8) Number of Bits: 8 Address: 0008 C108h

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b0	ITS8	0	IRQ8 pin select bit	0: P00 set as IRQ8-A input pin	R/W
b1	ITS9	0	IRQ9 pin select bit	0: P01 set as IRQ9-A input pin	R/W

Port 0 Input Buffer Control Register (P0.ICR) Number of Bits: 8 Address: 0008 C060h

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b0	B0	1	P00 input buffer control bit	1: P00 input buffer enabled	R/W
b1	B1	1	P01 input buffer control bit	1: P01 input buffer enabled	R/W

(3) Low Power Consumption

Module Stop Control Register B (MSTPCRB)

Number of Bits: 32 Address: 0008 0014h

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b31	MSTPB31	0	Serial communication interface 0 module stop setting bit	SCI0 module stop state canceled	R/W

(4) Serial Communications Interface 0 (SCI0)

SCI0 Serial Control Register (SCI0.SCR) Number of Bits: 8 Address: 0008 8242h (Serial communication interface mode (SMIF bit in SCI0.SCMR = 0))

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b1, b0	CKE[1:0]	00	Clock enable bits	(Clock synchronous mode) 00: Internal clock SCK0 functions as clock input pin.	R/W Note: 1
b2	TEIE	0	Transmit end interrupt enable bit	0: TEI0 interrupt request disabled	R/W
b5	TE	1	_ Transmit enable bit	Serial transmission disabled Serial transmission enabled	R/W Note: 2
b7	TIE	0 1	_ Transmit interrupt enable bit	O: TXI0 interrupt request disabled TXI0 interrupt request enabled	R/W

Notes: 1. Writing to these bits is possible only when the TE and RE bits are both cleared to 0.

2. A value of 1 may be written to either these bits only when the TE and RE bits are both cleared to 0. Also, 0 may be written to both the TE and RE bits after one of them has been set to 1.

SCI0 Serial Mode Register (SCI0.SMR) Number of Bits: 8 Address: 0008 8240h (Serial communication interface mode (SMIF bit in SCI0.SCMR = 0))

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b1, b0	CKS[1:0]	00	Clock select bit	00: PCLK clock (n = 0) ^{Note: 1}	R/W Note: 2
b7	CM	0	Communication mode bit	1: Clock synchronous mode	R/W Note: 2

Notes: 1. For information on *n* setting values, see the Hardware Manual listed in 7, Reference Documents.

2. Writing to these bits is possible only when the TE and RE bits in SCI0.SCR are both cleared to 0 (serial transmission and serial reception both disabled).

SCI0 Smart Card Mode Register (SCI0.SCMR) Number of Bits: 8 Address: 0008 8246h

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b0	SMIF	0	Smart card interface mode select bit	Serial communication interface mode	R/W Note: 1
b3	SDIR	0	Bit order selection bit	0: LSB-first transmission/reception	R/W Note: 1

Note: 1. Writing to this bit is possible only when the TE and RE bits in SCI0.SCR are both cleared to 0 (serial transmission and serial reception both disabled).

SCI0 Bit Rate Register (SCI0.BRR)^{Note: 1} Number of Bits: 8 Address: 0008 8241h

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b7 to b0	_	00000100	_	04h: Bit rate = 2.5 Mbps (When PCLK is 50 MHz)	R/W Note: 2

Notes: 1. For information on *BRR* setting values, see the Hardware Manual listed in 7, Reference Documents.

2. While this register can be read at any time, it can only be written when both the SCI0.SCR.TE bit and the SCI0.SCR.RE bits are 0 (serial transmission disabled and serial reception disabled).

SCI0 Serial Status Register (SCI0.SSR)

Number of Bits: 8

Address: 0008 8244h

Number of Bits: 8 Address: 0008 7380h

(Serial communication interface mode (SMIF bit in SCI0.SCMR = 0))

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b2	TEND	—	Transmit end flag	Character transmission in progress	R
				1: Character transmission finished	

SCI0 Tran	nsmit Data R	egister (S	CI0.TDR)	Number of Bits: 8	Address: 0008 8243h
Bit	Symbol	Setting Value	Bit Name	Function	R/W
b7 to b0	_	Note: 1	_	Stores transmit data	a. R/W

Note: 1. The transmitted data is stored in this field.

