
 Application Note

R01AN0544EJ0300 Rev.3.00 Page 1 of 51
Feb.14.22

RX Family
Simple Flash API for RX
Introduction
RX Family MCUs are provided with flash memory for code storage (ROM) and flash memory for data storage
(data flash). Both of these areas of flash memory can be programmed by user programs.

This application note presents an application programming interface (API) that can be utilized by developers
to implement programming of flash memory for code storage (ROM) and flash memory for data storage (data
flash) in user programs they create. This document describes how to use the API functions and how to
import a project into a user application.

Target Devices
• RX610 Group
• RX621 Group, RX62N Group, RX62T Group, and RX62G Group
• RX630 Group, RX631 Group, RX63N Group, and RX63T Group
• RX210 Group, RX21A Group, and RX220 Group

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 2 of 51
Feb.14.22

Contents

1. Overview ... 4
1.1 Supported Functionality ... 4
1.2 Programming Flash Memory ... 4
1.3 API Operating Modes (Blocking Mode and Non-Blocking Mode) ... 5
1.4 Access Restrictions during API Execution .. 5
1.5 API Execution Area and Necessary Operations ... 6

2. API Information .. 7
2.1 Toolchain ... 7
2.2 Header Files .. 7
2.3 Configuration ... 8
2.4 Return Values .. 10
2.5 Blocking Mode and Non-Blocking Mode ... 11
2.5.1 Blocking Mode ... 11
2.5.2 Non-Blocking Mode ... 11
2.6 Interrupt Vector Tables and Interrupt Handlers ... 12
2.7 Running API Code from RAM ... 13
2.8 Programing from ROM to ROM or from Data Flash to Data Flash ... 17
2.9 Usage Precautions .. 18
2.9.1 Operating Frequency when Running API Functions ... 18
2.9.2 Accessing Data Flash after Reset ... 18
2.9.3 Flash Memory Value after Erase ... 18
2.9.4 Block Address Constants .. 18
2.9.5 Programming across Boundaries in ROM Area .. 19
2.10 Memory Usage .. 20
2.11 Importing API Functions into a User Project ... 22

3. API Functions .. 23
3.1 Overview .. 23
3.2 R_FlashErase .. 24
3.3 R_FlashEraseRange (Not supported on RX610 Group and RX62x Group.) .. 26
3.4 R_FlashWrite ... 28
3.5 R_FlashDataAreaAccess .. 30
3.6 R_FlashDataAreaBlankCheck ... 32
3.7 R_FlashProgramLockBit ... 34
3.8 R_FlashReadLockBit ... 36
3.9 R_FlashSetLockBitProtection .. 37
3.10 R_FlashGetStatus ... 38
3.11 R_FlashCodeCopy .. 39
3.12 R_FlashGetVersion ... 40

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 3 of 51
Feb.14.22

4. Reference Information ... 41
4.1 Emulator Debugging Settings .. 41
4.2 Using Flash Programmer to Read Programmed Data .. 43

5. Sample Project .. 44
5.1 Overview .. 44
5.2 Operation Confirmation Environment .. 44
5.3 Basic Operation of Sample Program ... 45
5.4 Operating Clock Settings for Sample Project .. 46
5.5 Importing a Project .. 47
5.5.1 Importing a Project into e2 studio .. 47
5.5.2 Importing a Project into CS+ ... 48

6. Reference Documents ... 49

Revision History .. 50

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 4 of 51
Feb.14.22

1. Overview
In order to program the flash memory it is necessary to control the MCU’s on-chip flash control unit (FCU)
and execute a complex procedure. The API presented in this application note enables the user to program
the flash memory without needing to worry about the complex procedure.

1.1 Supported Functionality
The API supports the following functionality.

• Programming the ROM and data flash
• API operating modes (blocking mode and non-blocking mode)
• Programming of ROM from ROM, and data flash from data flash
• Protection by means of lock bit

1.2 Programming Flash Memory
As shown in Figure 1.1 (left figure), the necessary code for programming the flash memory is located in the
ROM. By running the code from the ROM, it is possible to program the target area in the flash memory (the
data flash in this example), as shown in Figure 1.1 (right figure)

RAM

Data flash

ROM
Programming

code

ROM

Data flash

RAM

Execution
Programming

codeProgramming

Figure 1.1 Location of Code for Programming Flash Memory and Programming Operation

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 5 of 51
Feb.14.22

1.3 API Operating Modes (Blocking Mode and Non-Blocking Mode)
The API has two operating modes: blocking mode and non-blocking mode. In blocking mode, after an API
function is called, it does not return until processing of flash memory programming is complete. In non-
blocking mode, after an API function is called, it returns before processing of flash memory programming
finishes. For details of the API operating modes, refer to 2.6, Blocking Mode and Non-Blocking Mode.

1.4 Access Restrictions during API Execution
The FCU has a read mode for running programs and reading data, and a program/erase mode (P/E mode)
for programming the flash memory. With the exception of a few API functions, the FCU transitions to P/E
mode when an API function is run and programs the flash memory. While the FCU is in P/E mode, the types
of read access to the flash memory listed in the table below are restricted. If the programming target area is
read while in P/E mode, the read value is undefined.

Table 1.1 Read Access Restrictions

Programming Target Area
(in P/E Mode)

Read Access Area
ROM Data Flash RAM External Memory

ROM
Data flash

: Access allowed.
: Access prohibited.

For this reason, it is not possible to program the same area of the flash memory where the code necessary
for programming is located, as shown in Figure 1.2.

RAM

Data flash

ROM

Programming
Execution

Programming
code

Figure 1.2 Programming Same Area of Flash Memory where Code Necessary for Programming Is
Located

In order to program the ROM, it is necessary to run the program from an area other than the ROM, in other
words from the RAM area (including external RAM). This also applies to the data that is programmed.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 6 of 51
Feb.14.22

1.5 API Execution Area and Necessary Operations
In order to program the flash memory, it is necessary to run the API functions from an area other than the
programming target area.

The default settings of the API assign the API functions to ROM areas (section P and section C), but it may
be necessary to change the area from which the API functions run according to the API mode or
programming target area. It may also be necessary to change the locations of associated links and interrupt
vector tables, as well as preparing callback functions.

Table 1.2 Accommodating the API Mode

Programming Target Area Mode
Possible Areas for API Execution
and Interrupt Vector Tables

Data flash Blocking mode RAM (including external)
ROM Non-blocking mode

ROM Blocking mode RAM (including external)
 Non-blocking mode

For information on running programs from the RAM, refer to 2.8, Running API Code from RAM. For
information on moving interrupt vector tables, refer to 2.7, Interrupt Vector Tables and Interrupt Handlers.

In addition, it is necessary to prepare callback functions when using API functions in non-blocking mode. For
information on preparing callback functions, refer to 2.6.2, Non-Blocking Mode.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 7 of 51
Feb.14.22

2. API Information
2.1 Toolchain
The operation of the API has been confirmed with the following toolchain.

C/C++ Compiler Package for RX Family (CC-RX) V3.04.00

2.2 Header Files
To use the API with a user program, include the file r_flash_api_rx_if.h. In addition, in order to use the API
you will need to make settings in r_flash_api_rx_config.h to match the user program.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 8 of 51
Feb.14.22

2.3 Configuration
Settings for the API are made in r_flash_api_rx_config.h. Table 2.1 lists the configuration options in
r_flash_api_rx_config.h.

Table 2.1 Configuration Items (r_flash_api_rx_config.h)

Configuration Options
FLASH_MCU_xxxx This option is defined to match the device used.

