
 FIT Document

R01AN1535EU0100 Rev.1.00 Page 1 of 17
March 5, 2013

RX600 Series
The Flash Loader Project - SD Card Implementation

Introduction
This application note is an extension of the default Flash Loader Project. As such, this document will only cover the
modifications that were made to the default implementation. For a thorough explanation of the Flash Loader Project the
default implementation’s application note should be reviewed.

The Flash Loader Project is a flexible bootloader framework that is meant to be customized for each user’s application.
The default implementation uses asynchronous serial for communications and stores firmware updates into an external
SPI flash. This application note will focus on an implementation where firmware updates are received from a SD card.

Target Device
The following is a list of devices that are currently supported by this API:

• RX621, RX62N Group

• RX631, RX63N Group

Related Documents
• The Flash Loader Project (R01AN0287EU0300)

• Simple Flash API for RX (R01AN0544EU0240)

Contents

1. Overview ... 2

2. Modifications Made ... 3

3. API Information .. 5

4. API Functions .. 8

5. Demo Projects ... 13

Website and Support ... 17

R01AN1535EU0100
Rev.1.00

March 5, 2013

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 2 of 17
March 5, 2013

1. Overview
The default Flash Loader Project implementation downloads firmware updates over asynchronous serial and stores
them into an external serial flash. After the image has been successfully downloaded and validated the MCU is reset at
which point the Flash Loader Bootloader runs. The bootloader will detect the new firmware image in the external SPI
flash and will program it into the MCU’s User Application ROM space.

Figure 1-1 : Default Flash Loader Project

This application note focuses on a modified version of the Flash Loader Project where firmware images are obtained
from a SD card. With this configuration the Device does not communicate with the Host directly. Instead the Host
stores the firmware image directly into Flash Loader Storage (the SD card). The Device then reads the firmware image
from Storage.

Figure 1-2 : Flash Loader Project – SD Card Implementation

The SD Card implementation is much simpler in regards to the Flash Loader code as two large parts are removed. The
first is external communications with the host. Communicating with a host requires protocols to be followed with retries,
error detection, and timeouts. Since the firmware image is being presented whole to the MCU on the SD card, these
parts can be removed. The other part that can be (and is) removed is the ability for the Device to write to the Storage.
With the default implementation, the MCU was required to write data to the external SPI flash as it was received from
the Host. Since the firmware image is stored directly to the SD card by the Host, there is no reason for the Device to
have the capability to write to the SD card. While the device drivers supplied with this project have the capabilities to
write to the SD card, they are not used. This was done to save code space and for simplicity. Since the device drivers do
support writes to the SD card, if the user wishes to add these features, they may do so easily.

The largest modification required for this implementation was to move from using the simple default Flash Loader file
system (Store Manager) to using the FAT file system. By moving to the FAT file system users can simply copy their
Load Image files directly to their SD card.

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 3 of 17
March 5, 2013

2. Modifications Made
This section will detail the modifications that were made to the default Flash Loader Project.

2.1 Host Side
No changes were required on the host side. The r_fl_mot_converter.py tool is still used to generate Flash Loader
firmware files which can be directly copied to the user’s SD card. Since Host to Device communications are not used in
this implementation, the r_fl_serial_flash_loader.py tool has been removed.

2.2 Device Side
Several files were removed for this implementation since they were not needed. These files include:

File Removed Reason
r_fl_comm.h No Device to Host communications with this implementation.
r_fl_comm_uart.c No Device to Host communications with this implementation.
r_fl_memory_spi_flash.c SD card is now used for Storage.

2-1 : Files removed

Files that were modified or added are discussed below.

2.2.1 r_flash_loader_rx_config.h
The configuration file was stripped of all unneeded macros; which left one. The one macro that was left was
FL_CFG_DATA_BLOCK_MAX_BYTES. The Flash Loader Project still needs a RAM buffer large enough to store a
full data block from the Load Image file. If the user wishes to save RAM in their project they can make this macro
much smaller. If this is done the user will also need to make sure that they change the maximum data block size when
creating the Load Image with the r_fl_mot_converter.py tool. If the maximum data block size of the Load Image file is
larger than the RAM buffer on the MCU (as defined by this macro) then the MCU cannot use the file.