(5) Interrupt Control Unit (ICU)

IRQ Control Register 8 (IRQCR8)

Interrupt Priority Register 80 (IPR80)

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b2 to b0	IPR[2:0]	000	SCI0 Interrupt priority	000: Level 0 (interrupt disabled)	R/W

IRQ Detection Select Register 8 (IRQER8)			Number of Bits: 8	Address: 000	8 C308h	
		Setting				
Bit	Symbol	Value	Bit Name	Function		R/W
b0	IRQEN	1	IRQ8 detection select	1: External interrupt detection by using the IRO8 pin enabled		R/W

Bit Symbol Value Bit Name Function b0 IRQEN 1 IRQ9 detection select 1: External interrupt detection by		
h0 IDOEN 1 IDOO detection colors 1: External interrupt detection by	R/W	
b0 IRQEN 1 IRQ9 detection select 1: External interrupt detection by bits using the IRQ9 pin enabled	R/W	

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b3, b2	IRQMD[1:0]	01	IRQ8 detection setting bits	01: Falling edge	R/W
1000	4mal Bassistan 0	(100000)		James Lange (D'4a - O	A I I

Number of Bits: 8

IRQ Control Register 9 (IRQCR9)			r	Number of Bits: 8	Address: 0008 C329n
Bit	Symbol	Setting Value	Bit Name	Function	R/W
b3, b2	IRQMD[1:0]	10	IRQ9 detection setting bits	10: Rising edge	R/W

Address: 0008 C328h

RX610 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Master)

Interrupt Request Enable Register 1B (IER1B)				Number of Bits: 8	Address: 00	08 721Bh
Bit	Symbol	Setting Value	Bit Name	Function		R/W
b0	IEN0	0	TXI0 Interrupt enable	0: TXI0 interrupt dis	sabled	R/W

Interrupt Request Register 072 (IR072) Number of Bits: 8 Address: 0008 7048h

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b0	IR	0	IRQ8 Interrupt status flag	0: No IRQ8 interrupt request 1: IRQ8 interrupt request	R/(W) Note: 1

Note: 1. Only 0 may be written to this bit to clear the flag. Writing 1 is prohibited.

Interrupt Request Register 073 (IR073) Number of Bits: 8 Address: 0008 7049h

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b0	IR	0	IRQ9 Interrupt status	0: No IRQ9 interrupt request	R/(W)
			flag	1: IRQ9 interrupt request	Note: 1

Note: 1. Only 0 may be written to this bit to clear the flag. Writing 1 is prohibited.

Interrupt Request Register 216 (IR216)

Bit	Symbol	Setting Value	Bit Name	Function	R/W
b0	IR	0	TXI0 Interrupt status flag	0: No TXI0 interrupt request 1: TXI0 interrupt request	R/(W) Note: 1

Number of Bits: 8

Note: 1. Only 0 may be written to this bit to clear the flag. Writing 1 is prohibited.

Address: 0008 70D8h

5.7 Function Specifications

The specifications of the master device functions are as follows.

(1) PowerON_Reset_PC Function

(a) Functional overview

The PowerON_Reset_PC function initializes the stack pointer (a #pragma entry declaration causes the compiler automatically to generate ISP/USP initialization code at the start of the PowerON_Reset_PC function), sets INTB (set_intb function: embedded function), initializes FPSW (set_fpsw function: embedded function), initializes the RAM area section (_INITSCT function: standard library function), calls the HardwareSetup function, initializes PSW (set_psw function: embedded function), and sets user mode as the processor mode. Then it calls the main function.