Example: RX63N
#define FLASH_MCU_RX63N

FLASH_API_RX_CFG_ICLK_HZ Specifies the frequency of the system clock (ICLK) in Hz.
Example: 100 MHz
#define FLASH_API_RX_CFG_ICLK_HZ (100000000)

FLASH_API_RX_CFG_FCLK_HZ RX610 Group or RX62x Group:
Specifies the frequency of the peripheral module clock (PCLK) in
Hz.
RX63x Group or RX2x Group:
Specifies the frequency of the FlashIF clock (FCLK) in Hz.
Example: 50 MHz
#define FLASH_API_RX_CFG_FCLK_HZ (50000000)

FLASH_API_RX_CFG_ROM_
SIZE_BYTES

Specifies the ROM size in bytes.
A macro definition (SIZE_xB) can also be used to specify the size.
(Defined in this header file.)
Example: 2 MB
#define FLASH_API_RX_CFG_ROM_SIZE_BYTES (SIZE_2MB)

FLASH_API_RX_CFG_DATA_
FLASH_SIZE_BYTES

Specifies the data flash size in bytes.
A macro definition (SIZE_xB) can also be used to specify the size.
(Defined in this header file.)
Example: 32 KB
#define FLASH_API_RX_CFG_ROM_SIZE_BYTES (SIZE_32KB)

FLASH_API_RX_CFG_ENABLE_
ROM_PROGRAMMING

ROM programming is enabled when this option is defined. To
enable ROM programming, set this option as described in 2.8,
Running API Code from RAM. Only data flash programming is
enabled when this option is undefined.

FLASH_API_RX_CFG_FLASH_
TO_FLASH

ROM to ROM and data flash to data flash programming operations
are enabled when this option is defined. If this option is defined, a
RAM buffer for storing programming data is required. The size of the
RAM buffer should be equivalent to the maximum amount of data
that will be programmed to the ROM on the particular device.

FLASH_API_RX_CFG_DATA_
FLASH_BGO

Data flash programming in non-blocking mode is enabled when this
option is defined. In this mode programming of the data flash takes
place in the background, and API functions return before
programming finishes.
When programming finishes, a flash ready interrupt (FRDYI) is
generated and a callback function is run.
API functions do not return until programming is complete when this
option is undefined.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 9 of 51
Feb.14.22

Configuration Options
FLASH_API_RX_CFG_ROM_BGO ROM programming in non-blocking mode is enabled when this

option is defined. In this mode programming of the ROM takes place
in the background, and API functions return before programming
finishes.
When programming finishes, a flash ready interrupt (FRDYI) is
generated and a callback function is run.
API functions do not return until programming is complete when this
option is undefined.

FLASH_API_RX_CFG_FLASH_
READY_IPL

Specifies the priority level of the flash ready interrupt.
This setting takes effect when programming in non-blocking mode is
enabled.

FLASH_API_RX_CFG_IGNORE_
LOCK_BITS

The lock bit protection functionality is disabled when this option is
defined.
When it is undefined, lock bit protection is enabled and attempts to
program or erase blocks for which the lock bit is set fail.

FLASH_API_RX_CFG_COPY_
CODE_BY_API

The R_FlashCodeCopy function is enabled when this option is
defined.
When copying API functions located in the ROM section (PFRAM)
to the RAM section (RPFRAM) by editing dbsct.c, without using the
R_FlashCodeCopy function, leave this definition undefined
(disabled).

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 10 of 51
Feb.14.22

2.4 Return Values
The return values of the API functions are listed below. These are defined in r_flash_api_rx_if.h. Some return
values can have the same value, but no API function can have the same value defined for more than one
return value at the same time.
/**** Function Return Values ****/
/* Operation was successful */
#define FLASH_SUCCESS (0x00)
/* Flash area checked was blank, making this 0x00 as well to keep existing

code checking compatibility */
#define FLASH_BLANK (0x00)

/* The address that was supplied was not on aligned correctly for ROM or DF */
#define FLASH_ERROR_ALIGNED (0x01)
/* Flash area checked was not blank, making this 0x01 as well to keep existing

code checking compatibility */
#define FLASH_NOT_BLANK (0x01)

/* The number of bytes supplied to write was incorrect */
#define FLASH_ERROR_BYTES (0x02)
/* The address provided is not a valid ROM or DF address */
#define FLASH_ERROR_ADDRESS (0x03)
/* Writes cannot cross the 1MB boundary on some parts */
#define FLASH_ERROR_BOUNDARY (0x04)
/* Flash is busy with another operation */
#define FLASH_BUSY (0x05)
/* Operation failed */
#define FLASH_FAILURE (0x06)
/* Lock bit was set for the block in question */
#define FLASH_LOCK_BIT_SET (0x07)
/* Lock bit was not set for the block in question */
#define FLASH_LOCK_BIT_NOT_SET (0x08)
/* 'Address + number of bytes' for this operation went past the end of this
* memory area. */
#define FLASH_ERROR_OVERFLOW (0x09)

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 11 of 51
Feb.14.22

2.5 Blocking Mode and Non-Blocking Mode
2.5.1 Blocking Mode
In blocking mode, after an API function is called, it does not return until processing of flash memory
programming is complete. To run API functions in blocking mode, disable the following macro definitions in
the configuration options.

• FLASH_API_RX_CFG_DATA_FLASH_BGO
• FLASH_API_RX_CFG_ROM_BGO

2.5.2 Non-Blocking Mode
In non-blocking mode, after an API function is called, it returns before processing of flash memory
programming finishes. When flash memory programming finishes, a flash ready interrupt (FRDYI) is
generated and a callback function is run from the interrupt handler routine.

To run API functions in non-blocking mode, enable the following macro definitions in the configuration
options. Operation in non-blocking mode only occurs for processing with these macro definitions enabled.

• FLASH_API_RX_CFG_DATA_FLASH_BGO
• FLASH_API_RX_CFG_ROM_BGO

Only the following API functions operate in non-blocking mode. For all other API functions no flash ready
interrupt (FRDYI) is generated and no callback function is run. (Operation is in blocking mode.)

• R_FlashErase function
• R_FlashEraseRange function
• R_FlashWrite function
• R_FlashDataAreaBlankCheck function

The following callback functions are run according to the API function. These callback functions must be
prepared by the user, and they cannot be omitted.

• void FlashEraseDone(void)
 This callback function is run when erasing of the ROM or data flash by the R_FlashErase function or

R_FlashEraseRange function finishes.
• void FlashWriteDone(void)

 This callback function is run when programming of the ROM or data flash by the R_FlashWrite
function finishes.

• void FlashBlankCheckDone(uint8_t result)
 This callback function is run when blank checking of the data flash by the

R_FlashDataAreaBlankCheck function finishes. The result of the blank check is stored in the
argument result. If the data flash is blank, the value stored is FLASH_BLANK, and if the data flash is
not blank, the value stored is FLASH_NOT_BLANK.

• void FlashError(void)
 This callback function is run when erasing, programming, or blank checking fails. Command lock or

any applicable error status is canceled by the time the callback function runs, so the user does not
need to run any processing targeting the FCU. You should implement whatever processing is
appropriate for the user system.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 12 of 51
Feb.14.22

2.6 Interrupt Vector Tables and Interrupt Handlers
Due to the restrictions on read access described in 1.4, Access Restrictions during API Execution, it is not
possible to read correct data from the ROM after the FCU switches to P/E mode in order to program the flash
memory. This restriction applies to everything stored in the ROM, including variable vector tables (interrupt
vector tables), fixed vector tables, and interrupt handler code.

To enable interrupt handlers to run while in P/E mode, it is necessary to copy the interrupt vector tables and
interrupt handler code to a RAM area (including external) in the same manner as the API functions and to
make appropriate changes to the interrupt table register (INTB) values. Since it is not possible to change the
location of fixed vector tables, care must be taken to ensure that no exception handling involving such tables
occurs while in P/E mode.

The example below shows the method of copying an interrupt vector table to the RAM and changing the
value of the interrupt table register (INTB). This is only an example, and you will need to study the
appropriate method to use to match the user system.

/* RAM area where vector table is stored */
static uint32_t ram_vector_table[256];

/* Pointer for accessing interrupt vector table */
uint32_t *pvect_table;

/* Variable for loop */
uint16_t i;

/* == Relocation of interrupt vector table in RAM == */
pvect_table = (uint32_t *)__sectop("C$VECT");

for(i=0 ; i < 256 ; i++)
{

ram_vect_table[i] = pvect_table[i]; /* Copy address of FRDYI interrupt
function */
}

set_intb((void *)ram_vect_table);

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 13 of 51
Feb.14.22

2.7 Running API Code from RAM
To run API code from the RAM, first prepare sections for storing the API code in both RAM (RPFRAM) and
ROM (PFRAM), and then, after a reset, copy the code, including the API functions, from the ROM section
(PFRAM) to the RAM section (RPFRAM).