2.2.2 r_fl_bootloader.c
There are two parts of the bootloader. The first part is the code that checks for new Load Images, checks for an
application already in the User Application space, and decides what to do based on the current state of the system. All
of this code is located in the main() function. The logic behind this code has remained unchanged. The only thing that
was added was testing to see if a SD card is present. The default Flash Loader Project used an external SPI flash for
Storage and it was always assumed to be present. If a SD card is not detected then the bootloader will check for an
image already in the User Application space. If a valid image is found in ROM then it is executed; otherwise the
bootloader starts the Flash Loader state machine and waits for a SD card to be inserted.

The other part of the bootloader is the code that programs a Load File into the MCU’s ROM. This code changed slightly
because this implementation uses the FAT file system. This means that data is now being read from a file using the file
system code instead of being read directly from a SPI flash. This is highlighted by the change from using the
fl_mem_read() function to using the new fl_read_file_data() function. Once the data has been read from Storage, the
processing and writing of the data is unchanged.

2.2.3 r_fl_downloader.c
This file implements the Flash Loader state machine. The state machine code in the default Flash Loader project is
devoted to implementing the communication protocols. Since Host to Device communications have been removed in
this implementation, there is only one state the MCU can be in. The processing done in this state is shown in Appendix
A.

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 4 of 17
March 5, 2013

2.2.4 r_fl_store_manager.c
This file has been heavily modified since the FAT file system is used with this implementation. This file is simpler for
three reasons:

1) The file system is now handled by r_fatfs module which uses the ELM ChaN FatFs code. This means that all of the
file system code is handled externally to the Flash Loader code which removes complexity from this file.

2) The ability to write and erase Storage has been removed.
3) Host to Device communications have been removed. In the default implementation this file has several functions

for handling communication retries.

Below is a table of functions that were added and removed.

Functions Removed Functions Added
fl_store_init fl_file_system_init
fl_store_image_header fl_read_file_data
fl_start_erase_load_block fl_move_to_data
fl_continue_erase_load_block
fl_store_retry_init
fl_store_retry_continue
fl_store_retry_get_block
fl_store_block_init
fl_store_block_continue
fl_store_finish

Table 2-2 : Modifications to r_fl_store_manager.c

2.2.5 r_fl_types.h
The macro FL_CFG_MEM_NUM_LOAD_IMAGES which is located in the configuration file for the default Flash
Loader Project has been moved to this file for this implementation. It was moved out of the configuration file because it
no longer needs to be modified by the user; it should always be set to ‘1’. This macro could have been removed all
together and replaced with a hard coded ‘1’ but that would have required more changes to the code.

2.2.6 r_fl_memory_sdcard.c
This file was added to implement the Flash Loader memory layer. Since separate file system code is now used, this file
is really only used for initializing SD card communications and returning the status. All memory reads, writes, and
erases are handled in the r_fatfs module.

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 5 of 17
March 5, 2013

3. API Information
This Middleware API follows the Renesas API naming standards.

3.1 Hardware Requirements
This middleware requires your MCU support the following features:

• Timer able to generate timer tick

• Ability to rewrite memory area where application code is stored

• Ability to communicate with a SD card (RSPI used for RX devices)

3.2 Hardware Resource Requirements
This section details the hardware peripherals that this middleware requires. Unless explicitly stated, these resources
must be reserved for the middleware and the user cannot use them.

3.2.1 CRC
CRCs are used for checking data blocks and firmware images.

3.2.2 Flash Control Unit (FCU)
The FCU takes care of programming and erasing internal memory. The bootloader uses the FCU but once the user’s
application has started they can use it as well.

3.2.3 RSPI
One RSPI channel is used for communicating with a SD card.

3.2.4 WDT
The watchdog timer is used to reset the MCU when a new firmware image has been downloaded.

3.2.5 CMT (compare match timer)
This timer is used to generate a timer tick that drives the state machine. The user is responsible for calling the state
machine so they can use any timer they wish. The CMT is listed here because it is used in the demo and in the
bootloader.

3.3 Software Requirements
This middleware depends on the following packages.

3.3.1 r_crc_rx
This package is used for generating CRC codes.

3.3.2 r_flash_api_rx
This package is used for rewriting the MCU’s internal ROM and data flash. Only the Flash Loader Bootloader uses this
package.

3.3.3 r_glyph
This package is used for controlling the LCD on RDK boards (i.e. RDKRX62N, RDKRX63N).

3.3.4 r_rspi_rx
This package is used for communicating with a SD card.

3.3.5 r_cmt_rx
This package is used to control a CMT channel which generates a timer tick that drives the state machine.

3.3.6 r_delay
This package is used to implement delays. This is currently used by the r_glyph and r_mmc modules.