(b) Arguments

None

(c) Return values

None

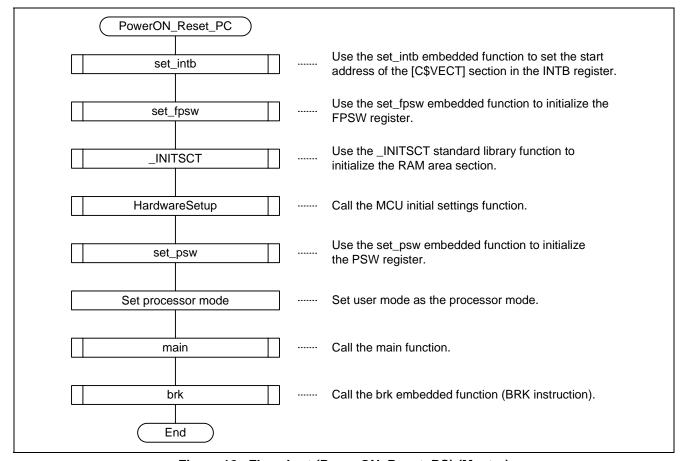


Figure 12 Flowchart (PowerON_Reset_PC) (Master)

(2) HardwareSetup Function

(a) Functional overview

The HardwareSetup function makes initial settings to the MCU. It makes initial clock settings (system clock (ICLK), peripheral module clock (PCLK), and external bus clock (BCLK)), initial output settings for the I/O ports (P83, P84, P33, and P34) connected to LED0 to LED3, the initial function settings for the I/O port (P00/IRQ8-A) connected to the switch, the initial settings for the IRQ9 pin connected to the Busy port of the slave, and initial settings to SCI0.

(b) Arguments

None

(c) Return values

None

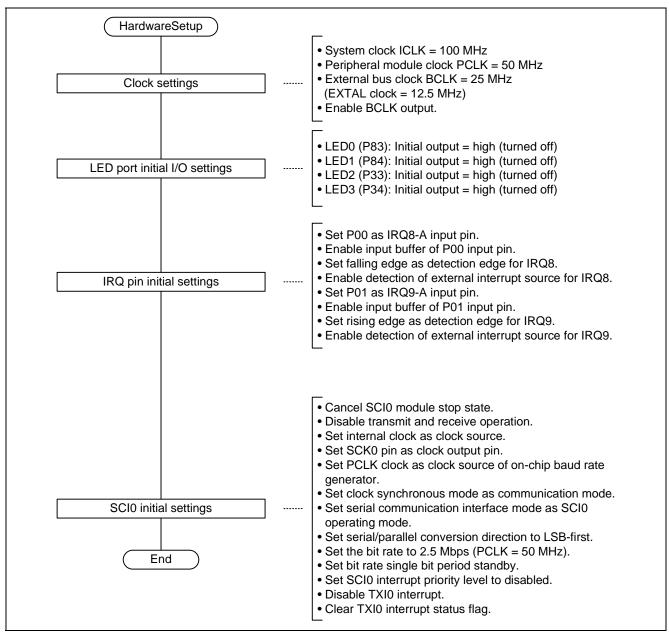


Figure 13 Flowchart (HardwareSetup) (Master)

(3) main Function

(a) Functional overview

The main function determines when the IRQ switch has been pressed, controls transmission of communication commands to the slave, controls transmission of erasure block data, controls transmission of write data size information, controls transmission of write data, controls serial communication handshaking, and calls the Indicate_Ending_LED function at normal end.

(b) Arguments

None

(c) Return values

None

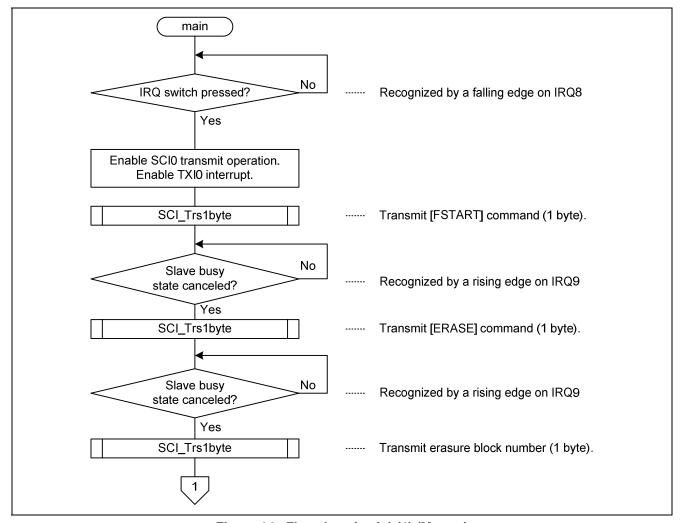


Figure 14 Flowchart (main) (1) (Master)