RAM

Data flash

ROM

ExecutionCopy

RPFRAM section:
Copied programming code

PFRAM section:
Programming code

Programming

Figure 2.1 Running Code from RAM to Program ROM

Follow the steps below to make the necessary settings.

(1) Configuration option setting
Enable the following definition:
#define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 14 of 51
Feb.14.22

(2) Adding sections
Add the RPFRAM section in the RAM area and the PFRAM section in the ROM area.
 e2 studio

Select Linker → Section and click ... to open the Section Viewer window. Add the PFRAM and
RPFRAM sections as shown in the figure below.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 15 of 51
Feb.14.22

 CS+
Select CC-RX (Build Tool) → Link Option → Section → Section start address and click ... to open
the Section Settings window. Add the PFRAM and RPFRAM sections as shown in the figure below.

(3) Mapping from ROM to RAM

To create a linker map from the ROM section (PFRAM) to the RAM section (RPFRAM), add the following
item under ROM to RAM mapped section.
 e2 studio

Select Linker → Section → Symbol file and click the Add button under ROM to RAM mapped

section to open the window shown below. Add PFRAM=RPFRAM as shown in the figure below.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 16 of 51
Feb.14.22

 CS+
Select CC-RX(Build Tool) → Link Option → Section → ROM to RAM mapped section and click ...
to open the window shown below. Add PFRAM=RPFRAM as shown in the figure below.

(4) Transferring program code from ROM to RAM after reset

Transfer the program code from the ROM section (PFRAM) to the RAM section (RPFRAM). Either of the
following two methods can be used to copy the program code to the RAM section (RPFRAM).

1. Editing the dbsct.c file

The dbsct.c file specifies the areas to be initialized after a reset. Add code to transfer the program
code from the PFRAM section to the RPFRAM section as shown in red text below.

-- FILE [dbsct.c] --
#pragma section $DSEC
static const struct {
 _UBYTE *rom_s; /* Initial address on ROM of initialization data section */
 _UBYTE *rom_e; /* Final address on ROM of initialization data section */
 _UBYTE *ram_s; /* Initial address on RAM of initialization data section */
} DTBL[] = {
 { __sectop("D"), __secend("D"), __sectop("R") } ,
 { __sectop("PFRAM"), __secend("PFRAM"), __sectop("RPFRAM") }
};

2. Running the R_FlashCodeCopy function

The purpose of the R_FlashCodeCopy function is to transfer the program code to the RAM section
(RPFRAM). Call this function from the user program before calling any other API functions. It is
necessary to define FLASH_API_RX_CFG_COPY_CODE_BY_API in r_flash_api_rx_config.h in order
to use the R_FlashCodeCopy function.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 17 of 51
Feb.14.22

2.8 Programing from ROM to ROM or from Data Flash to Data Flash
This functionality is implemented in software. It is not built into the FCU.

In the default configuration option settings FLASH_API_RX_CFG_FLASH_TO_FLASH is left undefined, so it
is not possible to specify an address in the write destination area as the write source address (buffer_addr)
specified by the second argument of the R_FlashWrite function.

However, enabling the FLASH_API_RX_CFG_FLASH_TO_FLASH definition in the configuration options
makes it possible to specify an address in the write destination area as the write source address
(buffer_addr). For example, you can specify an address in the ROM when the write destination area is the
ROM, and you can specify an address in the data flash when the write destination area is the data flash. For
details of the R_FlashWrite function, refer to 3.4, R_FlashWrite.

When the R_FlashWrite function is run, this functionality stores in the RAM the data to be written before the
transition to P/E mode, and uses the data stored in the RAM to program the flash memory after the transition
to P/E mode. Therefore, enabling the FLASH_API_RX_CFG_FLASH_TO_FLASH definition causes the data
to be written to be maintained in the RAM buffer set aside for storing programming data. The size of the RAM
buffer should be equivalent to the maximum amount of data that will be programmed to the ROM on the
particular device.

RAM

Data flash

ROM

Execution

[1] Copy

Programming
code

Programming
code Data to be written

Data to be written

[2] Copy data before
transition to P/E mode

[3] After transition to P/E mode,
use data copied to RAM to
program ROM

Figure 2.2 Example of Programming from ROM to ROM

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 18 of 51
Feb.14.22

2.9 Usage Precautions
2.9.1 Operating Frequency when Running API Functions
When running API functions, set the operating frequency within the range shown in Table 2.2. Set the
configuration option FLASH_API_RX_CFG_FCLK_HZ to the same value as the operating frequency.

Table 2.2 Operating Frequency

Device FCU Clock Source Frequency Range
RX610 Group
RX62x Group

Peripheral module clock (PCLK) 8 MHz to PCLK max. frequency

RX63x Group
RX2x Group

FlashIF clock (FCLK) 4 MHz to FCLK max. frequency

2.9.2 Accessing Data Flash after Reset
Accessing the data flash (reading, programming, or erasing) is prohibited in the initial state after a reset. To
access the data flash, it is first necessary to enable access by running the R_FlashDataAreaAccess function.
For details, refer to 3.5, R_FlashDataAreaAccess.

2.9.3 Flash Memory Value after Erase
After erasure, the values of the ROM and data flash differ. The read value of the ROM after erasure is FFh,
but that of the data flash is undefined. To determine whether or not the data flash is blank, run the
R_FlashDataAreaBlankCheck function.

2.9.4 Block Address Constants
The API makes use of constant array g_flash_BlockAddresses[] containing const type data. This array
defines the start addresses of the blocks in the flash memory. Note that addresses in the ROM are defined
as P/E mode addresses and cannot be used for read accesses. Also, the array is stored in a ROM area
(section C) by default. Note that the array will be deleted if the ROM is erased. The array is defined in the
header file for the specific device (r_flash_api_rxXXX.h), stored in r_flash_api_rx\src\targets.
/* Data Structure */
const uint32_t g_flash_BlockAddresses[86] = {

0x00FFF000, /* EB00 */
0x00FFE000, /* EB01 */
0x00FFD000, /* EB02 */
0x00FFC000, /* EB03 */

 ...
};

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 19 of 51
Feb.14.22

2.9.5 Programming across Boundaries in ROM Area
Some RX Family products have multiple ROM areas. For example, RX63N Group products with 2 MB of
ROM have four ROM areas (areas 0, 1, 2, and 3). The programming that can be performed by an API
function each time it is run is limited to a single area and cannot cross a boundary between ROM areas. To
program data across ROM area boundaries, divide the data to be written into segments and program each
one separately.

Refer to Table 2.3 for the ROM areas of each product.

Table 2.3 ROM Area Boundaries

ROM
Capacity Address RX610

RX62N
RX621

RX62T
RX62G

RX630
RX63N
RX631 RX63T RX210 RX220 RX21A

2 MB FFE0 0000h Area 1 Area 3
1.5 MB FFE8 0000h Area 2
1 MB FFF0 0000h Area 0 Area 1 Area 1
512 KB FFF8 0000h Area 0 Area 0 Area 0 Area 0 Area 0
256 KB FFFC 0000h Area 0 Area 0

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 20 of 51
Feb.14.22

2.10 Memory Usage
The amount of ROM and RAM used differs according to the which configuration options are enabled. For
example, when ROM programming (FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING) is enabled,
areas for storing program code are necessary in both the RAM and ROM since API functions for
programming the ROM are run from the RAM.

Table 2.4 lists several configuration patterns, and Table 2.5 lists the memory usage for each configuration
pattern.