3.3.7 r_fatfs
This package is used for FAT file system support. The FAT file system code is 3rd party and is written by ELM ChaN.
The code and documentation can be found here:

http://elm-chan.org/fsw/ff/00index_e.html

http://elm-chan.org/fsw/ff/00index_e.html�

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 6 of 17
March 5, 2013

The r_fatfs package contains the unmodified FAT file system code. The only thing the r_fatfs package adds is code that
implements the necessary Disk I/O functions as specified by the FAT file system code. These low-level Disk I/O
functions use functions from the r_mmc package.

3.3.8 r_mmc
This package contains a basic MMC driver implementation. It uses the r_rspi_rx module for communicating with
MMC/SD cards.

3.4 Limitations
The r_fatfs package currently only supports implementing a FAT file system on a SD card. This could be modified to
add support for other storage mediums like an external SPI flash.

3.5 Supported Toolchains
This middleware is tested and working with the following toolchains:

• Renesas RX Toolchain v1.02

3.6 Header Files
All API calls are accessed by including a single file: r_flash_loader_rx_if.h. This header file is supplied with this
application note’s project code.

3.7 Integer Types
This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These
types are defined in stdint.h.

3.8 Configuration Overview
The core Flash Loader code is configured through the r_flash_loader_rx_config.h header file. The configuration options
available in this header file are shown in the table below.

Configuration Options in r_flash_loader_rx_config.h

FL_CFG_DATA_BLOCK_MAX_BYTES

Maximum block data size supported. sizeof(fl_block_header_t) is
added to this #define when declaring the receive buffer. This is
done because the r_fl_mot_converter.py program accepts a
parameter to set the data block size. That parameter does not take
into account the block header size so neither does this one.

The value of this macro directly sets the size of a RAM buffer that
is used. Since Device to Host communications are not used in this
implementation, setting the block size in regards to how dependable
your communications medium is not needed. The user can set this
value to whatever value they want; just make sure to also set the
maximum block size of the Load Image accordingly.

Table 3-1 : Flash Loader Configuration Options

3.9 API Data Structures
None.

3.10 Return Values
Not applicable.

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 7 of 17
March 5, 2013

3.11 Adding Middleware to Your Project
This section details how to add the Flash Loader code to your own project. The Flash Loader project is made up of two
projects: a bootloader and a user application.

3.11.1 Flash Loader Bootloader
1. Copy the ‘r_flash_loader_rx’ directory (packaged with this application note) to your project directory.
2. Add the following source files to your project.

a. src\r_fl_bootloader.c
b. src\r_fl_downloader.c
c. src\r_fl_store_manager.c
d. src\r_fl_utilities.c
e. src\memory\r_fl_memory_sdcard.c

3. Add an include path to the 'r_flash_loader' directory.
4. Add an include path to the 'r_flash_loader\src' directory.
5. Copy r_flash_loader_config_reference.h from 'ref' directory to your desired location and rename to

r_flash_loader_config.h.
6. Configure middleware through r_flash_loader_config.h.
7. If you are placing the bootloader in the User Boot area then make sure to:

a. Configure your linker to place the code in the correct area.
b. Configure your BSP to choose User Boot Mode. This is done by configuring r_bsp_config.h if you

are using the r_bsp package.
c. Read the section titled “Calling Flash API from User Boot Area” from the default Flash Loader

Project’s application note for information about using the Flash API from the User Boot Area.

3.11.2 Flash Loader User Application

1. Copy the ‘r_flash_loader_rx’ directory (packaged with this application note) to your project directory.
2. Add the following source files to your project.

a. src\r_fl_app_header.c
b. src\r_fl_downloader.c
c. src\r_fl_store_manager.c
d. src\r_fl_utilities.c
e. src\memory\r_fl_memory_sdcard.c

3. Add an include path to the 'r_flash_loader' directory.
4. Add an include path to the 'r_flash_loader\src' directory.
5. Copy r_flash_loader_config_reference.h from 'ref' directory to your desired location and rename to

r_flash_loader_config.h.
6. Configure middleware through r_flash_loader_config.h.
7. Add a #include for r_flash_loader_rx_if.h to files that need to use this package.

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 8 of 17
March 5, 2013

4. API Functions
The same API functions as in the default Flash Loader Project are provided. The API functions are discussed here to
provide information on what has changed inside of the functions.