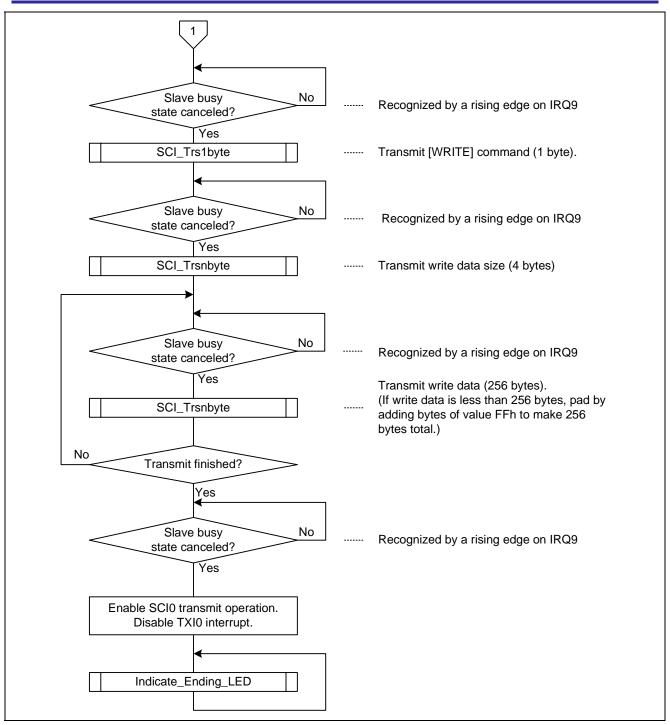


Figure 15 Flowchart (main) (2) (Master)

(4) Indicate_Ending_LED Function

(a) Functional overview

When programing/erasing of the slave's user MAT completes successfully, the Indicate_Ending_LED function indicates a normal end using LED0 to LED3. The function illuminates LED0 to LED3 one at a time in sequence.

(b) Arguments

None

(c) Return values

None

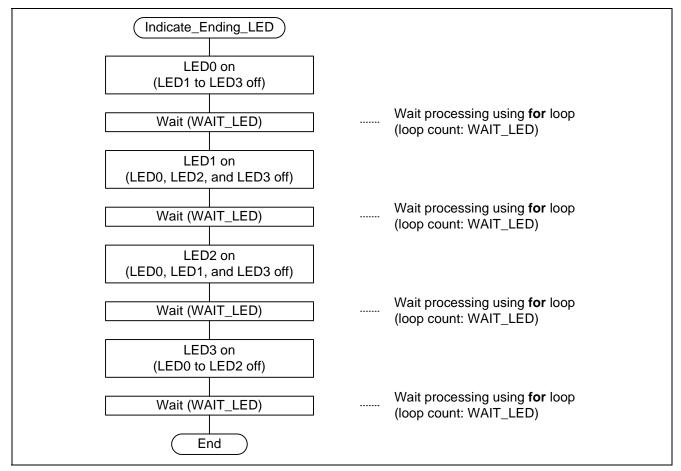


Figure 16 Flowchart (Indicate Ending LED) (Master)

(5) SCI_Trs1byte Function

(a) Functional overview

The SCI_Trs1byte function controls transmission of one byte of data using clock synchronous serial communication by SCI0.

(b) Arguments

Table 14 lists the arguments used by this function.

Table 14 Arguments of SCI_Trs1byte Function

Arguments	Туре	Description
1st argument	unsigned char	Transmit data byte count obtained using clock synchronous serial communication by SCI0

(c) Return values

None

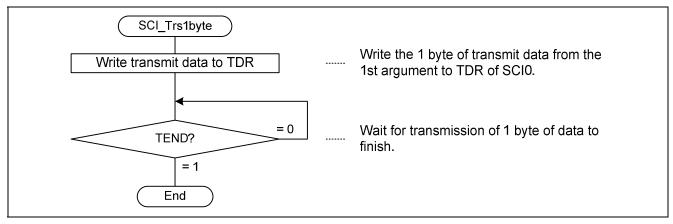


Figure 17 Flowchart (SCI_Trs1byte) (Master)

(6) SCI_Trsnbyte Function

(a) Functional overview

The SCI_Trsnbyte uses the clock synchronous serial communication function of the SCI0 to control transmission of n bytes (n is the first argument and unsigned short type).