Table 2.4 Configuration Patterns

Configuration Options Option Enabled/Disabled
1 Programming data flash only
 FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING Disabled
 FLASH_API_RX_CFG_FLASH_TO_FLASH Disabled
 FLASH_API_RX_CFG_DATA_FLASH_BGO Enabled
 FLASH_API_RX_CFG_ROM_BGO Disabled
 FLASH_API_RX_CFG_IGNORE_LOCK_BITS Enabled
 FLASH_API_RX_CFG_COPY_CODE_BY_API Disabled
2 Programming ROM
 FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING Enabled
 FLASH_API_RX_CFG_FLASH_TO_FLASH Disabled
 FLASH_API_RX_CFG_DATA_FLASH_BGO Disabled
 FLASH_API_RX_CFG_ROM_BGO Disabled
 FLASH_API_RX_CFG_IGNORE_LOCK_BITS Disabled
 FLASH_API_RX_CFG_COPY_CODE_BY_API Enabled
3 Maximum ROM/RAM usage
 FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING Enabled
 FLASH_API_RX_CFG_FLASH_TO_FLASH Enabled
 FLASH_API_RX_CFG_DATA_FLASH_BGO Enabled
 FLASH_API_RX_CFG_ROM_BGO Enabled
 FLASH_API_RX_CFG_IGNORE_LOCK_BITS Disabled
 FLASH_API_RX_CFG_COPY_CODE_BY_API Enabled

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 21 of 51
Feb.14.22

Compiler option settings (common)

• Language specification: C89
• Optimization level: Level 2

Table 2.5 Memory Usage

Device Configuration Pattern ROM (Bytes) RAM (Bytes)
RX610 1 1850 19

2 2039 1300
3 2554 2409

RX62N 1 1926 19
2 2094 1247
3 2609 2376

RX62G, RX62T 1 1862 19
2 2030 1247
3 2545 2376

RX630, RX63N 1 2302 19
2 2496 1526
3 3051 2566

RX63T 1 2054 19
2 2189 1387
3 2744 2427

RX210 1 3993 19
2 4146 1469
3 4702 2494

RX220 1 2378 19
2 2508 1411
3 3064 2432

RX21A 1 2896 19
2 3026 1413
3 3582 2438

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 22 of 51
Feb.14.22

2.11 Importing API Functions into a User Project
Follow the steps below to import the API functions into your user project.

1. Copy the entire contents of the r_flash_api_rx directory in the source directory to the user project.
2. Add the file r_flash_api_rx\src\r_flash_api_rx.c as a build target.
3. Add the r_flash_api_rx directory to the include path.
4. Add the r_flash_api_rx\src directory to the include path.
5. In the r_flash_api_rx\src\targets directory, delete the directories with names matching products that will

not be used on the user system.
6. Copy r_flash_api_rx_config_reference.h from the ref directory to the user project directory, and

rename the file as r_flash_api_rx_config.h.
7. Add the directory containing the file r_flash_api_rx_config.h to the include path.
8. Configure r_flash_api_rx_config.h to match the user system.
9. Add lines to the file r_flash_api_rx_if.h to include the source files used by the API functions.

Note: Deleting the r_flash_api_rx\ref directory from the user project will have no effect on the build

process.

To program the ROM, proceed with the steps listed in 2.8, Running API Code from RAM.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 23 of 51
Feb.14.22

3. API Functions
3.1 Overview
Table 3.1 is an overview of the API functions.

Table 3.1 List of API Functions

Function Description
R_FlashErase Erases the target block in the flash memory.
R_FlashEraseRange Erases the blocks within the target range of the data flash.

(Not supported on RX610 Group and RX62x Group.)
R_FlashWrite Programs data to the flash memory.
R_FlashDataAreaAccess Enables or disables access to the data flash (reading, programming, and

erasing).
R_FlashDataAreaBlankCheck Performs a blank check on the data flash.
R_FlashProgramLockBit Sets the lock bit for the target block in the ROM, prohibiting erasing and

programming.
R_FlashReadLockBit Reads the status of the lock bit for the target block in the ROM.
R_FLashSetLockBitProtection Enable or disable the lock bit protection functionality.
R_FlashGetStatus Returns the API processing status.
R_FlashCodeCopy Copies the API code from the ROM section (PFRAM) to the RAM section

(RPFRAM).

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 24 of 51
Feb.14.22

3.2 R_FlashErase
Erases the target block in the flash memory.

Format
 uint8_t R_FlashErase(uint32_t block);

Parameters
block Specifies the block number to be erased. Block numbers are defined in the r_flash_api_rxXXX.h file

corresponding to the device, located in r_flash_api_rx/src/targets. For example, on the RX610 the
block at address 0xFFFFE000 is referenced as block 0 in the user’s manual and would be specified
by this parameter as BLOCK_0.

Return Values
FLASH_SUCCESS: Normal end (In non-blocking mode, this indicates that processing of the

flash memory started normally.)

FLASH_FAILURE: Abnormal end (Processing attempted on a ROM area for which the lock bit
is set or a data flash area for which the access is prohibited; or processing
timeout.)

FLASH_BUSY: Other processing of the flash memory is currently in progress.

FLASH_ERROR_ADDRESS: Invalid block number

Description
Erases the block specified by the argument. Block sizes differ according to the device group as well as the
flash memory area on the device. In addition, the data flash on some devices has very small block sizes
defined, so the function erases multiple blocks at once. For details of the block structure, refer to the user’s
manual of the specific device.

Table 3.2 lists the erase size for each device.

Table 3.2 Erase Size

Device ROM Data Flash
RX610 Group 128 KB, 64 KB, 8 KB 8 KB
RX62x Group 16 KB, 4 KB 2 KB
RX630, RX63N, RX631 Group 64 KB, 32 KB, 16 KB, 4 KB 2 KB (32 bytes × 64 blocks)
RX63T Group 16 KB, 4 KB 2 KB (32 bytes × 64 blocks)
RX2x Group 2 KB 2 KB (128 bytes × 16 blocks)

Reentrant
No.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 25 of 51
Feb.14.22

Example
uint32_t loop;
uint8_t ret;

/* Specify the erase block */
ret = R_FlashErase(BLOCK_0);

/* Check for errors. */
if (FLASH_SUCCESS != ret)
{
 . . .
}

/* Erase multiple blocks (erase block 0 to block “NUM_BLOCKS_TO_ERASE”)*/
for (loop = 0; loop < NUM_BLOCKS_TO_ERASE; loop++)
{
 /* Erase block */
 ret = R_FlashErase(loop);

 /* Check for errors. */
 if (FLASH_SUCCESS != ret)
 {
 . . .
 }
}

Special Notes
To erase a block in the data flash, first run the R_FlashDataAreaAccess function to enable access to the
data flash.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 26 of 51
Feb.14.22

3.3 R_FlashEraseRange (Not supported on RX610 Group and RX62x Group.)
Erases the blocks within the target range of the data flash.

Format
 uint8_t R_FlashEraseRange(uint32_t start_addr, uint32_t bytes);

Parameters
start_addr Specifies the block start address of the target range to be erased. The address must be in

alignment with the block size. Refer to Table 3.3 for the method of calculating block sizes and
addresses on each device.

bytes Specifies the number of bytes to be erased. This value must be a multiple of the data flash
block size. For example, on the RX630, valid setting values are 32, 64, 96, and so on because
the data flash block size is 32 bytes.

Return Values
FLASH_SUCCESS: Normal end (In non-blocking mode, this indicates that processing of the

flash memory started normally.)

FLASH_FAILURE: Abnormal end (Processing attempted on a data flash area for which the
access is prohibited; or processing timeout.)

FLASH_BUSY: Other processing of the flash memory is currently in progress.

FLASH_ERROR_BYTES: Byte count is not a multiple of the block size.

FLASH_ERROR_ADDRESS: Invalid address

FLASH_ERROR_ALIGNED: Block start address not specified.

FLASH_ERROR_OVERFLOW: Erase range exceeds data flash area.

Description
Erases blocks within the specified range (start_addr to (start_addr + bytes)).