4.1 Summary
The following functions are included in this API:

Function Description

R_FL_DownloaderInit() Initializes Flash Loader Downloader

R_FL_StateMachine() Calls the Flash Loader State Machine

R_FL_GetVersion() Returns the current version of this API

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 9 of 17
March 5, 2013

4.2 R_FL_DownloaderInit
Initializes everything needed to run the Flash Loader Downloader.

Format
void R_FL_DownloaderInit(void);

Parameters
None

Return Values
None

Properties
Prototyped in file “r_flash_loader_if.h”
Implemented in file “r_fl_downloader.c”

Description
Initializes pointer that points to current application’s load image header.

Reentrant
Yes

Example
/* Initialize the Flash Loader code. */
R_FL_DownloaderInit();

/* Now start timer tick that will trigger Flash Loader state machine. */
...

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 10 of 17
March 5, 2013

4.3 R_FL_StateMachine
Calls the state machine that runs the Flash Loader Downloader.

Format
void R_FL_StateMachine(void);

Parameters
None

Return Values
None

Properties
Prototyped in file “r_flash_loader_if.h”
Implemented in file “r_fl_downloader.c”

Description
This function implements the Flash Loader state machine. Since Device to Host communications have been
removed in this implementation, there is only one state. This state is shown in Appendix A.

Reentrant
No, but the state machine does protect against multiple calls (i.e. only one process is allowed in at any given
time)

Example
bool g_sm_process;

void main(void)
{
 uint32_t cmt_channel;

 /* Initialize state machine process flag. */
 g_sm_process = false;

 /* Initialize the Flash Loader code. */
 R_FL_DownloaderInit();

 /* Create periodic timer to call Flash Loader state machine. */
 R_CMT_CreatePeriodic(USER_APP_CMT_FREQUENCY,
 fl_trigger_sm,
 &cmt_channel);

 while (1)
 {
 /* Call state machine after flag has been set. */
 if (true == g_sm_process)
 {
 /* Trigger state machine. */
 R_FL_StateMachine();

 g_sm_process = false;
 }

 /* Do other work. */
 }
}

/* CONTINUED ON NEXT PAGE */

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 11 of 17
March 5, 2013

/* CMT Interrupt Service Routine that will set a flag which will alert the
 main() loop that the Flash Loader state machine should be called. */
static void fl_trigger_sm (void * pdata)
{
 /* Create periodic timer to call Flash Loader state machine. */
 g_sm_process = true;
}

Special Notes:
There is only 1 state which means this function will perform the same routine every time it is called. This
function will first test to see if a SD card is present. If a SD card is found then it will then look for a Load
Image. If the user has a SD card inserted that has many files on it, but no Load Images, then this function will
‘waste’ time each time it is called. Therefore the user could optimize their system by only calling this function
each time a SD card is inserted. If the function is called and it finds out that no Load Images are present on
the SD card then further attempts are futile until a new SD card is inserted.

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 12 of 17
March 5, 2013

4.4 R_FL_GetVersion
Returns the current version of the module.

Format
uint32_t R_FL_GetVersion(void);

Parameters
None.

Return Values
Version of the Flash Loader project.

Properties
Prototyped in file “r_flash_loader_rx_if.h”
Implemented in file “r_fl_utilities.c”

Description
This function will return the version of the currently installed Flash Loader code. The version number is
encoded where the top 2 bytes are the major version number and the bottom 2 bytes are the minor version
number. For example, Version 4.25 would be returned as 0x00040019.

Reentrant
Yes.

Example
uint32_t cur_version;

/* Get version of installed Flash Loader. */
cur_version = R_FL_GetVersion();

/* Check to make sure version is new enough for this application’s use. */
if (MIN_VERSION > cur_version)
{
 /* This Flash Loader version is not new enough and does not have XXX feature
 that is needed by this application. Alert user. */

}

Special Notes:
• This function is specified to be an inline function in r_fl_utilities.c.

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 13 of 17
March 5, 2013

5. Demo Projects
This application note contains demo projects for both HEW and E2Studio. For HEW the demo is packaged as an entire
HEW workspace which contains projects for each Renesas development board. For E2Studio, each Renesas
development board has its own zipped project that can be imported into an existing E2Studio workspace. This version
includes projects for the following boards:

• RDKRX63N • RDKRX62N

There are two projects per supported board (e.g. 2 for RDKRX62N, 2 for RDKRX63N). These projects are:

• FL_SD_Bootloader_*board* – This is the Flash Loader Bootloader project prebuilt for the board referenced by
board. If the user wants to modify the bootloader then they can edit this project. When the user is ready to
program in the bootloader to their MCU then they can get the S-Record file from this project’s build directory.