(b) Arguments

Table 15 lists the arguments used by this function.

Table 15 Arguments of SCI_Trsnbyte Function

Arguments	Type	Description
1st argument	unsigned short	Number of bytes of data transmitted using clock synchronous serial communication function of SCI0
2nd argument	unsigned char *	Start address of storage location for transmit data

(c) Return values

None

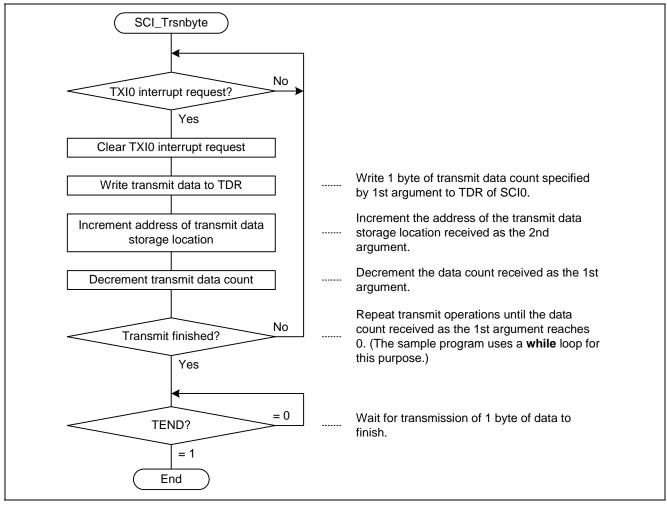


Figure 18 Flowchart (SCI_Trsnbyte) (Master)

6. Usage Notes

6.1 Notes on the wait time for a 1-bit period for the bit rate at SCI0 initialization

In this application note, the 1-bit period wait time for the bit rate after setting the bit rate register (SCI0.BRR) at SCI initialization is measured using a software timer. Since the bit rate for SCI0 clock synchronous serial communication is 2.5 Mbps, the bit period is calculated as follows.

The 1-bit period for the 2.5 Mbps bit rate is: 400 ns.

In this application note, the 1-bit period wait time for the bit rate is implemented by iterating a while loop with the loop count defined by the WAIT_SCI1BIT symbolic constant. If we take the number of cycles to execute one iteration of the while loop to be 5 cycles (which can be verified from the assembly language output by the compiler), the number of iterations can be calculated as follows.

while loop run count = wait duration / (cycle count per while loop iteration * ICLK cycle duration)

Note that the CPU's instruction processing time can differ due to pipelining, so the above-mentioned number of cycles per while loop iteration (5 cycles) is a rough estimate of the instruction processing time.

In the sample program, the wait duration is calculated as 1200 [ns] to provide a sufficient margin, as follows:

while loop run count = WAIT_SCI1BIT = 1200 [ns] / (5 * 10 [ns]) = 24 (ICLK = 100 MHz)Therefore, the symbolic constant WAIT_SCI1BIT is defined as 24.

To use this application note, users should either carefully evaluate the CPU instruction execution time or use a timer to measure this time.

7. Reference Documents

• Hardware Manual

RX610 Group Hardware Manual

(The latest version can be downloaded from the Renesas Electronics Web site.)

• Development Environment Manual

RX Family C/C++ Compiler Package User's Manual

(The latest version can be downloaded from the Renesas Electronics Web site.)

• Software Manual

RX Family User's Manual: Software

(The latest version can be downloaded from the Renesas Electronics Web site.)

• Technical Updates

(The latest information can be downloaded from the Renesas Electronics Web site.)

• Application Note

RX610 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave) (The latest information can be downloaded from the Renesas Electronics Web site.)

Website and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

Revision Record

Description	

Rev.	Date	Page	Summary
1.00	Feb.14.11	_	First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Milliboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-109, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 7F, No. 363 Fu Shing North Road Taipei, Tel: +886-2-8175-9600, Fax: +886 2-8175

Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141