Table 3.3 Data Flash Block Sizes

Device Block Size Method of Calculating Block N Address
RX63x Group 32 bytes

(32 bytes × 1,024 blocks = 32 KB)
N × 32 + start address of data flash area
(0010 0000h)

RX2x Group 128 bytes
128 bytes × 64 blocks = 8 KB)

N × 128 + start address of data flash area
(0010 0000h)

Reentrant
No.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 27 of 51
Feb.14.22

Example
uint8_t ret;

/* Erase 64 bytes. */
ret = R_FlashEraseRange(address, 64);

/* Check for errors. */
if (FLASH_SUCCESS != ret)
{
 . . .
}

Special Notes
• This function is not supported on the RX610 Group and RX62x Group. Use the R_FlashErase function to

perform erasures instead.
• This function can only be used to erase the data flash.
• To use this function, first run the R_FlashDataAreaAccess function to enable access to the data flash.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 28 of 51
Feb.14.22

3.4 R_FlashWrite
Programs data to the flash memory.

Format
 uint8_t R_FlashWrite(uint32_t flash_addr,
 uint32_t buffer_addr,
 uint16_t bytes);

Parameters
flash_addr Specifies the write destination address. The address must be aligned with the minimum write

size.

buffer_addr Specifies the write source address.

bytes Specifies the byte count of the data to be written. This value must be a multiple of the
minimum write size. Refer to Table 3.4 for the minimum write size on each device.

Return Values
FLASH_SUCCESS: Normal end (In non-blocking mode, this indicates that processing of the

flash memory started normally.)

FLASH_FAILURE: Abnormal end (Processing attempted on an area that was not blank or a
ROM area for which the lock bit is set or data flash area for which the
access is prohibited; or processing timeout..)

FLASH_BUSY: Other processing of the flash memory is currently in progress.

FLASH_ERROR_ALIGNED: Address is not aligned with minimum write size.

FLASH_ERROR_BYTES: Byte count is not a multiple of the minimum write size.

FLASH_ERROR_ADDRESS: Invalid address

FLASH_ERROR_BOUNDARY: Writes are not allowed to cross boundaries between ROM areas.

FLASH_ERROR_OVERFLOW: Write range exceeds ROM or data flash area.

Description
Programs data to the flash memory. The write address must be aligned with the minimum write size. Also,
the byte count must be a multiple of the minimum write size. The minimum write size differs according to the
device, as shown in the table below.

Table 3.4 Minimum Write Sizes

Device ROM Data Flash
RX610 Group and RX62x Group 256 bytes 8 bytes, 128 bytes
RX63x Group 128 bytes 2 bytes
RX210 Group 2 bytes, 8 bytes, 128 bytes 2 bytes, 8 bytes

Some RX Family products have multiple ROM areas. The programming that can be performed by the
R_FlashWrite function each time it is run cannot cross a boundary between ROM areas. To program data
across ROM area boundaries, divide the data to be written into segments and run the R_FlashWrite function
for each one separately. For details on ROM areas, refer to2.10.5,Programming across Boundaries in ROM
Area.

In addition, enabling the FLASH_API_RX_CFG_FLASH_TO_FLASH definition in r_flash_api_rx_config.h
makes it possible to specify a write source address in the same area as the write destination address. For
example, you can specify an address in the ROM when the write destination area is the ROM, and you can

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 29 of 51
Feb.14.22

specify an address in the data flash when the write destination area is the data flash. For details, refer to 2.9,
Programing from ROM to ROM or from Data Flash to Data Flash.

Reentrant
No.

Example
uint8_t ret;
uint8_t write_buffer[PROGRAM_SIZE] = “Hello World...”;

/* Write data to internal memory. */
ret = R_FlashWrite(address, (uint32_t)write_buffer, PROGRAM_SIZE);

/* Check for errors. */
if (FLASH_SUCCESS != ret)
{
 . . .
}

Special Notes
To program the data flash, first run the R_FlashDataAreaAccess function to enable access to the data flash.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 30 of 51
Feb.14.22

3.5 R_FlashDataAreaAccess
Enables or disables access to the data flash (reading, programming, and erasing). After a reset, run the
R_FlashDataAreaAccess function to enable access to the data flash (reading, programming, and erasing).

Format
 void R_FlashDataAreaAccess(uint16_t read_en_mask,
 uint16_t write_en_mask);

Parameters
read_en_mask Enables or disables read access for the blocks corresponding to the various bits. Setting a

bit to 1 enables read access to the corresponding block, and clearing a bit to 0 disables
read access to the corresponding block. Table 3.5 lists the blocks corresponding to the
various bits.

write_en_mask Enables or disables write or erase access for the blocks corresponding to the various bits.
Setting a bit to 1 enables write or erase access to the corresponding block, and clearing a
bit to 0 disables write or erase access to the corresponding block. Table 3.5 lists the blocks
corresponding to the various bits.

Return Values
None.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 31 of 51
Feb.14.22

Description
Enables or disables access to the data flash. Before accessing the data flash, run the
R_FlashDataAreaAccess function to enable access to the data flash.

Table 3.5 lists the blocks corresponding to the various bits. A dash () indicates that the bit setting has no
effect.

Table 3.5 Correspondence of Bits to Blocks

Device Size
Block
Structure

read_en_mask, write_en_mask
b15 b14 b13 b12 b11 b10 b9 b8
b7 b6 b5 b4 b3 b2 b1 b0

RX610 32 KB 8 KB ×
4 blocks

       
    DB3 DB2 DB1 DB0

RX621
RX62N

32 KB 2 KB ×
16 blocks

DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

RX62T
RX62G

8 KB 2 KB ×
4 blocks

       
    DB3 DB2 DB1 DB0

32 KB 2 KB ×
16 blocks

DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

RX630
RX631
RX63N

32 KB 32 bytes ×
1,024 blocks

960 to
1,023

896 to
959

832 to
895

768 to
831

704 to
767

640 to
703

576 to
639

512 to
575

448 to
511

384 to
447

320 to
383

256 to
319

192 to
255

128 to
191

64 to
127

0 to 63

RX63T 8 KB 32 bytes ×
256 blocks

       
    192 to

255
128 to
191

64 to
127

0 to 63

32 KB 32 bytes ×
1,024 blocks

960 to
1,023

896 to
959

832 to
895

768 to
831

704 to
767

640 to
703

576 to
639

512 to
575

448 to
511

384 to
447

320 to
383

256 to
319

192 to
255

128 to
191

64 to
127

0 to 63

RX210
RX220
RX21A

8 KB 128 bytes ×
64 blocks

       
    DB48 to

DB63
DB32 to
DB47

DB16 to
DB31

DB00 to
DB15

Reentrant
No.

Example
/* Enable reading, writing, and erasing of all data flash blocks. */
R_FlashDataAreaAccess(0xFFFF, 0xFFFF);

Special Notes
None.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 32 of 51
Feb.14.22

3.6 R_FlashDataAreaBlankCheck
Performs a blank check on the data flash.

Format
 uint8_t R_FlashDataAreaBlankCheck(uint32_t address,
 uint8_t size);

Parameters
address Specifies the address or block number to undergo a blank check. When specifying an

address, the value should align with the blank check size specified by size. When specifying a
block number, use the value defined in the r_flash_api_rxXXX.h file corresponding to the
device, located in r_flash_api_rx/src/targets.

size Specifies the size of the blank check. The following two values may be specified.

 BLANK_CHECK_SMALLEST: Minimum blank check size

 BLANK_CHECK_ENTIRE_BLOCK: Multiple-block size

Return Values
FLASH_BLANK: (In blocking mode)

The data flash area is blank.

 (In non-blocking mode with size set to BLANK_CHECK_SMALLEST)
The data flash area is blank.

 (In non-blocking mode with size set to BLANK_CHECK_ENTIRE_BLOCK)
Blank check processing started normally.

FLASH_NOT_BLANK: The data flash area is not blank.

FLASH_FAILURE: Abnormal end (Normally not returned.)

FLASH_BUSY: Other processing of the flash memory is currently in progress.

FLASH_ERROR_ADDRESS: Invalid address

FLASH_ERROR_BYTES: Invalid size

FLASH_ERROR_ALIGNED: Address is not aligned with blank check size.
(Applies only when size = BLANK_CHECK_SMALLEST.)

Description
Performs a blank check on the data flash. The R_FlashDataAreaBlankCheck function can be used on the
data flash only. The blank check size can be specified as BLANK_CHECK_SMALLEST (minimum blank
check size) or BLANK_CHECK_ENTIRE_BLOCK (multiple-block size). As shown in Table 3.6, the blank
check sizes differ by device.