• FL_SD_UserApp_*board* – This is a pre-setup Flash Loader user application for the board referenced by
board. It does nothing but run the Flash Loader state machine and show a message on the LCD. The purpose of
this project is to give the user a shell project that they can use if they wish. Everything is preconfigured for Flash
Loader use so the user can also use it as a reference for their own Flash Loader project.

5.1 HEW Workspace
The HEW workspace that comes packaged with this application note has a project for each supported Renesas
development board. The only code that changes between these projects is the board support code that is used along with
the demo and Flash Loader code. To choose a project follow these steps:

1. Open the HEW workspace

2. Right-click on the project you wish to load in the navigation pane (by default on left) and click ‘Set as Current
Project’.

3. The Flash Loader code and demo workspace use the r_bsp package for startup code, board support code, and

for getting MCU information. The r_bsp package is easily configured through the platform.h header file which
is located in the r_bsp folder. To configure the r_bsp package, open up platform.h and uncomment the #include
for the board you are using. For example, to run the demo on a RDKRX63N board, the user would uncomment
the #include for ‘./board/rdkrx63n/r_bsp.h’ and make sure all other board #includes are commented out.

4. You can now build and execute the demo.

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 14 of 17
March 5, 2013

5.2 E2Studio Projects
E2Studio handles workspaces differently than HEW and therefore projects must be imported into your existing
E2Studio workspace. In order to use the demo for your development board follow these steps:

1. The E2Studio projects are distributed as a self-extracting archive with this application note. The first thing that
will need to be done is to extract this archive. Double click on the self-extracting archive file (should be *.exe
under Workspace\e2studio directory).

2. Choose where to extract the projects and click Extract.

3. Open your E2Studio workspace

4. Click File >> Import

5. Choose General >> Existing Projects into Workspace and click Next.

6. Click ‘Select archive file’ and click browse.

7. Browse to the directory where you extracted the E2Studio projects and choose the zip file for your
development board.

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 15 of 17
March 5, 2013

8. Check the box next to the project you wish to import and click Finish. In this screenshot the RDKRX63N
project is being imported.

5. The Flash Loader code and demo workspace use the r_bsp package for startup code, board support code, and
for getting MCU information. The r_bsp package is easily configured through the platform.h header file which
is located in the r_bsp folder. To configure the r_bsp package, open up platform.h and uncomment the #include
for the board you are using. For example, to run the demo on a RDKRX63N board, the user would uncomment
the #include for ‘./board/rdkrx63n/r_bsp.h’ and make sure all other board #includes are commented out.

6. You can now build and execute the demo.

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 16 of 17
March 5, 2013

Appendix A : Flash Loader State Machine Diagram
This flowchart shows the execution flow of the Flash Loader state machine.

RX600 Series The Flash Loader Project - SD Card Implementation

R01AN1535EU0100 Rev.1.00 Page 17 of 17
March 5, 2013

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/�
http://www.renesas.com/inquiry�

A-1

Revision Record

Rev.

Date

Description
Page Summary

1.00 Mar.07.13 — First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

	1. Overview
	2. Modifications Made
	2.1 Host Side
	2.2 Device Side
	2.2.1 r_flash_loader_rx_config.h
	2.2.2 r_fl_bootloader.c
	2.2.3 r_fl_downloader.c
	2.2.4 r_fl_store_manager.c
	2.2.5 r_fl_types.h
	2.2.6 r_fl_memory_sdcard.c

	3. API Information
	3.1 Hardware Requirements
	3.2 Hardware Resource Requirements
	3.2.1 CRC
	3.2.2 Flash Control Unit (FCU)
	3.2.3 RSPI
	3.2.4 WDT
	3.2.5 CMT (compare match timer)

	3.3 Software Requirements
	3.3.1 r_crc_rx
	3.3.2 r_flash_api_rx
	3.3.3 r_glyph
	3.3.4 r_rspi_rx
	3.3.5 r_cmt_rx
	3.3.6 r_delay
	3.3.7 r_fatfs
	3.3.8 r_mmc

	3.4 Limitations
	3.5 Supported Toolchains
	3.6 Header Files
	3.7 Integer Types
	3.8 Configuration Overview
	3.9 API Data Structures
	3.10 Return Values
	3.11 Adding Middleware to Your Project
	3.11.1 Flash Loader Bootloader
	3.11.2 Flash Loader User Application

	4. API Functions
	4.1 Summary
	4.2 R_FL_DownloaderInit
	4.3 R_FL_StateMachine
	4.4 R_FL_GetVersion

	5. Demo Projects
	5.1 HEW Workspace
	5.2 E2Studio Projects

	Website and Support