Table 3.6 Blank Check Sizes

Device Blank Check Size
RX610 BLANK_CHECK_SMALLEST: 8 bytes

BLANK_CHECK_ENTIRE_BLOCK: 1 block (8 KB)
RX62x BLANK_CHECK_SMALLEST: 8 bytes

BLANK_CHECK_ENTIRE_BLOCK: 1 block (2 KB)
RX63x BLANK_CHECK_SMALLEST: 2 bytes

BLANK_CHECK_ENTIRE_BLOCK: 64 blocks (2 KB)
RX210 BLANK_CHECK_SMALLEST: 2 bytes

BLANK_CHECK_ENTIRE_BLOCK: 16 blocks (2 KB)

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 33 of 51
Feb.14.22

Reentrant
No.

Example
uint8_t ret;

/* Blank check a small data flash address. Blocking mode operation Only */
ret = R_FlashDataAreaBlankCheck(address, BLANK_CHECK_SMALLEST);

/* Check result. */
if (FLASH_NOT_BLANK == ret)
{
 /* Block is not blank. */
 . . .
}
else if (FLASH_BLANK == ret)
{
 /* Block is blank. */
 . . .
}

/* Blank check an entire data flash block. */
ret = R_FlashDataAreaBlankCheck(BLOCK_DB0, BLANK_CHECK_ENTIRE_BLOCK);

/* Check result. */
if (FLASH_NOT_BLANK == ret)
{
 /* Block is not blank. */
 . . .
}
else if (FLASH_BLANK == ret)
{
 /* Block is blank. */
 . . .
}

Special Notes
When the second argument (size) is set to BLANK_CHECK_SMALLEST (minimum blank check size), the
blank check is performed in blocking mode even if non-blocking mode is enabled because the processing
completes more quickly than writing or erasure. When it is set to BLANK_CHECK_ENTIRE_BLOCK (multiple
block size), the enabled API operating mode is used.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 34 of 51
Feb.14.22

3.7 R_FlashProgramLockBit
Sets the lock bit for the target block in the ROM, prohibiting erasing and programming.

Format
 uint8_t R_FlashProgramLockBit(uint32_t block);

Parameters
block Specifies the block number for which the lock bit is set. Block numbers are defined in the

r_flash_api_rxXXX.h file corresponding to the device, located in r_flash_api_rx/src/targets. For
example, on the RX610 the block at address 0xFFFFE000 is referenced as block 0 in the user’s
manual and would be specified by this parameter as BLOCK_0.

Return Values
FLASH_SUCCESS: Normal end

FLASH_FAILURE: Abnormal end
(Processing attempted on area for which lock bit is already set.)

FLASH_BUSY: Other processing of the flash memory is currently in progress.

FLASH_ERROR_ADDRESS: Invalid block number

Description
Sets the lock bit for the specified block.

Reentrant
No.

Example
uint8_t ret;

/* Enable lock bit protection (this is default out of reset) */
ret = R_FlashSetLockBitProtection(true);

/* Check for errors. */
if (FLASH_SUCCESS != ret)
{
 . . .
}

/* Program lock bits */
ret = R_FlashProgramLockBit(flash_block);

/* Check for errors. */
if (FLASH_SUCCESS != ret)
{
 . . .
}

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 35 of 51
Feb.14.22

Special Notes
• If a block is erased while the lock bit protection functionality is disabled, the lock bit corresponding to that

block is cleared.
• To use the R_FlashProgramLockBit function, disable the FLASH_API_RX_CFG_IGNORE_LOCK_BITS

definition in r_flash_api_rx_config.h.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 36 of 51
Feb.14.22

3.8 R_FlashReadLockBit
Reads the status of the lock bit for the target block in the ROM.

Format
 uint8_t R_FlashReadLockBit(uint32_t block);

Parameters
block Specifies the block number for which the lock bit status is read.

Return Values
FLASH_LOCK_BIT_SET: The lock bit has been set.

FLASH_LOCK_BIT_NOT_SET: The lock bit has been cleared.

FLASH_FAILURE: Abnormal end (Normally not returned.)

FLASH_BUSY: Other processing of the flash memory is currently in progress.

FLASH_ERROR_ADDRESS: Invalid block number

Description
Reads the status of the lock bit for the specified block. The return value is determined by the read result. A
return value of FLASH_LOCK_BIT_SET (0x07) indicates that the lock bit of the target block has been set. A
return value of FLASH_LOCK_BIT_NOT_SET (0x08) indicates that the lock bit of the target block has been
cleared.

Reentrant
No.

Example
uint8_t ret;

/* Program lock bits */
ret = R_FlashReadLockBit(flash_block);

/* Check result. */
if (FLASH_LOCK_BIT_SET == ret)
{
 /* Lock bit is set for this block. */
 . . .
}
else if (FLASH_LOCK_BIT_NOT_SET == ret)
{
 /* Lock bit was not set for this block. */
 . . .
}

Special Notes
• If a block is erased while the lock bit protection functionality is disabled, the lock bit corresponding to that

block is cleared.
• To use the R_FlashProgramLockBit function, disable the FLASH_API_RX_CFG_IGNORE_LOCK_BITS

definition in r_flash_api_rx_config.h.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 37 of 51
Feb.14.22

3.9 R_FlashSetLockBitProtection
Enable or disable the lock bit protection functionality.

Format
 uint8_t R_FlashSetLockBitProtection(uint32_t lock_bit);

Parameters
lock_bit Specifies whether lock bit protection functionality is enabled or disabled. A value of true or 1 or

greater enables lock bit protection, and a value of false or 0 disables it.

Return Values
FLASH_SUCCESS: Normal end

FLASH_BUSY: Other processing of the flash memory is currently in progress.

Description
Enable or disable the lock bit protection functionality. When lock bit protection is enabled, it is not possible to
write to or erase blocks for which the lock bit is set. When lock bit protection is disabled, it is possible to write
to or erase all blocks, regardless of whether or not their lock bits are set.

Reentrant
No.

Example
uint8_t ret;

/* Enable lock bit protection (this is default out of reset) */
ret = R_FlashSetLockBitProtection(true);

/* Check for errors. */
if (FLASH_SUCCESS != ret)
{
 . . .
}

Special Notes
• If a block is erased while the lock bit protection functionality is disabled, the lock bit corresponding to that

block is cleared.
• To use the R_FlashProgramLockBit function, disable the FLASH_API_RX_CFG_IGNORE_LOCK_BITS

definition in r_flash_api_rx_config.h.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 38 of 51
Feb.14.22

3.10 R_FlashGetStatus
Returns the API processing status.

Format
 uint8_t R_FlashGetStatus(void);

Parameters
None.

Return Values
FLASH_SUCCESS: API functions can be run.

FLASH_BUSY: Other processing of the flash memory is currently in progress.

Description
This function can be used to check the API processing status in non-blocking mode.

Reentrant
Yes.

Example
uint8_t ret;

/* Blank check an entire data flash block. */
ret = R_FlashDataAreaBlankCheck(address, BLANK_CHECK_ENTIRE_BLOCK);

while(R_FlashGetStatus() == FLASH_BUSY)
{
 /* Wait for previous operation to finish. You could also stall this task
 and do some real work. */
}

Special Notes
None.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 39 of 51
Feb.14.22

3.11 R_FlashCodeCopy
Copies the API code from the ROM section (PFRAM) to the RAM section (RPFRAM).

Format
 void R_FlashCodeCopy(void);

Parameters
None.

Return Values
None.

Description
Running the R_FlashCodeCopy function copies the API code from the ROM section (PFRAM) to the RAM
section (RPFRAM).

Reentrant
Yes.

Example
/* Transfer Flash API code to RAM so that we can program/erase ROM. */
R_FlashCodeCopy();

/* Flash API can now program/erase ROM. */

Special Notes
• It is not necessary to run the R_FlashCodeCopy function if you instead copy the code by editing dbsct.c.
• To use the R_FlashCodeCopy function, enable the FLASH_API_RX_CFG_COPY_CODE_BY_API

definition in r_flash_api_rx_config.h.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 40 of 51
Feb.14.22

3.12 R_FlashGetVersion
Returns the version number of the API.

Format
 uint32_t R_FlashGetVersion(void);

Parameters
None.

Return Values
API version number

Description
The API version number is reported as a return value. The upper 2 bytes of the return value represent the
major version number, and the lower 2 bytes represent the minor version number. For example, version 4.25
is represented as a return code of 0x00040019.

Reentrant
Yes.

Example
uint32_t cur_version;

/* Get version of installed Flash API. */
cur_version = R_FlashGetVersion();

/* Check to make sure version is new enough for this application’s use. */
if (MIN_VERSION > cur_version)
{
 /* This Flash API version is not new enough and does not have XXX feature
 that is needed by this application. Alert user. */

}

Special Notes
R_FlashGetVersion function is defined as an inline function in the r_flash_api_rx.c file.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 41 of 51
Feb.14.22

4. Reference Information
4.1 Emulator Debugging Settings
If you use the default debugging settings in the integrated development environment (e2 studio or CS+), you
will not be able to use the memory monitoring function to check the contents of the flash memory
programmed by the API. It will be possible to program the flash memory, but the monitored values will not by
updated by downloaded values.

If you want to be able to confirm the programmed data, change the debugger tool settings in the debugging
configuration as shown below.

e2 studio

1. In Project Explorer, click the project to be debugged.
2. Click Run → Debug Configurations... to open the Debug Configurations window.
3. In the Debug Configurations window, open the Renesas GDB Hardware Debugging debugging

configuration display, then click the debugging configuration of the debugging target.
4. Switch to the Debugger tab, click the Debug Tool Settings subtab of the Debugger tab, and enter the

following settings.
 System

• Debug the program re-writing the on-chip PROGRAM ROM : Yes
• Debug the program re-writing the on-chip DATA FLASH : Yes

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 42 of 51
Feb.14.22

 CS+
Select RX E2 Lite(Debug Tool) → Debug Tool Settings → System, and enter the following settings.
• Debug the program re-writing the on-chip PROGRAM ROM : Yes
• Debug the program re-writing the on-chip DATA FLASH : Yes

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 43 of 51
Feb.14.22

4.2 Using Flash Programmer to Read Programmed Data
In order to use Renesas Flash Programmer (RFP) to read the contents of flash memory programmed by a
user program, you must set an ID code when you download the user program. The ID code is a security
function built into RX Family devices. Note that if a connection is established without first setting an ID code,
RFP will erase the entire flash memory area. For details of the ID code function, refer to the user’s manual of
the specific device.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 44 of 51
Feb.14.22

5. Sample Project
5.1 Overview
A sample project for each target device is provided as an accompaniment to this application note. The
sample project is provided in e2 studio project format, and it can be imported using e2 studio or CS+ and
used to confirm the operation of the API.

5.2 Operation Confirmation Environment
The operation of the sample project has been confirmed on the following environment.

Table 5.1 Operation Confirmation Environment

Item Description
IDE Renesas Electronics e2 studio 2022-01
C compiler Renesas Electronics C/C++ Compiler for RX Family V3.04.00

The compile options used are the default settings of the integrated development
environment.

Endian order Big endian/little endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Board used Renesas Starter Kit for RX610 (product No.: R0K55610xxxxxxx)

Renesas Starter Kit for RX62G (product No.: R0K50562Gxxxxxx)
Renesas Starter Kit+ for RX62N (product No.: R0K5562Nxxxxxxx)
Renesas Starter Kit for RX62T (product No.: R0K5562Txxxxxxx)
Renesas Starter Kit for RX630 (product No.: R0K505630xxxxxx)
Renesas Starter Kit+ for RX63N (product No.: R0K50563Nxxxxxx)
Renesas Starter Kit for RX63T (144-pin) (product No.: R0K5563THxxxxxx)
Renesas Starter Kit for RX210 (B version) (product No.: R0K505210xxxxxx)
Renesas Starter Kit for RX220 (product No.: R0K505220xxxxxx)
Hokuto Denshi Co., Ltd. HSB Series Microcontroller Board
(catalog number: HSBRX21AP-B)

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 45 of 51
Feb.14.22

5.3 Basic Operation of Sample Program
The program code of the sample project performs processing related to the settings of the configuration
options. Table 5.2 summarizes the operation of the sample program. For details, refer to the source code of
the sample program (flash_api_rx_demo_main.c).

Table 5.2 Operation of Sample Program

Function and Processing Overview Function Configuration Options
flash_api_demo_df_tests function
Uses API functions to perform processing, such as
erasing, blank checking, and programming, on all
the blocks in the data flash.

FLASH_API_RX_CFG_DATA_FLASH_BGO
FLASH_API_RX_CFG_FLASH_TO_FLASH

flash_api_demo_rom_tests function
Uses API functions to perform processing, such as
erasing, programming, and lock bit setting, on all
the blocks other than those in which the program
is stored (16 KB)

FLASH_API_RX_CFG_ENABLE_ROM_PROGRAM
MING
FLASH_API_RX_CFG_ROM_BGO
FLASH_API_RX_CFG_FLASH_TO_FLASH
FLASH_API_RX_CFG_IGNORE_LOCK_BITS

flash_api_demo_rom_bgo_init function
Performs processing to reassign the interrupt
vector table to the RAM in non-blocking mode.

FLASH_API_RX_CFG_ROM_BGO

flash_api_demo_lock_bit_tests function
Performs processing such as lock bit
enable/disable and setting, and reading data.

FLASH_API_RX_CFG_IGNORE_LOCK_BITS

RAM

Data flash

ROM

Copy

RPFRAM section:
Copied programming code

Programming
Sample program

PFRAM section:
Programming code

Programming

16 KB

Figure 5.1 Sample Program Processing Overview (with ROM Programming Enabled)

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 46 of 51
Feb.14.22

5.4 Operating Clock Settings for Sample Project
The sample projects for some devices make use of code described in the associated “Initial Setting”
application note to make operating clock settings. The operating clock settings used are the default settings
listed in the “Initial Setting” application note. Refer to section 6, Reference Documents, for a listing of “Initial
Setting” application notes.

The HardwareSetup function of generate/hwsetup.c performs operating clock settings in each sample
project.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 47 of 51
Feb.14.22

5.5 Importing a Project
The sample programs are distributed in e2 studio project format. This section shows how to import a project
into e2 studio or CS+. After importing the sample project, make sure to confirm build and debugger setting.

5.5.1 Importing a Project into e2 studio
To use sample programs in e2 studio, follow the steps below to import them into e2 studio. In projects
managed by e2 studio, do not use space codes, multibyte characters, and symbols such as "$", "#", "%" in
folder names or paths to them.

(Note that depending on the version of e2 studio you are using, the interface may appear somewhat different
from the screenshots below.)

Figure 5.2 Importing a Project into e2 studio

start Start the e2 studio and
select the File >> [Import …].

Select [Select root directory:].

Select [Select root directory:], and
directory which stored the project
(sample_project)
Each application note has its own

Select [Existing Projects

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 48 of 51
Feb.14.22

5.5.2 Importing a Project into CS+
To use sample programs in CS+, follow the steps below to import them into CS+. In projects managed by CS
+, do not use space codes, multibyte characters, and symbols such as "$", "#", "%" in folder names or paths
to them.

 (Note that depending on the version of CS+ you are using, the interface may appear somewhat different
from the screenshots below.)

Figure 5.3 Importing a Project into CS+

 for e2 studio (*.r

Start the CS+, and select
[Open Existing MCU Simulator / e2 studio /
CubeSuite / High-performance Embedded
Workshop / PM+ Project]

Select [Empty Application(CC-RX)] in
[Kind of project:],
and specify the project name and place,
and select whether to backup.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 49 of 51
Feb.14.22

6. Reference Documents
User’s Manual: Hardware
Title Revision Document No.
RX610 Group User’s Manual: Hardware 1.20 R01UH0032EJ0120
RX62N Group, RX621 Group User’s Manual: Hardware 1.40 R01UH0033EJ0140
RX62T Group, RX62G Group User’s Manual: Hardware 2.00 R01UH0034EJ0200
RX630 Group User’s Manual: Hardware 1.60 R01UH0040EJ0160
RX63N Group, RX631 Group User’s Manual: Hardware 1.80 R01UH0041EJ0180
RX63T Group User’s Manual: Hardware 2.20 R01UH0238EJ0220
RX210 Group User’s Manual: Hardware 1.50 R01UH0037EJ0150
RX220 Group User’s Manual: Hardware 1.10 R01UH0292EJ0110
RX21A Group User’s Manual: Hardware 1.10 R01UH0251EJ0110

Application Note
Title Revision Document No.
RX630 Group Initial Setting 1.00 R01AN1004EJ0100
RX63N Group, RX631 Group Initial Setting 1.10 R01AN1245EJ0110
RX63T Group Initialization Example 1.01 R01AN1252EJ0101
RX210 Group Initial Setting 2.21 R01AN1002EJ0221
RX220 Group Initial Setting 1.10 R01AN1494EJ0110
RX21A Group Initial Setting 1.10 R01AN1486EJ0110

Technical Update/Technical News

(The latest version can be downloaded from the Renesas Electronics website.)

User’s Manual: Development environment

RX Family CC-RX Compiler User’s Manual (R20UT3248)
(The latest version can be downloaded from the Renesas Electronics website.)

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 50 of 51
Feb.14.22

Revision History

Rev. Date
Description
Page Summary

1.00 Jan. 27, 2010  First edition issued
1.20 Feb. 11, 2010  Minor text revisions, and section on disabling interrupts

added.
1.30 Mar. 5, 2010  Fixes based on recommendations from RTE.
1.40 May 26, 2010  Revised to include support for the RX62x Group.
1.41 Jun. 11, 2010  Fixed typographical errors, etc.
1.43 Feb. 18, 2011  Blank check function parameter description updated.
2.00 Apr. 27, 2011  Background operation (BGO), flash to flash transfer, and lock

bit protection functionality added.
2.10 Jul. 11, 2011  Support for RX630, RX631, and RX63N devices added.

DATA_FLASH_OPERATION_PIPL and
ROM_OPERATION_PIPL definitions deleted, and section
added explaining why this was done. Added
R_FlashEraseRange() function to API. Section on ROM area
boundaries (previously Section 3.4) rewritten to apply to
RX610 and RX63x devices.

2.20 Mar. 27, 2012  Moved document over to new template. Restructured existing
data and added new information about using r_bsp package.
Added R_FlashCodeCopy() function to the API.

2.30 Sep. 12, 2012  Added R_FlashGetVersion() function to the API.
Removed config macro for not using r_bsp because the code
has been modified to recognize this automatically. Added
“Configure for Only Data Flash Use,” “Erase Entire User
Application Area,” “Reading from Data Flash After Reset,”
“Checking if a Data Flash Location is Blank (Erased),” and
“Putting Flash API in User Boot Area” sections.
Added blank check size table in
R_FlashDataAreaBlankCheck section.

2.40 Jul. 1, 2013  Added support for RX210, RX62G, and RX63T devices. Since
RX200 Series devices are now supported, changed name
from “Simple Flash API for RX600” to “Simple Flash API for
RX.” Added “Checking if a Data Flash Location is Blank
(Erased)” section, and added note on first page about where
to find information about why erased data flash locations are
not read as 0xFF.
Added list of API functions to beginning of API Functions
section. Added Demo Projects section.

2.50 Mar. 6, 2015  Added support for RX21A and RX220. For all instructions that
referenced HEW, the equivalent steps are now provided for
e2 studio. Added “Execute from Data Flash” subsection.
Added “Access Rules” subsection. Added “Related
Documents” to cover page. Added “Memory Requirements”
subsection. Removed “Bootloader Implementations” section.
Revised “R_FlashDataAreaBlankCheck” subsection with use
of new BLANK_CHECK_SMALLEST macro. Use of
BLANK_CHECK_2_BYTE and BLANK_CHECK_8_BYTE is
to be discontinued. Removed “Demo” section.

RX Family Simple Flash API for RX

R01AN0544EJ0300 Rev.3.00 Page 51 of 51
Feb.14.22

Rev. Date
Description
Page Summary

3.00 Feb.14, 2022 Overall Changed configuration from one dependent on BSP to one
not dependent on BSP.
Added support for RX631 Group devices with ROM size of
256 KB.

 Document Changed overall structure and contents of document.
< Key points >
• 2.4 Configuration

The following new options have been added:
 FLASH_MCU_xxxx
 FLASH_API_RX_CFG_ICLK_HZ
 FLASH_API_RX_CFG_FCLK_HZ
 FLASH_API_RX_CFG_ROM_SIZE_BYTES
 FLASH_API_RX_CFG_DATA_FLASH_SIZE_BYTES

• 5. Sample Project

Sections removed in Rev. 2.50 have been re-added.
 Program Changed configuration from one dependent on r_bsp to one

not dependent on r_bsp.
• Added following new options to r_flash_api_rx_config.h.

 FLASH_MCU_xxxx
 FLASH_API_RX_CFG_ICLK_HZ
 FLASH_API_RX_CFG_FCLK_HZ
 FLASH_API_RX_CFG_ROM_SIZE_BYTES
 FLASH_API_RX_CFG_DATA_FLASH_SIZE_BYTES

• Definitions related to r_bsp (BSP_XXX) have been

changed to new optional definitions in all source files and
header files.

• Specification changed to no longer use the r_bsp

hardware locking mechanism.
 The flash_grab_state function has been changed.
 The flash_release_state function has been changed.

• The r_flash_api_rx_if.h file has been deleted from the

following definitions:
 BLANK_CHECK_8_BYTE
 BLANK_CHECK_2_BYTE

Added support for RX631 Group devices with ROM size of
256 KB.
• Added information on 256 KB products to

r_flash_api_rx63n.h.

Added countermeasures as described in Tool News
(R20TS0805EJ0100).

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Supported Functionality
	1.2 Programming Flash Memory
	1.3 API Operating Modes (Blocking Mode and Non-Blocking Mode)
	1.4 Access Restrictions during API Execution
	1.5 API Execution Area and Necessary Operations

	2. API Information
	2.1 Toolchain
	2.2 Header Files
	2.3 Configuration
	2.4 Return Values
	2.5 Blocking Mode and Non-Blocking Mode
	2.5.1 Blocking Mode
	2.5.2 Non-Blocking Mode

	2.6 Interrupt Vector Tables and Interrupt Handlers
	2.7 Running API Code from RAM
	2.8 Programing from ROM to ROM or from Data Flash to Data Flash
	2.9 Usage Precautions
	2.9.1 Operating Frequency when Running API Functions
	2.9.2 Accessing Data Flash after Reset
	2.9.3 Flash Memory Value after Erase
	2.9.4 Block Address Constants
	2.9.5 Programming across Boundaries in ROM Area

	2.10 Memory Usage
	2.11 Importing API Functions into a User Project

	3. API Functions
	3.1 Overview
	3.2 R_FlashErase
	3.3 R_FlashEraseRange (Not supported on RX610 Group and RX62x Group.)
	3.4 R_FlashWrite
	3.5 R_FlashDataAreaAccess
	3.6 R_FlashDataAreaBlankCheck
	3.7 R_FlashProgramLockBit
	3.8 R_FlashReadLockBit
	3.9 R_FlashSetLockBitProtection
	3.10 R_FlashGetStatus
	3.11 R_FlashCodeCopy
	3.12 R_FlashGetVersion

	4. Reference Information
	4.1 Emulator Debugging Settings
	4.2 Using Flash Programmer to Read Programmed Data

	5. Sample Project
	5.1 Overview
	5.2 Operation Confirmation Environment
	5.3 Basic Operation of Sample Program
	5.4 Operating Clock Settings for Sample Project
	5.5 Importing a Project
	5.5.1 Importing a Project into e2 studio
	5.5.2 Importing a Project into CS+

	6. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

